1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /* e1000_82575
28  * e1000_82576
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/if_ether.h>
35 #include <linux/i2c.h>
36 
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40 
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64 						 u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77 	{ 36, 72, 144, 1, 2, 4, 8, 16,
78 	  35, 70, 140 };
79 
80 /**
81  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
82  *  @hw: pointer to the HW structure
83  *
84  *  Called to determine if the I2C pins are being used for I2C or as an
85  *  external MDIO interface since the two options are mutually exclusive.
86  **/
87 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
88 {
89 	u32 reg = 0;
90 	bool ext_mdio = false;
91 
92 	switch (hw->mac.type) {
93 	case e1000_82575:
94 	case e1000_82576:
95 		reg = rd32(E1000_MDIC);
96 		ext_mdio = !!(reg & E1000_MDIC_DEST);
97 		break;
98 	case e1000_82580:
99 	case e1000_i350:
100 	case e1000_i354:
101 	case e1000_i210:
102 	case e1000_i211:
103 		reg = rd32(E1000_MDICNFG);
104 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
105 		break;
106 	default:
107 		break;
108 	}
109 	return ext_mdio;
110 }
111 
112 /**
113  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
114  *  @hw: pointer to the HW structure
115  *
116  *  Poll the M88E1112 interfaces to see which interface achieved link.
117  */
118 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
119 {
120 	struct e1000_phy_info *phy = &hw->phy;
121 	s32 ret_val;
122 	u16 data;
123 	u8 port = 0;
124 
125 	/* Check the copper medium. */
126 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
127 	if (ret_val)
128 		return ret_val;
129 
130 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
131 	if (ret_val)
132 		return ret_val;
133 
134 	if (data & E1000_M88E1112_STATUS_LINK)
135 		port = E1000_MEDIA_PORT_COPPER;
136 
137 	/* Check the other medium. */
138 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
139 	if (ret_val)
140 		return ret_val;
141 
142 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
143 	if (ret_val)
144 		return ret_val;
145 
146 	/* reset page to 0 */
147 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148 	if (ret_val)
149 		return ret_val;
150 
151 	if (data & E1000_M88E1112_STATUS_LINK)
152 		port = E1000_MEDIA_PORT_OTHER;
153 
154 	/* Determine if a swap needs to happen. */
155 	if (port && (hw->dev_spec._82575.media_port != port)) {
156 		hw->dev_spec._82575.media_port = port;
157 		hw->dev_spec._82575.media_changed = true;
158 	} else {
159 		ret_val = igb_check_for_link_82575(hw);
160 	}
161 
162 	return E1000_SUCCESS;
163 }
164 
165 /**
166  *  igb_init_phy_params_82575 - Init PHY func ptrs.
167  *  @hw: pointer to the HW structure
168  **/
169 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
170 {
171 	struct e1000_phy_info *phy = &hw->phy;
172 	s32 ret_val = 0;
173 	u32 ctrl_ext;
174 
175 	if (hw->phy.media_type != e1000_media_type_copper) {
176 		phy->type = e1000_phy_none;
177 		goto out;
178 	}
179 
180 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
181 	phy->reset_delay_us	= 100;
182 
183 	ctrl_ext = rd32(E1000_CTRL_EXT);
184 
185 	if (igb_sgmii_active_82575(hw)) {
186 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
187 		ctrl_ext |= E1000_CTRL_I2C_ENA;
188 	} else {
189 		phy->ops.reset = igb_phy_hw_reset;
190 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
191 	}
192 
193 	wr32(E1000_CTRL_EXT, ctrl_ext);
194 	igb_reset_mdicnfg_82580(hw);
195 
196 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
197 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
198 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
199 	} else {
200 		switch (hw->mac.type) {
201 		case e1000_82580:
202 		case e1000_i350:
203 		case e1000_i354:
204 			phy->ops.read_reg = igb_read_phy_reg_82580;
205 			phy->ops.write_reg = igb_write_phy_reg_82580;
206 			break;
207 		case e1000_i210:
208 		case e1000_i211:
209 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
210 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
211 			break;
212 		default:
213 			phy->ops.read_reg = igb_read_phy_reg_igp;
214 			phy->ops.write_reg = igb_write_phy_reg_igp;
215 		}
216 	}
217 
218 	/* set lan id */
219 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
220 			E1000_STATUS_FUNC_SHIFT;
221 
222 	/* Set phy->phy_addr and phy->id. */
223 	ret_val = igb_get_phy_id_82575(hw);
224 	if (ret_val)
225 		return ret_val;
226 
227 	/* Verify phy id and set remaining function pointers */
228 	switch (phy->id) {
229 	case M88E1543_E_PHY_ID:
230 	case I347AT4_E_PHY_ID:
231 	case M88E1112_E_PHY_ID:
232 	case M88E1111_I_PHY_ID:
233 		phy->type		= e1000_phy_m88;
234 		phy->ops.check_polarity	= igb_check_polarity_m88;
235 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
236 		if (phy->id != M88E1111_I_PHY_ID)
237 			phy->ops.get_cable_length =
238 					 igb_get_cable_length_m88_gen2;
239 		else
240 			phy->ops.get_cable_length = igb_get_cable_length_m88;
241 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
242 		/* Check if this PHY is confgured for media swap. */
243 		if (phy->id == M88E1112_E_PHY_ID) {
244 			u16 data;
245 
246 			ret_val = phy->ops.write_reg(hw,
247 						     E1000_M88E1112_PAGE_ADDR,
248 						     2);
249 			if (ret_val)
250 				goto out;
251 
252 			ret_val = phy->ops.read_reg(hw,
253 						    E1000_M88E1112_MAC_CTRL_1,
254 						    &data);
255 			if (ret_val)
256 				goto out;
257 
258 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
259 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
260 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
261 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
262 				hw->mac.ops.check_for_link =
263 						igb_check_for_link_media_swap;
264 		}
265 		break;
266 	case IGP03E1000_E_PHY_ID:
267 		phy->type = e1000_phy_igp_3;
268 		phy->ops.get_phy_info = igb_get_phy_info_igp;
269 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
270 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
271 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
272 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
273 		break;
274 	case I82580_I_PHY_ID:
275 	case I350_I_PHY_ID:
276 		phy->type = e1000_phy_82580;
277 		phy->ops.force_speed_duplex =
278 					 igb_phy_force_speed_duplex_82580;
279 		phy->ops.get_cable_length = igb_get_cable_length_82580;
280 		phy->ops.get_phy_info = igb_get_phy_info_82580;
281 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
282 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
283 		break;
284 	case I210_I_PHY_ID:
285 		phy->type		= e1000_phy_i210;
286 		phy->ops.check_polarity	= igb_check_polarity_m88;
287 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
288 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
289 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
290 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
291 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
292 		break;
293 	default:
294 		ret_val = -E1000_ERR_PHY;
295 		goto out;
296 	}
297 
298 out:
299 	return ret_val;
300 }
301 
302 /**
303  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
304  *  @hw: pointer to the HW structure
305  **/
306 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
307 {
308 	struct e1000_nvm_info *nvm = &hw->nvm;
309 	u32 eecd = rd32(E1000_EECD);
310 	u16 size;
311 
312 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
313 		     E1000_EECD_SIZE_EX_SHIFT);
314 
315 	/* Added to a constant, "size" becomes the left-shift value
316 	 * for setting word_size.
