xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 	u32 reg = 0;
86 	bool ext_mdio = false;
87 
88 	switch (hw->mac.type) {
89 	case e1000_82575:
90 	case e1000_82576:
91 		reg = rd32(E1000_MDIC);
92 		ext_mdio = !!(reg & E1000_MDIC_DEST);
93 		break;
94 	case e1000_82580:
95 	case e1000_i350:
96 	case e1000_i354:
97 	case e1000_i210:
98 	case e1000_i211:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 	struct e1000_phy_info *phy = &hw->phy;
117 	s32 ret_val;
118 	u16 data;
119 	u8 port = 0;
120 
121 	/* Check the copper medium. */
122 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 	if (ret_val)
124 		return ret_val;
125 
126 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 	if (ret_val)
128 		return ret_val;
129 
130 	if (data & E1000_M88E1112_STATUS_LINK)
131 		port = E1000_MEDIA_PORT_COPPER;
132 
133 	/* Check the other medium. */
134 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 	if (ret_val)
136 		return ret_val;
137 
138 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 	if (ret_val)
140 		return ret_val;
141 
142 
143 	if (data & E1000_M88E1112_STATUS_LINK)
144 		port = E1000_MEDIA_PORT_OTHER;
145 
146 	/* Determine if a swap needs to happen. */
147 	if (port && (hw->dev_spec._82575.media_port != port)) {
148 		hw->dev_spec._82575.media_port = port;
149 		hw->dev_spec._82575.media_changed = true;
150 	}
151 
152 	if (port == E1000_MEDIA_PORT_COPPER) {
153 		/* reset page to 0 */
154 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
155 		if (ret_val)
156 			return ret_val;
157 		igb_check_for_link_82575(hw);
158 	} else {
159 		igb_check_for_link_82575(hw);
160 		/* reset page to 0 */
161 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
162 		if (ret_val)
163 			return ret_val;
164 	}
165 
166 	return 0;
167 }
168 
169 /**
170  *  igb_init_phy_params_82575 - Init PHY func ptrs.
171  *  @hw: pointer to the HW structure
172  **/
173 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
174 {
175 	struct e1000_phy_info *phy = &hw->phy;
176 	s32 ret_val = 0;
177 	u32 ctrl_ext;
178 
179 	if (hw->phy.media_type != e1000_media_type_copper) {
180 		phy->type = e1000_phy_none;
181 		goto out;
182 	}
183 
184 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
185 	phy->reset_delay_us	= 100;
186 
187 	ctrl_ext = rd32(E1000_CTRL_EXT);
188 
189 	if (igb_sgmii_active_82575(hw)) {
190 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191 		ctrl_ext |= E1000_CTRL_I2C_ENA;
192 	} else {
193 		phy->ops.reset = igb_phy_hw_reset;
194 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
195 	}
196 
197 	wr32(E1000_CTRL_EXT, ctrl_ext);
198 	igb_reset_mdicnfg_82580(hw);
199 
200 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
201 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
202 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
203 	} else {
204 		switch (hw->mac.type) {
205 		case e1000_82580:
206 		case e1000_i350:
207 		case e1000_i354:
208 			phy->ops.read_reg = igb_read_phy_reg_82580;
209 			phy->ops.write_reg = igb_write_phy_reg_82580;
210 			break;
211 		case e1000_i210:
212 		case e1000_i211:
213 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
214 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
215 			break;
216 		default:
217 			phy->ops.read_reg = igb_read_phy_reg_igp;
218 			phy->ops.write_reg = igb_write_phy_reg_igp;
219 		}
220 	}
221 
222 	/* set lan id */
223 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
224 			E1000_STATUS_FUNC_SHIFT;
225 
226 	/* Set phy->phy_addr and phy->id. */
227 	ret_val = igb_get_phy_id_82575(hw);
228 	if (ret_val)
229 		return ret_val;
230 
231 	/* Verify phy id and set remaining function pointers */
232 	switch (phy->id) {
233 	case M88E1543_E_PHY_ID:
234 	case I347AT4_E_PHY_ID:
235 	case M88E1112_E_PHY_ID:
236 	case M88E1111_I_PHY_ID:
237 		phy->type		= e1000_phy_m88;
238 		phy->ops.check_polarity	= igb_check_polarity_m88;
239 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
240 		if (phy->id != M88E1111_I_PHY_ID)
241 			phy->ops.get_cable_length =
242 					 igb_get_cable_length_m88_gen2;
243 		else
244 			phy->ops.get_cable_length = igb_get_cable_length_m88;
245 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
246 		/* Check if this PHY is confgured for media swap. */
247 		if (phy->id == M88E1112_E_PHY_ID) {
248 			u16 data;
249 
250 			ret_val = phy->ops.write_reg(hw,
251 						     E1000_M88E1112_PAGE_ADDR,
252 						     2);
253 			if (ret_val)
254 				goto out;
255 
256 			ret_val = phy->ops.read_reg(hw,
257 						    E1000_M88E1112_MAC_CTRL_1,
258 						    &data);
259 			if (ret_val)
260 				goto out;
261 
262 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
263 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
264 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
265 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
266 				hw->mac.ops.check_for_link =
267 						igb_check_for_link_media_swap;
268 		}
269 		break;
270 	case IGP03E1000_E_PHY_ID:
271 		phy->type = e1000_phy_igp_3;
272 		phy->ops.get_phy_info = igb_get_phy_info_igp;
273 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
274 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
275 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
276 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
277 		break;
278 	case I82580_I_PHY_ID:
279 	case I350_I_PHY_ID:
280 		phy->type = e1000_phy_82580;
281 		phy->ops.force_speed_duplex =
282 					 igb_phy_force_speed_duplex_82580;
283 		phy->ops.get_cable_length = igb_get_cable_length_82580;
284 		phy->ops.get_phy_info = igb_get_phy_info_82580;
285 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287 		break;
288 	case I210_I_PHY_ID:
289 		phy->type		= e1000_phy_i210;
290 		phy->ops.check_polarity	= igb_check_polarity_m88;
291 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
292 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
293 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
294 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
295 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
296 		break;
297 	default:
298 		ret_val = -E1000_ERR_PHY;
299 		goto out;
300 	}
301 
302 out:
303 	return ret_val;
304 }
305 
306 /**
307  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
308  *  @hw: pointer to the HW structure
309  **/
310 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
311 {
312 	struct e1000_nvm_info *nvm = &hw->nvm;
313 	u32 eecd = rd32(E1000_EECD);
314 	u16 size;
315 
316 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
317 		     E1000_EECD_SIZE_EX_SHIFT);
318 
319 	/* Added to a constant, "size" becomes the left-shift value
320 	 * for setting word_size.
321 	 */
322 	size += NVM_WORD_SIZE_BASE_SHIFT;
323 
324 	/* Just in case size is out of range, cap it to the largest
325 	 * EEPROM size supported
326 	 */
327 	if (size > 15)
328 		size = 15;
329 
330 	nvm->word_size = 1 << size;
331 	nvm->opcode_bits = 8;
332 	nvm->delay_usec = 1;
333 
334 	switch (nvm->override) {
335 	case e1000_nvm_override_spi_large:
336 		nvm->page_size = 32;
337 		nvm->address_bits = 16;
338 		break;
339 	case e1000_nvm_override_spi_small:
340 		nvm->page_size = 8;
341 		nvm->address_bits = 8;
342 		break;
343 	default:
344 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
345 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
346 				    16 : 8;
347 		break;
348 	}
349 	if (nvm->word_size == (1 << 15))
350 		nvm->page_size = 128;
351 
352 	nvm->type = e1000_nvm_eeprom_spi;
353 
354 	/* NVM Function Pointers */
355 	nvm->ops.acquire = igb_acquire_nvm_82575;
356 	nvm->ops.release = igb_release_nvm_82575;
357 	nvm->ops.write = igb_write_nvm_spi;
358 	nvm->ops.validate = igb_validate_nvm_checksum;
359 	nvm->ops.update = igb_update_nvm_checksum;
360 	if (nvm->word_size < (1 << 15))
361 		nvm->ops.read = igb_read_nvm_eerd;
362 	else
363 		nvm->ops.read = igb_read_nvm_spi;
364 
365 	/* override generic family function pointers for specific descendants */
366 	switch (hw->mac.type) {
367 	case e1000_82580:
368 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
369 		nvm->ops.update = igb_update_nvm_checksum_82580;
370 		break;
371 	case e1000_i354:
372 	case e1000_i350:
373 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
374 		nvm->ops.update = igb_update_nvm_checksum_i350;
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	return 0;
381 }
382 
383 /**
384  *  igb_init_mac_params_82575 - Init MAC func ptrs.
385  *  @hw: pointer to the HW structure
386  **/
387 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
388 {
389 	struct e1000_mac_info *mac = &hw->mac;
390 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
391 
392 	/* Set mta register count */
393 	mac->mta_reg_count = 128;
394 	/* Set rar entry count */
395 	switch (mac->type) {
396 	case e1000_82576:
397 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
398 		break;
399 	case e1000_82580:
400 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
401 		break;
402 	case e1000_i350:
403 	case e1000_i354:
404 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
405 		break;
406 	default:
407 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
408 		break;
409 	}
410 	/* reset */
411 	if (mac->type >= e1000_82580)
412 		mac->ops.reset_hw = igb_reset_hw_82580;
413 	else
414 		mac->ops.reset_hw = igb_reset_hw_82575;
415 
416 	if (mac->type >= e1000_i210) {
417 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
418 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
419 
420 	} else {
421 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
422 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
423 	}
424 
425 	/* Set if part includes ASF firmware */
426 	mac->asf_firmware_present = true;
427 	/* Set if manageability features are enabled. */
428 	mac->arc_subsystem_valid =
429 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
430 			? true : false;
431 	/* enable EEE on i350 parts and later parts */
432 	if (mac->type >= e1000_i350)
433 		dev_spec->eee_disable = false;
434 	else
435 		dev_spec->eee_disable = true;
436 	/* Allow a single clear of the SW semaphore on I210 and newer */
437 	if (mac->type >= e1000_i210)
438 		dev_spec->clear_semaphore_once = true;
439 	/* physical interface link setup */
440 	mac->ops.setup_physical_interface =
441 		(hw->phy.media_type == e1000_media_type_copper)
442 			? igb_setup_copper_link_82575
443 			: igb_setup_serdes_link_82575;
444 
445 	if (mac->type == e1000_82580) {
446 		switch (hw->device_id) {
447 		/* feature not supported on these id's */
448 		case E1000_DEV_ID_DH89XXCC_SGMII:
449 		case E1000_DEV_ID_DH89XXCC_SERDES:
450 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
451 		case E1000_DEV_ID_DH89XXCC_SFP:
452 			break;
453 		default:
454 			hw->dev_spec._82575.mas_capable = true;
455 			break;
456 		}
457 	}
458 	return 0;
459 }
460 
461 /**
462  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
463  *  @hw: pointer to the HW structure
464  *
465  *  The media type is chosen based on SFP module.
