1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #include <linux/types.h>
33 #include <linux/if_ether.h>
34 
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 						 u16 *);
60 static s32  igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32  igb_reset_init_script_82575(struct e1000_hw *);
64 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
67 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
68 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32  igb_update_nvm_checksum_with_offset(struct e1000_hw *hw,
70 						u16 offset);
71 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
72 						u16 offset);
73 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
74 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
75 static const u16 e1000_82580_rxpbs_table[] =
76 	{ 36, 72, 144, 1, 2, 4, 8, 16,
77 	  35, 70, 140 };
78 #define E1000_82580_RXPBS_TABLE_SIZE \
79 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
80 
81 /**
82  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83  *  @hw: pointer to the HW structure
84  *
85  *  Called to determine if the I2C pins are being used for I2C or as an
86  *  external MDIO interface since the two options are mutually exclusive.
87  **/
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90 	u32 reg = 0;
91 	bool ext_mdio = false;
92 
93 	switch (hw->mac.type) {
94 	case e1000_82575:
95 	case e1000_82576:
96 		reg = rd32(E1000_MDIC);
97 		ext_mdio = !!(reg & E1000_MDIC_DEST);
98 		break;
99 	case e1000_82580:
100 	case e1000_i350:
101 		reg = rd32(E1000_MDICNFG);
102 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
103 		break;
104 	default:
105 		break;
106 	}
107 	return ext_mdio;
108 }
109 
110 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
111 {
112 	struct e1000_phy_info *phy = &hw->phy;
113 	struct e1000_nvm_info *nvm = &hw->nvm;
114 	struct e1000_mac_info *mac = &hw->mac;
115 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
116 	u32 eecd;
117 	s32 ret_val;
118 	u16 size;
119 	u32 ctrl_ext = 0;
120 
121 	switch (hw->device_id) {
122 	case E1000_DEV_ID_82575EB_COPPER:
123 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
124 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
125 		mac->type = e1000_82575;
126 		break;
127 	case E1000_DEV_ID_82576:
128 	case E1000_DEV_ID_82576_NS:
129 	case E1000_DEV_ID_82576_NS_SERDES:
130 	case E1000_DEV_ID_82576_FIBER:
131 	case E1000_DEV_ID_82576_SERDES:
132 	case E1000_DEV_ID_82576_QUAD_COPPER:
133 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
134 	case E1000_DEV_ID_82576_SERDES_QUAD:
135 		mac->type = e1000_82576;
136 		break;
137 	case E1000_DEV_ID_82580_COPPER:
138 	case E1000_DEV_ID_82580_FIBER:
139 	case E1000_DEV_ID_82580_QUAD_FIBER:
140 	case E1000_DEV_ID_82580_SERDES:
141 	case E1000_DEV_ID_82580_SGMII:
142 	case E1000_DEV_ID_82580_COPPER_DUAL:
143 	case E1000_DEV_ID_DH89XXCC_SGMII:
144 	case E1000_DEV_ID_DH89XXCC_SERDES:
145 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
146 	case E1000_DEV_ID_DH89XXCC_SFP:
147 		mac->type = e1000_82580;
148 		break;
149 	case E1000_DEV_ID_I350_COPPER:
150 	case E1000_DEV_ID_I350_FIBER:
151 	case E1000_DEV_ID_I350_SERDES:
152 	case E1000_DEV_ID_I350_SGMII:
153 		mac->type = e1000_i350;
154 		break;
155 	default:
156 		return -E1000_ERR_MAC_INIT;
157 		break;
158 	}
159 
160 	/* Set media type */
161 	/*
162 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
163 	 * based on the EEPROM. We cannot rely upon device ID. There
164 	 * is no distinguishable difference between fiber and internal
165 	 * SerDes mode on the 82575. There can be an external PHY attached
166 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
167 	 */
168 	phy->media_type = e1000_media_type_copper;
169 	dev_spec->sgmii_active = false;
170 
171 	ctrl_ext = rd32(E1000_CTRL_EXT);
172 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
173 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
174 		dev_spec->sgmii_active = true;
175 		break;
176 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
177 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
178 		hw->phy.media_type = e1000_media_type_internal_serdes;
179 		break;
180 	default:
181 		break;
182 	}
183 
184 	/* Set mta register count */
185 	mac->mta_reg_count = 128;
186 	/* Set rar entry count */
187 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
188 	if (mac->type == e1000_82576)
189 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
190 	if (mac->type == e1000_82580)
191 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
192 	if (mac->type == e1000_i350)
193 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
194 	/* reset */
195 	if (mac->type >= e1000_82580)
196 		mac->ops.reset_hw = igb_reset_hw_82580;
197 	else
198 		mac->ops.reset_hw = igb_reset_hw_82575;
199 	/* Set if part includes ASF firmware */
200 	mac->asf_firmware_present = true;
201 	/* Set if manageability features are enabled. */
202 	mac->arc_subsystem_valid =
203 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
204 			? true : false;
205 	/* enable EEE on i350 parts */
206 	if (mac->type == e1000_i350)
207 		dev_spec->eee_disable = false;
208 	else
209 		dev_spec->eee_disable = true;
210 	/* physical interface link setup */
211 	mac->ops.setup_physical_interface =
212 		(hw->phy.media_type == e1000_media_type_copper)
213 			? igb_setup_copper_link_82575
214 			: igb_setup_serdes_link_82575;
215 
216 	/* NVM initialization */
217 	eecd = rd32(E1000_EECD);
218 
219 	nvm->opcode_bits        = 8;
220 	nvm->delay_usec         = 1;
221 	switch (nvm->override) {
222 	case e1000_nvm_override_spi_large:
223 		nvm->page_size    = 32;
224 		nvm->address_bits = 16;
225 		break;
226 	case e1000_nvm_override_spi_small:
227 		nvm->page_size    = 8;
228 		nvm->address_bits = 8;
229 		break;
230 	default:
231 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
232 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
233 		break;
234 	}
235 
236 	nvm->type = e1000_nvm_eeprom_spi;
237 
238 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
239 		     E1000_EECD_SIZE_EX_SHIFT);
240 
241 	/*
242 	 * Added to a constant, "size" becomes the left-shift value
243 	 * for setting word_size.
