1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 	u32 reg = 0;
86 	bool ext_mdio = false;
87 
88 	switch (hw->mac.type) {
89 	case e1000_82575:
90 	case e1000_82576:
91 		reg = rd32(E1000_MDIC);
92 		ext_mdio = !!(reg & E1000_MDIC_DEST);
93 		break;
94 	case e1000_82580:
95 	case e1000_i350:
96 	case e1000_i354:
97 	case e1000_i210:
98 	case e1000_i211:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 	struct e1000_phy_info *phy = &hw->phy;
117 	s32 ret_val;
118 	u16 data;
119 	u8 port = 0;
120 
121 	/* Check the copper medium. */
122 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 	if (ret_val)
124 		return ret_val;
125 
126 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 	if (ret_val)
128 		return ret_val;
129 
130 	if (data & E1000_M88E1112_STATUS_LINK)
131 		port = E1000_MEDIA_PORT_COPPER;
132 
133 	/* Check the other medium. */
134 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 	if (ret_val)
136 		return ret_val;
137 
138 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 	if (ret_val)
140 		return ret_val;
141 
142 	/* reset page to 0 */
143 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144 	if (ret_val)
145 		return ret_val;
146 
147 	if (data & E1000_M88E1112_STATUS_LINK)
148 		port = E1000_MEDIA_PORT_OTHER;
149 
150 	/* Determine if a swap needs to happen. */
151 	if (port && (hw->dev_spec._82575.media_port != port)) {
152 		hw->dev_spec._82575.media_port = port;
153 		hw->dev_spec._82575.media_changed = true;
154 	} else {
155 		ret_val = igb_check_for_link_82575(hw);
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  *  igb_init_phy_params_82575 - Init PHY func ptrs.
163  *  @hw: pointer to the HW structure
164  **/
165 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166 {
167 	struct e1000_phy_info *phy = &hw->phy;
168 	s32 ret_val = 0;
169 	u32 ctrl_ext;
170 
171 	if (hw->phy.media_type != e1000_media_type_copper) {
172 		phy->type = e1000_phy_none;
173 		goto out;
174 	}
175 
176 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
177 	phy->reset_delay_us	= 100;
178 
179 	ctrl_ext = rd32(E1000_CTRL_EXT);
180 
181 	if (igb_sgmii_active_82575(hw)) {
182 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183 		ctrl_ext |= E1000_CTRL_I2C_ENA;
184 	} else {
185 		phy->ops.reset = igb_phy_hw_reset;
186 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187 	}
188 
189 	wr32(E1000_CTRL_EXT, ctrl_ext);
190 	igb_reset_mdicnfg_82580(hw);
191 
192 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195 	} else {
196 		switch (hw->mac.type) {
197 		case e1000_82580:
198 		case e1000_i350:
199 		case e1000_i354:
200 			phy->ops.read_reg = igb_read_phy_reg_82580;
201 			phy->ops.write_reg = igb_write_phy_reg_82580;
202 			break;
203 		case e1000_i210:
204 		case e1000_i211:
205 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
206 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
207 			break;
208 		default:
209 			phy->ops.read_reg = igb_read_phy_reg_igp;
210 			phy->ops.write_reg = igb_write_phy_reg_igp;
211 		}
212 	}
213 
214 	/* set lan id */
215 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216 			E1000_STATUS_FUNC_SHIFT;
217 
218 	/* Set phy->phy_addr and phy->id. */
219 	ret_val = igb_get_phy_id_82575(hw);
220 	if (ret_val)
221 		return ret_val;
222 
223 	/* Verify phy id and set remaining function pointers */
224 	switch (phy->id) {
225 	case M88E1543_E_PHY_ID:
226 	case I347AT4_E_PHY_ID:
227 	case M88E1112_E_PHY_ID:
228 	case M88E1111_I_PHY_ID:
229 		phy->type		= e1000_phy_m88;
230 		phy->ops.check_polarity	= igb_check_polarity_m88;
231 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
232 		if (phy->id != M88E1111_I_PHY_ID)
233 			phy->ops.get_cable_length =
234 					 igb_get_cable_length_m88_gen2;
235 		else
236 			phy->ops.get_cable_length = igb_get_cable_length_m88;
237 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238 		/* Check if this PHY is confgured for media swap. */
239 		if (phy->id == M88E1112_E_PHY_ID) {
240 			u16 data;
241 
242 			ret_val = phy->ops.write_reg(hw,
243 						     E1000_M88E1112_PAGE_ADDR,
244 						     2);
245 			if (ret_val)
246 				goto out;
247 
248 			ret_val = phy->ops.read_reg(hw,
249 						    E1000_M88E1112_MAC_CTRL_1,
250 						    &data);
251 			if (ret_val)
252 				goto out;
253 
254 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
258 				hw->mac.ops.check_for_link =
259 						igb_check_for_link_media_swap;
260 		}
261 		break;
262 	case IGP03E1000_E_PHY_ID:
263 		phy->type = e1000_phy_igp_3;
264 		phy->ops.get_phy_info = igb_get_phy_info_igp;
265 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269 		break;
270 	case I82580_I_PHY_ID:
271 	case I350_I_PHY_ID:
272 		phy->type = e1000_phy_82580;
273 		phy->ops.force_speed_duplex =
274 					 igb_phy_force_speed_duplex_82580;
275 		phy->ops.get_cable_length = igb_get_cable_length_82580;
276 		phy->ops.get_phy_info = igb_get_phy_info_82580;
277 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279 		break;
280 	case I210_I_PHY_ID:
281 		phy->type		= e1000_phy_i210;
282 		phy->ops.check_polarity	= igb_check_polarity_m88;
283 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
284 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288 		break;
289 	default:
290 		ret_val = -E1000_ERR_PHY;
291 		goto out;
292 	}
293 
294 out:
295 	return ret_val;
296 }
297 
298 /**
299  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
300  *  @hw: pointer to the HW structure
301  **/
302 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 {
304 	struct e1000_nvm_info *nvm = &hw->nvm;
305 	u32 eecd = rd32(E1000_EECD);
306 	u16 size;
307 
308 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309 		     E1000_EECD_SIZE_EX_SHIFT);
310 
311 	/* Added to a constant, "size" becomes the left-shift value
312 	 * for setting word_size.
313 	 */
314 	size += NVM_WORD_SIZE_BASE_SHIFT;
315 
316 	/* Just in case size is out of range, cap it to the largest
317 	 * EEPROM size supported
318 	 */
319 	if (size > 15)
320 		size = 15;
321 
322 	nvm->word_size = 1 << size;
323 	nvm->opcode_bits = 8;
324 	nvm->delay_usec = 1;
325 
326 	switch (nvm->override) {
327 	case e1000_nvm_override_spi_large:
328 		nvm->page_size = 32;
329 		nvm->address_bits = 16;
330 		break;
331 	case e1000_nvm_override_spi_small:
332 		nvm->page_size = 8;
333 		nvm->address_bits = 8;
334 		break;
335 	default:
336 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338 				    16 : 8;
339 		break;
340 	}
341 	if (nvm->word_size == (1 << 15))
342 		nvm->page_size = 128;
343 
344 	nvm->type = e1000_nvm_eeprom_spi;
345 
346 	/* NVM Function Pointers */
347 	nvm->ops.acquire = igb_acquire_nvm_82575;
348 	nvm->ops.release = igb_release_nvm_82575;
349 	nvm->ops.write = igb_write_nvm_spi;
350 	nvm->ops.validate = igb_validate_nvm_checksum;
351 	nvm->ops.update = igb_update_nvm_checksum;
352 	if (nvm->word_size < (1 << 15))
353 		nvm->ops.read = igb_read_nvm_eerd;
354 	else
355 		nvm->ops.read = igb_read_nvm_spi;
356 
357 	/* override generic family function pointers for specific descendants */
358 	switch (hw->mac.type) {
359 	case e1000_82580:
360 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
361 		nvm->ops.update = igb_update_nvm_checksum_82580;
362 		break;
363 	case e1000_i354:
364 	case e1000_i350:
365 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
366 		nvm->ops.update = igb_update_nvm_checksum_i350;
367 		break;
368 	default:
369 		break;
370 	}
371 
372 	return 0;
373 }
374 
375 /**
376  *  igb_init_mac_params_82575 - Init MAC func ptrs.
377  *  @hw: pointer to the HW structure
378  **/
379 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380 {
381 	struct e1000_mac_info *mac = &hw->mac;
382 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383 
384 	/* Set mta register count */
385 	mac->mta_reg_count = 128;
386 	/* Set rar entry count */
387 	switch (mac->type) {
388 	case e1000_82576:
389 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390 		break;
391 	case e1000_82580:
392 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393 		break;
394 	case e1000_i350:
395 	case e1000_i354:
396 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397 		break;
398 	default:
399 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400 		break;
401 	}
402 	/* reset */
403 	if (mac->type >= e1000_82580)
404 		mac->ops.reset_hw = igb_reset_hw_82580;
405 	else
406 		mac->ops.reset_hw = igb_reset_hw_82575;
407 
408 	if (mac->type >= e1000_i210) {
409 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411 
412 	} else {
413 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415 	}
416 
417 	/* Set if part includes ASF firmware */
418 	mac->asf_firmware_present = true;
419 	/* Set if manageability features are enabled. */
420 	mac->arc_subsystem_valid =
421 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422 			? true : false;
423 	/* enable EEE on i350 parts and later parts */
424 	if (mac->type >= e1000_i350)
425 		dev_spec->eee_disable = false;
426 	else
427 		dev_spec->eee_disable = true;
428 	/* Allow a single clear of the SW semaphore on I210 and newer */
429 	if (mac->type >= e1000_i210)
430 		dev_spec->clear_semaphore_once = true;
431 	/* physical interface link setup */
432 	mac->ops.setup_physical_interface =
433 		(hw->phy.media_type == e1000_media_type_copper)
434 			? igb_setup_copper_link_82575
435 			: igb_setup_serdes_link_82575;
436 
437 	if (mac->type == e1000_82580) {
438 		switch (hw->device_id) {
439 		/* feature not supported on these id's */
440 		case E1000_DEV_ID_DH89XXCC_SGMII:
441 		case E1000_DEV_ID_DH89XXCC_SERDES:
442 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443 		case E1000_DEV_ID_DH89XXCC_SFP:
444 			break;
445 		default:
446 			hw->dev_spec._82575.mas_capable = true;
447 			break;
448 		}
449 	}
450 	return 0;
451 }
452 
453 /**
454  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
455  *  @hw: pointer to the HW structure
456  *
457  *  The media type is chosen based on SFP module.