317 	 */
318 	size += NVM_WORD_SIZE_BASE_SHIFT;
319 
320 	/* Just in case size is out of range, cap it to the largest
321 	 * EEPROM size supported
322 	 */
323 	if (size > 15)
324 		size = 15;
325 
326 	nvm->word_size = 1 << size;
327 	nvm->opcode_bits = 8;
328 	nvm->delay_usec = 1;
329 
330 	switch (nvm->override) {
331 	case e1000_nvm_override_spi_large:
332 		nvm->page_size = 32;
333 		nvm->address_bits = 16;
334 		break;
335 	case e1000_nvm_override_spi_small:
336 		nvm->page_size = 8;
337 		nvm->address_bits = 8;
338 		break;
339 	default:
340 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
341 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
342 				    16 : 8;
343 		break;
344 	}
345 	if (nvm->word_size == (1 << 15))
346 		nvm->page_size = 128;
347 
348 	nvm->type = e1000_nvm_eeprom_spi;
349 
350 	/* NVM Function Pointers */
351 	nvm->ops.acquire = igb_acquire_nvm_82575;
352 	nvm->ops.release = igb_release_nvm_82575;
353 	nvm->ops.write = igb_write_nvm_spi;
354 	nvm->ops.validate = igb_validate_nvm_checksum;
355 	nvm->ops.update = igb_update_nvm_checksum;
356 	if (nvm->word_size < (1 << 15))
357 		nvm->ops.read = igb_read_nvm_eerd;
358 	else
359 		nvm->ops.read = igb_read_nvm_spi;
360 
361 	/* override generic family function pointers for specific descendants */
362 	switch (hw->mac.type) {
363 	case e1000_82580:
364 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
365 		nvm->ops.update = igb_update_nvm_checksum_82580;
366 		break;
367 	case e1000_i354:
368 	case e1000_i350:
369 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
370 		nvm->ops.update = igb_update_nvm_checksum_i350;
371 		break;
372 	default:
373 		break;
374 	}
375 
376 	return 0;
377 }
378 
379 /**
380  *  igb_init_mac_params_82575 - Init MAC func ptrs.
381  *  @hw: pointer to the HW structure
382  **/
383 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
384 {
385 	struct e1000_mac_info *mac = &hw->mac;
386 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
387 
388 	/* Set mta register count */
389 	mac->mta_reg_count = 128;
390 	/* Set rar entry count */
391 	switch (mac->type) {
392 	case e1000_82576:
393 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
394 		break;
395 	case e1000_82580:
396 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
397 		break;
398 	case e1000_i350:
399 	case e1000_i354:
400 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
401 		break;
402 	default:
403 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
404 		break;
405 	}
406 	/* reset */
407 	if (mac->type >= e1000_82580)
408 		mac->ops.reset_hw = igb_reset_hw_82580;
409 	else
410 		mac->ops.reset_hw = igb_reset_hw_82575;
411 
412 	if (mac->type >= e1000_i210) {
413 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
414 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
415 
416 	} else {
417 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
418 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
419 	}
420 
421 	/* Set if part includes ASF firmware */
422 	mac->asf_firmware_present = true;
423 	/* Set if manageability features are enabled. */
424 	mac->arc_subsystem_valid =
425 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
426 			? true : false;
427 	/* enable EEE on i350 parts and later parts */
428 	if (mac->type >= e1000_i350)
429 		dev_spec->eee_disable = false;
430 	else
431 		dev_spec->eee_disable = true;
432 	/* Allow a single clear of the SW semaphore on I210 and newer */
433 	if (mac->type >= e1000_i210)
434 		dev_spec->clear_semaphore_once = true;
435 	/* physical interface link setup */
436 	mac->ops.setup_physical_interface =
437 		(hw->phy.media_type == e1000_media_type_copper)
438 			? igb_setup_copper_link_82575
439 			: igb_setup_serdes_link_82575;
440 
441 	if (mac->type == e1000_82580) {
442 		switch (hw->device_id) {
443 		/* feature not supported on these id's */
444 		case E1000_DEV_ID_DH89XXCC_SGMII:
445 		case E1000_DEV_ID_DH89XXCC_SERDES:
446 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
447 		case E1000_DEV_ID_DH89XXCC_SFP:
448 			break;
449 		default:
450 			hw->dev_spec._82575.mas_capable = true;
451 			break;
452 		}
453 	}
454 	return 0;
455 }
456 
457 /**
458  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
459  *  @hw: pointer to the HW structure
460  *
461  *  The media type is chosen based on SFP module.
462  *  compatibility flags retrieved from SFP ID EEPROM.
463  **/
464 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
465 {
466 	s32 ret_val = E1000_ERR_CONFIG;
467 	u32 ctrl_ext = 0;
468 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
469 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
470 	u8 tranceiver_type = 0;
471 	s32 timeout = 3;
472 
473 	/* Turn I2C interface ON and power on sfp cage */
474 	ctrl_ext = rd32(E1000_CTRL_EXT);
475 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
476 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
477 
478 	wrfl();
479 
480 	/* Read SFP module data */
481 	while (timeout) {
482 		ret_val = igb_read_sfp_data_byte(hw,
483 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
484 			&tranceiver_type);
485 		if (ret_val == 0)
486 			break;
487 		msleep(100);
488 		timeout--;
489 	}
490 	if (ret_val != 0)
491 		goto out;
492 
493 	ret_val = igb_read_sfp_data_byte(hw,
494 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
495 			(u8 *)eth_flags);
496 	if (ret_val != 0)
497 		goto out;
498 
499 	/* Check if there is some SFP module plugged and powered */
500 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
501 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
502 		dev_spec->module_plugged = true;
503 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
504 			hw->phy.media_type = e1000_media_type_internal_serdes;
505 		} else if (eth_flags->e100_base_fx) {
506 			dev_spec->sgmii_active = true;
507 			hw->phy.media_type = e1000_media_type_internal_serdes;
508 		} else if (eth_flags->e1000_base_t) {
509 			dev_spec->sgmii_active = true;
510 			hw->phy.media_type = e1000_media_type_copper;
511 		} else {
512 			hw->phy.media_type = e1000_media_type_unknown;
513 			hw_dbg("PHY module has not been recognized\n");
514 			goto out;
515 		}
516 	} else {
517 		hw->phy.media_type = e1000_media_type_unknown;
518 	}
519 	ret_val = 0;
520 out:
521 	/* Restore I2C interface setting */
522 	wr32(E1000_CTRL_EXT, ctrl_ext);
523 	return ret_val;
524 }
525 
526 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
527 {
528 	struct e1000_mac_info *mac = &hw->mac;
529 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
530 	s32 ret_val;
531 	u32 ctrl_ext = 0;
532 	u32 link_mode = 0;
533 
534 	switch (hw->device_id) {
535 	case E1000_DEV_ID_82575EB_COPPER:
536 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
537 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
538 		mac->type = e1000_82575;
539 		break;
540 	case E1000_DEV_ID_82576:
541 	case E1000_DEV_ID_82576_NS:
542 	case E1000_DEV_ID_82576_NS_SERDES:
543 	case E1000_DEV_ID_82576_FIBER:
544 	case E1000_DEV_ID_82576_SERDES:
545 	case E1000_DEV_ID_82576_QUAD_COPPER:
546 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
547 	case E1000_DEV_ID_82576_SERDES_QUAD:
548 		mac->type = e1000_82576;
549 		break;
550 	case E1000_DEV_ID_82580_COPPER:
551 	case E1000_DEV_ID_82580_FIBER:
552 	case E1000_DEV_ID_82580_QUAD_FIBER:
553 	case E1000_DEV_ID_82580_SERDES:
554 	case E1000_DEV_ID_82580_SGMII:
555 	case E1000_DEV_ID_82580_COPPER_DUAL:
556 	case E1000_DEV_ID_DH89XXCC_SGMII:
557 	case E1000_DEV_ID_DH89XXCC_SERDES:
558 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
559 	case E1000_DEV_ID_DH89XXCC_SFP:
560 		mac->type = e1000_82580;
561 		break;
562 	case E1000_DEV_ID_I350_COPPER:
563 	case E1000_DEV_ID_I350_FIBER:
564 	case E1000_DEV_ID_I350_SERDES:
565 	case E1000_DEV_ID_I350_SGMII:
566 		mac->type = e1000_i350;
567 		break;
568 	case E1000_DEV_ID_I210_COPPER:
569 	case E1000_DEV_ID_I210_FIBER:
570 	case E1000_DEV_ID_I210_SERDES:
571 	case E1000_DEV_ID_I210_SGMII:
572 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
573 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
574 		mac->type = e1000_i210;
575 		break;
576 	case E1000_DEV_ID_I211_COPPER:
577 		mac->type = e1000_i211;
578 		break;
579 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
580 	case E1000_DEV_ID_I354_SGMII:
581 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
582 		mac->type = e1000_i354;
583 		break;
584 	default:
585 		return -E1000_ERR_MAC_INIT;
586 		break;
587 	}
588 
589 	/* Set media type */
590 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
591 	 * based on the EEPROM. We cannot rely upon device ID. There
592 	 * is no distinguishable difference between fiber and internal
593 	 * SerDes mode on the 82575. There can be an external PHY attached
594 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
595 	 */
596 	hw->phy.media_type = e1000_media_type_copper;
597 	dev_spec->sgmii_active = false;
598 	dev_spec->module_plugged = false;
599 
600 	ctrl_ext = rd32(E1000_CTRL_EXT);
601 
602 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
603 	switch (link_mode) {
604 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
605 		hw->phy.media_type = e1000_media_type_internal_serdes;
606 		break;
607 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
608 		/* Get phy control interface type set (MDIO vs. I2C)*/
609 		if (igb_sgmii_uses_mdio_82575(hw)) {
610 			hw->phy.media_type = e1000_media_type_copper;
611 			dev_spec->sgmii_active = true;
612 			break;
613 		}
614 		/* fall through for I2C based SGMII */
615 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
616 		/* read media type from SFP EEPROM */
617 		ret_val = igb_set_sfp_media_type_82575(hw);
618 		if ((ret_val != 0) ||
619 		    (hw->phy.media_type == e1000_media_type_unknown)) {
620 			/* If media type was not identified then return media
621 			 * type defined by the CTRL_EXT settings.
622 			 */
623 			hw->phy.media_type = e1000_media_type_internal_serdes;
624 
625 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
626 				hw->phy.media_type = e1000_media_type_copper;
627 				dev_spec->sgmii_active = true;
628 			}
629 
630 			break;
631 		}
632 
633 		/* do not change link mode for 100BaseFX */
634 		if (dev_spec->eth_flags.e100_base_fx)
635 			break;
636 
637 		/* change current link mode setting */
638 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
639 
640 		if (hw->phy.media_type == e1000_media_type_copper)
641 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
642 		else
643 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
644 
645 		wr32(E1000_CTRL_EXT, ctrl_ext);
646 
647 		break;
648 	default:
649 		break;
650 	}
651 
652 	/* mac initialization and operations */
653 	ret_val = igb_init_mac_params_82575(hw);
654 	if (ret_val)
655 		goto out;
656 
657 	/* NVM initialization */
658 	ret_val = igb_init_nvm_params_82575(hw);
659 	switch (hw->mac.type) {
660 	case e1000_i210:
661 	case e1000_i211:
662 		ret_val = igb_init_nvm_params_i210(hw);
663 		break;
664 	default:
665 		break;
666 	}
667 
668 	if (ret_val)
669 		goto out;
670 
671 	/* if part supports SR-IOV then initialize mailbox parameters */
672 	switch (mac->type) {
673 	case e1000_82576:
674 	case e1000_i350:
675 		igb_init_mbx_params_pf(hw);
676 		break;
677 	default:
678 		break;
679 	}
680 
681 	/* setup PHY parameters */
682 	ret_val = igb_init_phy_params_82575(hw);
683 
684 out:
685 	return ret_val;
686 }
687 
688 /**
689  *  igb_acquire_phy_82575 - Acquire rights to access PHY
690  *  @hw: pointer to the HW structure
691  *
692  *  Acquire access rights to the correct PHY.  This is a
693  *  function pointer entry point called by the api module.
694  **/
695 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
696 {
697 	u16 mask = E1000_SWFW_PHY0_SM;
698 
699 	if (hw->bus.func == E1000_FUNC_1)
700 		mask = E1000_SWFW_PHY1_SM;
701 	else if (hw->bus.func == E1000_FUNC_2)
702 		mask = E1000_SWFW_PHY2_SM;
703 	else if (hw->bus.func == E1000_FUNC_3)
704 		mask = E1000_SWFW_PHY3_SM;
705 
706 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
707 }
708 
709 /**
710  *  igb_release_phy_82575 - Release rights to access PHY
711  *  @hw: pointer to the HW structure
712  *
713  *  A wrapper to release access rights to the correct PHY.  This is a
714  *  function pointer entry point called by the api module.
715  **/
716 static void igb_release_phy_82575(struct e1000_hw *hw)
717 {
718 	u16 mask = E1000_SWFW_PHY0_SM;
719 
720 	if (hw->bus.func == E1000_FUNC_1)
721 		mask = E1000_SWFW_PHY1_SM;
722 	else if (hw->bus.func == E1000_FUNC_2)
723 		mask = E1000_SWFW_PHY2_SM;
724 	else if (hw->bus.func == E1000_FUNC_3)
725 		mask = E1000_SWFW_PHY3_SM;
726 
727 	hw->mac.ops.release_swfw_sync(hw, mask);
728 }
729 
730 /**
731  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
732  *  @hw: pointer to the HW structure
733  *  @offset: register offset to be read
734  *  @data: pointer to the read data
735  *
736  *  Reads the PHY register at offset using the serial gigabit media independent
737  *  interface and stores the retrieved information in data.
738  **/
739 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
740 					  u16 *data)
741 {
742 	s32 ret_val = -E1000_ERR_PARAM;
743 
744 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
745 		hw_dbg("PHY Address %u is out of range\n", offset);
746 		goto out;
747 	}
748 
749 	ret_val = hw->phy.ops.acquire(hw);
750 	if (ret_val)
751 		goto out;
752 
753 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
754 
755 	hw->phy.ops.release(hw);
756 
757 out:
758 	return ret_val;
759 }
760 
761 /**
762  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
763  *  @hw: pointer to the HW structure
764  *  @offset: register offset to write to
765  *  @data: data to write at register offset
766  *
767  *  Writes the data to PHY register at the offset using the serial gigabit
768  *  media independent interface.