466  *  compatibility flags retrieved from SFP ID EEPROM.
467  **/
468 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
469 {
470 	s32 ret_val = E1000_ERR_CONFIG;
471 	u32 ctrl_ext = 0;
472 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
473 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
474 	u8 tranceiver_type = 0;
475 	s32 timeout = 3;
476 
477 	/* Turn I2C interface ON and power on sfp cage */
478 	ctrl_ext = rd32(E1000_CTRL_EXT);
479 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
480 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
481 
482 	wrfl();
483 
484 	/* Read SFP module data */
485 	while (timeout) {
486 		ret_val = igb_read_sfp_data_byte(hw,
487 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
488 			&tranceiver_type);
489 		if (ret_val == 0)
490 			break;
491 		msleep(100);
492 		timeout--;
493 	}
494 	if (ret_val != 0)
495 		goto out;
496 
497 	ret_val = igb_read_sfp_data_byte(hw,
498 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
499 			(u8 *)eth_flags);
500 	if (ret_val != 0)
501 		goto out;
502 
503 	/* Check if there is some SFP module plugged and powered */
504 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
505 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
506 		dev_spec->module_plugged = true;
507 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
508 			hw->phy.media_type = e1000_media_type_internal_serdes;
509 		} else if (eth_flags->e100_base_fx) {
510 			dev_spec->sgmii_active = true;
511 			hw->phy.media_type = e1000_media_type_internal_serdes;
512 		} else if (eth_flags->e1000_base_t) {
513 			dev_spec->sgmii_active = true;
514 			hw->phy.media_type = e1000_media_type_copper;
515 		} else {
516 			hw->phy.media_type = e1000_media_type_unknown;
517 			hw_dbg("PHY module has not been recognized\n");
518 			goto out;
519 		}
520 	} else {
521 		hw->phy.media_type = e1000_media_type_unknown;
522 	}
523 	ret_val = 0;
524 out:
525 	/* Restore I2C interface setting */
526 	wr32(E1000_CTRL_EXT, ctrl_ext);
527 	return ret_val;
528 }
529 
530 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
531 {
532 	struct e1000_mac_info *mac = &hw->mac;
533 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
534 	s32 ret_val;
535 	u32 ctrl_ext = 0;
536 	u32 link_mode = 0;
537 
538 	switch (hw->device_id) {
539 	case E1000_DEV_ID_82575EB_COPPER:
540 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
541 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
542 		mac->type = e1000_82575;
543 		break;
544 	case E1000_DEV_ID_82576:
545 	case E1000_DEV_ID_82576_NS:
546 	case E1000_DEV_ID_82576_NS_SERDES:
547 	case E1000_DEV_ID_82576_FIBER:
548 	case E1000_DEV_ID_82576_SERDES:
549 	case E1000_DEV_ID_82576_QUAD_COPPER:
550 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
551 	case E1000_DEV_ID_82576_SERDES_QUAD:
552 		mac->type = e1000_82576;
553 		break;
554 	case E1000_DEV_ID_82580_COPPER:
555 	case E1000_DEV_ID_82580_FIBER:
556 	case E1000_DEV_ID_82580_QUAD_FIBER:
557 	case E1000_DEV_ID_82580_SERDES:
558 	case E1000_DEV_ID_82580_SGMII:
559 	case E1000_DEV_ID_82580_COPPER_DUAL:
560 	case E1000_DEV_ID_DH89XXCC_SGMII:
561 	case E1000_DEV_ID_DH89XXCC_SERDES:
562 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
563 	case E1000_DEV_ID_DH89XXCC_SFP:
564 		mac->type = e1000_82580;
565 		break;
566 	case E1000_DEV_ID_I350_COPPER:
567 	case E1000_DEV_ID_I350_FIBER:
568 	case E1000_DEV_ID_I350_SERDES:
569 	case E1000_DEV_ID_I350_SGMII:
570 		mac->type = e1000_i350;
571 		break;
572 	case E1000_DEV_ID_I210_COPPER:
573 	case E1000_DEV_ID_I210_FIBER:
574 	case E1000_DEV_ID_I210_SERDES:
575 	case E1000_DEV_ID_I210_SGMII:
576 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
577 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
578 		mac->type = e1000_i210;
579 		break;
580 	case E1000_DEV_ID_I211_COPPER:
581 		mac->type = e1000_i211;
582 		break;
583 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
584 	case E1000_DEV_ID_I354_SGMII:
585 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
586 		mac->type = e1000_i354;
587 		break;
588 	default:
589 		return -E1000_ERR_MAC_INIT;
590 	}
591 
592 	/* Set media type */
593 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
594 	 * based on the EEPROM. We cannot rely upon device ID. There
595 	 * is no distinguishable difference between fiber and internal
596 	 * SerDes mode on the 82575. There can be an external PHY attached
597 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
598 	 */
599 	hw->phy.media_type = e1000_media_type_copper;
600 	dev_spec->sgmii_active = false;
601 	dev_spec->module_plugged = false;
602 
603 	ctrl_ext = rd32(E1000_CTRL_EXT);
604 
605 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
606 	switch (link_mode) {
607 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
608 		hw->phy.media_type = e1000_media_type_internal_serdes;
609 		break;
610 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
611 		/* Get phy control interface type set (MDIO vs. I2C)*/
612 		if (igb_sgmii_uses_mdio_82575(hw)) {
613 			hw->phy.media_type = e1000_media_type_copper;
614 			dev_spec->sgmii_active = true;
615 			break;
616 		}
617 		/* fall through for I2C based SGMII */
618 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
619 		/* read media type from SFP EEPROM */
620 		ret_val = igb_set_sfp_media_type_82575(hw);
621 		if ((ret_val != 0) ||
622 		    (hw->phy.media_type == e1000_media_type_unknown)) {
623 			/* If media type was not identified then return media
624 			 * type defined by the CTRL_EXT settings.
625 			 */
626 			hw->phy.media_type = e1000_media_type_internal_serdes;
627 
628 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
629 				hw->phy.media_type = e1000_media_type_copper;
630 				dev_spec->sgmii_active = true;
631 			}
632 
633 			break;
634 		}
635 
636 		/* do not change link mode for 100BaseFX */
637 		if (dev_spec->eth_flags.e100_base_fx)
638 			break;
639 
640 		/* change current link mode setting */
641 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
642 
643 		if (hw->phy.media_type == e1000_media_type_copper)
644 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
645 		else
646 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
647 
648 		wr32(E1000_CTRL_EXT, ctrl_ext);
649 
650 		break;
651 	default:
652 		break;
653 	}
654 
655 	/* mac initialization and operations */
656 	ret_val = igb_init_mac_params_82575(hw);
657 	if (ret_val)
658 		goto out;
659 
660 	/* NVM initialization */
661 	ret_val = igb_init_nvm_params_82575(hw);
662 	switch (hw->mac.type) {
663 	case e1000_i210:
664 	case e1000_i211:
665 		ret_val = igb_init_nvm_params_i210(hw);
666 		break;
667 	default:
668 		break;
669 	}
670 
671 	if (ret_val)
672 		goto out;
673 
674 	/* if part supports SR-IOV then initialize mailbox parameters */
675 	switch (mac->type) {
676 	case e1000_82576:
677 	case e1000_i350:
678 		igb_init_mbx_params_pf(hw);
679 		break;
680 	default:
681 		break;
682 	}
683 
684 	/* setup PHY parameters */
685 	ret_val = igb_init_phy_params_82575(hw);
686 
687 out:
688 	return ret_val;
689 }
690 
691 /**
692  *  igb_acquire_phy_82575 - Acquire rights to access PHY
693  *  @hw: pointer to the HW structure
694  *
695  *  Acquire access rights to the correct PHY.  This is a
696  *  function pointer entry point called by the api module.
697  **/
698 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
699 {
700 	u16 mask = E1000_SWFW_PHY0_SM;
701 
702 	if (hw->bus.func == E1000_FUNC_1)
703 		mask = E1000_SWFW_PHY1_SM;
704 	else if (hw->bus.func == E1000_FUNC_2)
705 		mask = E1000_SWFW_PHY2_SM;
706 	else if (hw->bus.func == E1000_FUNC_3)
707 		mask = E1000_SWFW_PHY3_SM;
708 
709 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
710 }
711 
712 /**
713  *  igb_release_phy_82575 - Release rights to access PHY
714  *  @hw: pointer to the HW structure
715  *
716  *  A wrapper to release access rights to the correct PHY.  This is a
717  *  function pointer entry point called by the api module.
718  **/
719 static void igb_release_phy_82575(struct e1000_hw *hw)
720 {
721 	u16 mask = E1000_SWFW_PHY0_SM;
722 
723 	if (hw->bus.func == E1000_FUNC_1)
724 		mask = E1000_SWFW_PHY1_SM;
725 	else if (hw->bus.func == E1000_FUNC_2)
726 		mask = E1000_SWFW_PHY2_SM;
727 	else if (hw->bus.func == E1000_FUNC_3)
728 		mask = E1000_SWFW_PHY3_SM;
729 
730 	hw->mac.ops.release_swfw_sync(hw, mask);
731 }
732 
733 /**
734  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
735  *  @hw: pointer to the HW structure
736  *  @offset: register offset to be read
737  *  @data: pointer to the read data
738  *
739  *  Reads the PHY register at offset using the serial gigabit media independent
740  *  interface and stores the retrieved information in data.
741  **/
742 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
743 					  u16 *data)
744 {
745 	s32 ret_val = -E1000_ERR_PARAM;
746 
747 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
748 		hw_dbg("PHY Address %u is out of range\n", offset);
749 		goto out;
750 	}
751 
752 	ret_val = hw->phy.ops.acquire(hw);
753 	if (ret_val)
754 		goto out;
755 
756 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
757 
758 	hw->phy.ops.release(hw);
759 
760 out:
761 	return ret_val;
762 }
763 
764 /**
765  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
766  *  @hw: pointer to the HW structure
767  *  @offset: register offset to write to
768  *  @data: data to write at register offset
769  *
770  *  Writes the data to PHY register at the offset using the serial gigabit
771  *  media independent interface.