458  *  compatibility flags retrieved from SFP ID EEPROM.
459  **/
460 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461 {
462 	s32 ret_val = E1000_ERR_CONFIG;
463 	u32 ctrl_ext = 0;
464 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466 	u8 tranceiver_type = 0;
467 	s32 timeout = 3;
468 
469 	/* Turn I2C interface ON and power on sfp cage */
470 	ctrl_ext = rd32(E1000_CTRL_EXT);
471 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473 
474 	wrfl();
475 
476 	/* Read SFP module data */
477 	while (timeout) {
478 		ret_val = igb_read_sfp_data_byte(hw,
479 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480 			&tranceiver_type);
481 		if (ret_val == 0)
482 			break;
483 		msleep(100);
484 		timeout--;
485 	}
486 	if (ret_val != 0)
487 		goto out;
488 
489 	ret_val = igb_read_sfp_data_byte(hw,
490 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491 			(u8 *)eth_flags);
492 	if (ret_val != 0)
493 		goto out;
494 
495 	/* Check if there is some SFP module plugged and powered */
496 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498 		dev_spec->module_plugged = true;
499 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500 			hw->phy.media_type = e1000_media_type_internal_serdes;
501 		} else if (eth_flags->e100_base_fx) {
502 			dev_spec->sgmii_active = true;
503 			hw->phy.media_type = e1000_media_type_internal_serdes;
504 		} else if (eth_flags->e1000_base_t) {
505 			dev_spec->sgmii_active = true;
506 			hw->phy.media_type = e1000_media_type_copper;
507 		} else {
508 			hw->phy.media_type = e1000_media_type_unknown;
509 			hw_dbg("PHY module has not been recognized\n");
510 			goto out;
511 		}
512 	} else {
513 		hw->phy.media_type = e1000_media_type_unknown;
514 	}
515 	ret_val = 0;
516 out:
517 	/* Restore I2C interface setting */
518 	wr32(E1000_CTRL_EXT, ctrl_ext);
519 	return ret_val;
520 }
521 
522 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523 {
524 	struct e1000_mac_info *mac = &hw->mac;
525 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526 	s32 ret_val;
527 	u32 ctrl_ext = 0;
528 	u32 link_mode = 0;
529 
530 	switch (hw->device_id) {
531 	case E1000_DEV_ID_82575EB_COPPER:
532 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
533 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
534 		mac->type = e1000_82575;
535 		break;
536 	case E1000_DEV_ID_82576:
537 	case E1000_DEV_ID_82576_NS:
538 	case E1000_DEV_ID_82576_NS_SERDES:
539 	case E1000_DEV_ID_82576_FIBER:
540 	case E1000_DEV_ID_82576_SERDES:
541 	case E1000_DEV_ID_82576_QUAD_COPPER:
542 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543 	case E1000_DEV_ID_82576_SERDES_QUAD:
544 		mac->type = e1000_82576;
545 		break;
546 	case E1000_DEV_ID_82580_COPPER:
547 	case E1000_DEV_ID_82580_FIBER:
548 	case E1000_DEV_ID_82580_QUAD_FIBER:
549 	case E1000_DEV_ID_82580_SERDES:
550 	case E1000_DEV_ID_82580_SGMII:
551 	case E1000_DEV_ID_82580_COPPER_DUAL:
552 	case E1000_DEV_ID_DH89XXCC_SGMII:
553 	case E1000_DEV_ID_DH89XXCC_SERDES:
554 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555 	case E1000_DEV_ID_DH89XXCC_SFP:
556 		mac->type = e1000_82580;
557 		break;
558 	case E1000_DEV_ID_I350_COPPER:
559 	case E1000_DEV_ID_I350_FIBER:
560 	case E1000_DEV_ID_I350_SERDES:
561 	case E1000_DEV_ID_I350_SGMII:
562 		mac->type = e1000_i350;
563 		break;
564 	case E1000_DEV_ID_I210_COPPER:
565 	case E1000_DEV_ID_I210_FIBER:
566 	case E1000_DEV_ID_I210_SERDES:
567 	case E1000_DEV_ID_I210_SGMII:
568 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570 		mac->type = e1000_i210;
571 		break;
572 	case E1000_DEV_ID_I211_COPPER:
573 		mac->type = e1000_i211;
574 		break;
575 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576 	case E1000_DEV_ID_I354_SGMII:
577 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578 		mac->type = e1000_i354;
579 		break;
580 	default:
581 		return -E1000_ERR_MAC_INIT;
582 	}
583 
584 	/* Set media type */
585 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
586 	 * based on the EEPROM. We cannot rely upon device ID. There
587 	 * is no distinguishable difference between fiber and internal
588 	 * SerDes mode on the 82575. There can be an external PHY attached
589 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
590 	 */
591 	hw->phy.media_type = e1000_media_type_copper;
592 	dev_spec->sgmii_active = false;
593 	dev_spec->module_plugged = false;
594 
595 	ctrl_ext = rd32(E1000_CTRL_EXT);
596 
597 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
598 	switch (link_mode) {
599 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
600 		hw->phy.media_type = e1000_media_type_internal_serdes;
601 		break;
602 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
603 		/* Get phy control interface type set (MDIO vs. I2C)*/
604 		if (igb_sgmii_uses_mdio_82575(hw)) {
605 			hw->phy.media_type = e1000_media_type_copper;
606 			dev_spec->sgmii_active = true;
607 			break;
608 		}
609 		/* fall through for I2C based SGMII */
610 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
611 		/* read media type from SFP EEPROM */
612 		ret_val = igb_set_sfp_media_type_82575(hw);
613 		if ((ret_val != 0) ||
614 		    (hw->phy.media_type == e1000_media_type_unknown)) {
615 			/* If media type was not identified then return media
616 			 * type defined by the CTRL_EXT settings.
617 			 */
618 			hw->phy.media_type = e1000_media_type_internal_serdes;
619 
620 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
621 				hw->phy.media_type = e1000_media_type_copper;
622 				dev_spec->sgmii_active = true;
623 			}
624 
625 			break;
626 		}
627 
628 		/* do not change link mode for 100BaseFX */
629 		if (dev_spec->eth_flags.e100_base_fx)
630 			break;
631 
632 		/* change current link mode setting */
633 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
634 
635 		if (hw->phy.media_type == e1000_media_type_copper)
636 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
637 		else
638 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
639 
640 		wr32(E1000_CTRL_EXT, ctrl_ext);
641 
642 		break;
643 	default:
644 		break;
645 	}
646 
647 	/* mac initialization and operations */
648 	ret_val = igb_init_mac_params_82575(hw);
649 	if (ret_val)
650 		goto out;
651 
652 	/* NVM initialization */
653 	ret_val = igb_init_nvm_params_82575(hw);
654 	switch (hw->mac.type) {
655 	case e1000_i210:
656 	case e1000_i211:
657 		ret_val = igb_init_nvm_params_i210(hw);
658 		break;
659 	default:
660 		break;
661 	}
662 
663 	if (ret_val)
664 		goto out;
665 
666 	/* if part supports SR-IOV then initialize mailbox parameters */
667 	switch (mac->type) {
668 	case e1000_82576:
669 	case e1000_i350:
670 		igb_init_mbx_params_pf(hw);
671 		break;
672 	default:
673 		break;
674 	}
675 
676 	/* setup PHY parameters */
677 	ret_val = igb_init_phy_params_82575(hw);
678 
679 out:
680 	return ret_val;
681 }
682 
683 /**
684  *  igb_acquire_phy_82575 - Acquire rights to access PHY
685  *  @hw: pointer to the HW structure
686  *
687  *  Acquire access rights to the correct PHY.  This is a
688  *  function pointer entry point called by the api module.
689  **/
690 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
691 {
692 	u16 mask = E1000_SWFW_PHY0_SM;
693 
694 	if (hw->bus.func == E1000_FUNC_1)
695 		mask = E1000_SWFW_PHY1_SM;
696 	else if (hw->bus.func == E1000_FUNC_2)
697 		mask = E1000_SWFW_PHY2_SM;
698 	else if (hw->bus.func == E1000_FUNC_3)
699 		mask = E1000_SWFW_PHY3_SM;
700 
701 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
702 }
703 
704 /**
705  *  igb_release_phy_82575 - Release rights to access PHY
706  *  @hw: pointer to the HW structure
707  *
708  *  A wrapper to release access rights to the correct PHY.  This is a
709  *  function pointer entry point called by the api module.
710  **/
711 static void igb_release_phy_82575(struct e1000_hw *hw)
712 {
713 	u16 mask = E1000_SWFW_PHY0_SM;
714 
715 	if (hw->bus.func == E1000_FUNC_1)
716 		mask = E1000_SWFW_PHY1_SM;
717 	else if (hw->bus.func == E1000_FUNC_2)
718 		mask = E1000_SWFW_PHY2_SM;
719 	else if (hw->bus.func == E1000_FUNC_3)
720 		mask = E1000_SWFW_PHY3_SM;
721 
722 	hw->mac.ops.release_swfw_sync(hw, mask);
723 }
724 
725 /**
726  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
727  *  @hw: pointer to the HW structure
728  *  @offset: register offset to be read
729  *  @data: pointer to the read data
730  *
731  *  Reads the PHY register at offset using the serial gigabit media independent
732  *  interface and stores the retrieved information in data.
733  **/
734 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
735 					  u16 *data)
736 {
737 	s32 ret_val = -E1000_ERR_PARAM;
738 
739 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
740 		hw_dbg("PHY Address %u is out of range\n", offset);
741 		goto out;
742 	}
743 
744 	ret_val = hw->phy.ops.acquire(hw);
745 	if (ret_val)
746 		goto out;
747 
748 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
749 
750 	hw->phy.ops.release(hw);
751 
752 out:
753 	return ret_val;
754 }
755 
756 /**
757  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
758  *  @hw: pointer to the HW structure
759  *  @offset: register offset to write to
760  *  @data: data to write at register offset
761  *
762  *  Writes the data to PHY register at the offset using the serial gigabit
763  *  media independent interface.