244 	 */
245 	size += NVM_WORD_SIZE_BASE_SHIFT;
246 
247 	/*
248 	 * Check for invalid size
249 	 */
250 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
251 		printk("igb: The NVM size is not valid, "
252 			"defaulting to 32K.\n");
253 		size = 15;
254 	}
255 	nvm->word_size = 1 << size;
256 	if (nvm->word_size == (1 << 15))
257 		nvm->page_size = 128;
258 
259 	/* NVM Function Pointers */
260 	nvm->ops.acquire = igb_acquire_nvm_82575;
261 	if (nvm->word_size < (1 << 15))
262 		nvm->ops.read = igb_read_nvm_eerd;
263 	else
264 		nvm->ops.read = igb_read_nvm_spi;
265 
266 	nvm->ops.release = igb_release_nvm_82575;
267 	switch (hw->mac.type) {
268 	case e1000_82580:
269 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
270 		nvm->ops.update = igb_update_nvm_checksum_82580;
271 		break;
272 	case e1000_i350:
273 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
274 		nvm->ops.update = igb_update_nvm_checksum_i350;
275 		break;
276 	default:
277 		nvm->ops.validate = igb_validate_nvm_checksum;
278 		nvm->ops.update = igb_update_nvm_checksum;
279 	}
280 	nvm->ops.write = igb_write_nvm_spi;
281 
282 	/* if part supports SR-IOV then initialize mailbox parameters */
283 	switch (mac->type) {
284 	case e1000_82576:
285 	case e1000_i350:
286 		igb_init_mbx_params_pf(hw);
287 		break;
288 	default:
289 		break;
290 	}
291 
292 	/* setup PHY parameters */
293 	if (phy->media_type != e1000_media_type_copper) {
294 		phy->type = e1000_phy_none;
295 		return 0;
296 	}
297 
298 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
299 	phy->reset_delay_us      = 100;
300 
301 	ctrl_ext = rd32(E1000_CTRL_EXT);
302 
303 	/* PHY function pointers */
304 	if (igb_sgmii_active_82575(hw)) {
305 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
306 		ctrl_ext |= E1000_CTRL_I2C_ENA;
307 	} else {
308 		phy->ops.reset      = igb_phy_hw_reset;
309 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
310 	}
311 
312 	wr32(E1000_CTRL_EXT, ctrl_ext);
313 	igb_reset_mdicnfg_82580(hw);
314 
315 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
316 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
317 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
318 	} else if (hw->mac.type >= e1000_82580) {
319 		phy->ops.read_reg   = igb_read_phy_reg_82580;
320 		phy->ops.write_reg  = igb_write_phy_reg_82580;
321 	} else {
322 		phy->ops.read_reg   = igb_read_phy_reg_igp;
323 		phy->ops.write_reg  = igb_write_phy_reg_igp;
324 	}
325 
326 	/* set lan id */
327 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
328 	               E1000_STATUS_FUNC_SHIFT;
329 
330 	/* Set phy->phy_addr and phy->id. */
331 	ret_val = igb_get_phy_id_82575(hw);
332 	if (ret_val)
333 		return ret_val;
334 
335 	/* Verify phy id and set remaining function pointers */
336 	switch (phy->id) {
337 	case I347AT4_E_PHY_ID:
338 	case M88E1112_E_PHY_ID:
339 	case M88E1111_I_PHY_ID:
340 		phy->type                   = e1000_phy_m88;
341 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
342 
343 		if (phy->id == I347AT4_E_PHY_ID ||
344 		    phy->id == M88E1112_E_PHY_ID)
345 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
346 		else
347 			phy->ops.get_cable_length = igb_get_cable_length_m88;
348 
349 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
350 		break;
351 	case IGP03E1000_E_PHY_ID:
352 		phy->type                   = e1000_phy_igp_3;
353 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
354 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
355 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
356 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
357 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
358 		break;
359 	case I82580_I_PHY_ID:
360 	case I350_I_PHY_ID:
361 		phy->type                   = e1000_phy_82580;
362 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
363 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
364 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
365 		break;
366 	default:
367 		return -E1000_ERR_PHY;
368 	}
369 
370 	return 0;
371 }
372 
373 /**
374  *  igb_acquire_phy_82575 - Acquire rights to access PHY
375  *  @hw: pointer to the HW structure
376  *
377  *  Acquire access rights to the correct PHY.  This is a
378  *  function pointer entry point called by the api module.
379  **/
380 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
381 {
382 	u16 mask = E1000_SWFW_PHY0_SM;
383 
384 	if (hw->bus.func == E1000_FUNC_1)
385 		mask = E1000_SWFW_PHY1_SM;
386 	else if (hw->bus.func == E1000_FUNC_2)
387 		mask = E1000_SWFW_PHY2_SM;
388 	else if (hw->bus.func == E1000_FUNC_3)
389 		mask = E1000_SWFW_PHY3_SM;
390 
391 	return igb_acquire_swfw_sync_82575(hw, mask);
392 }
393 
394 /**
395  *  igb_release_phy_82575 - Release rights to access PHY
396  *  @hw: pointer to the HW structure
397  *
398  *  A wrapper to release access rights to the correct PHY.  This is a
399  *  function pointer entry point called by the api module.
400  **/
401 static void igb_release_phy_82575(struct e1000_hw *hw)
402 {
403 	u16 mask = E1000_SWFW_PHY0_SM;
404 
405 	if (hw->bus.func == E1000_FUNC_1)
406 		mask = E1000_SWFW_PHY1_SM;
407 	else if (hw->bus.func == E1000_FUNC_2)
408 		mask = E1000_SWFW_PHY2_SM;
409 	else if (hw->bus.func == E1000_FUNC_3)
410 		mask = E1000_SWFW_PHY3_SM;
411 
412 	igb_release_swfw_sync_82575(hw, mask);
413 }
414 
415 /**
416  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
417  *  @hw: pointer to the HW structure
418  *  @offset: register offset to be read
419  *  @data: pointer to the read data
420  *
421  *  Reads the PHY register at offset using the serial gigabit media independent
422  *  interface and stores the retrieved information in data.
423  **/
424 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
425 					  u16 *data)
426 {
427 	s32 ret_val = -E1000_ERR_PARAM;
428 
429 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
430 		hw_dbg("PHY Address %u is out of range\n", offset);
431 		goto out;
432 	}
433 
434 	ret_val = hw->phy.ops.acquire(hw);
435 	if (ret_val)
436 		goto out;
437 
438 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
439 
440 	hw->phy.ops.release(hw);
441 
442 out:
443 	return ret_val;
444 }
445 
446 /**
447  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
448  *  @hw: pointer to the HW structure
449  *  @offset: register offset to write to
450  *  @data: data to write at register offset
451  *
452  *  Writes the data to PHY register at the offset using the serial gigabit
453  *  media independent interface.
454  **/
455 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
456 					   u16 data)
457 {
458 	s32 ret_val = -E1000_ERR_PARAM;
459 
460 
461 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
462 		hw_dbg("PHY Address %d is out of range\n", offset);
463 		goto out;
464 	}
465 
466 	ret_val = hw->phy.ops.acquire(hw);
467 	if (ret_val)
468 		goto out;
469 
470 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
471 
472 	hw->phy.ops.release(hw);
473 
474 out:
475 	return ret_val;
476 }
477 
478 /**
479  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
480  *  @hw: pointer to the HW structure
481  *
482  *  Retrieves the PHY address and ID for both PHY's which do and do not use
483  *  sgmi interface.
484  **/
485 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
486 {
487 	struct e1000_phy_info *phy = &hw->phy;
488 	s32  ret_val = 0;
489 	u16 phy_id;
490 	u32 ctrl_ext;
491 	u32 mdic;
492 
493 	/*
494 	 * For SGMII PHYs, we try the list of possible addresses until
495 	 * we find one that works.  For non-SGMII PHYs
496 	 * (e.g. integrated copper PHYs), an address of 1 should
497 	 * work.  The result of this function should mean phy->phy_addr
498 	 * and phy->id are set correctly.
499 	 */
500 	if (!(igb_sgmii_active_82575(hw))) {
501 		phy->addr = 1;
502 		ret_val = igb_get_phy_id(hw);
503 		goto out;
504 	}
505 
506 	if (igb_sgmii_uses_mdio_82575(hw)) {
507 		switch (hw->mac.type) {
508 		case e1000_82575:
509 		case e1000_82576:
510 			mdic = rd32(E1000_MDIC);
511 			mdic &= E1000_MDIC_PHY_MASK;
512 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
513 			break;
514 		case e1000_82580:
515 		case e1000_i350:
516 			mdic = rd32(E1000_MDICNFG);
517 			mdic &= E1000_MDICNFG_PHY_MASK;
518 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
519 			break;
520 		default:
521 			ret_val = -E1000_ERR_PHY;
522 			goto out;
523 			break;
524 		}
525 		ret_val = igb_get_phy_id(hw);
526 		goto out;
527 	}
528 
529 	/* Power on sgmii phy if it is disabled */
530 	ctrl_ext = rd32(E1000_CTRL_EXT);
531 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
532 	wrfl();
533 	msleep(300);
534 
535 	/*
536 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
537 	 * Therefore, we need to test 1-7
538 	 */
539 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
540 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
541 		if (ret_val == 0) {
542 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
543 			       phy_id, phy->addr);
544 			/*
545 			 * At the time of this writing, The M88 part is
546 			 * the only supported SGMII PHY product.