769  **/
770 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
771 					   u16 data)
772 {
773 	s32 ret_val = -E1000_ERR_PARAM;
774 
775 
776 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
777 		hw_dbg("PHY Address %d is out of range\n", offset);
778 		goto out;
779 	}
780 
781 	ret_val = hw->phy.ops.acquire(hw);
782 	if (ret_val)
783 		goto out;
784 
785 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
786 
787 	hw->phy.ops.release(hw);
788 
789 out:
790 	return ret_val;
791 }
792 
793 /**
794  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
795  *  @hw: pointer to the HW structure
796  *
797  *  Retrieves the PHY address and ID for both PHY's which do and do not use
798  *  sgmi interface.
799  **/
800 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
801 {
802 	struct e1000_phy_info *phy = &hw->phy;
803 	s32  ret_val = 0;
804 	u16 phy_id;
805 	u32 ctrl_ext;
806 	u32 mdic;
807 
808 	/* Extra read required for some PHY's on i354 */
809 	if (hw->mac.type == e1000_i354)
810 		igb_get_phy_id(hw);
811 
812 	/* For SGMII PHYs, we try the list of possible addresses until
813 	 * we find one that works.  For non-SGMII PHYs
814 	 * (e.g. integrated copper PHYs), an address of 1 should
815 	 * work.  The result of this function should mean phy->phy_addr
816 	 * and phy->id are set correctly.
817 	 */
818 	if (!(igb_sgmii_active_82575(hw))) {
819 		phy->addr = 1;
820 		ret_val = igb_get_phy_id(hw);
821 		goto out;
822 	}
823 
824 	if (igb_sgmii_uses_mdio_82575(hw)) {
825 		switch (hw->mac.type) {
826 		case e1000_82575:
827 		case e1000_82576:
828 			mdic = rd32(E1000_MDIC);
829 			mdic &= E1000_MDIC_PHY_MASK;
830 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
831 			break;
832 		case e1000_82580:
833 		case e1000_i350:
834 		case e1000_i354:
835 		case e1000_i210:
836 		case e1000_i211:
837 			mdic = rd32(E1000_MDICNFG);
838 			mdic &= E1000_MDICNFG_PHY_MASK;
839 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
840 			break;
841 		default:
842 			ret_val = -E1000_ERR_PHY;
843 			goto out;
844 			break;
845 		}
846 		ret_val = igb_get_phy_id(hw);
847 		goto out;
848 	}
849 
850 	/* Power on sgmii phy if it is disabled */
851 	ctrl_ext = rd32(E1000_CTRL_EXT);
852 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
853 	wrfl();
854 	msleep(300);
855 
856 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
857 	 * Therefore, we need to test 1-7
858 	 */
859 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
860 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
861 		if (ret_val == 0) {
862 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
863 			       phy_id, phy->addr);
864 			/* At the time of this writing, The M88 part is
865 			 * the only supported SGMII PHY product.
866 			 */
867 			if (phy_id == M88_VENDOR)
868 				break;
869 		} else {
870 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
871 		}
872 	}
873 
874 	/* A valid PHY type couldn't be found. */
875 	if (phy->addr == 8) {
876 		phy->addr = 0;
877 		ret_val = -E1000_ERR_PHY;
878 		goto out;
879 	} else {
880 		ret_val = igb_get_phy_id(hw);
881 	}
882 
883 	/* restore previous sfp cage power state */
884 	wr32(E1000_CTRL_EXT, ctrl_ext);
885 
886 out:
887 	return ret_val;
888 }
889 
890 /**
891  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
892  *  @hw: pointer to the HW structure
893  *
894  *  Resets the PHY using the serial gigabit media independent interface.
895  **/
896 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
897 {
898 	s32 ret_val;
899 
900 	/* This isn't a true "hard" reset, but is the only reset
901 	 * available to us at this time.
902 	 */
903 
904 	hw_dbg("Soft resetting SGMII attached PHY...\n");
905 
906 	/* SFP documentation requires the following to configure the SPF module
907 	 * to work on SGMII.  No further documentation is given.
908 	 */
909 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
910 	if (ret_val)
911 		goto out;
912 
913 	ret_val = igb_phy_sw_reset(hw);
914 
915 out:
916 	return ret_val;
917 }
918 
919 /**
920  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
921  *  @hw: pointer to the HW structure
922  *  @active: true to enable LPLU, false to disable
923  *
924  *  Sets the LPLU D0 state according to the active flag.  When
925  *  activating LPLU this function also disables smart speed
926  *  and vice versa.  LPLU will not be activated unless the
927  *  device autonegotiation advertisement meets standards of
928  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
929  *  This is a function pointer entry point only called by
930  *  PHY setup routines.
931  **/
932 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
933 {
934 	struct e1000_phy_info *phy = &hw->phy;
935 	s32 ret_val;
936 	u16 data;
937 
938 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
939 	if (ret_val)
940 		goto out;
941 
942 	if (active) {
943 		data |= IGP02E1000_PM_D0_LPLU;
944 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
945 						 data);
946 		if (ret_val)
947 			goto out;
948 
949 		/* When LPLU is enabled, we should disable SmartSpeed */
950 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
951 						&data);
952 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
954 						 data);
955 		if (ret_val)
956 			goto out;
957 	} else {
958 		data &= ~IGP02E1000_PM_D0_LPLU;
959 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
960 						 data);
961 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
962 		 * during Dx states where the power conservation is most
963 		 * important.  During driver activity we should enable
964 		 * SmartSpeed, so performance is maintained.
965 		 */
966 		if (phy->smart_speed == e1000_smart_speed_on) {
967 			ret_val = phy->ops.read_reg(hw,
968 					IGP01E1000_PHY_PORT_CONFIG, &data);
969 			if (ret_val)
970 				goto out;
971 
972 			data |= IGP01E1000_PSCFR_SMART_SPEED;
973 			ret_val = phy->ops.write_reg(hw,
974 					IGP01E1000_PHY_PORT_CONFIG, data);
975 			if (ret_val)
976 				goto out;
977 		} else if (phy->smart_speed == e1000_smart_speed_off) {
978 			ret_val = phy->ops.read_reg(hw,
979 					IGP01E1000_PHY_PORT_CONFIG, &data);
980 			if (ret_val)
981 				goto out;
982 
983 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
984 			ret_val = phy->ops.write_reg(hw,
985 					IGP01E1000_PHY_PORT_CONFIG, data);
986 			if (ret_val)
987 				goto out;
988 		}
989 	}
990 
991 out:
992 	return ret_val;
993 }
994 
995 /**
996  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
997  *  @hw: pointer to the HW structure
998  *  @active: true to enable LPLU, false to disable
999  *
1000  *  Sets the LPLU D0 state according to the active flag.  When
1001  *  activating LPLU this function also disables smart speed
1002  *  and vice versa.  LPLU will not be activated unless the
1003  *  device autonegotiation advertisement meets standards of
1004  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1005  *  This is a function pointer entry point only called by
1006  *  PHY setup routines.
1007  **/
1008 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1009 {
1010 	struct e1000_phy_info *phy = &hw->phy;
1011 	s32 ret_val = 0;
1012 	u16 data;
1013 
1014 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1015 
1016 	if (active) {
1017 		data |= E1000_82580_PM_D0_LPLU;
1018 
1019 		/* When LPLU is enabled, we should disable SmartSpeed */
1020 		data &= ~E1000_82580_PM_SPD;
1021 	} else {
1022 		data &= ~E1000_82580_PM_D0_LPLU;
1023 
1024 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1025 		 * during Dx states where the power conservation is most
1026 		 * important.  During driver activity we should enable
1027 		 * SmartSpeed, so performance is maintained.