764  **/
765 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
766 					   u16 data)
767 {
768 	s32 ret_val = -E1000_ERR_PARAM;
769 
770 
771 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
772 		hw_dbg("PHY Address %d is out of range\n", offset);
773 		goto out;
774 	}
775 
776 	ret_val = hw->phy.ops.acquire(hw);
777 	if (ret_val)
778 		goto out;
779 
780 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
781 
782 	hw->phy.ops.release(hw);
783 
784 out:
785 	return ret_val;
786 }
787 
788 /**
789  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
790  *  @hw: pointer to the HW structure
791  *
792  *  Retrieves the PHY address and ID for both PHY's which do and do not use
793  *  sgmi interface.
794  **/
795 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
796 {
797 	struct e1000_phy_info *phy = &hw->phy;
798 	s32  ret_val = 0;
799 	u16 phy_id;
800 	u32 ctrl_ext;
801 	u32 mdic;
802 
803 	/* Extra read required for some PHY's on i354 */
804 	if (hw->mac.type == e1000_i354)
805 		igb_get_phy_id(hw);
806 
807 	/* For SGMII PHYs, we try the list of possible addresses until
808 	 * we find one that works.  For non-SGMII PHYs
809 	 * (e.g. integrated copper PHYs), an address of 1 should
810 	 * work.  The result of this function should mean phy->phy_addr
811 	 * and phy->id are set correctly.
812 	 */
813 	if (!(igb_sgmii_active_82575(hw))) {
814 		phy->addr = 1;
815 		ret_val = igb_get_phy_id(hw);
816 		goto out;
817 	}
818 
819 	if (igb_sgmii_uses_mdio_82575(hw)) {
820 		switch (hw->mac.type) {
821 		case e1000_82575:
822 		case e1000_82576:
823 			mdic = rd32(E1000_MDIC);
824 			mdic &= E1000_MDIC_PHY_MASK;
825 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
826 			break;
827 		case e1000_82580:
828 		case e1000_i350:
829 		case e1000_i354:
830 		case e1000_i210:
831 		case e1000_i211:
832 			mdic = rd32(E1000_MDICNFG);
833 			mdic &= E1000_MDICNFG_PHY_MASK;
834 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
835 			break;
836 		default:
837 			ret_val = -E1000_ERR_PHY;
838 			goto out;
839 		}
840 		ret_val = igb_get_phy_id(hw);
841 		goto out;
842 	}
843 
844 	/* Power on sgmii phy if it is disabled */
845 	ctrl_ext = rd32(E1000_CTRL_EXT);
846 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
847 	wrfl();
848 	msleep(300);
849 
850 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
851 	 * Therefore, we need to test 1-7
852 	 */
853 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
854 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
855 		if (ret_val == 0) {
856 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
857 			       phy_id, phy->addr);
858 			/* At the time of this writing, The M88 part is
859 			 * the only supported SGMII PHY product.
860 			 */
861 			if (phy_id == M88_VENDOR)
862 				break;
863 		} else {
864 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
865 		}
866 	}
867 
868 	/* A valid PHY type couldn't be found. */
869 	if (phy->addr == 8) {
870 		phy->addr = 0;
871 		ret_val = -E1000_ERR_PHY;
872 		goto out;
873 	} else {
874 		ret_val = igb_get_phy_id(hw);
875 	}
876 
877 	/* restore previous sfp cage power state */
878 	wr32(E1000_CTRL_EXT, ctrl_ext);
879 
880 out:
881 	return ret_val;
882 }
883 
884 /**
885  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
886  *  @hw: pointer to the HW structure
887  *
888  *  Resets the PHY using the serial gigabit media independent interface.
889  **/
890 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
891 {
892 	s32 ret_val;
893 
894 	/* This isn't a true "hard" reset, but is the only reset
895 	 * available to us at this time.
896 	 */
897 
898 	hw_dbg("Soft resetting SGMII attached PHY...\n");
899 
900 	/* SFP documentation requires the following to configure the SPF module
901 	 * to work on SGMII.  No further documentation is given.
902 	 */
903 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
904 	if (ret_val)
905 		goto out;
906 
907 	ret_val = igb_phy_sw_reset(hw);
908 
909 out:
910 	return ret_val;
911 }
912 
913 /**
914  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
915  *  @hw: pointer to the HW structure
916  *  @active: true to enable LPLU, false to disable
917  *
918  *  Sets the LPLU D0 state according to the active flag.  When
919  *  activating LPLU this function also disables smart speed
920  *  and vice versa.  LPLU will not be activated unless the
921  *  device autonegotiation advertisement meets standards of
922  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
923  *  This is a function pointer entry point only called by
924  *  PHY setup routines.
925  **/
926 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
927 {
928 	struct e1000_phy_info *phy = &hw->phy;
929 	s32 ret_val;
930 	u16 data;
931 
932 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
933 	if (ret_val)
934 		goto out;
935 
936 	if (active) {
937 		data |= IGP02E1000_PM_D0_LPLU;
938 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
939 						 data);
940 		if (ret_val)
941 			goto out;
942 
943 		/* When LPLU is enabled, we should disable SmartSpeed */
944 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
945 						&data);
946 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
947 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
948 						 data);
949 		if (ret_val)
950 			goto out;
951 	} else {
952 		data &= ~IGP02E1000_PM_D0_LPLU;
953 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
954 						 data);
955 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
956 		 * during Dx states where the power conservation is most
957 		 * important.  During driver activity we should enable
958 		 * SmartSpeed, so performance is maintained.
959 		 */
960 		if (phy->smart_speed == e1000_smart_speed_on) {
961 			ret_val = phy->ops.read_reg(hw,
962 					IGP01E1000_PHY_PORT_CONFIG, &data);
963 			if (ret_val)
964 				goto out;
965 
966 			data |= IGP01E1000_PSCFR_SMART_SPEED;
967 			ret_val = phy->ops.write_reg(hw,
968 					IGP01E1000_PHY_PORT_CONFIG, data);
969 			if (ret_val)
970 				goto out;
971 		} else if (phy->smart_speed == e1000_smart_speed_off) {
972 			ret_val = phy->ops.read_reg(hw,
973 					IGP01E1000_PHY_PORT_CONFIG, &data);
974 			if (ret_val)
975 				goto out;
976 
977 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
978 			ret_val = phy->ops.write_reg(hw,
979 					IGP01E1000_PHY_PORT_CONFIG, data);
980 			if (ret_val)
981 				goto out;
982 		}
983 	}
984 
985 out:
986 	return ret_val;
987 }
988 
989 /**
990  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
991  *  @hw: pointer to the HW structure
992  *  @active: true to enable LPLU, false to disable
993  *
994  *  Sets the LPLU D0 state according to the active flag.  When
995  *  activating LPLU this function also disables smart speed
996  *  and vice versa.  LPLU will not be activated unless the
997  *  device autonegotiation advertisement meets standards of
998  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
999  *  This is a function pointer entry point only called by
1000  *  PHY setup routines.
1001  **/
1002 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1003 {
1004 	struct e1000_phy_info *phy = &hw->phy;
1005 	u16 data;
1006 
1007 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1008 
1009 	if (active) {
1010 		data |= E1000_82580_PM_D0_LPLU;
1011 
1012 		/* When LPLU is enabled, we should disable SmartSpeed */
1013 		data &= ~E1000_82580_PM_SPD;
1014 	} else {
1015 		data &= ~E1000_82580_PM_D0_LPLU;
1016 
1017 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1018 		 * during Dx states where the power conservation is most
1019 		 * important.  During driver activity we should enable
1020 		 * SmartSpeed, so performance is maintained.
1021 		 */
1022 		if (phy->smart_speed == e1000_smart_speed_on)
1023 			data |= E1000_82580_PM_SPD;
1024 		else if (phy->smart_speed == e1000_smart_speed_off)
1025 			data &= ~E1000_82580_PM_SPD; }
1026 
1027 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1028 	return 0;
1029 }
1030 
1031 /**
1032  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1033  *  @hw: pointer to the HW structure
1034  *  @active: boolean used to enable/disable lplu
1035  *
1036  *  Success returns 0, Failure returns 1
1037  *
1038  *  The low power link up (lplu) state is set to the power management level D3
1039  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1040  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1041  *  is used during Dx states where the power conservation is most important.
1042  *  During driver activity, SmartSpeed should be enabled so performance is
1043  *  maintained.
1044  **/
1045 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1046 {
1047 	struct e1000_phy_info *phy = &hw->phy;
1048 	u16 data;
1049 
1050 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1051 
1052 	if (!active) {
1053 		data &= ~E1000_82580_PM_D3_LPLU;
1054 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1055 		 * during Dx states where the power conservation is most
1056 		 * important.  During driver activity we should enable
1057 		 * SmartSpeed, so performance is maintained.
1058 		 */
1059 		if (phy->smart_speed == e1000_smart_speed_on)
1060 			data |= E1000_82580_PM_SPD;
1061 		else if (phy->smart_speed == e1000_smart_speed_off)
1062 			data &= ~E1000_82580_PM_SPD;
1063 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1064 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1065 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1066 		data |= E1000_82580_PM_D3_LPLU;
1067 		/* When LPLU is enabled, we should disable SmartSpeed */
1068 		data &= ~E1000_82580_PM_SPD;
1069 	}
1070 
1071 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1072 	return 0;
1073 }
1074 
1075 /**
1076  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1077  *  @hw: pointer to the HW structure
1078  *
1079  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1080  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1081  *  Return successful if access grant bit set, else clear the request for
1082  *  EEPROM access and return -E1000_ERR_NVM (-1).
1083  **/
1084 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1085 {
1086 	s32 ret_val;
1087 
1088 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1089 	if (ret_val)
1090 		goto out;
1091 
1092 	ret_val = igb_acquire_nvm(hw);
1093 
1094 	if (ret_val)
1095 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1096 
1097 out:
1098 	return ret_val;
1099 }
1100 
1101 /**
1102  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1106  *  then release the semaphores acquired.
1107  **/
1108 static void igb_release_nvm_82575(struct e1000_hw *hw)
1109 {
1110 	igb_release_nvm(hw);
1111 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1112 }
1113 
1114 /**
1115  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1116  *  @hw: pointer to the HW structure
1117  *  @mask: specifies which semaphore to acquire
1118  *
1119  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1120  *  will also specify which port we're acquiring the lock for.