547 			 */
548 			if (phy_id == M88_VENDOR)
549 				break;
550 		} else {
551 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
552 		}
553 	}
554 
555 	/* A valid PHY type couldn't be found. */
556 	if (phy->addr == 8) {
557 		phy->addr = 0;
558 		ret_val = -E1000_ERR_PHY;
559 		goto out;
560 	} else {
561 		ret_val = igb_get_phy_id(hw);
562 	}
563 
564 	/* restore previous sfp cage power state */
565 	wr32(E1000_CTRL_EXT, ctrl_ext);
566 
567 out:
568 	return ret_val;
569 }
570 
571 /**
572  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
573  *  @hw: pointer to the HW structure
574  *
575  *  Resets the PHY using the serial gigabit media independent interface.
576  **/
577 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
578 {
579 	s32 ret_val;
580 
581 	/*
582 	 * This isn't a true "hard" reset, but is the only reset
583 	 * available to us at this time.
584 	 */
585 
586 	hw_dbg("Soft resetting SGMII attached PHY...\n");
587 
588 	/*
589 	 * SFP documentation requires the following to configure the SPF module
590 	 * to work on SGMII.  No further documentation is given.
591 	 */
592 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
593 	if (ret_val)
594 		goto out;
595 
596 	ret_val = igb_phy_sw_reset(hw);
597 
598 out:
599 	return ret_val;
600 }
601 
602 /**
603  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
604  *  @hw: pointer to the HW structure
605  *  @active: true to enable LPLU, false to disable
606  *
607  *  Sets the LPLU D0 state according to the active flag.  When
608  *  activating LPLU this function also disables smart speed
609  *  and vice versa.  LPLU will not be activated unless the
610  *  device autonegotiation advertisement meets standards of
611  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
612  *  This is a function pointer entry point only called by
613  *  PHY setup routines.
614  **/
615 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
616 {
617 	struct e1000_phy_info *phy = &hw->phy;
618 	s32 ret_val;
619 	u16 data;
620 
621 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
622 	if (ret_val)
623 		goto out;
624 
625 	if (active) {
626 		data |= IGP02E1000_PM_D0_LPLU;
627 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
628 						 data);
629 		if (ret_val)
630 			goto out;
631 
632 		/* When LPLU is enabled, we should disable SmartSpeed */
633 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
634 						&data);
635 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
636 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
637 						 data);
638 		if (ret_val)
639 			goto out;
640 	} else {
641 		data &= ~IGP02E1000_PM_D0_LPLU;
642 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
643 						 data);
644 		/*
645 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
646 		 * during Dx states where the power conservation is most
647 		 * important.  During driver activity we should enable
648 		 * SmartSpeed, so performance is maintained.
649 		 */
650 		if (phy->smart_speed == e1000_smart_speed_on) {
651 			ret_val = phy->ops.read_reg(hw,
652 					IGP01E1000_PHY_PORT_CONFIG, &data);
653 			if (ret_val)
654 				goto out;
655 
656 			data |= IGP01E1000_PSCFR_SMART_SPEED;
657 			ret_val = phy->ops.write_reg(hw,
658 					IGP01E1000_PHY_PORT_CONFIG, data);
659 			if (ret_val)
660 				goto out;
661 		} else if (phy->smart_speed == e1000_smart_speed_off) {
662 			ret_val = phy->ops.read_reg(hw,
663 					IGP01E1000_PHY_PORT_CONFIG, &data);
664 			if (ret_val)
665 				goto out;
666 
667 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
668 			ret_val = phy->ops.write_reg(hw,
669 					IGP01E1000_PHY_PORT_CONFIG, data);
670 			if (ret_val)
671 				goto out;
672 		}
673 	}
674 
675 out:
676 	return ret_val;
677 }
678 
679 /**
680  *  igb_acquire_nvm_82575 - Request for access to EEPROM
681  *  @hw: pointer to the HW structure
682  *
683  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
684  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
685  *  Return successful if access grant bit set, else clear the request for
686  *  EEPROM access and return -E1000_ERR_NVM (-1).
687  **/
688 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
689 {
690 	s32 ret_val;
691 
692 	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
693 	if (ret_val)
694 		goto out;
695 
696 	ret_val = igb_acquire_nvm(hw);
697 
698 	if (ret_val)
699 		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
700 
701 out:
702 	return ret_val;
703 }
704 
705 /**
706  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
707  *  @hw: pointer to the HW structure
708  *
709  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
710  *  then release the semaphores acquired.
711  **/
712 static void igb_release_nvm_82575(struct e1000_hw *hw)
713 {
714 	igb_release_nvm(hw);
715 	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
716 }
717 
718 /**
719  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
720  *  @hw: pointer to the HW structure
721  *  @mask: specifies which semaphore to acquire
722  *
723  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
724  *  will also specify which port we're acquiring the lock for.
725  **/
726 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
727 {
728 	u32 swfw_sync;
729 	u32 swmask = mask;
730 	u32 fwmask = mask << 16;
731 	s32 ret_val = 0;
732 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
733 
734 	while (i < timeout) {
735 		if (igb_get_hw_semaphore(hw)) {
736 			ret_val = -E1000_ERR_SWFW_SYNC;
737 			goto out;
738 		}
739 
740 		swfw_sync = rd32(E1000_SW_FW_SYNC);
741 		if (!(swfw_sync & (fwmask | swmask)))
742 			break;
743 
744 		/*
745 		 * Firmware currently using resource (fwmask)
746 		 * or other software thread using resource (swmask)
747 		 */
748 		igb_put_hw_semaphore(hw);
749 		mdelay(5);
750 		i++;
751 	}
752 
753 	if (i == timeout) {
754 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
755 		ret_val = -E1000_ERR_SWFW_SYNC;
756 		goto out;
757 	}
758 
759 	swfw_sync |= swmask;
760 	wr32(E1000_SW_FW_SYNC, swfw_sync);
761 
762 	igb_put_hw_semaphore(hw);
763 
764 out:
765 	return ret_val;
766 }
767 
768 /**
769  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
770  *  @hw: pointer to the HW structure
771  *  @mask: specifies which semaphore to acquire
772  *
773  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
774  *  will also specify which port we're releasing the lock for.
775  **/
776 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
777 {
778 	u32 swfw_sync;
779 
780 	while (igb_get_hw_semaphore(hw) != 0);
781 	/* Empty */
782 
783 	swfw_sync = rd32(E1000_SW_FW_SYNC);
784 	swfw_sync &= ~mask;
785 	wr32(E1000_SW_FW_SYNC, swfw_sync);
786 
787 	igb_put_hw_semaphore(hw);
788 }
789 
790 /**
791  *  igb_get_cfg_done_82575 - Read config done bit
792  *  @hw: pointer to the HW structure
793  *
794  *  Read the management control register for the config done bit for
795  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
796  *  to read the config done bit, so an error is *ONLY* logged and returns
797  *  0.  If we were to return with error, EEPROM-less silicon
798  *  would not be able to be reset or change link.