1028 		 */
1029 		if (phy->smart_speed == e1000_smart_speed_on)
1030 			data |= E1000_82580_PM_SPD;
1031 		else if (phy->smart_speed == e1000_smart_speed_off)
1032 			data &= ~E1000_82580_PM_SPD; }
1033 
1034 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1035 	return ret_val;
1036 }
1037 
1038 /**
1039  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1040  *  @hw: pointer to the HW structure
1041  *  @active: boolean used to enable/disable lplu
1042  *
1043  *  Success returns 0, Failure returns 1
1044  *
1045  *  The low power link up (lplu) state is set to the power management level D3
1046  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1047  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1048  *  is used during Dx states where the power conservation is most important.
1049  *  During driver activity, SmartSpeed should be enabled so performance is
1050  *  maintained.
1051  **/
1052 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1053 {
1054 	struct e1000_phy_info *phy = &hw->phy;
1055 	s32 ret_val = 0;
1056 	u16 data;
1057 
1058 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1059 
1060 	if (!active) {
1061 		data &= ~E1000_82580_PM_D3_LPLU;
1062 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1063 		 * during Dx states where the power conservation is most
1064 		 * important.  During driver activity we should enable
1065 		 * SmartSpeed, so performance is maintained.
1066 		 */
1067 		if (phy->smart_speed == e1000_smart_speed_on)
1068 			data |= E1000_82580_PM_SPD;
1069 		else if (phy->smart_speed == e1000_smart_speed_off)
1070 			data &= ~E1000_82580_PM_SPD;
1071 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1072 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1073 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1074 		data |= E1000_82580_PM_D3_LPLU;
1075 		/* When LPLU is enabled, we should disable SmartSpeed */
1076 		data &= ~E1000_82580_PM_SPD;
1077 	}
1078 
1079 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1080 	return ret_val;
1081 }
1082 
1083 /**
1084  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1085  *  @hw: pointer to the HW structure
1086  *
1087  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1088  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1089  *  Return successful if access grant bit set, else clear the request for
1090  *  EEPROM access and return -E1000_ERR_NVM (-1).
1091  **/
1092 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1093 {
1094 	s32 ret_val;
1095 
1096 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1097 	if (ret_val)
1098 		goto out;
1099 
1100 	ret_val = igb_acquire_nvm(hw);
1101 
1102 	if (ret_val)
1103 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1104 
1105 out:
1106 	return ret_val;
1107 }
1108 
1109 /**
1110  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1111  *  @hw: pointer to the HW structure
1112  *
1113  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1114  *  then release the semaphores acquired.
1115  **/
1116 static void igb_release_nvm_82575(struct e1000_hw *hw)
1117 {
1118 	igb_release_nvm(hw);
1119 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1120 }
1121 
1122 /**
1123  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1124  *  @hw: pointer to the HW structure
1125  *  @mask: specifies which semaphore to acquire
1126  *
1127  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1128  *  will also specify which port we're acquiring the lock for.
1129  **/
1130 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1131 {
1132 	u32 swfw_sync;
1133 	u32 swmask = mask;
1134 	u32 fwmask = mask << 16;
1135 	s32 ret_val = 0;
1136 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1137 
1138 	while (i < timeout) {
1139 		if (igb_get_hw_semaphore(hw)) {
1140 			ret_val = -E1000_ERR_SWFW_SYNC;
1141 			goto out;
1142 		}
1143 
1144 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1145 		if (!(swfw_sync & (fwmask | swmask)))
1146 			break;
1147 
1148 		/* Firmware currently using resource (fwmask)
1149 		 * or other software thread using resource (swmask)
1150 		 */
1151 		igb_put_hw_semaphore(hw);
1152 		mdelay(5);
1153 		i++;
1154 	}
1155 
1156 	if (i == timeout) {
1157 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1158 		ret_val = -E1000_ERR_SWFW_SYNC;
1159 		goto out;
1160 	}
1161 
1162 	swfw_sync |= swmask;
1163 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1164 
1165 	igb_put_hw_semaphore(hw);
1166 
1167 out:
1168 	return ret_val;
1169 }
1170 
1171 /**
1172  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1173  *  @hw: pointer to the HW structure
1174  *  @mask: specifies which semaphore to acquire
1175  *
1176  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1177  *  will also specify which port we're releasing the lock for.
1178  **/
1179 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1180 {
1181 	u32 swfw_sync;
1182 
1183 	while (igb_get_hw_semaphore(hw) != 0);
1184 	/* Empty */
1185 
1186 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1187 	swfw_sync &= ~mask;
1188 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189 
1190 	igb_put_hw_semaphore(hw);
1191 }
1192 
1193 /**
1194  *  igb_get_cfg_done_82575 - Read config done bit
1195  *  @hw: pointer to the HW structure
1196  *
1197  *  Read the management control register for the config done bit for
1198  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1199  *  to read the config done bit, so an error is *ONLY* logged and returns
1200  *  0.  If we were to return with error, EEPROM-less silicon
1201  *  would not be able to be reset or change link.
1202  **/
1203 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1204 {
1205 	s32 timeout = PHY_CFG_TIMEOUT;
1206 	s32 ret_val = 0;
1207 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1208 
1209 	if (hw->bus.func == 1)
1210 		mask = E1000_NVM_CFG_DONE_PORT_1;
1211 	else if (hw->bus.func == E1000_FUNC_2)
1212 		mask = E1000_NVM_CFG_DONE_PORT_2;
1213 	else if (hw->bus.func == E1000_FUNC_3)
1214 		mask = E1000_NVM_CFG_DONE_PORT_3;
1215 
1216 	while (timeout) {
1217 		if (rd32(E1000_EEMNGCTL) & mask)
1218 			break;
1219 		msleep(1);
1220 		timeout--;
1221 	}
1222 	if (!timeout)
1223 		hw_dbg("MNG configuration cycle has not completed.\n");
1224 
1225 	/* If EEPROM is not marked present, init the PHY manually */
1226 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1227 	    (hw->phy.type == e1000_phy_igp_3))
1228 		igb_phy_init_script_igp3(hw);
1229 
1230 	return ret_val;
1231 }
1232 
1233 /**
1234  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1235  *  @hw: pointer to the HW structure
1236  *  @speed: stores the current speed
1237  *  @duplex: stores the current duplex
1238  *
1239  *  This is a wrapper function, if using the serial gigabit media independent
1240  *  interface, use PCS to retrieve the link speed and duplex information.
1241  *  Otherwise, use the generic function to get the link speed and duplex info.
1242  **/
1243 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1244 					u16 *duplex)
1245 {
1246 	s32 ret_val;
1247 
1248 	if (hw->phy.media_type != e1000_media_type_copper)
1249 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1250 							       duplex);
1251 	else
1252 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1253 								    duplex);
1254 
1255 	return ret_val;
1256 }
1257 
1258 /**
1259  *  igb_check_for_link_82575 - Check for link
1260  *  @hw: pointer to the HW structure
1261  *
1262  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1263  *  use the generic interface for determining link.
1264  **/
1265 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1266 {
1267 	s32 ret_val;
1268 	u16 speed, duplex;
1269 
1270 	if (hw->phy.media_type != e1000_media_type_copper) {
1271 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1272 		                                             &duplex);
1273 		/* Use this flag to determine if link needs to be checked or
1274 		 * not.  If  we have link clear the flag so that we do not
1275 		 * continue to check for link.
1276 		 */
1277 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1278 
1279 		/* Configure Flow Control now that Auto-Neg has completed.