772  **/
773 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
774 					   u16 data)
775 {
776 	s32 ret_val = -E1000_ERR_PARAM;
777 
778 
779 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
780 		hw_dbg("PHY Address %d is out of range\n", offset);
781 		goto out;
782 	}
783 
784 	ret_val = hw->phy.ops.acquire(hw);
785 	if (ret_val)
786 		goto out;
787 
788 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
789 
790 	hw->phy.ops.release(hw);
791 
792 out:
793 	return ret_val;
794 }
795 
796 /**
797  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
798  *  @hw: pointer to the HW structure
799  *
800  *  Retrieves the PHY address and ID for both PHY's which do and do not use
801  *  sgmi interface.
802  **/
803 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
804 {
805 	struct e1000_phy_info *phy = &hw->phy;
806 	s32  ret_val = 0;
807 	u16 phy_id;
808 	u32 ctrl_ext;
809 	u32 mdic;
810 
811 	/* Extra read required for some PHY's on i354 */
812 	if (hw->mac.type == e1000_i354)
813 		igb_get_phy_id(hw);
814 
815 	/* For SGMII PHYs, we try the list of possible addresses until
816 	 * we find one that works.  For non-SGMII PHYs
817 	 * (e.g. integrated copper PHYs), an address of 1 should
818 	 * work.  The result of this function should mean phy->phy_addr
819 	 * and phy->id are set correctly.
820 	 */
821 	if (!(igb_sgmii_active_82575(hw))) {
822 		phy->addr = 1;
823 		ret_val = igb_get_phy_id(hw);
824 		goto out;
825 	}
826 
827 	if (igb_sgmii_uses_mdio_82575(hw)) {
828 		switch (hw->mac.type) {
829 		case e1000_82575:
830 		case e1000_82576:
831 			mdic = rd32(E1000_MDIC);
832 			mdic &= E1000_MDIC_PHY_MASK;
833 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
834 			break;
835 		case e1000_82580:
836 		case e1000_i350:
837 		case e1000_i354:
838 		case e1000_i210:
839 		case e1000_i211:
840 			mdic = rd32(E1000_MDICNFG);
841 			mdic &= E1000_MDICNFG_PHY_MASK;
842 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
843 			break;
844 		default:
845 			ret_val = -E1000_ERR_PHY;
846 			goto out;
847 		}
848 		ret_val = igb_get_phy_id(hw);
849 		goto out;
850 	}
851 
852 	/* Power on sgmii phy if it is disabled */
853 	ctrl_ext = rd32(E1000_CTRL_EXT);
854 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
855 	wrfl();
856 	msleep(300);
857 
858 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
859 	 * Therefore, we need to test 1-7
860 	 */
861 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
862 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
863 		if (ret_val == 0) {
864 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
865 			       phy_id, phy->addr);
866 			/* At the time of this writing, The M88 part is
867 			 * the only supported SGMII PHY product.
868 			 */
869 			if (phy_id == M88_VENDOR)
870 				break;
871 		} else {
872 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
873 		}
874 	}
875 
876 	/* A valid PHY type couldn't be found. */
877 	if (phy->addr == 8) {
878 		phy->addr = 0;
879 		ret_val = -E1000_ERR_PHY;
880 		goto out;
881 	} else {
882 		ret_val = igb_get_phy_id(hw);
883 	}
884 
885 	/* restore previous sfp cage power state */
886 	wr32(E1000_CTRL_EXT, ctrl_ext);
887 
888 out:
889 	return ret_val;
890 }
891 
892 /**
893  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
894  *  @hw: pointer to the HW structure
895  *
896  *  Resets the PHY using the serial gigabit media independent interface.
897  **/
898 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
899 {
900 	s32 ret_val;
901 
902 	/* This isn't a true "hard" reset, but is the only reset
903 	 * available to us at this time.
904 	 */
905 
906 	hw_dbg("Soft resetting SGMII attached PHY...\n");
907 
908 	/* SFP documentation requires the following to configure the SPF module
909 	 * to work on SGMII.  No further documentation is given.
910 	 */
911 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
912 	if (ret_val)
913 		goto out;
914 
915 	ret_val = igb_phy_sw_reset(hw);
916 
917 out:
918 	return ret_val;
919 }
920 
921 /**
922  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
923  *  @hw: pointer to the HW structure
924  *  @active: true to enable LPLU, false to disable
925  *
926  *  Sets the LPLU D0 state according to the active flag.  When
927  *  activating LPLU this function also disables smart speed
928  *  and vice versa.  LPLU will not be activated unless the
929  *  device autonegotiation advertisement meets standards of
930  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
931  *  This is a function pointer entry point only called by
932  *  PHY setup routines.
933  **/
934 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
935 {
936 	struct e1000_phy_info *phy = &hw->phy;
937 	s32 ret_val;
938 	u16 data;
939 
940 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
941 	if (ret_val)
942 		goto out;
943 
944 	if (active) {
945 		data |= IGP02E1000_PM_D0_LPLU;
946 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
947 						 data);
948 		if (ret_val)
949 			goto out;
950 
951 		/* When LPLU is enabled, we should disable SmartSpeed */
952 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
953 						&data);
954 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
955 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
956 						 data);
957 		if (ret_val)
958 			goto out;
959 	} else {
960 		data &= ~IGP02E1000_PM_D0_LPLU;
961 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
962 						 data);
963 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
964 		 * during Dx states where the power conservation is most
965 		 * important.  During driver activity we should enable
966 		 * SmartSpeed, so performance is maintained.
967 		 */
968 		if (phy->smart_speed == e1000_smart_speed_on) {
969 			ret_val = phy->ops.read_reg(hw,
970 					IGP01E1000_PHY_PORT_CONFIG, &data);
971 			if (ret_val)
972 				goto out;
973 
974 			data |= IGP01E1000_PSCFR_SMART_SPEED;
975 			ret_val = phy->ops.write_reg(hw,
976 					IGP01E1000_PHY_PORT_CONFIG, data);
977 			if (ret_val)
978 				goto out;
979 		} else if (phy->smart_speed == e1000_smart_speed_off) {
980 			ret_val = phy->ops.read_reg(hw,
981 					IGP01E1000_PHY_PORT_CONFIG, &data);
982 			if (ret_val)
983 				goto out;
984 
985 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
986 			ret_val = phy->ops.write_reg(hw,
987 					IGP01E1000_PHY_PORT_CONFIG, data);
988 			if (ret_val)
989 				goto out;
990 		}
991 	}
992 
993 out:
994 	return ret_val;
995 }
996 
997 /**
998  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
999  *  @hw: pointer to the HW structure
1000  *  @active: true to enable LPLU, false to disable
1001  *
1002  *  Sets the LPLU D0 state according to the active flag.  When
1003  *  activating LPLU this function also disables smart speed
1004  *  and vice versa.  LPLU will not be activated unless the
1005  *  device autonegotiation advertisement meets standards of
1006  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1007  *  This is a function pointer entry point only called by
1008  *  PHY setup routines.
1009  **/
1010 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1011 {
1012 	struct e1000_phy_info *phy = &hw->phy;
1013 	u16 data;
1014 
1015 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1016 
1017 	if (active) {
1018 		data |= E1000_82580_PM_D0_LPLU;
1019 
1020 		/* When LPLU is enabled, we should disable SmartSpeed */
1021 		data &= ~E1000_82580_PM_SPD;
1022 	} else {
1023 		data &= ~E1000_82580_PM_D0_LPLU;
1024 
1025 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1026 		 * during Dx states where the power conservation is most
1027 		 * important.  During driver activity we should enable
1028 		 * SmartSpeed, so performance is maintained.
1029 		 */
1030 		if (phy->smart_speed == e1000_smart_speed_on)
1031 			data |= E1000_82580_PM_SPD;
1032 		else if (phy->smart_speed == e1000_smart_speed_off)
1033 			data &= ~E1000_82580_PM_SPD; }
1034 
1035 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1036 	return 0;
1037 }
1038 
1039 /**
1040  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1041  *  @hw: pointer to the HW structure
1042  *  @active: boolean used to enable/disable lplu
1043  *
1044  *  Success returns 0, Failure returns 1
1045  *
1046  *  The low power link up (lplu) state is set to the power management level D3
1047  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1048  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1049  *  is used during Dx states where the power conservation is most important.
1050  *  During driver activity, SmartSpeed should be enabled so performance is
1051  *  maintained.
1052  **/
1053 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1054 {
1055 	struct e1000_phy_info *phy = &hw->phy;
1056 	u16 data;
1057 
1058 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1059 
1060 	if (!active) {
1061 		data &= ~E1000_82580_PM_D3_LPLU;
1062 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1063 		 * during Dx states where the power conservation is most
1064 		 * important.  During driver activity we should enable
1065 		 * SmartSpeed, so performance is maintained.
1066 		 */
1067 		if (phy->smart_speed == e1000_smart_speed_on)
1068 			data |= E1000_82580_PM_SPD;
1069 		else if (phy->smart_speed == e1000_smart_speed_off)
1070 			data &= ~E1000_82580_PM_SPD;
1071 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1072 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1073 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1074 		data |= E1000_82580_PM_D3_LPLU;
1075 		/* When LPLU is enabled, we should disable SmartSpeed */
1076 		data &= ~E1000_82580_PM_SPD;
1077 	}
1078 
1079 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1080 	return 0;
1081 }
1082 
1083 /**
1084  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1085  *  @hw: pointer to the HW structure
1086  *
1087  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1088  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1089  *  Return successful if access grant bit set, else clear the request for
1090  *  EEPROM access and return -E1000_ERR_NVM (-1).
1091  **/
1092 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1093 {
1094 	s32 ret_val;
1095 
1096 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1097 	if (ret_val)
1098 		goto out;
1099 
1100 	ret_val = igb_acquire_nvm(hw);
1101 
1102 	if (ret_val)
1103 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1104 
1105 out:
1106 	return ret_val;
1107 }
1108 
1109 /**
1110  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1111  *  @hw: pointer to the HW structure
1112  *
1113  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1114  *  then release the semaphores acquired.