1121  **/
1122 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1123 {
1124 	u32 swfw_sync;
1125 	u32 swmask = mask;
1126 	u32 fwmask = mask << 16;
1127 	s32 ret_val = 0;
1128 	s32 i = 0, timeout = 200;
1129 
1130 	while (i < timeout) {
1131 		if (igb_get_hw_semaphore(hw)) {
1132 			ret_val = -E1000_ERR_SWFW_SYNC;
1133 			goto out;
1134 		}
1135 
1136 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1137 		if (!(swfw_sync & (fwmask | swmask)))
1138 			break;
1139 
1140 		/* Firmware currently using resource (fwmask)
1141 		 * or other software thread using resource (swmask)
1142 		 */
1143 		igb_put_hw_semaphore(hw);
1144 		mdelay(5);
1145 		i++;
1146 	}
1147 
1148 	if (i == timeout) {
1149 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1150 		ret_val = -E1000_ERR_SWFW_SYNC;
1151 		goto out;
1152 	}
1153 
1154 	swfw_sync |= swmask;
1155 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1156 
1157 	igb_put_hw_semaphore(hw);
1158 
1159 out:
1160 	return ret_val;
1161 }
1162 
1163 /**
1164  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1165  *  @hw: pointer to the HW structure
1166  *  @mask: specifies which semaphore to acquire
1167  *
1168  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1169  *  will also specify which port we're releasing the lock for.
1170  **/
1171 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1172 {
1173 	u32 swfw_sync;
1174 
1175 	while (igb_get_hw_semaphore(hw) != 0)
1176 		; /* Empty */
1177 
1178 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1179 	swfw_sync &= ~mask;
1180 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1181 
1182 	igb_put_hw_semaphore(hw);
1183 }
1184 
1185 /**
1186  *  igb_get_cfg_done_82575 - Read config done bit
1187  *  @hw: pointer to the HW structure
1188  *
1189  *  Read the management control register for the config done bit for
1190  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1191  *  to read the config done bit, so an error is *ONLY* logged and returns
1192  *  0.  If we were to return with error, EEPROM-less silicon
1193  *  would not be able to be reset or change link.
1194  **/
1195 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1196 {
1197 	s32 timeout = PHY_CFG_TIMEOUT;
1198 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1199 
1200 	if (hw->bus.func == 1)
1201 		mask = E1000_NVM_CFG_DONE_PORT_1;
1202 	else if (hw->bus.func == E1000_FUNC_2)
1203 		mask = E1000_NVM_CFG_DONE_PORT_2;
1204 	else if (hw->bus.func == E1000_FUNC_3)
1205 		mask = E1000_NVM_CFG_DONE_PORT_3;
1206 
1207 	while (timeout) {
1208 		if (rd32(E1000_EEMNGCTL) & mask)
1209 			break;
1210 		usleep_range(1000, 2000);
1211 		timeout--;
1212 	}
1213 	if (!timeout)
1214 		hw_dbg("MNG configuration cycle has not completed.\n");
1215 
1216 	/* If EEPROM is not marked present, init the PHY manually */
1217 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1218 	    (hw->phy.type == e1000_phy_igp_3))
1219 		igb_phy_init_script_igp3(hw);
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1226  *  @hw: pointer to the HW structure
1227  *  @speed: stores the current speed
1228  *  @duplex: stores the current duplex
1229  *
1230  *  This is a wrapper function, if using the serial gigabit media independent
1231  *  interface, use PCS to retrieve the link speed and duplex information.
1232  *  Otherwise, use the generic function to get the link speed and duplex info.
1233  **/
1234 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1235 					u16 *duplex)
1236 {
1237 	s32 ret_val;
1238 
1239 	if (hw->phy.media_type != e1000_media_type_copper)
1240 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1241 							       duplex);
1242 	else
1243 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1244 								    duplex);
1245 
1246 	return ret_val;
1247 }
1248 
1249 /**
1250  *  igb_check_for_link_82575 - Check for link
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1254  *  use the generic interface for determining link.
1255  **/
1256 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1257 {
1258 	s32 ret_val;
1259 	u16 speed, duplex;
1260 
1261 	if (hw->phy.media_type != e1000_media_type_copper) {
1262 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1263 							     &duplex);
1264 		/* Use this flag to determine if link needs to be checked or
1265 		 * not.  If  we have link clear the flag so that we do not
1266 		 * continue to check for link.
1267 		 */
1268 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1269 
1270 		/* Configure Flow Control now that Auto-Neg has completed.
1271 		 * First, we need to restore the desired flow control
1272 		 * settings because we may have had to re-autoneg with a
1273 		 * different link partner.
1274 		 */
1275 		ret_val = igb_config_fc_after_link_up(hw);
1276 		if (ret_val)
1277 			hw_dbg("Error configuring flow control\n");
1278 	} else {
1279 		ret_val = igb_check_for_copper_link(hw);
1280 	}
1281 
1282 	return ret_val;
1283 }
1284 
1285 /**
1286  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1287  *  @hw: pointer to the HW structure
1288  **/
1289 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1290 {
1291 	u32 reg;
1292 
1293 
1294 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1295 	    !igb_sgmii_active_82575(hw))
1296 		return;
1297 
1298 	/* Enable PCS to turn on link */
1299 	reg = rd32(E1000_PCS_CFG0);
1300 	reg |= E1000_PCS_CFG_PCS_EN;
1301 	wr32(E1000_PCS_CFG0, reg);
1302 
1303 	/* Power up the laser */
1304 	reg = rd32(E1000_CTRL_EXT);
1305 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1306 	wr32(E1000_CTRL_EXT, reg);
1307 
1308 	/* flush the write to verify completion */
1309 	wrfl();
1310 	usleep_range(1000, 2000);
1311 }
1312 
1313 /**
1314  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1315  *  @hw: pointer to the HW structure
1316  *  @speed: stores the current speed
1317  *  @duplex: stores the current duplex
1318  *
1319  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1320  *  duplex, then store the values in the pointers provided.
1321  **/
1322 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1323 						u16 *duplex)
1324 {
1325 	struct e1000_mac_info *mac = &hw->mac;
1326 	u32 pcs, status;
1327 
1328 	/* Set up defaults for the return values of this function */
1329 	mac->serdes_has_link = false;
1330 	*speed = 0;
1331 	*duplex = 0;
1332 
1333 	/* Read the PCS Status register for link state. For non-copper mode,
1334 	 * the status register is not accurate. The PCS status register is
1335 	 * used instead.
1336 	 */
1337 	pcs = rd32(E1000_PCS_LSTAT);
1338 
1339 	/* The link up bit determines when link is up on autoneg. The sync ok
1340 	 * gets set once both sides sync up and agree upon link. Stable link
1341 	 * can be determined by checking for both link up and link sync ok
1342 	 */
1343 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1344 		mac->serdes_has_link = true;
1345 
1346 		/* Detect and store PCS speed */
1347 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1348 			*speed = SPEED_1000;
1349 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1350 			*speed = SPEED_100;
1351 		else
1352 			*speed = SPEED_10;
1353 
1354 		/* Detect and store PCS duplex */
1355 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1356 			*duplex = FULL_DUPLEX;
1357 		else
1358 			*duplex = HALF_DUPLEX;
1359 
1360 	/* Check if it is an I354 2.5Gb backplane connection. */
1361 		if (mac->type == e1000_i354) {
1362 			status = rd32(E1000_STATUS);
1363 			if ((status & E1000_STATUS_2P5_SKU) &&
1364 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1365 				*speed = SPEED_2500;
1366 				*duplex = FULL_DUPLEX;
1367 				hw_dbg("2500 Mbs, ");
1368 				hw_dbg("Full Duplex\n");
1369 			}
1370 		}
1371 
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1379  *  @hw: pointer to the HW structure
1380  *
1381  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1382  *  when management pass thru is not enabled.
1383  **/
1384 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1385 {
1386 	u32 reg;
1387 
1388 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1389 	    igb_sgmii_active_82575(hw))
1390 		return;
1391 
1392 	if (!igb_enable_mng_pass_thru(hw)) {
1393 		/* Disable PCS to turn off link */
1394 		reg = rd32(E1000_PCS_CFG0);
1395 		reg &= ~E1000_PCS_CFG_PCS_EN;
1396 		wr32(E1000_PCS_CFG0, reg);
1397 
1398 		/* shutdown the laser */
1399 		reg = rd32(E1000_CTRL_EXT);
1400 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1401 		wr32(E1000_CTRL_EXT, reg);
1402 
1403 		/* flush the write to verify completion */
1404 		wrfl();
1405 		usleep_range(1000, 2000);
1406 	}
1407 }
1408 
1409 /**
1410  *  igb_reset_hw_82575 - Reset hardware
1411  *  @hw: pointer to the HW structure
1412  *
1413  *  This resets the hardware into a known state.  This is a
1414  *  function pointer entry point called by the api module.
1415  **/
1416 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1417 {
1418 	u32 ctrl;
1419 	s32 ret_val;
1420 
1421 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1422 	 * on the last TLP read/write transaction when MAC is reset.
1423 	 */
1424 	ret_val = igb_disable_pcie_master(hw);
1425 	if (ret_val)
1426 		hw_dbg("PCI-E Master disable polling has failed.\n");
1427 
1428 	/* set the completion timeout for interface */
1429 	ret_val = igb_set_pcie_completion_timeout(hw);
1430 	if (ret_val)
1431 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1432 
1433 	hw_dbg("Masking off all interrupts\n");
1434 	wr32(E1000_IMC, 0xffffffff);
1435 
1436 	wr32(E1000_RCTL, 0);
1437 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1438 	wrfl();
1439 
1440 	usleep_range(10000, 20000);
1441 
1442 	ctrl = rd32(E1000_CTRL);
1443 
1444 	hw_dbg("Issuing a global reset to MAC\n");
1445 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1446 
1447 	ret_val = igb_get_auto_rd_done(hw);
1448 	if (ret_val) {
1449 		/* When auto config read does not complete, do not
1450 		 * return with an error. This can happen in situations
1451 		 * where there is no eeprom and prevents getting link.
1452 		 */
1453 		hw_dbg("Auto Read Done did not complete\n");
1454 	}
1455 
1456 	/* If EEPROM is not present, run manual init scripts */
1457 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1458 		igb_reset_init_script_82575(hw);
1459 
1460 	/* Clear any pending interrupt events. */
1461 	wr32(E1000_IMC, 0xffffffff);
1462 	rd32(E1000_ICR);
1463 
1464 	/* Install any alternate MAC address into RAR0 */
1465 	ret_val = igb_check_alt_mac_addr(hw);
1466 
1467 	return ret_val;
1468 }
1469 
1470 /**
1471  *  igb_init_hw_82575 - Initialize hardware
1472  *  @hw: pointer to the HW structure
1473  *
1474  *  This inits the hardware readying it for operation.