799  **/
800 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
801 {
802 	s32 timeout = PHY_CFG_TIMEOUT;
803 	s32 ret_val = 0;
804 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
805 
806 	if (hw->bus.func == 1)
807 		mask = E1000_NVM_CFG_DONE_PORT_1;
808 	else if (hw->bus.func == E1000_FUNC_2)
809 		mask = E1000_NVM_CFG_DONE_PORT_2;
810 	else if (hw->bus.func == E1000_FUNC_3)
811 		mask = E1000_NVM_CFG_DONE_PORT_3;
812 
813 	while (timeout) {
814 		if (rd32(E1000_EEMNGCTL) & mask)
815 			break;
816 		msleep(1);
817 		timeout--;
818 	}
819 	if (!timeout)
820 		hw_dbg("MNG configuration cycle has not completed.\n");
821 
822 	/* If EEPROM is not marked present, init the PHY manually */
823 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
824 	    (hw->phy.type == e1000_phy_igp_3))
825 		igb_phy_init_script_igp3(hw);
826 
827 	return ret_val;
828 }
829 
830 /**
831  *  igb_check_for_link_82575 - Check for link
832  *  @hw: pointer to the HW structure
833  *
834  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
835  *  use the generic interface for determining link.
836  **/
837 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
838 {
839 	s32 ret_val;
840 	u16 speed, duplex;
841 
842 	if (hw->phy.media_type != e1000_media_type_copper) {
843 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
844 		                                             &duplex);
845 		/*
846 		 * Use this flag to determine if link needs to be checked or
847 		 * not.  If  we have link clear the flag so that we do not
848 		 * continue to check for link.
849 		 */
850 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
851 	} else {
852 		ret_val = igb_check_for_copper_link(hw);
853 	}
854 
855 	return ret_val;
856 }
857 
858 /**
859  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
860  *  @hw: pointer to the HW structure
861  **/
862 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
863 {
864 	u32 reg;
865 
866 
867 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
868 	    !igb_sgmii_active_82575(hw))
869 		return;
870 
871 	/* Enable PCS to turn on link */
872 	reg = rd32(E1000_PCS_CFG0);
873 	reg |= E1000_PCS_CFG_PCS_EN;
874 	wr32(E1000_PCS_CFG0, reg);
875 
876 	/* Power up the laser */
877 	reg = rd32(E1000_CTRL_EXT);
878 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
879 	wr32(E1000_CTRL_EXT, reg);
880 
881 	/* flush the write to verify completion */
882 	wrfl();
883 	msleep(1);
884 }
885 
886 /**
887  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
888  *  @hw: pointer to the HW structure
889  *  @speed: stores the current speed
890  *  @duplex: stores the current duplex
891  *
892  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
893  *  duplex, then store the values in the pointers provided.
894  **/
895 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
896 						u16 *duplex)
897 {
898 	struct e1000_mac_info *mac = &hw->mac;
899 	u32 pcs;
900 
901 	/* Set up defaults for the return values of this function */
902 	mac->serdes_has_link = false;
903 	*speed = 0;
904 	*duplex = 0;
905 
906 	/*
907 	 * Read the PCS Status register for link state. For non-copper mode,
908 	 * the status register is not accurate. The PCS status register is
909 	 * used instead.
910 	 */
911 	pcs = rd32(E1000_PCS_LSTAT);
912 
913 	/*
914 	 * The link up bit determines when link is up on autoneg. The sync ok
915 	 * gets set once both sides sync up and agree upon link. Stable link
916 	 * can be determined by checking for both link up and link sync ok
917 	 */
918 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
919 		mac->serdes_has_link = true;
920 
921 		/* Detect and store PCS speed */
922 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
923 			*speed = SPEED_1000;
924 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
925 			*speed = SPEED_100;
926 		} else {
927 			*speed = SPEED_10;
928 		}
929 
930 		/* Detect and store PCS duplex */
931 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
932 			*duplex = FULL_DUPLEX;
933 		} else {
934 			*duplex = HALF_DUPLEX;
935 		}
936 	}
937 
938 	return 0;
939 }
940 
941 /**
942  *  igb_shutdown_serdes_link_82575 - Remove link during power down
943  *  @hw: pointer to the HW structure
944  *
945  *  In the case of fiber serdes, shut down optics and PCS on driver unload
946  *  when management pass thru is not enabled.
947  **/
948 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
949 {
950 	u32 reg;
951 
952 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
953 	    igb_sgmii_active_82575(hw))
954 		return;
955 
956 	if (!igb_enable_mng_pass_thru(hw)) {
957 		/* Disable PCS to turn off link */
958 		reg = rd32(E1000_PCS_CFG0);
959 		reg &= ~E1000_PCS_CFG_PCS_EN;
960 		wr32(E1000_PCS_CFG0, reg);
961 
962 		/* shutdown the laser */
963 		reg = rd32(E1000_CTRL_EXT);
964 		reg |= E1000_CTRL_EXT_SDP3_DATA;
965 		wr32(E1000_CTRL_EXT, reg);
966 
967 		/* flush the write to verify completion */
968 		wrfl();
969 		msleep(1);
970 	}
971 }
972 
973 /**
974  *  igb_reset_hw_82575 - Reset hardware
975  *  @hw: pointer to the HW structure
976  *
977  *  This resets the hardware into a known state.  This is a
978  *  function pointer entry point called by the api module.
979  **/
980 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
981 {
982 	u32 ctrl, icr;
983 	s32 ret_val;
984 
985 	/*
986 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
987 	 * on the last TLP read/write transaction when MAC is reset.
988 	 */
989 	ret_val = igb_disable_pcie_master(hw);
990 	if (ret_val)
991 		hw_dbg("PCI-E Master disable polling has failed.\n");
992 
993 	/* set the completion timeout for interface */
994 	ret_val = igb_set_pcie_completion_timeout(hw);
995 	if (ret_val) {
996 		hw_dbg("PCI-E Set completion timeout has failed.\n");
997 	}
998 
999 	hw_dbg("Masking off all interrupts\n");
1000 	wr32(E1000_IMC, 0xffffffff);
1001 
1002 	wr32(E1000_RCTL, 0);
1003 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1004 	wrfl();
1005 
1006 	msleep(10);
1007 
1008 	ctrl = rd32(E1000_CTRL);
1009 
1010 	hw_dbg("Issuing a global reset to MAC\n");
1011 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1012 
1013 	ret_val = igb_get_auto_rd_done(hw);
1014 	if (ret_val) {
1015 		/*
1016 		 * When auto config read does not complete, do not
1017 		 * return with an error. This can happen in situations
1018 		 * where there is no eeprom and prevents getting link.
1019 		 */
1020 		hw_dbg("Auto Read Done did not complete\n");
1021 	}
1022 
1023 	/* If EEPROM is not present, run manual init scripts */
1024 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1025 		igb_reset_init_script_82575(hw);
1026 
1027 	/* Clear any pending interrupt events. */
1028 	wr32(E1000_IMC, 0xffffffff);
1029 	icr = rd32(E1000_ICR);
1030 
1031 	/* Install any alternate MAC address into RAR0 */
1032 	ret_val = igb_check_alt_mac_addr(hw);
1033 
1034 	return ret_val;
1035 }
1036 
1037 /**
1038  *  igb_init_hw_82575 - Initialize hardware
1039  *  @hw: pointer to the HW structure
1040  *
1041  *  This inits the hardware readying it for operation.