1115  **/
1116 static void igb_release_nvm_82575(struct e1000_hw *hw)
1117 {
1118 	igb_release_nvm(hw);
1119 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1120 }
1121 
1122 /**
1123  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1124  *  @hw: pointer to the HW structure
1125  *  @mask: specifies which semaphore to acquire
1126  *
1127  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1128  *  will also specify which port we're acquiring the lock for.
1129  **/
1130 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1131 {
1132 	u32 swfw_sync;
1133 	u32 swmask = mask;
1134 	u32 fwmask = mask << 16;
1135 	s32 ret_val = 0;
1136 	s32 i = 0, timeout = 200;
1137 
1138 	while (i < timeout) {
1139 		if (igb_get_hw_semaphore(hw)) {
1140 			ret_val = -E1000_ERR_SWFW_SYNC;
1141 			goto out;
1142 		}
1143 
1144 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1145 		if (!(swfw_sync & (fwmask | swmask)))
1146 			break;
1147 
1148 		/* Firmware currently using resource (fwmask)
1149 		 * or other software thread using resource (swmask)
1150 		 */
1151 		igb_put_hw_semaphore(hw);
1152 		mdelay(5);
1153 		i++;
1154 	}
1155 
1156 	if (i == timeout) {
1157 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1158 		ret_val = -E1000_ERR_SWFW_SYNC;
1159 		goto out;
1160 	}
1161 
1162 	swfw_sync |= swmask;
1163 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1164 
1165 	igb_put_hw_semaphore(hw);
1166 
1167 out:
1168 	return ret_val;
1169 }
1170 
1171 /**
1172  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1173  *  @hw: pointer to the HW structure
1174  *  @mask: specifies which semaphore to acquire
1175  *
1176  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1177  *  will also specify which port we're releasing the lock for.
1178  **/
1179 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1180 {
1181 	u32 swfw_sync;
1182 
1183 	while (igb_get_hw_semaphore(hw) != 0)
1184 		; /* Empty */
1185 
1186 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1187 	swfw_sync &= ~mask;
1188 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189 
1190 	igb_put_hw_semaphore(hw);
1191 }
1192 
1193 /**
1194  *  igb_get_cfg_done_82575 - Read config done bit
1195  *  @hw: pointer to the HW structure
1196  *
1197  *  Read the management control register for the config done bit for
1198  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1199  *  to read the config done bit, so an error is *ONLY* logged and returns
1200  *  0.  If we were to return with error, EEPROM-less silicon
1201  *  would not be able to be reset or change link.
1202  **/
1203 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1204 {
1205 	s32 timeout = PHY_CFG_TIMEOUT;
1206 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1207 
1208 	if (hw->bus.func == 1)
1209 		mask = E1000_NVM_CFG_DONE_PORT_1;
1210 	else if (hw->bus.func == E1000_FUNC_2)
1211 		mask = E1000_NVM_CFG_DONE_PORT_2;
1212 	else if (hw->bus.func == E1000_FUNC_3)
1213 		mask = E1000_NVM_CFG_DONE_PORT_3;
1214 
1215 	while (timeout) {
1216 		if (rd32(E1000_EEMNGCTL) & mask)
1217 			break;
1218 		usleep_range(1000, 2000);
1219 		timeout--;
1220 	}
1221 	if (!timeout)
1222 		hw_dbg("MNG configuration cycle has not completed.\n");
1223 
1224 	/* If EEPROM is not marked present, init the PHY manually */
1225 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1226 	    (hw->phy.type == e1000_phy_igp_3))
1227 		igb_phy_init_script_igp3(hw);
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1234  *  @hw: pointer to the HW structure
1235  *  @speed: stores the current speed
1236  *  @duplex: stores the current duplex
1237  *
1238  *  This is a wrapper function, if using the serial gigabit media independent
1239  *  interface, use PCS to retrieve the link speed and duplex information.
1240  *  Otherwise, use the generic function to get the link speed and duplex info.
1241  **/
1242 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1243 					u16 *duplex)
1244 {
1245 	s32 ret_val;
1246 
1247 	if (hw->phy.media_type != e1000_media_type_copper)
1248 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1249 							       duplex);
1250 	else
1251 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1252 								    duplex);
1253 
1254 	return ret_val;
1255 }
1256 
1257 /**
1258  *  igb_check_for_link_82575 - Check for link
1259  *  @hw: pointer to the HW structure
1260  *
1261  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1262  *  use the generic interface for determining link.
1263  **/
1264 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1265 {
1266 	s32 ret_val;
1267 	u16 speed, duplex;
1268 
1269 	if (hw->phy.media_type != e1000_media_type_copper) {
1270 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1271 							     &duplex);
1272 		/* Use this flag to determine if link needs to be checked or
1273 		 * not.  If  we have link clear the flag so that we do not
1274 		 * continue to check for link.
1275 		 */
1276 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1277 
1278 		/* Configure Flow Control now that Auto-Neg has completed.
1279 		 * First, we need to restore the desired flow control
1280 		 * settings because we may have had to re-autoneg with a
1281 		 * different link partner.
1282 		 */
1283 		ret_val = igb_config_fc_after_link_up(hw);
1284 		if (ret_val)
1285 			hw_dbg("Error configuring flow control\n");
1286 	} else {
1287 		ret_val = igb_check_for_copper_link(hw);
1288 	}
1289 
1290 	return ret_val;
1291 }
1292 
1293 /**
1294  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1295  *  @hw: pointer to the HW structure
1296  **/
1297 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1298 {
1299 	u32 reg;
1300 
1301 
1302 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1303 	    !igb_sgmii_active_82575(hw))
1304 		return;
1305 
1306 	/* Enable PCS to turn on link */
1307 	reg = rd32(E1000_PCS_CFG0);
1308 	reg |= E1000_PCS_CFG_PCS_EN;
1309 	wr32(E1000_PCS_CFG0, reg);
1310 
1311 	/* Power up the laser */
1312 	reg = rd32(E1000_CTRL_EXT);
1313 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1314 	wr32(E1000_CTRL_EXT, reg);
1315 
1316 	/* flush the write to verify completion */
1317 	wrfl();
1318 	usleep_range(1000, 2000);
1319 }
1320 
1321 /**
1322  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1323  *  @hw: pointer to the HW structure
1324  *  @speed: stores the current speed
1325  *  @duplex: stores the current duplex
1326  *
1327  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1328  *  duplex, then store the values in the pointers provided.
1329  **/
1330 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1331 						u16 *duplex)
1332 {
1333 	struct e1000_mac_info *mac = &hw->mac;
1334 	u32 pcs, status;
1335 
1336 	/* Set up defaults for the return values of this function */
1337 	mac->serdes_has_link = false;
1338 	*speed = 0;
1339 	*duplex = 0;
1340 
1341 	/* Read the PCS Status register for link state. For non-copper mode,
1342 	 * the status register is not accurate. The PCS status register is
1343 	 * used instead.
1344 	 */
1345 	pcs = rd32(E1000_PCS_LSTAT);
1346 
1347 	/* The link up bit determines when link is up on autoneg. The sync ok
1348 	 * gets set once both sides sync up and agree upon link. Stable link
1349 	 * can be determined by checking for both link up and link sync ok
1350 	 */
1351 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1352 		mac->serdes_has_link = true;
1353 
1354 		/* Detect and store PCS speed */
1355 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1356 			*speed = SPEED_1000;
1357 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1358 			*speed = SPEED_100;
1359 		else
1360 			*speed = SPEED_10;
1361 
1362 		/* Detect and store PCS duplex */
1363 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1364 			*duplex = FULL_DUPLEX;
1365 		else
1366 			*duplex = HALF_DUPLEX;
1367 
1368 	/* Check if it is an I354 2.5Gb backplane connection. */
1369 		if (mac->type == e1000_i354) {
1370 			status = rd32(E1000_STATUS);
1371 			if ((status & E1000_STATUS_2P5_SKU) &&
1372 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1373 				*speed = SPEED_2500;
1374 				*duplex = FULL_DUPLEX;
1375 				hw_dbg("2500 Mbs, ");
1376 				hw_dbg("Full Duplex\n");
1377 			}
1378 		}
1379 
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /**
1386  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1387  *  @hw: pointer to the HW structure
1388  *
1389  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1390  *  when management pass thru is not enabled.
1391  **/
1392 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1393 {
1394 	u32 reg;
1395 
1396 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1397 	    igb_sgmii_active_82575(hw))
1398 		return;
1399 
1400 	if (!igb_enable_mng_pass_thru(hw)) {
1401 		/* Disable PCS to turn off link */
1402 		reg = rd32(E1000_PCS_CFG0);
1403 		reg &= ~E1000_PCS_CFG_PCS_EN;
1404 		wr32(E1000_PCS_CFG0, reg);
1405 
1406 		/* shutdown the laser */
1407 		reg = rd32(E1000_CTRL_EXT);
1408 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1409 		wr32(E1000_CTRL_EXT, reg);
1410 
1411 		/* flush the write to verify completion */
1412 		wrfl();
1413 		usleep_range(1000, 2000);
1414 	}
1415 }
1416 
1417 /**
1418  *  igb_reset_hw_82575 - Reset hardware
1419  *  @hw: pointer to the HW structure
1420  *
1421  *  This resets the hardware into a known state.  This is a
1422  *  function pointer entry point called by the api module.
1423  **/
1424 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1425 {
1426 	u32 ctrl;
1427 	s32 ret_val;
1428 
1429 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1430 	 * on the last TLP read/write transaction when MAC is reset.
1431 	 */
1432 	ret_val = igb_disable_pcie_master(hw);
1433 	if (ret_val)
1434 		hw_dbg("PCI-E Master disable polling has failed.\n");
1435 
1436 	/* set the completion timeout for interface */
1437 	ret_val = igb_set_pcie_completion_timeout(hw);
1438 	if (ret_val)
1439 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1440 
1441 	hw_dbg("Masking off all interrupts\n");
1442 	wr32(E1000_IMC, 0xffffffff);
1443 
1444 	wr32(E1000_RCTL, 0);
1445 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1446 	wrfl();
1447 
1448 	usleep_range(10000, 20000);
1449 
1450 	ctrl = rd32(E1000_CTRL);
1451 
1452 	hw_dbg("Issuing a global reset to MAC\n");
1453 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1454 
1455 	ret_val = igb_get_auto_rd_done(hw);
1456 	if (ret_val) {
1457 		/* When auto config read does not complete, do not
1458 		 * return with an error. This can happen in situations
1459 		 * where there is no eeprom and prevents getting link.