1475  **/
1476 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1477 {
1478 	struct e1000_mac_info *mac = &hw->mac;
1479 	s32 ret_val;
1480 	u16 i, rar_count = mac->rar_entry_count;
1481 
1482 	if ((hw->mac.type >= e1000_i210) &&
1483 	    !(igb_get_flash_presence_i210(hw))) {
1484 		ret_val = igb_pll_workaround_i210(hw);
1485 		if (ret_val)
1486 			return ret_val;
1487 	}
1488 
1489 	/* Initialize identification LED */
1490 	ret_val = igb_id_led_init(hw);
1491 	if (ret_val) {
1492 		hw_dbg("Error initializing identification LED\n");
1493 		/* This is not fatal and we should not stop init due to this */
1494 	}
1495 
1496 	/* Disabling VLAN filtering */
1497 	hw_dbg("Initializing the IEEE VLAN\n");
1498 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1499 		igb_clear_vfta_i350(hw);
1500 	else
1501 		igb_clear_vfta(hw);
1502 
1503 	/* Setup the receive address */
1504 	igb_init_rx_addrs(hw, rar_count);
1505 
1506 	/* Zero out the Multicast HASH table */
1507 	hw_dbg("Zeroing the MTA\n");
1508 	for (i = 0; i < mac->mta_reg_count; i++)
1509 		array_wr32(E1000_MTA, i, 0);
1510 
1511 	/* Zero out the Unicast HASH table */
1512 	hw_dbg("Zeroing the UTA\n");
1513 	for (i = 0; i < mac->uta_reg_count; i++)
1514 		array_wr32(E1000_UTA, i, 0);
1515 
1516 	/* Setup link and flow control */
1517 	ret_val = igb_setup_link(hw);
1518 
1519 	/* Clear all of the statistics registers (clear on read).  It is
1520 	 * important that we do this after we have tried to establish link
1521 	 * because the symbol error count will increment wildly if there
1522 	 * is no link.
1523 	 */
1524 	igb_clear_hw_cntrs_82575(hw);
1525 	return ret_val;
1526 }
1527 
1528 /**
1529  *  igb_setup_copper_link_82575 - Configure copper link settings
1530  *  @hw: pointer to the HW structure
1531  *
1532  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1533  *  for link, once link is established calls to configure collision distance
1534  *  and flow control are called.
1535  **/
1536 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1537 {
1538 	u32 ctrl;
1539 	s32  ret_val;
1540 	u32 phpm_reg;
1541 
1542 	ctrl = rd32(E1000_CTRL);
1543 	ctrl |= E1000_CTRL_SLU;
1544 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1545 	wr32(E1000_CTRL, ctrl);
1546 
1547 	/* Clear Go Link Disconnect bit on supported devices */
1548 	switch (hw->mac.type) {
1549 	case e1000_82580:
1550 	case e1000_i350:
1551 	case e1000_i210:
1552 	case e1000_i211:
1553 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1554 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1555 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1556 		break;
1557 	default:
1558 		break;
1559 	}
1560 
1561 	ret_val = igb_setup_serdes_link_82575(hw);
1562 	if (ret_val)
1563 		goto out;
1564 
1565 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1566 		/* allow time for SFP cage time to power up phy */
1567 		msleep(300);
1568 
1569 		ret_val = hw->phy.ops.reset(hw);
1570 		if (ret_val) {
1571 			hw_dbg("Error resetting the PHY.\n");
1572 			goto out;
1573 		}
1574 	}
1575 	switch (hw->phy.type) {
1576 	case e1000_phy_i210:
1577 	case e1000_phy_m88:
1578 		switch (hw->phy.id) {
1579 		case I347AT4_E_PHY_ID:
1580 		case M88E1112_E_PHY_ID:
1581 		case M88E1543_E_PHY_ID:
1582 		case I210_I_PHY_ID:
1583 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1584 			break;
1585 		default:
1586 			ret_val = igb_copper_link_setup_m88(hw);
1587 			break;
1588 		}
1589 		break;
1590 	case e1000_phy_igp_3:
1591 		ret_val = igb_copper_link_setup_igp(hw);
1592 		break;
1593 	case e1000_phy_82580:
1594 		ret_val = igb_copper_link_setup_82580(hw);
1595 		break;
1596 	default:
1597 		ret_val = -E1000_ERR_PHY;
1598 		break;
1599 	}
1600 
1601 	if (ret_val)
1602 		goto out;
1603 
1604 	ret_val = igb_setup_copper_link(hw);
1605 out:
1606 	return ret_val;
1607 }
1608 
1609 /**
1610  *  igb_setup_serdes_link_82575 - Setup link for serdes
1611  *  @hw: pointer to the HW structure
1612  *
1613  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1614  *  used on copper connections where the serialized gigabit media independent
1615  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1616  *  for auto-negotiation or forces speed/duplex.
1617  **/
1618 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1619 {
1620 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1621 	bool pcs_autoneg;
1622 	s32 ret_val = 0;
1623 	u16 data;
1624 
1625 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1626 	    !igb_sgmii_active_82575(hw))
1627 		return ret_val;
1628 
1629 
1630 	/* On the 82575, SerDes loopback mode persists until it is
1631 	 * explicitly turned off or a power cycle is performed.  A read to
1632 	 * the register does not indicate its status.  Therefore, we ensure
1633 	 * loopback mode is disabled during initialization.
1634 	 */
1635 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1636 
1637 	/* power on the sfp cage if present and turn on I2C */
1638 	ctrl_ext = rd32(E1000_CTRL_EXT);
1639 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1640 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1641 	wr32(E1000_CTRL_EXT, ctrl_ext);
1642 
1643 	ctrl_reg = rd32(E1000_CTRL);
1644 	ctrl_reg |= E1000_CTRL_SLU;
1645 
1646 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1647 		/* set both sw defined pins */
1648 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1649 
1650 		/* Set switch control to serdes energy detect */
1651 		reg = rd32(E1000_CONNSW);
1652 		reg |= E1000_CONNSW_ENRGSRC;
1653 		wr32(E1000_CONNSW, reg);
1654 	}
1655 
1656 	reg = rd32(E1000_PCS_LCTL);
1657 
1658 	/* default pcs_autoneg to the same setting as mac autoneg */
1659 	pcs_autoneg = hw->mac.autoneg;
1660 
1661 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1662 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1663 		/* sgmii mode lets the phy handle forcing speed/duplex */
1664 		pcs_autoneg = true;
1665 		/* autoneg time out should be disabled for SGMII mode */
1666 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1667 		break;
1668 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1669 		/* disable PCS autoneg and support parallel detect only */
1670 		pcs_autoneg = false;
1671 	default:
1672 		if (hw->mac.type == e1000_82575 ||
1673 		    hw->mac.type == e1000_82576) {
1674 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1675 			if (ret_val) {
1676 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1677 				return ret_val;
1678 			}
1679 
1680 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1681 				pcs_autoneg = false;
1682 		}
1683 
1684 		/* non-SGMII modes only supports a speed of 1000/Full for the
1685 		 * link so it is best to just force the MAC and let the pcs
1686 		 * link either autoneg or be forced to 1000/Full
1687 		 */
1688 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1689 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1690 
1691 		/* set speed of 1000/Full if speed/duplex is forced */
1692 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1693 		break;
1694 	}
1695 
1696 	wr32(E1000_CTRL, ctrl_reg);
1697 
1698 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1699 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1700 	 * mode that will be compatible with older link partners and switches.
1701 	 * However, both are supported by the hardware and some drivers/tools.
1702 	 */
1703 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1704 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1705 
1706 	if (pcs_autoneg) {
1707 		/* Set PCS register for autoneg */
1708 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1709 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1710 
1711 		/* Disable force flow control for autoneg */
1712 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1713 
1714 		/* Configure flow control advertisement for autoneg */
1715 		anadv_reg = rd32(E1000_PCS_ANADV);
1716 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1717 		switch (hw->fc.requested_mode) {
1718 		case e1000_fc_full:
1719 		case e1000_fc_rx_pause:
1720 			anadv_reg |= E1000_TXCW_ASM_DIR;
1721 			anadv_reg |= E1000_TXCW_PAUSE;
1722 			break;
1723 		case e1000_fc_tx_pause:
1724 			anadv_reg |= E1000_TXCW_ASM_DIR;
1725 			break;
1726 		default:
1727 			break;
1728 		}
1729 		wr32(E1000_PCS_ANADV, anadv_reg);
1730 
1731 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1732 	} else {
1733 		/* Set PCS register for forced link */
1734 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1735 
1736 		/* Force flow control for forced link */
1737 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1738 
1739 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1740 	}
1741 
1742 	wr32(E1000_PCS_LCTL, reg);
1743 
1744 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1745 		igb_force_mac_fc(hw);
1746 
1747 	return ret_val;
1748 }
1749 
1750 /**
1751  *  igb_sgmii_active_82575 - Return sgmii state
1752  *  @hw: pointer to the HW structure
1753  *
1754  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1755  *  which can be enabled for use in the embedded applications.  Simply
1756  *  return the current state of the sgmii interface.
1757  **/
1758 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1759 {
1760 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1761 	return dev_spec->sgmii_active;
1762 }
1763 
1764 /**
1765  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1766  *  @hw: pointer to the HW structure
1767  *
1768  *  Inits recommended HW defaults after a reset when there is no EEPROM
1769  *  detected. This is only for the 82575.
1770  **/
1771 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1772 {
1773 	if (hw->mac.type == e1000_82575) {
1774 		hw_dbg("Running reset init script for 82575\n");
1775 		/* SerDes configuration via SERDESCTRL */
1776 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1777 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1778 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1779 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1780 
1781 		/* CCM configuration via CCMCTL register */
1782 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1783 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1784 
1785 		/* PCIe lanes configuration */
1786 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1787 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1788 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1789 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1790 
1791 		/* PCIe PLL Configuration */
1792 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1793 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1794 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1795 	}
1796 
1797 	return 0;
1798 }
1799 
1800 /**
1801  *  igb_read_mac_addr_82575 - Read device MAC address
1802  *  @hw: pointer to the HW structure
1803  **/
1804 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1805 {
1806 	s32 ret_val = 0;
1807 
1808 	/* If there's an alternate MAC address place it in RAR0
1809 	 * so that it will override the Si installed default perm
1810 	 * address.