1280 		 * First, we need to restore the desired flow control
1281 		 * settings because we may have had to re-autoneg with a
1282 		 * different link partner.
1283 		 */
1284 		ret_val = igb_config_fc_after_link_up(hw);
1285 		if (ret_val)
1286 			hw_dbg("Error configuring flow control\n");
1287 	} else {
1288 		ret_val = igb_check_for_copper_link(hw);
1289 	}
1290 
1291 	return ret_val;
1292 }
1293 
1294 /**
1295  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1296  *  @hw: pointer to the HW structure
1297  **/
1298 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1299 {
1300 	u32 reg;
1301 
1302 
1303 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1304 	    !igb_sgmii_active_82575(hw))
1305 		return;
1306 
1307 	/* Enable PCS to turn on link */
1308 	reg = rd32(E1000_PCS_CFG0);
1309 	reg |= E1000_PCS_CFG_PCS_EN;
1310 	wr32(E1000_PCS_CFG0, reg);
1311 
1312 	/* Power up the laser */
1313 	reg = rd32(E1000_CTRL_EXT);
1314 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1315 	wr32(E1000_CTRL_EXT, reg);
1316 
1317 	/* flush the write to verify completion */
1318 	wrfl();
1319 	msleep(1);
1320 }
1321 
1322 /**
1323  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1324  *  @hw: pointer to the HW structure
1325  *  @speed: stores the current speed
1326  *  @duplex: stores the current duplex
1327  *
1328  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1329  *  duplex, then store the values in the pointers provided.
1330  **/
1331 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1332 						u16 *duplex)
1333 {
1334 	struct e1000_mac_info *mac = &hw->mac;
1335 	u32 pcs, status;
1336 
1337 	/* Set up defaults for the return values of this function */
1338 	mac->serdes_has_link = false;
1339 	*speed = 0;
1340 	*duplex = 0;
1341 
1342 	/* Read the PCS Status register for link state. For non-copper mode,
1343 	 * the status register is not accurate. The PCS status register is
1344 	 * used instead.
1345 	 */
1346 	pcs = rd32(E1000_PCS_LSTAT);
1347 
1348 	/* The link up bit determines when link is up on autoneg. The sync ok
1349 	 * gets set once both sides sync up and agree upon link. Stable link
1350 	 * can be determined by checking for both link up and link sync ok
1351 	 */
1352 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1353 		mac->serdes_has_link = true;
1354 
1355 		/* Detect and store PCS speed */
1356 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1357 			*speed = SPEED_1000;
1358 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1359 			*speed = SPEED_100;
1360 		else
1361 			*speed = SPEED_10;
1362 
1363 		/* Detect and store PCS duplex */
1364 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1365 			*duplex = FULL_DUPLEX;
1366 		else
1367 			*duplex = HALF_DUPLEX;
1368 
1369 	/* Check if it is an I354 2.5Gb backplane connection. */
1370 		if (mac->type == e1000_i354) {
1371 			status = rd32(E1000_STATUS);
1372 			if ((status & E1000_STATUS_2P5_SKU) &&
1373 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1374 				*speed = SPEED_2500;
1375 				*duplex = FULL_DUPLEX;
1376 				hw_dbg("2500 Mbs, ");
1377 				hw_dbg("Full Duplex\n");
1378 			}
1379 		}
1380 
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /**
1387  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1388  *  @hw: pointer to the HW structure
1389  *
1390  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1391  *  when management pass thru is not enabled.
1392  **/
1393 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1394 {
1395 	u32 reg;
1396 
1397 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1398 	    igb_sgmii_active_82575(hw))
1399 		return;
1400 
1401 	if (!igb_enable_mng_pass_thru(hw)) {
1402 		/* Disable PCS to turn off link */
1403 		reg = rd32(E1000_PCS_CFG0);
1404 		reg &= ~E1000_PCS_CFG_PCS_EN;
1405 		wr32(E1000_PCS_CFG0, reg);
1406 
1407 		/* shutdown the laser */
1408 		reg = rd32(E1000_CTRL_EXT);
1409 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1410 		wr32(E1000_CTRL_EXT, reg);
1411 
1412 		/* flush the write to verify completion */
1413 		wrfl();
1414 		msleep(1);
1415 	}
1416 }
1417 
1418 /**
1419  *  igb_reset_hw_82575 - Reset hardware
1420  *  @hw: pointer to the HW structure
1421  *
1422  *  This resets the hardware into a known state.  This is a
1423  *  function pointer entry point called by the api module.
1424  **/
1425 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1426 {
1427 	u32 ctrl;
1428 	s32 ret_val;
1429 
1430 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1431 	 * on the last TLP read/write transaction when MAC is reset.
1432 	 */
1433 	ret_val = igb_disable_pcie_master(hw);
1434 	if (ret_val)
1435 		hw_dbg("PCI-E Master disable polling has failed.\n");
1436 
1437 	/* set the completion timeout for interface */
1438 	ret_val = igb_set_pcie_completion_timeout(hw);
1439 	if (ret_val) {
1440 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1441 	}
1442 
1443 	hw_dbg("Masking off all interrupts\n");
1444 	wr32(E1000_IMC, 0xffffffff);
1445 
1446 	wr32(E1000_RCTL, 0);
1447 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1448 	wrfl();
1449 
1450 	msleep(10);
1451 
1452 	ctrl = rd32(E1000_CTRL);
1453 
1454 	hw_dbg("Issuing a global reset to MAC\n");
1455 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1456 
1457 	ret_val = igb_get_auto_rd_done(hw);
1458 	if (ret_val) {
1459 		/* When auto config read does not complete, do not
1460 		 * return with an error. This can happen in situations
1461 		 * where there is no eeprom and prevents getting link.
1462 		 */
1463 		hw_dbg("Auto Read Done did not complete\n");
1464 	}
1465 
1466 	/* If EEPROM is not present, run manual init scripts */
1467 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1468 		igb_reset_init_script_82575(hw);
1469 
1470 	/* Clear any pending interrupt events. */
1471 	wr32(E1000_IMC, 0xffffffff);
1472 	rd32(E1000_ICR);
1473 
1474 	/* Install any alternate MAC address into RAR0 */
1475 	ret_val = igb_check_alt_mac_addr(hw);
1476 
1477 	return ret_val;
1478 }
1479 
1480 /**
1481  *  igb_init_hw_82575 - Initialize hardware
1482  *  @hw: pointer to the HW structure
1483  *
1484  *  This inits the hardware readying it for operation.
1485  **/
1486 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1487 {
1488 	struct e1000_mac_info *mac = &hw->mac;
1489 	s32 ret_val;
1490 	u16 i, rar_count = mac->rar_entry_count;
1491 
1492 	/* Initialize identification LED */
1493 	ret_val = igb_id_led_init(hw);
1494 	if (ret_val) {
1495 		hw_dbg("Error initializing identification LED\n");
1496 		/* This is not fatal and we should not stop init due to this */
1497 	}
1498 
1499 	/* Disabling VLAN filtering */
1500 	hw_dbg("Initializing the IEEE VLAN\n");
1501 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1502 		igb_clear_vfta_i350(hw);
1503 	else
1504 		igb_clear_vfta(hw);
1505 
1506 	/* Setup the receive address */
1507 	igb_init_rx_addrs(hw, rar_count);
1508 
1509 	/* Zero out the Multicast HASH table */
1510 	hw_dbg("Zeroing the MTA\n");
1511 	for (i = 0; i < mac->mta_reg_count; i++)
1512 		array_wr32(E1000_MTA, i, 0);
1513 
1514 	/* Zero out the Unicast HASH table */
1515 	hw_dbg("Zeroing the UTA\n");
1516 	for (i = 0; i < mac->uta_reg_count; i++)
1517 		array_wr32(E1000_UTA, i, 0);
1518 
1519 	/* Setup link and flow control */
1520 	ret_val = igb_setup_link(hw);
1521 
1522 	/* Clear all of the statistics registers (clear on read).  It is
1523 	 * important that we do this after we have tried to establish link
1524 	 * because the symbol error count will increment wildly if there
1525 	 * is no link.