1460 		 */
1461 		hw_dbg("Auto Read Done did not complete\n");
1462 	}
1463 
1464 	/* If EEPROM is not present, run manual init scripts */
1465 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1466 		igb_reset_init_script_82575(hw);
1467 
1468 	/* Clear any pending interrupt events. */
1469 	wr32(E1000_IMC, 0xffffffff);
1470 	rd32(E1000_ICR);
1471 
1472 	/* Install any alternate MAC address into RAR0 */
1473 	ret_val = igb_check_alt_mac_addr(hw);
1474 
1475 	return ret_val;
1476 }
1477 
1478 /**
1479  *  igb_init_hw_82575 - Initialize hardware
1480  *  @hw: pointer to the HW structure
1481  *
1482  *  This inits the hardware readying it for operation.
1483  **/
1484 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1485 {
1486 	struct e1000_mac_info *mac = &hw->mac;
1487 	s32 ret_val;
1488 	u16 i, rar_count = mac->rar_entry_count;
1489 
1490 	if ((hw->mac.type >= e1000_i210) &&
1491 	    !(igb_get_flash_presence_i210(hw))) {
1492 		ret_val = igb_pll_workaround_i210(hw);
1493 		if (ret_val)
1494 			return ret_val;
1495 	}
1496 
1497 	/* Initialize identification LED */
1498 	ret_val = igb_id_led_init(hw);
1499 	if (ret_val) {
1500 		hw_dbg("Error initializing identification LED\n");
1501 		/* This is not fatal and we should not stop init due to this */
1502 	}
1503 
1504 	/* Disabling VLAN filtering */
1505 	hw_dbg("Initializing the IEEE VLAN\n");
1506 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1507 		igb_clear_vfta_i350(hw);
1508 	else
1509 		igb_clear_vfta(hw);
1510 
1511 	/* Setup the receive address */
1512 	igb_init_rx_addrs(hw, rar_count);
1513 
1514 	/* Zero out the Multicast HASH table */
1515 	hw_dbg("Zeroing the MTA\n");
1516 	for (i = 0; i < mac->mta_reg_count; i++)
1517 		array_wr32(E1000_MTA, i, 0);
1518 
1519 	/* Zero out the Unicast HASH table */
1520 	hw_dbg("Zeroing the UTA\n");
1521 	for (i = 0; i < mac->uta_reg_count; i++)
1522 		array_wr32(E1000_UTA, i, 0);
1523 
1524 	/* Setup link and flow control */
1525 	ret_val = igb_setup_link(hw);
1526 
1527 	/* Clear all of the statistics registers (clear on read).  It is
1528 	 * important that we do this after we have tried to establish link
1529 	 * because the symbol error count will increment wildly if there
1530 	 * is no link.
1531 	 */
1532 	igb_clear_hw_cntrs_82575(hw);
1533 	return ret_val;
1534 }
1535 
1536 /**
1537  *  igb_setup_copper_link_82575 - Configure copper link settings
1538  *  @hw: pointer to the HW structure
1539  *
1540  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1541  *  for link, once link is established calls to configure collision distance
1542  *  and flow control are called.
1543  **/
1544 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1545 {
1546 	u32 ctrl;
1547 	s32  ret_val;
1548 	u32 phpm_reg;
1549 
1550 	ctrl = rd32(E1000_CTRL);
1551 	ctrl |= E1000_CTRL_SLU;
1552 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1553 	wr32(E1000_CTRL, ctrl);
1554 
1555 	/* Clear Go Link Disconnect bit on supported devices */
1556 	switch (hw->mac.type) {
1557 	case e1000_82580:
1558 	case e1000_i350:
1559 	case e1000_i210:
1560 	case e1000_i211:
1561 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1562 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1563 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1564 		break;
1565 	default:
1566 		break;
1567 	}
1568 
1569 	ret_val = igb_setup_serdes_link_82575(hw);
1570 	if (ret_val)
1571 		goto out;
1572 
1573 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1574 		/* allow time for SFP cage time to power up phy */
1575 		msleep(300);
1576 
1577 		ret_val = hw->phy.ops.reset(hw);
1578 		if (ret_val) {
1579 			hw_dbg("Error resetting the PHY.\n");
1580 			goto out;
1581 		}
1582 	}
1583 	switch (hw->phy.type) {
1584 	case e1000_phy_i210:
1585 	case e1000_phy_m88:
1586 		switch (hw->phy.id) {
1587 		case I347AT4_E_PHY_ID:
1588 		case M88E1112_E_PHY_ID:
1589 		case M88E1543_E_PHY_ID:
1590 		case I210_I_PHY_ID:
1591 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1592 			break;
1593 		default:
1594 			ret_val = igb_copper_link_setup_m88(hw);
1595 			break;
1596 		}
1597 		break;
1598 	case e1000_phy_igp_3:
1599 		ret_val = igb_copper_link_setup_igp(hw);
1600 		break;
1601 	case e1000_phy_82580:
1602 		ret_val = igb_copper_link_setup_82580(hw);
1603 		break;
1604 	default:
1605 		ret_val = -E1000_ERR_PHY;
1606 		break;
1607 	}
1608 
1609 	if (ret_val)
1610 		goto out;
1611 
1612 	ret_val = igb_setup_copper_link(hw);
1613 out:
1614 	return ret_val;
1615 }
1616 
1617 /**
1618  *  igb_setup_serdes_link_82575 - Setup link for serdes
1619  *  @hw: pointer to the HW structure
1620  *
1621  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1622  *  used on copper connections where the serialized gigabit media independent
1623  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1624  *  for auto-negotiation or forces speed/duplex.
1625  **/
1626 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1627 {
1628 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1629 	bool pcs_autoneg;
1630 	s32 ret_val = 0;
1631 	u16 data;
1632 
1633 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1634 	    !igb_sgmii_active_82575(hw))
1635 		return ret_val;
1636 
1637 
1638 	/* On the 82575, SerDes loopback mode persists until it is
1639 	 * explicitly turned off or a power cycle is performed.  A read to
1640 	 * the register does not indicate its status.  Therefore, we ensure
1641 	 * loopback mode is disabled during initialization.
1642 	 */
1643 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1644 
1645 	/* power on the sfp cage if present and turn on I2C */
1646 	ctrl_ext = rd32(E1000_CTRL_EXT);
1647 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1648 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1649 	wr32(E1000_CTRL_EXT, ctrl_ext);
1650 
1651 	ctrl_reg = rd32(E1000_CTRL);
1652 	ctrl_reg |= E1000_CTRL_SLU;
1653 
1654 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1655 		/* set both sw defined pins */
1656 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1657 
1658 		/* Set switch control to serdes energy detect */
1659 		reg = rd32(E1000_CONNSW);
1660 		reg |= E1000_CONNSW_ENRGSRC;
1661 		wr32(E1000_CONNSW, reg);
1662 	}
1663 
1664 	reg = rd32(E1000_PCS_LCTL);
1665 
1666 	/* default pcs_autoneg to the same setting as mac autoneg */
1667 	pcs_autoneg = hw->mac.autoneg;
1668 
1669 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1670 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1671 		/* sgmii mode lets the phy handle forcing speed/duplex */
1672 		pcs_autoneg = true;
1673 		/* autoneg time out should be disabled for SGMII mode */
1674 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1675 		break;
1676 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1677 		/* disable PCS autoneg and support parallel detect only */
1678 		pcs_autoneg = false;
1679 	default:
1680 		if (hw->mac.type == e1000_82575 ||
1681 		    hw->mac.type == e1000_82576) {
1682 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1683 			if (ret_val) {
1684 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1685 				return ret_val;
1686 			}
1687 
1688 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1689 				pcs_autoneg = false;
1690 		}
1691 
1692 		/* non-SGMII modes only supports a speed of 1000/Full for the
1693 		 * link so it is best to just force the MAC and let the pcs
1694 		 * link either autoneg or be forced to 1000/Full
1695 		 */
1696 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1697 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1698 
1699 		/* set speed of 1000/Full if speed/duplex is forced */
1700 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1701 		break;
1702 	}
1703 
1704 	wr32(E1000_CTRL, ctrl_reg);
1705 
1706 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1707 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1708 	 * mode that will be compatible with older link partners and switches.
1709 	 * However, both are supported by the hardware and some drivers/tools.
1710 	 */
1711 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1712 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1713 
1714 	if (pcs_autoneg) {
1715 		/* Set PCS register for autoneg */
1716 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1717 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1718 
1719 		/* Disable force flow control for autoneg */
1720 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1721 
1722 		/* Configure flow control advertisement for autoneg */
1723 		anadv_reg = rd32(E1000_PCS_ANADV);
1724 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1725 		switch (hw->fc.requested_mode) {
1726 		case e1000_fc_full:
1727 		case e1000_fc_rx_pause:
1728 			anadv_reg |= E1000_TXCW_ASM_DIR;
1729 			anadv_reg |= E1000_TXCW_PAUSE;
1730 			break;
1731 		case e1000_fc_tx_pause:
1732 			anadv_reg |= E1000_TXCW_ASM_DIR;
1733 			break;
1734 		default:
1735 			break;
1736 		}
1737 		wr32(E1000_PCS_ANADV, anadv_reg);
1738 
1739 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1740 	} else {
1741 		/* Set PCS register for forced link */
1742 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1743 
1744 		/* Force flow control for forced link */
1745 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1746 
1747 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1748 	}
1749 
1750 	wr32(E1000_PCS_LCTL, reg);
1751 
1752 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1753 		igb_force_mac_fc(hw);
1754 
1755 	return ret_val;
1756 }
1757 
1758 /**
1759  *  igb_sgmii_active_82575 - Return sgmii state
1760  *  @hw: pointer to the HW structure
1761  *
1762  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1763  *  which can be enabled for use in the embedded applications.  Simply
1764  *  return the current state of the sgmii interface.
1765  **/
1766 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1767 {
1768 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1769 	return dev_spec->sgmii_active;
1770 }
1771 
1772 /**
1773  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  Inits recommended HW defaults after a reset when there is no EEPROM
1777  *  detected. This is only for the 82575.