1811 	 */
1812 	ret_val = igb_check_alt_mac_addr(hw);
1813 	if (ret_val)
1814 		goto out;
1815 
1816 	ret_val = igb_read_mac_addr(hw);
1817 
1818 out:
1819 	return ret_val;
1820 }
1821 
1822 /**
1823  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1824  * @hw: pointer to the HW structure
1825  *
1826  * In the case of a PHY power down to save power, or to turn off link during a
1827  * driver unload, or wake on lan is not enabled, remove the link.
1828  **/
1829 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1830 {
1831 	/* If the management interface is not enabled, then power down */
1832 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1833 		igb_power_down_phy_copper(hw);
1834 }
1835 
1836 /**
1837  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1838  *  @hw: pointer to the HW structure
1839  *
1840  *  Clears the hardware counters by reading the counter registers.
1841  **/
1842 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1843 {
1844 	igb_clear_hw_cntrs_base(hw);
1845 
1846 	rd32(E1000_PRC64);
1847 	rd32(E1000_PRC127);
1848 	rd32(E1000_PRC255);
1849 	rd32(E1000_PRC511);
1850 	rd32(E1000_PRC1023);
1851 	rd32(E1000_PRC1522);
1852 	rd32(E1000_PTC64);
1853 	rd32(E1000_PTC127);
1854 	rd32(E1000_PTC255);
1855 	rd32(E1000_PTC511);
1856 	rd32(E1000_PTC1023);
1857 	rd32(E1000_PTC1522);
1858 
1859 	rd32(E1000_ALGNERRC);
1860 	rd32(E1000_RXERRC);
1861 	rd32(E1000_TNCRS);
1862 	rd32(E1000_CEXTERR);
1863 	rd32(E1000_TSCTC);
1864 	rd32(E1000_TSCTFC);
1865 
1866 	rd32(E1000_MGTPRC);
1867 	rd32(E1000_MGTPDC);
1868 	rd32(E1000_MGTPTC);
1869 
1870 	rd32(E1000_IAC);
1871 	rd32(E1000_ICRXOC);
1872 
1873 	rd32(E1000_ICRXPTC);
1874 	rd32(E1000_ICRXATC);
1875 	rd32(E1000_ICTXPTC);
1876 	rd32(E1000_ICTXATC);
1877 	rd32(E1000_ICTXQEC);
1878 	rd32(E1000_ICTXQMTC);
1879 	rd32(E1000_ICRXDMTC);
1880 
1881 	rd32(E1000_CBTMPC);
1882 	rd32(E1000_HTDPMC);
1883 	rd32(E1000_CBRMPC);
1884 	rd32(E1000_RPTHC);
1885 	rd32(E1000_HGPTC);
1886 	rd32(E1000_HTCBDPC);
1887 	rd32(E1000_HGORCL);
1888 	rd32(E1000_HGORCH);
1889 	rd32(E1000_HGOTCL);
1890 	rd32(E1000_HGOTCH);
1891 	rd32(E1000_LENERRS);
1892 
1893 	/* This register should not be read in copper configurations */
1894 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1895 	    igb_sgmii_active_82575(hw))
1896 		rd32(E1000_SCVPC);
1897 }
1898 
1899 /**
1900  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1901  *  @hw: pointer to the HW structure
1902  *
1903  *  After rx enable if managability is enabled then there is likely some
1904  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1905  *  function clears the fifos and flushes any packets that came in as rx was
1906  *  being enabled.
1907  **/
1908 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1909 {
1910 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1911 	int i, ms_wait;
1912 
1913 	if (hw->mac.type != e1000_82575 ||
1914 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1915 		return;
1916 
1917 	/* Disable all RX queues */
1918 	for (i = 0; i < 4; i++) {
1919 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1920 		wr32(E1000_RXDCTL(i),
1921 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1922 	}
1923 	/* Poll all queues to verify they have shut down */
1924 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1925 		usleep_range(1000, 2000);
1926 		rx_enabled = 0;
1927 		for (i = 0; i < 4; i++)
1928 			rx_enabled |= rd32(E1000_RXDCTL(i));
1929 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1930 			break;
1931 	}
1932 
1933 	if (ms_wait == 10)
1934 		hw_dbg("Queue disable timed out after 10ms\n");
1935 
1936 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1937 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1938 	 * any packet that was coming in as RCTL.EN was set is flushed
1939 	 */
1940 	rfctl = rd32(E1000_RFCTL);
1941 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1942 
1943 	rlpml = rd32(E1000_RLPML);
1944 	wr32(E1000_RLPML, 0);
1945 
1946 	rctl = rd32(E1000_RCTL);
1947 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1948 	temp_rctl |= E1000_RCTL_LPE;
1949 
1950 	wr32(E1000_RCTL, temp_rctl);
1951 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1952 	wrfl();
1953 	usleep_range(2000, 3000);
1954 
1955 	/* Enable RX queues that were previously enabled and restore our
1956 	 * previous state
1957 	 */
1958 	for (i = 0; i < 4; i++)
1959 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1960 	wr32(E1000_RCTL, rctl);
1961 	wrfl();
1962 
1963 	wr32(E1000_RLPML, rlpml);
1964 	wr32(E1000_RFCTL, rfctl);
1965 
1966 	/* Flush receive errors generated by workaround */
1967 	rd32(E1000_ROC);
1968 	rd32(E1000_RNBC);
1969 	rd32(E1000_MPC);
1970 }
1971 
1972 /**
1973  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1977  *  however the hardware default for these parts is 500us to 1ms which is less
1978  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1979  *  increase the value to either 10ms to 200ms for capability version 1 config,
1980  *  or 16ms to 55ms for version 2.
1981  **/
1982 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1983 {
1984 	u32 gcr = rd32(E1000_GCR);
1985 	s32 ret_val = 0;
1986 	u16 pcie_devctl2;
1987 
1988 	/* only take action if timeout value is defaulted to 0 */
1989 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1990 		goto out;
1991 
1992 	/* if capabilities version is type 1 we can write the
1993 	 * timeout of 10ms to 200ms through the GCR register
1994 	 */
1995 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1996 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1997 		goto out;
1998 	}
1999 
2000 	/* for version 2 capabilities we need to write the config space
2001 	 * directly in order to set the completion timeout value for
2002 	 * 16ms to 55ms
2003 	 */
2004 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2005 					&pcie_devctl2);
2006 	if (ret_val)
2007 		goto out;
2008 
2009 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2010 
2011 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2012 					 &pcie_devctl2);
2013 out:
2014 	/* disable completion timeout resend */
2015 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2016 
2017 	wr32(E1000_GCR, gcr);
2018 	return ret_val;
2019 }
2020 
2021 /**
2022  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2023  *  @hw: pointer to the hardware struct
2024  *  @enable: state to enter, either enabled or disabled
2025  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2026  *
2027  *  enables/disables L2 switch anti-spoofing functionality.
2028  **/
2029 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2030 {
2031 	u32 reg_val, reg_offset;
2032 
2033 	switch (hw->mac.type) {
2034 	case e1000_82576:
2035 		reg_offset = E1000_DTXSWC;
2036 		break;
2037 	case e1000_i350:
2038 	case e1000_i354:
2039 		reg_offset = E1000_TXSWC;
2040 		break;
2041 	default:
2042 		return;
2043 	}
2044 
2045 	reg_val = rd32(reg_offset);
2046 	if (enable) {
2047 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2048 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2049 		/* The PF can spoof - it has to in order to
2050 		 * support emulation mode NICs
2051 		 */
2052 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2053 	} else {
2054 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2055 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2056 	}
2057 	wr32(reg_offset, reg_val);
2058 }
2059 
2060 /**
2061  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2062  *  @hw: pointer to the hardware struct
2063  *  @enable: state to enter, either enabled or disabled
2064  *
2065  *  enables/disables L2 switch loopback functionality.
2066  **/
2067 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2068 {
2069 	u32 dtxswc;
2070 
2071 	switch (hw->mac.type) {
2072 	case e1000_82576:
2073 		dtxswc = rd32(E1000_DTXSWC);
2074 		if (enable)
2075 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2076 		else
2077 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2078 		wr32(E1000_DTXSWC, dtxswc);
2079 		break;
2080 	case e1000_i354:
2081 	case e1000_i350:
2082 		dtxswc = rd32(E1000_TXSWC);
2083 		if (enable)
2084 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2085 		else
2086 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2087 		wr32(E1000_TXSWC, dtxswc);
2088 		break;
2089 	default:
2090 		/* Currently no other hardware supports loopback */
2091 		break;
2092 	}
2093 
2094 }
2095 
2096 /**
2097  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2098  *  @hw: pointer to the hardware struct
2099  *  @enable: state to enter, either enabled or disabled
2100  *
2101  *  enables/disables replication of packets across multiple pools.
2102  **/
2103 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2104 {
2105 	u32 vt_ctl = rd32(E1000_VT_CTL);
2106 
2107 	if (enable)
2108 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2109 	else
2110 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2111 
2112 	wr32(E1000_VT_CTL, vt_ctl);
2113 }
2114 
2115 /**
2116  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2117  *  @hw: pointer to the HW structure
2118  *  @offset: register offset to be read
2119  *  @data: pointer to the read data
2120  *
2121  *  Reads the MDI control register in the PHY at offset and stores the
2122  *  information read to data.
2123  **/
2124 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2125 {
2126 	s32 ret_val;
2127 
2128 	ret_val = hw->phy.ops.acquire(hw);
2129 	if (ret_val)
2130 		goto out;
2131 
2132 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2133 
2134 	hw->phy.ops.release(hw);
2135 
2136 out:
2137 	return ret_val;
2138 }
2139 
2140 /**
2141  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2142  *  @hw: pointer to the HW structure
2143  *  @offset: register offset to write to
2144  *  @data: data to write to register at offset
2145  *
2146  *  Writes data to MDI control register in the PHY at offset.