1042  **/
1043 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1044 {
1045 	struct e1000_mac_info *mac = &hw->mac;
1046 	s32 ret_val;
1047 	u16 i, rar_count = mac->rar_entry_count;
1048 
1049 	/* Initialize identification LED */
1050 	ret_val = igb_id_led_init(hw);
1051 	if (ret_val) {
1052 		hw_dbg("Error initializing identification LED\n");
1053 		/* This is not fatal and we should not stop init due to this */
1054 	}
1055 
1056 	/* Disabling VLAN filtering */
1057 	hw_dbg("Initializing the IEEE VLAN\n");
1058 	igb_clear_vfta(hw);
1059 
1060 	/* Setup the receive address */
1061 	igb_init_rx_addrs(hw, rar_count);
1062 
1063 	/* Zero out the Multicast HASH table */
1064 	hw_dbg("Zeroing the MTA\n");
1065 	for (i = 0; i < mac->mta_reg_count; i++)
1066 		array_wr32(E1000_MTA, i, 0);
1067 
1068 	/* Zero out the Unicast HASH table */
1069 	hw_dbg("Zeroing the UTA\n");
1070 	for (i = 0; i < mac->uta_reg_count; i++)
1071 		array_wr32(E1000_UTA, i, 0);
1072 
1073 	/* Setup link and flow control */
1074 	ret_val = igb_setup_link(hw);
1075 
1076 	/*
1077 	 * Clear all of the statistics registers (clear on read).  It is
1078 	 * important that we do this after we have tried to establish link
1079 	 * because the symbol error count will increment wildly if there
1080 	 * is no link.
1081 	 */
1082 	igb_clear_hw_cntrs_82575(hw);
1083 
1084 	return ret_val;
1085 }
1086 
1087 /**
1088  *  igb_setup_copper_link_82575 - Configure copper link settings
1089  *  @hw: pointer to the HW structure
1090  *
1091  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1092  *  for link, once link is established calls to configure collision distance
1093  *  and flow control are called.
1094  **/
1095 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096 {
1097 	u32 ctrl;
1098 	s32  ret_val;
1099 
1100 	ctrl = rd32(E1000_CTRL);
1101 	ctrl |= E1000_CTRL_SLU;
1102 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103 	wr32(E1000_CTRL, ctrl);
1104 
1105 	ret_val = igb_setup_serdes_link_82575(hw);
1106 	if (ret_val)
1107 		goto out;
1108 
1109 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1110 		/* allow time for SFP cage time to power up phy */
1111 		msleep(300);
1112 
1113 		ret_val = hw->phy.ops.reset(hw);
1114 		if (ret_val) {
1115 			hw_dbg("Error resetting the PHY.\n");
1116 			goto out;
1117 		}
1118 	}
1119 	switch (hw->phy.type) {
1120 	case e1000_phy_m88:
1121 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1122 		    hw->phy.id == M88E1112_E_PHY_ID)
1123 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1124 		else
1125 			ret_val = igb_copper_link_setup_m88(hw);
1126 		break;
1127 	case e1000_phy_igp_3:
1128 		ret_val = igb_copper_link_setup_igp(hw);
1129 		break;
1130 	case e1000_phy_82580:
1131 		ret_val = igb_copper_link_setup_82580(hw);
1132 		break;
1133 	default:
1134 		ret_val = -E1000_ERR_PHY;
1135 		break;
1136 	}
1137 
1138 	if (ret_val)
1139 		goto out;
1140 
1141 	ret_val = igb_setup_copper_link(hw);
1142 out:
1143 	return ret_val;
1144 }
1145 
1146 /**
1147  *  igb_setup_serdes_link_82575 - Setup link for serdes
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1151  *  used on copper connections where the serialized gigabit media independent
1152  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1153  *  for auto-negotiation or forces speed/duplex.
1154  **/
1155 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1156 {
1157 	u32 ctrl_ext, ctrl_reg, reg;
1158 	bool pcs_autoneg;
1159 	s32 ret_val = E1000_SUCCESS;
1160 	u16 data;
1161 
1162 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163 	    !igb_sgmii_active_82575(hw))
1164 		return ret_val;
1165 
1166 
1167 	/*
1168 	 * On the 82575, SerDes loopback mode persists until it is
1169 	 * explicitly turned off or a power cycle is performed.  A read to
1170 	 * the register does not indicate its status.  Therefore, we ensure
1171 	 * loopback mode is disabled during initialization.
1172 	 */
1173 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174 
1175 	/* power on the sfp cage if present */
1176 	ctrl_ext = rd32(E1000_CTRL_EXT);
1177 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178 	wr32(E1000_CTRL_EXT, ctrl_ext);
1179 
1180 	ctrl_reg = rd32(E1000_CTRL);
1181 	ctrl_reg |= E1000_CTRL_SLU;
1182 
1183 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184 		/* set both sw defined pins */
1185 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186 
1187 		/* Set switch control to serdes energy detect */
1188 		reg = rd32(E1000_CONNSW);
1189 		reg |= E1000_CONNSW_ENRGSRC;
1190 		wr32(E1000_CONNSW, reg);
1191 	}
1192 
1193 	reg = rd32(E1000_PCS_LCTL);
1194 
1195 	/* default pcs_autoneg to the same setting as mac autoneg */
1196 	pcs_autoneg = hw->mac.autoneg;
1197 
1198 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200 		/* sgmii mode lets the phy handle forcing speed/duplex */
1201 		pcs_autoneg = true;
1202 		/* autoneg time out should be disabled for SGMII mode */
1203 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1204 		break;
1205 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206 		/* disable PCS autoneg and support parallel detect only */
1207 		pcs_autoneg = false;
1208 	default:
1209 		if (hw->mac.type == e1000_82575 ||
1210 		    hw->mac.type == e1000_82576) {
1211 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212 			if (ret_val) {
1213 				printk(KERN_DEBUG "NVM Read Error\n\n");
1214 				return ret_val;
1215 			}
1216 
1217 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218 				pcs_autoneg = false;
1219 		}
1220 
1221 		/*
1222 		 * non-SGMII modes only supports a speed of 1000/Full for the
1223 		 * link so it is best to just force the MAC and let the pcs
1224 		 * link either autoneg or be forced to 1000/Full
1225 		 */
1226 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1228 
1229 		/* set speed of 1000/Full if speed/duplex is forced */
1230 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231 		break;
1232 	}
1233 
1234 	wr32(E1000_CTRL, ctrl_reg);
1235 
1236 	/*
1237 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1238 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1239 	 * mode that will be compatible with older link partners and switches.
1240 	 * However, both are supported by the hardware and some drivers/tools.
1241 	 */
1242 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1244 
1245 	/*
1246 	 * We force flow control to prevent the CTRL register values from being
1247 	 * overwritten by the autonegotiated flow control values
1248 	 */
1249 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250 
1251 	if (pcs_autoneg) {
1252 		/* Set PCS register for autoneg */
1253 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1254 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1255 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1256 	} else {
1257 		/* Set PCS register for forced link */
1258 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1259 
1260 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1261 	}
1262 
1263 	wr32(E1000_PCS_LCTL, reg);
1264 
1265 	if (!igb_sgmii_active_82575(hw))
1266 		igb_force_mac_fc(hw);
1267 
1268 	return ret_val;
1269 }
1270 
1271 /**
1272  *  igb_sgmii_active_82575 - Return sgmii state
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1276  *  which can be enabled for use in the embedded applications.  Simply
1277  *  return the current state of the sgmii interface.
1278  **/
1279 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280 {
1281 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1282 	return dev_spec->sgmii_active;
1283 }
1284 
1285 /**
1286  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Inits recommended HW defaults after a reset when there is no EEPROM
1290  *  detected. This is only for the 82575.