1778  **/
1779 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1780 {
1781 	if (hw->mac.type == e1000_82575) {
1782 		hw_dbg("Running reset init script for 82575\n");
1783 		/* SerDes configuration via SERDESCTRL */
1784 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1785 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1786 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1787 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1788 
1789 		/* CCM configuration via CCMCTL register */
1790 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1791 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1792 
1793 		/* PCIe lanes configuration */
1794 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1795 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1796 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1797 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1798 
1799 		/* PCIe PLL Configuration */
1800 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1801 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1802 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 /**
1809  *  igb_read_mac_addr_82575 - Read device MAC address
1810  *  @hw: pointer to the HW structure
1811  **/
1812 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1813 {
1814 	s32 ret_val = 0;
1815 
1816 	/* If there's an alternate MAC address place it in RAR0
1817 	 * so that it will override the Si installed default perm
1818 	 * address.
1819 	 */
1820 	ret_val = igb_check_alt_mac_addr(hw);
1821 	if (ret_val)
1822 		goto out;
1823 
1824 	ret_val = igb_read_mac_addr(hw);
1825 
1826 out:
1827 	return ret_val;
1828 }
1829 
1830 /**
1831  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1832  * @hw: pointer to the HW structure
1833  *
1834  * In the case of a PHY power down to save power, or to turn off link during a
1835  * driver unload, or wake on lan is not enabled, remove the link.
1836  **/
1837 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1838 {
1839 	/* If the management interface is not enabled, then power down */
1840 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1841 		igb_power_down_phy_copper(hw);
1842 }
1843 
1844 /**
1845  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1846  *  @hw: pointer to the HW structure
1847  *
1848  *  Clears the hardware counters by reading the counter registers.
1849  **/
1850 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1851 {
1852 	igb_clear_hw_cntrs_base(hw);
1853 
1854 	rd32(E1000_PRC64);
1855 	rd32(E1000_PRC127);
1856 	rd32(E1000_PRC255);
1857 	rd32(E1000_PRC511);
1858 	rd32(E1000_PRC1023);
1859 	rd32(E1000_PRC1522);
1860 	rd32(E1000_PTC64);
1861 	rd32(E1000_PTC127);
1862 	rd32(E1000_PTC255);
1863 	rd32(E1000_PTC511);
1864 	rd32(E1000_PTC1023);
1865 	rd32(E1000_PTC1522);
1866 
1867 	rd32(E1000_ALGNERRC);
1868 	rd32(E1000_RXERRC);
1869 	rd32(E1000_TNCRS);
1870 	rd32(E1000_CEXTERR);
1871 	rd32(E1000_TSCTC);
1872 	rd32(E1000_TSCTFC);
1873 
1874 	rd32(E1000_MGTPRC);
1875 	rd32(E1000_MGTPDC);
1876 	rd32(E1000_MGTPTC);
1877 
1878 	rd32(E1000_IAC);
1879 	rd32(E1000_ICRXOC);
1880 
1881 	rd32(E1000_ICRXPTC);
1882 	rd32(E1000_ICRXATC);
1883 	rd32(E1000_ICTXPTC);
1884 	rd32(E1000_ICTXATC);
1885 	rd32(E1000_ICTXQEC);
1886 	rd32(E1000_ICTXQMTC);
1887 	rd32(E1000_ICRXDMTC);
1888 
1889 	rd32(E1000_CBTMPC);
1890 	rd32(E1000_HTDPMC);
1891 	rd32(E1000_CBRMPC);
1892 	rd32(E1000_RPTHC);
1893 	rd32(E1000_HGPTC);
1894 	rd32(E1000_HTCBDPC);
1895 	rd32(E1000_HGORCL);
1896 	rd32(E1000_HGORCH);
1897 	rd32(E1000_HGOTCL);
1898 	rd32(E1000_HGOTCH);
1899 	rd32(E1000_LENERRS);
1900 
1901 	/* This register should not be read in copper configurations */
1902 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1903 	    igb_sgmii_active_82575(hw))
1904 		rd32(E1000_SCVPC);
1905 }
1906 
1907 /**
1908  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1909  *  @hw: pointer to the HW structure
1910  *
1911  *  After rx enable if manageability is enabled then there is likely some
1912  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1913  *  function clears the fifos and flushes any packets that came in as rx was
1914  *  being enabled.
1915  **/
1916 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1917 {
1918 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1919 	int i, ms_wait;
1920 
1921 	/* disable IPv6 options as per hardware errata */
1922 	rfctl = rd32(E1000_RFCTL);
1923 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1924 	wr32(E1000_RFCTL, rfctl);
1925 
1926 	if (hw->mac.type != e1000_82575 ||
1927 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1928 		return;
1929 
1930 	/* Disable all RX queues */
1931 	for (i = 0; i < 4; i++) {
1932 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1933 		wr32(E1000_RXDCTL(i),
1934 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1935 	}
1936 	/* Poll all queues to verify they have shut down */
1937 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1938 		usleep_range(1000, 2000);
1939 		rx_enabled = 0;
1940 		for (i = 0; i < 4; i++)
1941 			rx_enabled |= rd32(E1000_RXDCTL(i));
1942 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1943 			break;
1944 	}
1945 
1946 	if (ms_wait == 10)
1947 		hw_dbg("Queue disable timed out after 10ms\n");
1948 
1949 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1950 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1951 	 * any packet that was coming in as RCTL.EN was set is flushed
1952 	 */
1953 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1954 
1955 	rlpml = rd32(E1000_RLPML);
1956 	wr32(E1000_RLPML, 0);
1957 
1958 	rctl = rd32(E1000_RCTL);
1959 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1960 	temp_rctl |= E1000_RCTL_LPE;
1961 
1962 	wr32(E1000_RCTL, temp_rctl);
1963 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1964 	wrfl();
1965 	usleep_range(2000, 3000);
1966 
1967 	/* Enable RX queues that were previously enabled and restore our
1968 	 * previous state
1969 	 */
1970 	for (i = 0; i < 4; i++)
1971 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1972 	wr32(E1000_RCTL, rctl);
1973 	wrfl();
1974 
1975 	wr32(E1000_RLPML, rlpml);
1976 	wr32(E1000_RFCTL, rfctl);
1977 
1978 	/* Flush receive errors generated by workaround */
1979 	rd32(E1000_ROC);
1980 	rd32(E1000_RNBC);
1981 	rd32(E1000_MPC);
1982 }
1983 
1984 /**
1985  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1989  *  however the hardware default for these parts is 500us to 1ms which is less
1990  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1991  *  increase the value to either 10ms to 200ms for capability version 1 config,
1992  *  or 16ms to 55ms for version 2.
1993  **/
1994 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1995 {
1996 	u32 gcr = rd32(E1000_GCR);
1997 	s32 ret_val = 0;
1998 	u16 pcie_devctl2;
1999 
2000 	/* only take action if timeout value is defaulted to 0 */
2001 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2002 		goto out;
2003 
2004 	/* if capabilities version is type 1 we can write the
2005 	 * timeout of 10ms to 200ms through the GCR register
2006 	 */
2007 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2008 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2009 		goto out;
2010 	}
2011 
2012 	/* for version 2 capabilities we need to write the config space
2013 	 * directly in order to set the completion timeout value for
2014 	 * 16ms to 55ms
2015 	 */
2016 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2017 					&pcie_devctl2);
2018 	if (ret_val)
2019 		goto out;
2020 
2021 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2022 
2023 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2024 					 &pcie_devctl2);
2025 out:
2026 	/* disable completion timeout resend */
2027 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2028 
2029 	wr32(E1000_GCR, gcr);
2030 	return ret_val;
2031 }
2032 
2033 /**
2034  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2035  *  @hw: pointer to the hardware struct
2036  *  @enable: state to enter, either enabled or disabled
2037  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2038  *
2039  *  enables/disables L2 switch anti-spoofing functionality.
2040  **/
2041 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2042 {
2043 	u32 reg_val, reg_offset;
2044 
2045 	switch (hw->mac.type) {
2046 	case e1000_82576:
2047 		reg_offset = E1000_DTXSWC;
2048 		break;
2049 	case e1000_i350:
2050 	case e1000_i354:
2051 		reg_offset = E1000_TXSWC;
2052 		break;
2053 	default:
2054 		return;
2055 	}
2056 
2057 	reg_val = rd32(reg_offset);
2058 	if (enable) {
2059 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2060 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2061 		/* The PF can spoof - it has to in order to
2062 		 * support emulation mode NICs
2063 		 */
2064 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2065 	} else {
2066 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2067 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2068 	}
2069 	wr32(reg_offset, reg_val);
2070 }
2071 
2072 /**
2073  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2074  *  @hw: pointer to the hardware struct
2075  *  @enable: state to enter, either enabled or disabled
2076  *
2077  *  enables/disables L2 switch loopback functionality.
2078  **/
2079 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2080 {
2081 	u32 dtxswc;
2082 
2083 	switch (hw->mac.type) {
2084 	case e1000_82576:
2085 		dtxswc = rd32(E1000_DTXSWC);
2086 		if (enable)
2087 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088 		else
2089 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2090 		wr32(E1000_DTXSWC, dtxswc);
2091 		break;
2092 	case e1000_i354:
2093 	case e1000_i350:
2094 		dtxswc = rd32(E1000_TXSWC);
2095 		if (enable)
2096 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2097 		else
2098 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2099 		wr32(E1000_TXSWC, dtxswc);
2100 		break;
2101 	default:
2102 		/* Currently no other hardware supports loopback */
2103 		break;
2104 	}
2105 
2106 }
2107 
2108 /**
2109  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2110  *  @hw: pointer to the hardware struct
2111  *  @enable: state to enter, either enabled or disabled
2112  *
2113  *  enables/disables replication of packets across multiple pools.
2114  **/
2115 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2116 {
2117 	u32 vt_ctl = rd32(E1000_VT_CTL);
2118 
2119 	if (enable)
2120 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2121 	else
2122 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2123 
2124 	wr32(E1000_VT_CTL, vt_ctl);
2125 }
2126 
2127 /**
2128  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2129  *  @hw: pointer to the HW structure
2130  *  @offset: register offset to be read
2131  *  @data: pointer to the read data
2132  *
2133  *  Reads the MDI control register in the PHY at offset and stores the
2134  *  information read to data.
2135  **/
2136 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2137 {
2138 	s32 ret_val;
2139 
2140 	ret_val = hw->phy.ops.acquire(hw);
2141 	if (ret_val)
2142 		goto out;
2143 
2144 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2145 
2146 	hw->phy.ops.release(hw);
2147 
2148 out:
2149 	return ret_val;
2150 }
2151 
2152 /**
2153  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2154  *  @hw: pointer to the HW structure
2155  *  @offset: register offset to write to
2156  *  @data: data to write to register at offset
2157  *
2158  *  Writes data to MDI control register in the PHY at offset.