1526 	 */
1527 	igb_clear_hw_cntrs_82575(hw);
1528 	return ret_val;
1529 }
1530 
1531 /**
1532  *  igb_setup_copper_link_82575 - Configure copper link settings
1533  *  @hw: pointer to the HW structure
1534  *
1535  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1536  *  for link, once link is established calls to configure collision distance
1537  *  and flow control are called.
1538  **/
1539 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1540 {
1541 	u32 ctrl;
1542 	s32  ret_val;
1543 	u32 phpm_reg;
1544 
1545 	ctrl = rd32(E1000_CTRL);
1546 	ctrl |= E1000_CTRL_SLU;
1547 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1548 	wr32(E1000_CTRL, ctrl);
1549 
1550 	/* Clear Go Link Disconnect bit on supported devices */
1551 	switch (hw->mac.type) {
1552 	case e1000_82580:
1553 	case e1000_i350:
1554 	case e1000_i210:
1555 	case e1000_i211:
1556 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1557 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1558 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1559 		break;
1560 	default:
1561 		break;
1562 	}
1563 
1564 	ret_val = igb_setup_serdes_link_82575(hw);
1565 	if (ret_val)
1566 		goto out;
1567 
1568 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1569 		/* allow time for SFP cage time to power up phy */
1570 		msleep(300);
1571 
1572 		ret_val = hw->phy.ops.reset(hw);
1573 		if (ret_val) {
1574 			hw_dbg("Error resetting the PHY.\n");
1575 			goto out;
1576 		}
1577 	}
1578 	switch (hw->phy.type) {
1579 	case e1000_phy_i210:
1580 	case e1000_phy_m88:
1581 		switch (hw->phy.id) {
1582 		case I347AT4_E_PHY_ID:
1583 		case M88E1112_E_PHY_ID:
1584 		case M88E1543_E_PHY_ID:
1585 		case I210_I_PHY_ID:
1586 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1587 			break;
1588 		default:
1589 			ret_val = igb_copper_link_setup_m88(hw);
1590 			break;
1591 		}
1592 		break;
1593 	case e1000_phy_igp_3:
1594 		ret_val = igb_copper_link_setup_igp(hw);
1595 		break;
1596 	case e1000_phy_82580:
1597 		ret_val = igb_copper_link_setup_82580(hw);
1598 		break;
1599 	default:
1600 		ret_val = -E1000_ERR_PHY;
1601 		break;
1602 	}
1603 
1604 	if (ret_val)
1605 		goto out;
1606 
1607 	ret_val = igb_setup_copper_link(hw);
1608 out:
1609 	return ret_val;
1610 }
1611 
1612 /**
1613  *  igb_setup_serdes_link_82575 - Setup link for serdes
1614  *  @hw: pointer to the HW structure
1615  *
1616  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1617  *  used on copper connections where the serialized gigabit media independent
1618  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1619  *  for auto-negotiation or forces speed/duplex.
1620  **/
1621 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1622 {
1623 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1624 	bool pcs_autoneg;
1625 	s32 ret_val = E1000_SUCCESS;
1626 	u16 data;
1627 
1628 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1629 	    !igb_sgmii_active_82575(hw))
1630 		return ret_val;
1631 
1632 
1633 	/* On the 82575, SerDes loopback mode persists until it is
1634 	 * explicitly turned off or a power cycle is performed.  A read to
1635 	 * the register does not indicate its status.  Therefore, we ensure
1636 	 * loopback mode is disabled during initialization.
1637 	 */
1638 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1639 
1640 	/* power on the sfp cage if present and turn on I2C */
1641 	ctrl_ext = rd32(E1000_CTRL_EXT);
1642 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1643 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1644 	wr32(E1000_CTRL_EXT, ctrl_ext);
1645 
1646 	ctrl_reg = rd32(E1000_CTRL);
1647 	ctrl_reg |= E1000_CTRL_SLU;
1648 
1649 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1650 		/* set both sw defined pins */
1651 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1652 
1653 		/* Set switch control to serdes energy detect */
1654 		reg = rd32(E1000_CONNSW);
1655 		reg |= E1000_CONNSW_ENRGSRC;
1656 		wr32(E1000_CONNSW, reg);
1657 	}
1658 
1659 	reg = rd32(E1000_PCS_LCTL);
1660 
1661 	/* default pcs_autoneg to the same setting as mac autoneg */
1662 	pcs_autoneg = hw->mac.autoneg;
1663 
1664 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1665 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1666 		/* sgmii mode lets the phy handle forcing speed/duplex */
1667 		pcs_autoneg = true;
1668 		/* autoneg time out should be disabled for SGMII mode */
1669 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1670 		break;
1671 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1672 		/* disable PCS autoneg and support parallel detect only */
1673 		pcs_autoneg = false;
1674 	default:
1675 		if (hw->mac.type == e1000_82575 ||
1676 		    hw->mac.type == e1000_82576) {
1677 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1678 			if (ret_val) {
1679 				printk(KERN_DEBUG "NVM Read Error\n\n");
1680 				return ret_val;
1681 			}
1682 
1683 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1684 				pcs_autoneg = false;
1685 		}
1686 
1687 		/* non-SGMII modes only supports a speed of 1000/Full for the
1688 		 * link so it is best to just force the MAC and let the pcs
1689 		 * link either autoneg or be forced to 1000/Full
1690 		 */
1691 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1692 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1693 
1694 		/* set speed of 1000/Full if speed/duplex is forced */
1695 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1696 		break;
1697 	}
1698 
1699 	wr32(E1000_CTRL, ctrl_reg);
1700 
1701 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1702 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1703 	 * mode that will be compatible with older link partners and switches.
1704 	 * However, both are supported by the hardware and some drivers/tools.
1705 	 */
1706 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1707 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1708 
1709 	if (pcs_autoneg) {
1710 		/* Set PCS register for autoneg */
1711 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1712 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1713 
1714 		/* Disable force flow control for autoneg */
1715 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1716 
1717 		/* Configure flow control advertisement for autoneg */
1718 		anadv_reg = rd32(E1000_PCS_ANADV);
1719 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1720 		switch (hw->fc.requested_mode) {
1721 		case e1000_fc_full:
1722 		case e1000_fc_rx_pause:
1723 			anadv_reg |= E1000_TXCW_ASM_DIR;
1724 			anadv_reg |= E1000_TXCW_PAUSE;
1725 			break;
1726 		case e1000_fc_tx_pause:
1727 			anadv_reg |= E1000_TXCW_ASM_DIR;
1728 			break;
1729 		default:
1730 			break;
1731 		}
1732 		wr32(E1000_PCS_ANADV, anadv_reg);
1733 
1734 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1735 	} else {
1736 		/* Set PCS register for forced link */
1737 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1738 
1739 		/* Force flow control for forced link */
1740 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1741 
1742 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1743 	}
1744 
1745 	wr32(E1000_PCS_LCTL, reg);
1746 
1747 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1748 		igb_force_mac_fc(hw);
1749 
1750 	return ret_val;
1751 }
1752 
1753 /**
1754  *  igb_sgmii_active_82575 - Return sgmii state
1755  *  @hw: pointer to the HW structure
1756  *
1757  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1758  *  which can be enabled for use in the embedded applications.  Simply
1759  *  return the current state of the sgmii interface.