1291  **/
1292 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293 {
1294 	if (hw->mac.type == e1000_82575) {
1295 		hw_dbg("Running reset init script for 82575\n");
1296 		/* SerDes configuration via SERDESCTRL */
1297 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301 
1302 		/* CCM configuration via CCMCTL register */
1303 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305 
1306 		/* PCIe lanes configuration */
1307 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311 
1312 		/* PCIe PLL Configuration */
1313 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  *  igb_read_mac_addr_82575 - Read device MAC address
1323  *  @hw: pointer to the HW structure
1324  **/
1325 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326 {
1327 	s32 ret_val = 0;
1328 
1329 	/*
1330 	 * If there's an alternate MAC address place it in RAR0
1331 	 * so that it will override the Si installed default perm
1332 	 * address.
1333 	 */
1334 	ret_val = igb_check_alt_mac_addr(hw);
1335 	if (ret_val)
1336 		goto out;
1337 
1338 	ret_val = igb_read_mac_addr(hw);
1339 
1340 out:
1341 	return ret_val;
1342 }
1343 
1344 /**
1345  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346  * @hw: pointer to the HW structure
1347  *
1348  * In the case of a PHY power down to save power, or to turn off link during a
1349  * driver unload, or wake on lan is not enabled, remove the link.
1350  **/
1351 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352 {
1353 	/* If the management interface is not enabled, then power down */
1354 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355 		igb_power_down_phy_copper(hw);
1356 }
1357 
1358 /**
1359  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360  *  @hw: pointer to the HW structure
1361  *
1362  *  Clears the hardware counters by reading the counter registers.
1363  **/
1364 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365 {
1366 	igb_clear_hw_cntrs_base(hw);
1367 
1368 	rd32(E1000_PRC64);
1369 	rd32(E1000_PRC127);
1370 	rd32(E1000_PRC255);
1371 	rd32(E1000_PRC511);
1372 	rd32(E1000_PRC1023);
1373 	rd32(E1000_PRC1522);
1374 	rd32(E1000_PTC64);
1375 	rd32(E1000_PTC127);
1376 	rd32(E1000_PTC255);
1377 	rd32(E1000_PTC511);
1378 	rd32(E1000_PTC1023);
1379 	rd32(E1000_PTC1522);
1380 
1381 	rd32(E1000_ALGNERRC);
1382 	rd32(E1000_RXERRC);
1383 	rd32(E1000_TNCRS);
1384 	rd32(E1000_CEXTERR);
1385 	rd32(E1000_TSCTC);
1386 	rd32(E1000_TSCTFC);
1387 
1388 	rd32(E1000_MGTPRC);
1389 	rd32(E1000_MGTPDC);
1390 	rd32(E1000_MGTPTC);
1391 
1392 	rd32(E1000_IAC);
1393 	rd32(E1000_ICRXOC);
1394 
1395 	rd32(E1000_ICRXPTC);
1396 	rd32(E1000_ICRXATC);
1397 	rd32(E1000_ICTXPTC);
1398 	rd32(E1000_ICTXATC);
1399 	rd32(E1000_ICTXQEC);
1400 	rd32(E1000_ICTXQMTC);
1401 	rd32(E1000_ICRXDMTC);
1402 
1403 	rd32(E1000_CBTMPC);
1404 	rd32(E1000_HTDPMC);
1405 	rd32(E1000_CBRMPC);
1406 	rd32(E1000_RPTHC);
1407 	rd32(E1000_HGPTC);
1408 	rd32(E1000_HTCBDPC);
1409 	rd32(E1000_HGORCL);
1410 	rd32(E1000_HGORCH);
1411 	rd32(E1000_HGOTCL);
1412 	rd32(E1000_HGOTCH);
1413 	rd32(E1000_LENERRS);
1414 
1415 	/* This register should not be read in copper configurations */
1416 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417 	    igb_sgmii_active_82575(hw))
1418 		rd32(E1000_SCVPC);
1419 }
1420 
1421 /**
1422  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423  *  @hw: pointer to the HW structure
1424  *
1425  *  After rx enable if managability is enabled then there is likely some
1426  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1427  *  function clears the fifos and flushes any packets that came in as rx was
1428  *  being enabled.
1429  **/
1430 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431 {
1432 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433 	int i, ms_wait;
1434 
1435 	if (hw->mac.type != e1000_82575 ||
1436 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437 		return;
1438 
1439 	/* Disable all RX queues */
1440 	for (i = 0; i < 4; i++) {
1441 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1442 		wr32(E1000_RXDCTL(i),
1443 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444 	}
1445 	/* Poll all queues to verify they have shut down */
1446 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447 		msleep(1);
1448 		rx_enabled = 0;
1449 		for (i = 0; i < 4; i++)
1450 			rx_enabled |= rd32(E1000_RXDCTL(i));
1451 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452 			break;
1453 	}
1454 
1455 	if (ms_wait == 10)
1456 		hw_dbg("Queue disable timed out after 10ms\n");
1457 
1458 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1460 	 * any packet that was coming in as RCTL.EN was set is flushed
1461 	 */
1462 	rfctl = rd32(E1000_RFCTL);
1463 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464 
1465 	rlpml = rd32(E1000_RLPML);
1466 	wr32(E1000_RLPML, 0);
1467 
1468 	rctl = rd32(E1000_RCTL);
1469 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470 	temp_rctl |= E1000_RCTL_LPE;
1471 
1472 	wr32(E1000_RCTL, temp_rctl);
1473 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474 	wrfl();
1475 	msleep(2);
1476 
1477 	/* Enable RX queues that were previously enabled and restore our
1478 	 * previous state
1479 	 */
1480 	for (i = 0; i < 4; i++)
1481 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1482 	wr32(E1000_RCTL, rctl);
1483 	wrfl();
1484 
1485 	wr32(E1000_RLPML, rlpml);
1486 	wr32(E1000_RFCTL, rfctl);
1487 
1488 	/* Flush receive errors generated by workaround */
1489 	rd32(E1000_ROC);
1490 	rd32(E1000_RNBC);
1491 	rd32(E1000_MPC);
1492 }
1493 
1494 /**
1495  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499  *  however the hardware default for these parts is 500us to 1ms which is less
1500  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1501  *  increase the value to either 10ms to 200ms for capability version 1 config,
1502  *  or 16ms to 55ms for version 2.
1503  **/
1504 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505 {
1506 	u32 gcr = rd32(E1000_GCR);
1507 	s32 ret_val = 0;
1508 	u16 pcie_devctl2;
1509 
1510 	/* only take action if timeout value is defaulted to 0 */
1511 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512 		goto out;
1513 
1514 	/*
1515 	 * if capababilities version is type 1 we can write the
1516 	 * timeout of 10ms to 200ms through the GCR register
1517 	 */
1518 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1519 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * for version 2 capabilities we need to write the config space
1525 	 * directly in order to set the completion timeout value for
1526 	 * 16ms to 55ms
1527 	 */
1528 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529 	                                &pcie_devctl2);
1530 	if (ret_val)
1531 		goto out;
1532 
1533 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534 
1535 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536 	                                 &pcie_devctl2);
1537 out:
1538 	/* disable completion timeout resend */
1539 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540 
1541 	wr32(E1000_GCR, gcr);
1542 	return ret_val;
1543 }
1544 
1545 /**
1546  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547  *  @hw: pointer to the hardware struct
1548  *  @enable: state to enter, either enabled or disabled
1549  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1550  *
1551  *  enables/disables L2 switch anti-spoofing functionality.