2159  **/
2160 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2161 {
2162 	s32 ret_val;
2163 
2164 
2165 	ret_val = hw->phy.ops.acquire(hw);
2166 	if (ret_val)
2167 		goto out;
2168 
2169 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2170 
2171 	hw->phy.ops.release(hw);
2172 
2173 out:
2174 	return ret_val;
2175 }
2176 
2177 /**
2178  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2179  *  @hw: pointer to the HW structure
2180  *
2181  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2182  *  the values found in the EEPROM.  This addresses an issue in which these
2183  *  bits are not restored from EEPROM after reset.
2184  **/
2185 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2186 {
2187 	s32 ret_val = 0;
2188 	u32 mdicnfg;
2189 	u16 nvm_data = 0;
2190 
2191 	if (hw->mac.type != e1000_82580)
2192 		goto out;
2193 	if (!igb_sgmii_active_82575(hw))
2194 		goto out;
2195 
2196 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2197 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2198 				   &nvm_data);
2199 	if (ret_val) {
2200 		hw_dbg("NVM Read Error\n");
2201 		goto out;
2202 	}
2203 
2204 	mdicnfg = rd32(E1000_MDICNFG);
2205 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2206 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2207 	if (nvm_data & NVM_WORD24_COM_MDIO)
2208 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2209 	wr32(E1000_MDICNFG, mdicnfg);
2210 out:
2211 	return ret_val;
2212 }
2213 
2214 /**
2215  *  igb_reset_hw_82580 - Reset hardware
2216  *  @hw: pointer to the HW structure
2217  *
2218  *  This resets function or entire device (all ports, etc.)
2219  *  to a known state.
2220  **/
2221 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2222 {
2223 	s32 ret_val = 0;
2224 	/* BH SW mailbox bit in SW_FW_SYNC */
2225 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2226 	u32 ctrl;
2227 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2228 
2229 	hw->dev_spec._82575.global_device_reset = false;
2230 
2231 	/* due to hw errata, global device reset doesn't always
2232 	 * work on 82580
2233 	 */
2234 	if (hw->mac.type == e1000_82580)
2235 		global_device_reset = false;
2236 
2237 	/* Get current control state. */
2238 	ctrl = rd32(E1000_CTRL);
2239 
2240 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2241 	 * on the last TLP read/write transaction when MAC is reset.
2242 	 */
2243 	ret_val = igb_disable_pcie_master(hw);
2244 	if (ret_val)
2245 		hw_dbg("PCI-E Master disable polling has failed.\n");
2246 
2247 	hw_dbg("Masking off all interrupts\n");
2248 	wr32(E1000_IMC, 0xffffffff);
2249 	wr32(E1000_RCTL, 0);
2250 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2251 	wrfl();
2252 
2253 	usleep_range(10000, 11000);
2254 
2255 	/* Determine whether or not a global dev reset is requested */
2256 	if (global_device_reset &&
2257 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2258 			global_device_reset = false;
2259 
2260 	if (global_device_reset &&
2261 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2262 		ctrl |= E1000_CTRL_DEV_RST;
2263 	else
2264 		ctrl |= E1000_CTRL_RST;
2265 
2266 	wr32(E1000_CTRL, ctrl);
2267 	wrfl();
2268 
2269 	/* Add delay to insure DEV_RST has time to complete */
2270 	if (global_device_reset)
2271 		usleep_range(5000, 6000);
2272 
2273 	ret_val = igb_get_auto_rd_done(hw);
2274 	if (ret_val) {
2275 		/* When auto config read does not complete, do not
2276 		 * return with an error. This can happen in situations
2277 		 * where there is no eeprom and prevents getting link.
2278 		 */
2279 		hw_dbg("Auto Read Done did not complete\n");
2280 	}
2281 
2282 	/* clear global device reset status bit */
2283 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2284 
2285 	/* Clear any pending interrupt events. */
2286 	wr32(E1000_IMC, 0xffffffff);
2287 	rd32(E1000_ICR);
2288 
2289 	ret_val = igb_reset_mdicnfg_82580(hw);
2290 	if (ret_val)
2291 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2292 
2293 	/* Install any alternate MAC address into RAR0 */
2294 	ret_val = igb_check_alt_mac_addr(hw);
2295 
2296 	/* Release semaphore */
2297 	if (global_device_reset)
2298 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2299 
2300 	return ret_val;
2301 }
2302 
2303 /**
2304  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2305  *  @data: data received by reading RXPBS register
2306  *
2307  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2308  *  This function converts the retrieved value into the correct table value
2309  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2310  *  0x0 36  72 144   1   2   4   8  16
2311  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2312  */
2313 u16 igb_rxpbs_adjust_82580(u32 data)
2314 {
2315 	u16 ret_val = 0;
2316 
2317 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2318 		ret_val = e1000_82580_rxpbs_table[data];
2319 
2320 	return ret_val;
2321 }
2322 
2323 /**
2324  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2325  *  checksum
2326  *  @hw: pointer to the HW structure
2327  *  @offset: offset in words of the checksum protected region
2328  *
2329  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2330  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2331  **/
2332 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2333 						 u16 offset)
2334 {
2335 	s32 ret_val = 0;
2336 	u16 checksum = 0;
2337 	u16 i, nvm_data;
2338 
2339 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2340 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2341 		if (ret_val) {
2342 			hw_dbg("NVM Read Error\n");
2343 			goto out;
2344 		}
2345 		checksum += nvm_data;
2346 	}
2347 
2348 	if (checksum != (u16) NVM_SUM) {
2349 		hw_dbg("NVM Checksum Invalid\n");
2350 		ret_val = -E1000_ERR_NVM;
2351 		goto out;
2352 	}
2353 
2354 out:
2355 	return ret_val;
2356 }
2357 
2358 /**
2359  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2360  *  checksum
2361  *  @hw: pointer to the HW structure
2362  *  @offset: offset in words of the checksum protected region
2363  *
2364  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2365  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2366  *  value to the EEPROM.
2367  **/
2368 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2369 {
2370 	s32 ret_val;
2371 	u16 checksum = 0;
2372 	u16 i, nvm_data;
2373 
2374 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2375 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2376 		if (ret_val) {
2377 			hw_dbg("NVM Read Error while updating checksum.\n");
2378 			goto out;
2379 		}
2380 		checksum += nvm_data;
2381 	}
2382 	checksum = (u16) NVM_SUM - checksum;
2383 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2384 				&checksum);
2385 	if (ret_val)
2386 		hw_dbg("NVM Write Error while updating checksum.\n");
2387 
2388 out:
2389 	return ret_val;
2390 }
2391 
2392 /**
2393  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2394  *  @hw: pointer to the HW structure
2395  *
2396  *  Calculates the EEPROM section checksum by reading/adding each word of
2397  *  the EEPROM and then verifies that the sum of the EEPROM is
2398  *  equal to 0xBABA.
2399  **/
2400 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2401 {
2402 	s32 ret_val = 0;
2403 	u16 eeprom_regions_count = 1;
2404 	u16 j, nvm_data;
2405 	u16 nvm_offset;
2406 
2407 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2408 	if (ret_val) {
2409 		hw_dbg("NVM Read Error\n");
2410 		goto out;
2411 	}
2412 
2413 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2414 		/* if checksums compatibility bit is set validate checksums
2415 		 * for all 4 ports.
2416 		 */
2417 		eeprom_regions_count = 4;
2418 	}
2419 
2420 	for (j = 0; j < eeprom_regions_count; j++) {
2421 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2422 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2423 								nvm_offset);
2424 		if (ret_val != 0)
2425 			goto out;
2426 	}
2427 
2428 out:
2429 	return ret_val;
2430 }
2431 
2432 /**
2433  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2434  *  @hw: pointer to the HW structure
2435  *
2436  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2437  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2438  *  checksum and writes the value to the EEPROM.
2439  **/
2440 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2441 {
2442 	s32 ret_val;
2443 	u16 j, nvm_data;
2444 	u16 nvm_offset;
2445 
2446 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2447 	if (ret_val) {
2448 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2449 		goto out;
2450 	}
2451 
2452 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2453 		/* set compatibility bit to validate checksums appropriately */
2454 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2455 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2456 					&nvm_data);
2457 		if (ret_val) {
2458 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2459 			goto out;
2460 		}
2461 	}
2462 
2463 	for (j = 0; j < 4; j++) {
2464 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2465 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2466 		if (ret_val)
2467 			goto out;
2468 	}
2469 
2470 out:
2471 	return ret_val;
2472 }
2473 
2474 /**
2475  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2476  *  @hw: pointer to the HW structure
2477  *
2478  *  Calculates the EEPROM section checksum by reading/adding each word of
2479  *  the EEPROM and then verifies that the sum of the EEPROM is
2480  *  equal to 0xBABA.
2481  **/
2482 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2483 {
2484 	s32 ret_val = 0;
2485 	u16 j;
2486 	u16 nvm_offset;
2487 
2488 	for (j = 0; j < 4; j++) {
2489 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2490 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2491 								nvm_offset);
2492 		if (ret_val != 0)
2493 			goto out;
2494 	}
2495 
2496 out:
2497 	return ret_val;
2498 }
2499 
2500 /**
2501  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2502  *  @hw: pointer to the HW structure
2503  *
2504  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2505  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2506  *  checksum and writes the value to the EEPROM.
2507  **/
2508 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2509 {
2510 	s32 ret_val = 0;
2511 	u16 j;
2512 	u16 nvm_offset;
2513 
2514 	for (j = 0; j < 4; j++) {
2515 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2516 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2517 		if (ret_val != 0)
2518 			goto out;
2519 	}
2520 
2521 out:
2522 	return ret_val;
2523 }
2524 
2525 /**
2526  *  __igb_access_emi_reg - Read/write EMI register
2527  *  @hw: pointer to the HW structure
2528  *  @addr: EMI address to program
2529  *  @data: pointer to value to read/write from/to the EMI address
2530  *  @read: boolean flag to indicate read or write
2531  **/
2532 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2533 				  u16 *data, bool read)
2534 {
2535 	s32 ret_val = 0;
2536 
2537 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2538 	if (ret_val)
2539 		return ret_val;
2540 
2541 	if (read)
2542 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2543 	else
2544 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2545 
2546 	return ret_val;
2547 }
2548 
2549 /**
2550  *  igb_read_emi_reg - Read Extended Management Interface register
2551  *  @hw: pointer to the HW structure
2552  *  @addr: EMI address to program
2553  *  @data: value to be read from the EMI address
2554  **/
2555 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2556 {
2557 	return __igb_access_emi_reg(hw, addr, data, true);
2558 }
2559 
2560 /**
2561  *  igb_set_eee_i350 - Enable/disable EEE support
2562  *  @hw: pointer to the HW structure
2563  *  @adv1G: boolean flag enabling 1G EEE advertisement
2564  *  @adv100m: boolean flag enabling 100M EEE advertisement
2565  *
2566  *  Enable/disable EEE based on setting in dev_spec structure.