2147  **/
2148 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2149 {
2150 	s32 ret_val;
2151 
2152 
2153 	ret_val = hw->phy.ops.acquire(hw);
2154 	if (ret_val)
2155 		goto out;
2156 
2157 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2158 
2159 	hw->phy.ops.release(hw);
2160 
2161 out:
2162 	return ret_val;
2163 }
2164 
2165 /**
2166  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2167  *  @hw: pointer to the HW structure
2168  *
2169  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2170  *  the values found in the EEPROM.  This addresses an issue in which these
2171  *  bits are not restored from EEPROM after reset.
2172  **/
2173 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2174 {
2175 	s32 ret_val = 0;
2176 	u32 mdicnfg;
2177 	u16 nvm_data = 0;
2178 
2179 	if (hw->mac.type != e1000_82580)
2180 		goto out;
2181 	if (!igb_sgmii_active_82575(hw))
2182 		goto out;
2183 
2184 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2185 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2186 				   &nvm_data);
2187 	if (ret_val) {
2188 		hw_dbg("NVM Read Error\n");
2189 		goto out;
2190 	}
2191 
2192 	mdicnfg = rd32(E1000_MDICNFG);
2193 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2194 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2195 	if (nvm_data & NVM_WORD24_COM_MDIO)
2196 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2197 	wr32(E1000_MDICNFG, mdicnfg);
2198 out:
2199 	return ret_val;
2200 }
2201 
2202 /**
2203  *  igb_reset_hw_82580 - Reset hardware
2204  *  @hw: pointer to the HW structure
2205  *
2206  *  This resets function or entire device (all ports, etc.)
2207  *  to a known state.
2208  **/
2209 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2210 {
2211 	s32 ret_val = 0;
2212 	/* BH SW mailbox bit in SW_FW_SYNC */
2213 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2214 	u32 ctrl;
2215 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2216 
2217 	hw->dev_spec._82575.global_device_reset = false;
2218 
2219 	/* due to hw errata, global device reset doesn't always
2220 	 * work on 82580
2221 	 */
2222 	if (hw->mac.type == e1000_82580)
2223 		global_device_reset = false;
2224 
2225 	/* Get current control state. */
2226 	ctrl = rd32(E1000_CTRL);
2227 
2228 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2229 	 * on the last TLP read/write transaction when MAC is reset.
2230 	 */
2231 	ret_val = igb_disable_pcie_master(hw);
2232 	if (ret_val)
2233 		hw_dbg("PCI-E Master disable polling has failed.\n");
2234 
2235 	hw_dbg("Masking off all interrupts\n");
2236 	wr32(E1000_IMC, 0xffffffff);
2237 	wr32(E1000_RCTL, 0);
2238 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2239 	wrfl();
2240 
2241 	usleep_range(10000, 11000);
2242 
2243 	/* Determine whether or not a global dev reset is requested */
2244 	if (global_device_reset &&
2245 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2246 			global_device_reset = false;
2247 
2248 	if (global_device_reset &&
2249 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2250 		ctrl |= E1000_CTRL_DEV_RST;
2251 	else
2252 		ctrl |= E1000_CTRL_RST;
2253 
2254 	wr32(E1000_CTRL, ctrl);
2255 	wrfl();
2256 
2257 	/* Add delay to insure DEV_RST has time to complete */
2258 	if (global_device_reset)
2259 		usleep_range(5000, 6000);
2260 
2261 	ret_val = igb_get_auto_rd_done(hw);
2262 	if (ret_val) {
2263 		/* When auto config read does not complete, do not
2264 		 * return with an error. This can happen in situations
2265 		 * where there is no eeprom and prevents getting link.
2266 		 */
2267 		hw_dbg("Auto Read Done did not complete\n");
2268 	}
2269 
2270 	/* clear global device reset status bit */
2271 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2272 
2273 	/* Clear any pending interrupt events. */
2274 	wr32(E1000_IMC, 0xffffffff);
2275 	rd32(E1000_ICR);
2276 
2277 	ret_val = igb_reset_mdicnfg_82580(hw);
2278 	if (ret_val)
2279 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2280 
2281 	/* Install any alternate MAC address into RAR0 */
2282 	ret_val = igb_check_alt_mac_addr(hw);
2283 
2284 	/* Release semaphore */
2285 	if (global_device_reset)
2286 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2287 
2288 	return ret_val;
2289 }
2290 
2291 /**
2292  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2293  *  @data: data received by reading RXPBS register
2294  *
2295  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2296  *  This function converts the retrieved value into the correct table value
2297  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2298  *  0x0 36  72 144   1   2   4   8  16
2299  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2300  */
2301 u16 igb_rxpbs_adjust_82580(u32 data)
2302 {
2303 	u16 ret_val = 0;
2304 
2305 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2306 		ret_val = e1000_82580_rxpbs_table[data];
2307 
2308 	return ret_val;
2309 }
2310 
2311 /**
2312  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2313  *  checksum
2314  *  @hw: pointer to the HW structure
2315  *  @offset: offset in words of the checksum protected region
2316  *
2317  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2318  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2319  **/
2320 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2321 						 u16 offset)
2322 {
2323 	s32 ret_val = 0;
2324 	u16 checksum = 0;
2325 	u16 i, nvm_data;
2326 
2327 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2328 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2329 		if (ret_val) {
2330 			hw_dbg("NVM Read Error\n");
2331 			goto out;
2332 		}
2333 		checksum += nvm_data;
2334 	}
2335 
2336 	if (checksum != (u16) NVM_SUM) {
2337 		hw_dbg("NVM Checksum Invalid\n");
2338 		ret_val = -E1000_ERR_NVM;
2339 		goto out;
2340 	}
2341 
2342 out:
2343 	return ret_val;
2344 }
2345 
2346 /**
2347  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2348  *  checksum
2349  *  @hw: pointer to the HW structure
2350  *  @offset: offset in words of the checksum protected region
2351  *
2352  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2353  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2354  *  value to the EEPROM.
2355  **/
2356 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2357 {
2358 	s32 ret_val;
2359 	u16 checksum = 0;
2360 	u16 i, nvm_data;
2361 
2362 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2363 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2364 		if (ret_val) {
2365 			hw_dbg("NVM Read Error while updating checksum.\n");
2366 			goto out;
2367 		}
2368 		checksum += nvm_data;
2369 	}
2370 	checksum = (u16) NVM_SUM - checksum;
2371 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2372 				&checksum);
2373 	if (ret_val)
2374 		hw_dbg("NVM Write Error while updating checksum.\n");
2375 
2376 out:
2377 	return ret_val;
2378 }
2379 
2380 /**
2381  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2382  *  @hw: pointer to the HW structure
2383  *
2384  *  Calculates the EEPROM section checksum by reading/adding each word of
2385  *  the EEPROM and then verifies that the sum of the EEPROM is
2386  *  equal to 0xBABA.
2387  **/
2388 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2389 {
2390 	s32 ret_val = 0;
2391 	u16 eeprom_regions_count = 1;
2392 	u16 j, nvm_data;
2393 	u16 nvm_offset;
2394 
2395 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2396 	if (ret_val) {
2397 		hw_dbg("NVM Read Error\n");
2398 		goto out;
2399 	}
2400 
2401 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2402 		/* if checksums compatibility bit is set validate checksums
2403 		 * for all 4 ports.
2404 		 */
2405 		eeprom_regions_count = 4;
2406 	}
2407 
2408 	for (j = 0; j < eeprom_regions_count; j++) {
2409 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2410 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2411 								nvm_offset);
2412 		if (ret_val != 0)
2413 			goto out;
2414 	}
2415 
2416 out:
2417 	return ret_val;
2418 }
2419 
2420 /**
2421  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2422  *  @hw: pointer to the HW structure
2423  *
2424  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2425  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2426  *  checksum and writes the value to the EEPROM.
2427  **/
2428 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2429 {
2430 	s32 ret_val;
2431 	u16 j, nvm_data;
2432 	u16 nvm_offset;
2433 
2434 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435 	if (ret_val) {
2436 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2437 		goto out;
2438 	}
2439 
2440 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2441 		/* set compatibility bit to validate checksums appropriately */
2442 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2443 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2444 					&nvm_data);
2445 		if (ret_val) {
2446 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2447 			goto out;
2448 		}
2449 	}
2450 
2451 	for (j = 0; j < 4; j++) {
2452 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2453 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2454 		if (ret_val)
2455 			goto out;
2456 	}
2457 
2458 out:
2459 	return ret_val;
2460 }
2461 
2462 /**
2463  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2464  *  @hw: pointer to the HW structure
2465  *
2466  *  Calculates the EEPROM section checksum by reading/adding each word of
2467  *  the EEPROM and then verifies that the sum of the EEPROM is
2468  *  equal to 0xBABA.
2469  **/
2470 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2471 {
2472 	s32 ret_val = 0;
2473 	u16 j;
2474 	u16 nvm_offset;
2475 
2476 	for (j = 0; j < 4; j++) {
2477 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2478 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2479 								nvm_offset);
2480 		if (ret_val != 0)
2481 			goto out;
2482 	}
2483 
2484 out:
2485 	return ret_val;
2486 }
2487 
2488 /**
2489  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2490  *  @hw: pointer to the HW structure
2491  *
2492  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2493  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2494  *  checksum and writes the value to the EEPROM.
2495  **/
2496 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2497 {
2498 	s32 ret_val = 0;
2499 	u16 j;
2500 	u16 nvm_offset;
2501 
2502 	for (j = 0; j < 4; j++) {
2503 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2504 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2505 		if (ret_val != 0)
2506 			goto out;
2507 	}
2508 
2509 out:
2510 	return ret_val;
2511 }
2512 
2513 /**
2514  *  __igb_access_emi_reg - Read/write EMI register
2515  *  @hw: pointer to the HW structure
2516  *  @addr: EMI address to program
2517  *  @data: pointer to value to read/write from/to the EMI address
2518  *  @read: boolean flag to indicate read or write
2519  **/
2520 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2521 				  u16 *data, bool read)
2522 {
2523 	s32 ret_val = 0;
2524 
2525 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2526 	if (ret_val)
2527 		return ret_val;
2528 
2529 	if (read)
2530 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2531 	else
2532 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2533 
2534 	return ret_val;
2535 }
2536 
2537 /**
2538  *  igb_read_emi_reg - Read Extended Management Interface register
2539  *  @hw: pointer to the HW structure
2540  *  @addr: EMI address to program
2541  *  @data: value to be read from the EMI address
2542  **/
2543 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2544 {
2545 	return __igb_access_emi_reg(hw, addr, data, true);
2546 }
2547 
2548 /**
2549  *  igb_set_eee_i350 - Enable/disable EEE support
2550  *  @hw: pointer to the HW structure
2551  *  @adv1G: boolean flag enabling 1G EEE advertisement
2552  *  @adv100m: boolean flag enabling 100M EEE advertisement
2553  *
2554  *  Enable/disable EEE based on setting in dev_spec structure.