1552  **/
1553 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554 {
1555 	u32 dtxswc;
1556 
1557 	switch (hw->mac.type) {
1558 	case e1000_82576:
1559 	case e1000_i350:
1560 		dtxswc = rd32(E1000_DTXSWC);
1561 		if (enable) {
1562 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1564 			/* The PF can spoof - it has to in order to
1565 			 * support emulation mode NICs */
1566 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567 		} else {
1568 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1570 		}
1571 		wr32(E1000_DTXSWC, dtxswc);
1572 		break;
1573 	default:
1574 		break;
1575 	}
1576 }
1577 
1578 /**
1579  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580  *  @hw: pointer to the hardware struct
1581  *  @enable: state to enter, either enabled or disabled
1582  *
1583  *  enables/disables L2 switch loopback functionality.
1584  **/
1585 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586 {
1587 	u32 dtxswc = rd32(E1000_DTXSWC);
1588 
1589 	if (enable)
1590 		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1591 	else
1592 		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1593 
1594 	wr32(E1000_DTXSWC, dtxswc);
1595 }
1596 
1597 /**
1598  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1599  *  @hw: pointer to the hardware struct
1600  *  @enable: state to enter, either enabled or disabled
1601  *
1602  *  enables/disables replication of packets across multiple pools.
1603  **/
1604 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1605 {
1606 	u32 vt_ctl = rd32(E1000_VT_CTL);
1607 
1608 	if (enable)
1609 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1610 	else
1611 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1612 
1613 	wr32(E1000_VT_CTL, vt_ctl);
1614 }
1615 
1616 /**
1617  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1618  *  @hw: pointer to the HW structure
1619  *  @offset: register offset to be read
1620  *  @data: pointer to the read data
1621  *
1622  *  Reads the MDI control register in the PHY at offset and stores the
1623  *  information read to data.
1624  **/
1625 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1626 {
1627 	s32 ret_val;
1628 
1629 
1630 	ret_val = hw->phy.ops.acquire(hw);
1631 	if (ret_val)
1632 		goto out;
1633 
1634 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1635 
1636 	hw->phy.ops.release(hw);
1637 
1638 out:
1639 	return ret_val;
1640 }
1641 
1642 /**
1643  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1644  *  @hw: pointer to the HW structure
1645  *  @offset: register offset to write to
1646  *  @data: data to write to register at offset
1647  *
1648  *  Writes data to MDI control register in the PHY at offset.
1649  **/
1650 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1651 {
1652 	s32 ret_val;
1653 
1654 
1655 	ret_val = hw->phy.ops.acquire(hw);
1656 	if (ret_val)
1657 		goto out;
1658 
1659 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1660 
1661 	hw->phy.ops.release(hw);
1662 
1663 out:
1664 	return ret_val;
1665 }
1666 
1667 /**
1668  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1669  *  @hw: pointer to the HW structure
1670  *
1671  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1672  *  the values found in the EEPROM.  This addresses an issue in which these
1673  *  bits are not restored from EEPROM after reset.
1674  **/
1675 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1676 {
1677 	s32 ret_val = 0;
1678 	u32 mdicnfg;
1679 	u16 nvm_data = 0;
1680 
1681 	if (hw->mac.type != e1000_82580)
1682 		goto out;
1683 	if (!igb_sgmii_active_82575(hw))
1684 		goto out;
1685 
1686 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1687 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1688 				   &nvm_data);
1689 	if (ret_val) {
1690 		hw_dbg("NVM Read Error\n");
1691 		goto out;
1692 	}
1693 
1694 	mdicnfg = rd32(E1000_MDICNFG);
1695 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1696 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1697 	if (nvm_data & NVM_WORD24_COM_MDIO)
1698 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1699 	wr32(E1000_MDICNFG, mdicnfg);
1700 out:
1701 	return ret_val;
1702 }
1703 
1704 /**
1705  *  igb_reset_hw_82580 - Reset hardware
1706  *  @hw: pointer to the HW structure
1707  *
1708  *  This resets function or entire device (all ports, etc.)
1709  *  to a known state.
1710  **/
1711 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1712 {
1713 	s32 ret_val = 0;
1714 	/* BH SW mailbox bit in SW_FW_SYNC */
1715 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1716 	u32 ctrl, icr;
1717 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1718 
1719 
1720 	hw->dev_spec._82575.global_device_reset = false;
1721 
1722 	/* Get current control state. */
1723 	ctrl = rd32(E1000_CTRL);
1724 
1725 	/*
1726 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1727 	 * on the last TLP read/write transaction when MAC is reset.
1728 	 */
1729 	ret_val = igb_disable_pcie_master(hw);
1730 	if (ret_val)
1731 		hw_dbg("PCI-E Master disable polling has failed.\n");
1732 
1733 	hw_dbg("Masking off all interrupts\n");
1734 	wr32(E1000_IMC, 0xffffffff);
1735 	wr32(E1000_RCTL, 0);
1736 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1737 	wrfl();
1738 
1739 	msleep(10);
1740 
1741 	/* Determine whether or not a global dev reset is requested */
1742 	if (global_device_reset &&
1743 		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1744 			global_device_reset = false;
1745 
1746 	if (global_device_reset &&
1747 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1748 		ctrl |= E1000_CTRL_DEV_RST;
1749 	else
1750 		ctrl |= E1000_CTRL_RST;
1751 
1752 	wr32(E1000_CTRL, ctrl);
1753 	wrfl();
1754 
1755 	/* Add delay to insure DEV_RST has time to complete */
1756 	if (global_device_reset)
1757 		msleep(5);
1758 
1759 	ret_val = igb_get_auto_rd_done(hw);
1760 	if (ret_val) {
1761 		/*
1762 		 * When auto config read does not complete, do not
1763 		 * return with an error. This can happen in situations
1764 		 * where there is no eeprom and prevents getting link.
1765 		 */
1766 		hw_dbg("Auto Read Done did not complete\n");
1767 	}
1768 
1769 	/* If EEPROM is not present, run manual init scripts */
1770 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1771 		igb_reset_init_script_82575(hw);
1772 
1773 	/* clear global device reset status bit */
1774 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1775 
1776 	/* Clear any pending interrupt events. */
1777 	wr32(E1000_IMC, 0xffffffff);
1778 	icr = rd32(E1000_ICR);
1779 
1780 	ret_val = igb_reset_mdicnfg_82580(hw);
1781 	if (ret_val)
1782 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1783 
1784 	/* Install any alternate MAC address into RAR0 */
1785 	ret_val = igb_check_alt_mac_addr(hw);
1786 
1787 	/* Release semaphore */
1788 	if (global_device_reset)
1789 		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1790 
1791 	return ret_val;
1792 }
1793 
1794 /**
1795  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1796  *  @data: data received by reading RXPBS register
1797  *
1798  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1799  *  This function converts the retrieved value into the correct table value
1800  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1801  *  0x0 36  72 144   1   2   4   8  16
1802  *  0x8 35  70 140 rsv rsv rsv rsv rsv
1803  */
1804 u16 igb_rxpbs_adjust_82580(u32 data)
1805 {
1806 	u16 ret_val = 0;
1807 
1808 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1809 		ret_val = e1000_82580_rxpbs_table[data];
1810 
1811 	return ret_val;
1812 }
1813 
1814 /**
1815  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1816  *  checksum
1817  *  @hw: pointer to the HW structure
1818  *  @offset: offset in words of the checksum protected region
1819  *
1820  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1821  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1822  **/
1823 s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1824 {
1825 	s32 ret_val = 0;
1826 	u16 checksum = 0;
1827 	u16 i, nvm_data;
1828 
1829 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1830 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1831 		if (ret_val) {
1832 			hw_dbg("NVM Read Error\n");
1833 			goto out;
1834 		}
1835 		checksum += nvm_data;
1836 	}
1837 
1838 	if (checksum != (u16) NVM_SUM) {
1839 		hw_dbg("NVM Checksum Invalid\n");
1840 		ret_val = -E1000_ERR_NVM;
1841 		goto out;
1842 	}
1843 
1844 out:
1845 	return ret_val;
1846 }
1847 
1848 /**
1849  *  igb_update_nvm_checksum_with_offset - Update EEPROM
1850  *  checksum
1851  *  @hw: pointer to the HW structure
1852  *  @offset: offset in words of the checksum protected region
1853  *
1854  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1855  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1856  *  value to the EEPROM.