2567  *
2568  **/
2569 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2570 {
2571 	u32 ipcnfg, eeer;
2572 
2573 	if ((hw->mac.type < e1000_i350) ||
2574 	    (hw->phy.media_type != e1000_media_type_copper))
2575 		goto out;
2576 	ipcnfg = rd32(E1000_IPCNFG);
2577 	eeer = rd32(E1000_EEER);
2578 
2579 	/* enable or disable per user setting */
2580 	if (!(hw->dev_spec._82575.eee_disable)) {
2581 		u32 eee_su = rd32(E1000_EEE_SU);
2582 
2583 		if (adv100M)
2584 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2585 		else
2586 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2587 
2588 		if (adv1G)
2589 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2590 		else
2591 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2592 
2593 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2594 			E1000_EEER_LPI_FC);
2595 
2596 		/* This bit should not be set in normal operation. */
2597 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2598 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2599 
2600 	} else {
2601 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2602 			E1000_IPCNFG_EEE_100M_AN);
2603 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2604 			E1000_EEER_RX_LPI_EN |
2605 			E1000_EEER_LPI_FC);
2606 	}
2607 	wr32(E1000_IPCNFG, ipcnfg);
2608 	wr32(E1000_EEER, eeer);
2609 	rd32(E1000_IPCNFG);
2610 	rd32(E1000_EEER);
2611 out:
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  *  igb_set_eee_i354 - Enable/disable EEE support
2618  *  @hw: pointer to the HW structure
2619  *  @adv1G: boolean flag enabling 1G EEE advertisement
2620  *  @adv100m: boolean flag enabling 100M EEE advertisement
2621  *
2622  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2623  *
2624  **/
2625 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2626 {
2627 	struct e1000_phy_info *phy = &hw->phy;
2628 	s32 ret_val = 0;
2629 	u16 phy_data;
2630 
2631 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2632 	    (phy->id != M88E1543_E_PHY_ID))
2633 		goto out;
2634 
2635 	if (!hw->dev_spec._82575.eee_disable) {
2636 		/* Switch to PHY page 18. */
2637 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2638 		if (ret_val)
2639 			goto out;
2640 
2641 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2642 					    &phy_data);
2643 		if (ret_val)
2644 			goto out;
2645 
2646 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2647 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2648 					     phy_data);
2649 		if (ret_val)
2650 			goto out;
2651 
2652 		/* Return the PHY to page 0. */
2653 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2654 		if (ret_val)
2655 			goto out;
2656 
2657 		/* Turn on EEE advertisement. */
2658 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2659 					     E1000_EEE_ADV_DEV_I354,
2660 					     &phy_data);
2661 		if (ret_val)
2662 			goto out;
2663 
2664 		if (adv100M)
2665 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2666 		else
2667 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2668 
2669 		if (adv1G)
2670 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2671 		else
2672 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2673 
2674 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2675 						E1000_EEE_ADV_DEV_I354,
2676 						phy_data);
2677 	} else {
2678 		/* Turn off EEE advertisement. */
2679 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2680 					     E1000_EEE_ADV_DEV_I354,
2681 					     &phy_data);
2682 		if (ret_val)
2683 			goto out;
2684 
2685 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2686 			      E1000_EEE_ADV_1000_SUPPORTED);
2687 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2688 					      E1000_EEE_ADV_DEV_I354,
2689 					      phy_data);
2690 	}
2691 
2692 out:
2693 	return ret_val;
2694 }
2695 
2696 /**
2697  *  igb_get_eee_status_i354 - Get EEE status
2698  *  @hw: pointer to the HW structure
2699  *  @status: EEE status
2700  *
2701  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2702  *  been received.
2703  **/
2704 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2705 {
2706 	struct e1000_phy_info *phy = &hw->phy;
2707 	s32 ret_val = 0;
2708 	u16 phy_data;
2709 
2710 	/* Check if EEE is supported on this device. */
2711 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2712 	    (phy->id != M88E1543_E_PHY_ID))
2713 		goto out;
2714 
2715 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2716 				     E1000_PCS_STATUS_DEV_I354,
2717 				     &phy_data);
2718 	if (ret_val)
2719 		goto out;
2720 
2721 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2722 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2723 
2724 out:
2725 	return ret_val;
2726 }
2727 
2728 static const u8 e1000_emc_temp_data[4] = {
2729 	E1000_EMC_INTERNAL_DATA,
2730 	E1000_EMC_DIODE1_DATA,
2731 	E1000_EMC_DIODE2_DATA,
2732 	E1000_EMC_DIODE3_DATA
2733 };
2734 static const u8 e1000_emc_therm_limit[4] = {
2735 	E1000_EMC_INTERNAL_THERM_LIMIT,
2736 	E1000_EMC_DIODE1_THERM_LIMIT,
2737 	E1000_EMC_DIODE2_THERM_LIMIT,
2738 	E1000_EMC_DIODE3_THERM_LIMIT
2739 };
2740 
2741 #ifdef CONFIG_IGB_HWMON
2742 /**
2743  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2744  *  @hw: pointer to hardware structure
2745  *
2746  *  Updates the temperatures in mac.thermal_sensor_data
2747  **/
2748 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2749 {
2750 	u16 ets_offset;
2751 	u16 ets_cfg;
2752 	u16 ets_sensor;
2753 	u8  num_sensors;
2754 	u8  sensor_index;
2755 	u8  sensor_location;
2756 	u8  i;
2757 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2758 
2759 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2760 		return E1000_NOT_IMPLEMENTED;
2761 
2762 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2763 
2764 	/* Return the internal sensor only if ETS is unsupported */
2765 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2766 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2767 		return 0;
2768 
2769 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2770 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2771 	    != NVM_ETS_TYPE_EMC)
2772 		return E1000_NOT_IMPLEMENTED;
2773 
2774 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2775 	if (num_sensors > E1000_MAX_SENSORS)
2776 		num_sensors = E1000_MAX_SENSORS;
2777 
2778 	for (i = 1; i < num_sensors; i++) {
2779 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2780 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2781 				NVM_ETS_DATA_INDEX_SHIFT);
2782 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2783 				   NVM_ETS_DATA_LOC_SHIFT);
2784 
2785 		if (sensor_location != 0)
2786 			hw->phy.ops.read_i2c_byte(hw,
2787 					e1000_emc_temp_data[sensor_index],
2788 					E1000_I2C_THERMAL_SENSOR_ADDR,
2789 					&data->sensor[i].temp);
2790 	}
2791 	return 0;
2792 }
2793 
2794 /**
2795  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2796  *  @hw: pointer to hardware structure
2797  *
2798  *  Sets the thermal sensor thresholds according to the NVM map
2799  *  and save off the threshold and location values into mac.thermal_sensor_data
2800  **/
2801 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2802 {
2803 	u16 ets_offset;
2804 	u16 ets_cfg;
2805 	u16 ets_sensor;
2806 	u8  low_thresh_delta;
2807 	u8  num_sensors;
2808 	u8  sensor_index;
2809 	u8  sensor_location;
2810 	u8  therm_limit;
2811 	u8  i;
2812 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2813 
2814 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2815 		return E1000_NOT_IMPLEMENTED;
2816 
2817 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2818 
2819 	data->sensor[0].location = 0x1;
2820 	data->sensor[0].caution_thresh =
2821 		(rd32(E1000_THHIGHTC) & 0xFF);
2822 	data->sensor[0].max_op_thresh =
2823 		(rd32(E1000_THLOWTC) & 0xFF);
2824 
2825 	/* Return the internal sensor only if ETS is unsupported */
2826 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2827 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2828 		return 0;
2829 
2830 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2831 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2832 	    != NVM_ETS_TYPE_EMC)
2833 		return E1000_NOT_IMPLEMENTED;
2834 
2835 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2836 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2837 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2838 
2839 	for (i = 1; i <= num_sensors; i++) {
2840 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2841 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2842 				NVM_ETS_DATA_INDEX_SHIFT);
2843 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2844 				   NVM_ETS_DATA_LOC_SHIFT);
2845 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2846 
2847 		hw->phy.ops.write_i2c_byte(hw,
2848 			e1000_emc_therm_limit[sensor_index],
2849 			E1000_I2C_THERMAL_SENSOR_ADDR,
2850 			therm_limit);
2851 
2852 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2853 			data->sensor[i].location = sensor_location;
2854 			data->sensor[i].caution_thresh = therm_limit;
2855 			data->sensor[i].max_op_thresh = therm_limit -
2856 							low_thresh_delta;
2857 		}
2858 	}
2859 	return 0;
2860 }
2861 
2862 #endif
2863 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2864 	.init_hw              = igb_init_hw_82575,
2865 	.check_for_link       = igb_check_for_link_82575,
2866 	.rar_set              = igb_rar_set,
2867 	.read_mac_addr        = igb_read_mac_addr_82575,
2868 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2869 #ifdef CONFIG_IGB_HWMON
2870 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2871 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2872 #endif
2873 };
2874 
2875 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2876 	.acquire              = igb_acquire_phy_82575,
2877 	.get_cfg_done         = igb_get_cfg_done_82575,
2878 	.release              = igb_release_phy_82575,
2879 	.write_i2c_byte       = igb_write_i2c_byte,
2880 	.read_i2c_byte        = igb_read_i2c_byte,
2881 };
2882 
2883 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2884 	.acquire              = igb_acquire_nvm_82575,
2885 	.read                 = igb_read_nvm_eerd,
2886 	.release              = igb_release_nvm_82575,
2887 	.write                = igb_write_nvm_spi,
2888 };
2889 
2890 const struct e1000_info e1000_82575_info = {
2891 	.get_invariants = igb_get_invariants_82575,
2892 	.mac_ops = &e1000_mac_ops_82575,
2893 	.phy_ops = &e1000_phy_ops_82575,
2894 	.nvm_ops = &e1000_nvm_ops_82575,
2895 };
2896 
2897