2555  *
2556  **/
2557 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2558 {
2559 	u32 ipcnfg, eeer;
2560 
2561 	if ((hw->mac.type < e1000_i350) ||
2562 	    (hw->phy.media_type != e1000_media_type_copper))
2563 		goto out;
2564 	ipcnfg = rd32(E1000_IPCNFG);
2565 	eeer = rd32(E1000_EEER);
2566 
2567 	/* enable or disable per user setting */
2568 	if (!(hw->dev_spec._82575.eee_disable)) {
2569 		u32 eee_su = rd32(E1000_EEE_SU);
2570 
2571 		if (adv100M)
2572 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2573 		else
2574 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2575 
2576 		if (adv1G)
2577 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2578 		else
2579 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2580 
2581 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2582 			E1000_EEER_LPI_FC);
2583 
2584 		/* This bit should not be set in normal operation. */
2585 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2586 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2587 
2588 	} else {
2589 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2590 			E1000_IPCNFG_EEE_100M_AN);
2591 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2592 			E1000_EEER_RX_LPI_EN |
2593 			E1000_EEER_LPI_FC);
2594 	}
2595 	wr32(E1000_IPCNFG, ipcnfg);
2596 	wr32(E1000_EEER, eeer);
2597 	rd32(E1000_IPCNFG);
2598 	rd32(E1000_EEER);
2599 out:
2600 
2601 	return 0;
2602 }
2603 
2604 /**
2605  *  igb_set_eee_i354 - Enable/disable EEE support
2606  *  @hw: pointer to the HW structure
2607  *  @adv1G: boolean flag enabling 1G EEE advertisement
2608  *  @adv100m: boolean flag enabling 100M EEE advertisement
2609  *
2610  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2611  *
2612  **/
2613 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2614 {
2615 	struct e1000_phy_info *phy = &hw->phy;
2616 	s32 ret_val = 0;
2617 	u16 phy_data;
2618 
2619 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2620 	    (phy->id != M88E1543_E_PHY_ID))
2621 		goto out;
2622 
2623 	if (!hw->dev_spec._82575.eee_disable) {
2624 		/* Switch to PHY page 18. */
2625 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2626 		if (ret_val)
2627 			goto out;
2628 
2629 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2630 					    &phy_data);
2631 		if (ret_val)
2632 			goto out;
2633 
2634 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2635 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2636 					     phy_data);
2637 		if (ret_val)
2638 			goto out;
2639 
2640 		/* Return the PHY to page 0. */
2641 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2642 		if (ret_val)
2643 			goto out;
2644 
2645 		/* Turn on EEE advertisement. */
2646 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2647 					     E1000_EEE_ADV_DEV_I354,
2648 					     &phy_data);
2649 		if (ret_val)
2650 			goto out;
2651 
2652 		if (adv100M)
2653 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2654 		else
2655 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2656 
2657 		if (adv1G)
2658 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2659 		else
2660 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2661 
2662 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2663 						E1000_EEE_ADV_DEV_I354,
2664 						phy_data);
2665 	} else {
2666 		/* Turn off EEE advertisement. */
2667 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2668 					     E1000_EEE_ADV_DEV_I354,
2669 					     &phy_data);
2670 		if (ret_val)
2671 			goto out;
2672 
2673 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2674 			      E1000_EEE_ADV_1000_SUPPORTED);
2675 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2676 					      E1000_EEE_ADV_DEV_I354,
2677 					      phy_data);
2678 	}
2679 
2680 out:
2681 	return ret_val;
2682 }
2683 
2684 /**
2685  *  igb_get_eee_status_i354 - Get EEE status
2686  *  @hw: pointer to the HW structure
2687  *  @status: EEE status
2688  *
2689  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2690  *  been received.
2691  **/
2692 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2693 {
2694 	struct e1000_phy_info *phy = &hw->phy;
2695 	s32 ret_val = 0;
2696 	u16 phy_data;
2697 
2698 	/* Check if EEE is supported on this device. */
2699 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2700 	    (phy->id != M88E1543_E_PHY_ID))
2701 		goto out;
2702 
2703 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2704 				     E1000_PCS_STATUS_DEV_I354,
2705 				     &phy_data);
2706 	if (ret_val)
2707 		goto out;
2708 
2709 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2710 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2711 
2712 out:
2713 	return ret_val;
2714 }
2715 
2716 static const u8 e1000_emc_temp_data[4] = {
2717 	E1000_EMC_INTERNAL_DATA,
2718 	E1000_EMC_DIODE1_DATA,
2719 	E1000_EMC_DIODE2_DATA,
2720 	E1000_EMC_DIODE3_DATA
2721 };
2722 static const u8 e1000_emc_therm_limit[4] = {
2723 	E1000_EMC_INTERNAL_THERM_LIMIT,
2724 	E1000_EMC_DIODE1_THERM_LIMIT,
2725 	E1000_EMC_DIODE2_THERM_LIMIT,
2726 	E1000_EMC_DIODE3_THERM_LIMIT
2727 };
2728 
2729 #ifdef CONFIG_IGB_HWMON
2730 /**
2731  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2732  *  @hw: pointer to hardware structure
2733  *
2734  *  Updates the temperatures in mac.thermal_sensor_data
2735  **/
2736 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2737 {
2738 	u16 ets_offset;
2739 	u16 ets_cfg;
2740 	u16 ets_sensor;
2741 	u8  num_sensors;
2742 	u8  sensor_index;
2743 	u8  sensor_location;
2744 	u8  i;
2745 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2746 
2747 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2748 		return E1000_NOT_IMPLEMENTED;
2749 
2750 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2751 
2752 	/* Return the internal sensor only if ETS is unsupported */
2753 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2754 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2755 		return 0;
2756 
2757 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2758 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2759 	    != NVM_ETS_TYPE_EMC)
2760 		return E1000_NOT_IMPLEMENTED;
2761 
2762 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2763 	if (num_sensors > E1000_MAX_SENSORS)
2764 		num_sensors = E1000_MAX_SENSORS;
2765 
2766 	for (i = 1; i < num_sensors; i++) {
2767 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2768 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2769 				NVM_ETS_DATA_INDEX_SHIFT);
2770 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2771 				   NVM_ETS_DATA_LOC_SHIFT);
2772 
2773 		if (sensor_location != 0)
2774 			hw->phy.ops.read_i2c_byte(hw,
2775 					e1000_emc_temp_data[sensor_index],
2776 					E1000_I2C_THERMAL_SENSOR_ADDR,
2777 					&data->sensor[i].temp);
2778 	}
2779 	return 0;
2780 }
2781 
2782 /**
2783  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2784  *  @hw: pointer to hardware structure
2785  *
2786  *  Sets the thermal sensor thresholds according to the NVM map
2787  *  and save off the threshold and location values into mac.thermal_sensor_data
2788  **/
2789 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2790 {
2791 	u16 ets_offset;
2792 	u16 ets_cfg;
2793 	u16 ets_sensor;
2794 	u8  low_thresh_delta;
2795 	u8  num_sensors;
2796 	u8  sensor_index;
2797 	u8  sensor_location;
2798 	u8  therm_limit;
2799 	u8  i;
2800 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2801 
2802 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2803 		return E1000_NOT_IMPLEMENTED;
2804 
2805 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2806 
2807 	data->sensor[0].location = 0x1;
2808 	data->sensor[0].caution_thresh =
2809 		(rd32(E1000_THHIGHTC) & 0xFF);
2810 	data->sensor[0].max_op_thresh =
2811 		(rd32(E1000_THLOWTC) & 0xFF);
2812 
2813 	/* Return the internal sensor only if ETS is unsupported */
2814 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2815 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2816 		return 0;
2817 
2818 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2819 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2820 	    != NVM_ETS_TYPE_EMC)
2821 		return E1000_NOT_IMPLEMENTED;
2822 
2823 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2824 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2825 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2826 
2827 	for (i = 1; i <= num_sensors; i++) {
2828 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2829 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2830 				NVM_ETS_DATA_INDEX_SHIFT);
2831 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2832 				   NVM_ETS_DATA_LOC_SHIFT);
2833 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2834 
2835 		hw->phy.ops.write_i2c_byte(hw,
2836 			e1000_emc_therm_limit[sensor_index],
2837 			E1000_I2C_THERMAL_SENSOR_ADDR,
2838 			therm_limit);
2839 
2840 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2841 			data->sensor[i].location = sensor_location;
2842 			data->sensor[i].caution_thresh = therm_limit;
2843 			data->sensor[i].max_op_thresh = therm_limit -
2844 							low_thresh_delta;
2845 		}
2846 	}
2847 	return 0;
2848 }
2849 
2850 #endif
2851 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2852 	.init_hw              = igb_init_hw_82575,
2853 	.check_for_link       = igb_check_for_link_82575,
2854 	.rar_set              = igb_rar_set,
2855 	.read_mac_addr        = igb_read_mac_addr_82575,
2856 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2857 #ifdef CONFIG_IGB_HWMON
2858 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2859 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2860 #endif
2861 };
2862 
2863 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2864 	.acquire              = igb_acquire_phy_82575,
2865 	.get_cfg_done         = igb_get_cfg_done_82575,
2866 	.release              = igb_release_phy_82575,
2867 	.write_i2c_byte       = igb_write_i2c_byte,
2868 	.read_i2c_byte        = igb_read_i2c_byte,
2869 };
2870 
2871 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2872 	.acquire              = igb_acquire_nvm_82575,
2873 	.read                 = igb_read_nvm_eerd,
2874 	.release              = igb_release_nvm_82575,
2875 	.write                = igb_write_nvm_spi,
2876 };
2877 
2878 const struct e1000_info e1000_82575_info = {
2879 	.get_invariants = igb_get_invariants_82575,
2880 	.mac_ops = &e1000_mac_ops_82575,
2881 	.phy_ops = &e1000_phy_ops_82575,
2882 	.nvm_ops = &e1000_nvm_ops_82575,
2883 };
2884 
2885