1857  **/
1858 s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1859 {
1860 	s32 ret_val;
1861 	u16 checksum = 0;
1862 	u16 i, nvm_data;
1863 
1864 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1865 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1866 		if (ret_val) {
1867 			hw_dbg("NVM Read Error while updating checksum.\n");
1868 			goto out;
1869 		}
1870 		checksum += nvm_data;
1871 	}
1872 	checksum = (u16) NVM_SUM - checksum;
1873 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1874 				&checksum);
1875 	if (ret_val)
1876 		hw_dbg("NVM Write Error while updating checksum.\n");
1877 
1878 out:
1879 	return ret_val;
1880 }
1881 
1882 /**
1883  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1884  *  @hw: pointer to the HW structure
1885  *
1886  *  Calculates the EEPROM section checksum by reading/adding each word of
1887  *  the EEPROM and then verifies that the sum of the EEPROM is
1888  *  equal to 0xBABA.
1889  **/
1890 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1891 {
1892 	s32 ret_val = 0;
1893 	u16 eeprom_regions_count = 1;
1894 	u16 j, nvm_data;
1895 	u16 nvm_offset;
1896 
1897 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1898 	if (ret_val) {
1899 		hw_dbg("NVM Read Error\n");
1900 		goto out;
1901 	}
1902 
1903 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1904 		/* if checksums compatibility bit is set validate checksums
1905 		 * for all 4 ports. */
1906 		eeprom_regions_count = 4;
1907 	}
1908 
1909 	for (j = 0; j < eeprom_regions_count; j++) {
1910 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1911 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1912 								nvm_offset);
1913 		if (ret_val != 0)
1914 			goto out;
1915 	}
1916 
1917 out:
1918 	return ret_val;
1919 }
1920 
1921 /**
1922  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1923  *  @hw: pointer to the HW structure
1924  *
1925  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1926  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1927  *  checksum and writes the value to the EEPROM.
1928  **/
1929 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1930 {
1931 	s32 ret_val;
1932 	u16 j, nvm_data;
1933 	u16 nvm_offset;
1934 
1935 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1936 	if (ret_val) {
1937 		hw_dbg("NVM Read Error while updating checksum"
1938 			" compatibility bit.\n");
1939 		goto out;
1940 	}
1941 
1942 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1943 		/* set compatibility bit to validate checksums appropriately */
1944 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1945 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1946 					&nvm_data);
1947 		if (ret_val) {
1948 			hw_dbg("NVM Write Error while updating checksum"
1949 				" compatibility bit.\n");
1950 			goto out;
1951 		}
1952 	}
1953 
1954 	for (j = 0; j < 4; j++) {
1955 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1956 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1957 		if (ret_val)
1958 			goto out;
1959 	}
1960 
1961 out:
1962 	return ret_val;
1963 }
1964 
1965 /**
1966  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1967  *  @hw: pointer to the HW structure
1968  *
1969  *  Calculates the EEPROM section checksum by reading/adding each word of
1970  *  the EEPROM and then verifies that the sum of the EEPROM is
1971  *  equal to 0xBABA.
1972  **/
1973 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1974 {
1975 	s32 ret_val = 0;
1976 	u16 j;
1977 	u16 nvm_offset;
1978 
1979 	for (j = 0; j < 4; j++) {
1980 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1981 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1982 								nvm_offset);
1983 		if (ret_val != 0)
1984 			goto out;
1985 	}
1986 
1987 out:
1988 	return ret_val;
1989 }
1990 
1991 /**
1992  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
1993  *  @hw: pointer to the HW structure
1994  *
1995  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1996  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1997  *  checksum and writes the value to the EEPROM.
1998  **/
1999 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2000 {
2001 	s32 ret_val = 0;
2002 	u16 j;
2003 	u16 nvm_offset;
2004 
2005 	for (j = 0; j < 4; j++) {
2006 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2007 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2008 		if (ret_val != 0)
2009 			goto out;
2010 	}
2011 
2012 out:
2013 	return ret_val;
2014 }
2015 
2016 /**
2017  *  igb_set_eee_i350 - Enable/disable EEE support
2018  *  @hw: pointer to the HW structure
2019  *
2020  *  Enable/disable EEE based on setting in dev_spec structure.
2021  *
2022  **/
2023 s32 igb_set_eee_i350(struct e1000_hw *hw)
2024 {
2025 	s32 ret_val = 0;
2026 	u32 ipcnfg, eeer, ctrl_ext;
2027 
2028 	ctrl_ext = rd32(E1000_CTRL_EXT);
2029 	if ((hw->mac.type != e1000_i350) ||
2030 	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2031 		goto out;
2032 	ipcnfg = rd32(E1000_IPCNFG);
2033 	eeer = rd32(E1000_EEER);
2034 
2035 	/* enable or disable per user setting */
2036 	if (!(hw->dev_spec._82575.eee_disable)) {
2037 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2038 			E1000_IPCNFG_EEE_100M_AN);
2039 		eeer |= (E1000_EEER_TX_LPI_EN |
2040 			E1000_EEER_RX_LPI_EN |
2041 			E1000_EEER_LPI_FC);
2042 
2043 	} else {
2044 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2045 			E1000_IPCNFG_EEE_100M_AN);
2046 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2047 			E1000_EEER_RX_LPI_EN |
2048 			E1000_EEER_LPI_FC);
2049 	}
2050 	wr32(E1000_IPCNFG, ipcnfg);
2051 	wr32(E1000_EEER, eeer);
2052 out:
2053 
2054 	return ret_val;
2055 }
2056 
2057 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2058 	.init_hw              = igb_init_hw_82575,
2059 	.check_for_link       = igb_check_for_link_82575,
2060 	.rar_set              = igb_rar_set,
2061 	.read_mac_addr        = igb_read_mac_addr_82575,
2062 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2063 };
2064 
2065 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2066 	.acquire              = igb_acquire_phy_82575,
2067 	.get_cfg_done         = igb_get_cfg_done_82575,
2068 	.release              = igb_release_phy_82575,
2069 };
2070 
2071 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2072 	.acquire              = igb_acquire_nvm_82575,
2073 	.read                 = igb_read_nvm_eerd,
2074 	.release              = igb_release_nvm_82575,
2075 	.write                = igb_write_nvm_spi,
2076 };
2077 
2078 const struct e1000_info e1000_82575_info = {
2079 	.get_invariants = igb_get_invariants_82575,
2080 	.mac_ops = &e1000_mac_ops_82575,
2081 	.phy_ops = &e1000_phy_ops_82575,
2082 	.nvm_ops = &e1000_nvm_ops_82575,
2083 };
2084 
2085