1760  **/
1761 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1762 {
1763 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1764 	return dev_spec->sgmii_active;
1765 }
1766 
1767 /**
1768  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1769  *  @hw: pointer to the HW structure
1770  *
1771  *  Inits recommended HW defaults after a reset when there is no EEPROM
1772  *  detected. This is only for the 82575.
1773  **/
1774 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1775 {
1776 	if (hw->mac.type == e1000_82575) {
1777 		hw_dbg("Running reset init script for 82575\n");
1778 		/* SerDes configuration via SERDESCTRL */
1779 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1780 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1781 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1782 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1783 
1784 		/* CCM configuration via CCMCTL register */
1785 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1786 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1787 
1788 		/* PCIe lanes configuration */
1789 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1790 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1791 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1792 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1793 
1794 		/* PCIe PLL Configuration */
1795 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1796 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1797 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1798 	}
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  *  igb_read_mac_addr_82575 - Read device MAC address
1805  *  @hw: pointer to the HW structure
1806  **/
1807 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1808 {
1809 	s32 ret_val = 0;
1810 
1811 	/* If there's an alternate MAC address place it in RAR0
1812 	 * so that it will override the Si installed default perm
1813 	 * address.
1814 	 */
1815 	ret_val = igb_check_alt_mac_addr(hw);
1816 	if (ret_val)
1817 		goto out;
1818 
1819 	ret_val = igb_read_mac_addr(hw);
1820 
1821 out:
1822 	return ret_val;
1823 }
1824 
1825 /**
1826  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1827  * @hw: pointer to the HW structure
1828  *
1829  * In the case of a PHY power down to save power, or to turn off link during a
1830  * driver unload, or wake on lan is not enabled, remove the link.
1831  **/
1832 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1833 {
1834 	/* If the management interface is not enabled, then power down */
1835 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1836 		igb_power_down_phy_copper(hw);
1837 }
1838 
1839 /**
1840  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1841  *  @hw: pointer to the HW structure
1842  *
1843  *  Clears the hardware counters by reading the counter registers.
1844  **/
1845 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1846 {
1847 	igb_clear_hw_cntrs_base(hw);
1848 
1849 	rd32(E1000_PRC64);
1850 	rd32(E1000_PRC127);
1851 	rd32(E1000_PRC255);
1852 	rd32(E1000_PRC511);
1853 	rd32(E1000_PRC1023);
1854 	rd32(E1000_PRC1522);
1855 	rd32(E1000_PTC64);
1856 	rd32(E1000_PTC127);
1857 	rd32(E1000_PTC255);
1858 	rd32(E1000_PTC511);
1859 	rd32(E1000_PTC1023);
1860 	rd32(E1000_PTC1522);
1861 
1862 	rd32(E1000_ALGNERRC);
1863 	rd32(E1000_RXERRC);
1864 	rd32(E1000_TNCRS);
1865 	rd32(E1000_CEXTERR);
1866 	rd32(E1000_TSCTC);
1867 	rd32(E1000_TSCTFC);
1868 
1869 	rd32(E1000_MGTPRC);
1870 	rd32(E1000_MGTPDC);
1871 	rd32(E1000_MGTPTC);
1872 
1873 	rd32(E1000_IAC);
1874 	rd32(E1000_ICRXOC);
1875 
1876 	rd32(E1000_ICRXPTC);
1877 	rd32(E1000_ICRXATC);
1878 	rd32(E1000_ICTXPTC);
1879 	rd32(E1000_ICTXATC);
1880 	rd32(E1000_ICTXQEC);
1881 	rd32(E1000_ICTXQMTC);
1882 	rd32(E1000_ICRXDMTC);
1883 
1884 	rd32(E1000_CBTMPC);
1885 	rd32(E1000_HTDPMC);
1886 	rd32(E1000_CBRMPC);
1887 	rd32(E1000_RPTHC);
1888 	rd32(E1000_HGPTC);
1889 	rd32(E1000_HTCBDPC);
1890 	rd32(E1000_HGORCL);
1891 	rd32(E1000_HGORCH);
1892 	rd32(E1000_HGOTCL);
1893 	rd32(E1000_HGOTCH);
1894 	rd32(E1000_LENERRS);
1895 
1896 	/* This register should not be read in copper configurations */
1897 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1898 	    igb_sgmii_active_82575(hw))
1899 		rd32(E1000_SCVPC);
1900 }
1901 
1902 /**
1903  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1904  *  @hw: pointer to the HW structure
1905  *
1906  *  After rx enable if managability is enabled then there is likely some
1907  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1908  *  function clears the fifos and flushes any packets that came in as rx was
1909  *  being enabled.
1910  **/
1911 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1912 {
1913 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1914 	int i, ms_wait;
1915 
1916 	if (hw->mac.type != e1000_82575 ||
1917 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1918 		return;
1919 
1920 	/* Disable all RX queues */
1921 	for (i = 0; i < 4; i++) {
1922 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1923 		wr32(E1000_RXDCTL(i),
1924 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1925 	}
1926 	/* Poll all queues to verify they have shut down */
1927 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1928 		msleep(1);
1929 		rx_enabled = 0;
1930 		for (i = 0; i < 4; i++)
1931 			rx_enabled |= rd32(E1000_RXDCTL(i));
1932 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1933 			break;
1934 	}
1935 
1936 	if (ms_wait == 10)
1937 		hw_dbg("Queue disable timed out after 10ms\n");
1938 
1939 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1940 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1941 	 * any packet that was coming in as RCTL.EN was set is flushed
1942 	 */
1943 	rfctl = rd32(E1000_RFCTL);
1944 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1945 
1946 	rlpml = rd32(E1000_RLPML);
1947 	wr32(E1000_RLPML, 0);
1948 
1949 	rctl = rd32(E1000_RCTL);
1950 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1951 	temp_rctl |= E1000_RCTL_LPE;
1952 
1953 	wr32(E1000_RCTL, temp_rctl);
1954 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1955 	wrfl();
1956 	msleep(2);
1957 
1958 	/* Enable RX queues that were previously enabled and restore our
1959 	 * previous state
1960 	 */
1961 	for (i = 0; i < 4; i++)
1962 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1963 	wr32(E1000_RCTL, rctl);
1964 	wrfl();
1965 
1966 	wr32(E1000_RLPML, rlpml);
1967 	wr32(E1000_RFCTL, rfctl);
1968 
1969 	/* Flush receive errors generated by workaround */
1970 	rd32(E1000_ROC);
1971 	rd32(E1000_RNBC);
1972 	rd32(E1000_MPC);
1973 }
1974 
1975 /**
1976  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1977  *  @hw: pointer to the HW structure
1978  *
1979  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1980  *  however the hardware default for these parts is 500us to 1ms which is less
1981  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1982  *  increase the value to either 10ms to 200ms for capability version 1 config,
1983  *  or 16ms to 55ms for version 2.
1984  **/
1985 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1986 {
1987 	u32 gcr = rd32(E1000_GCR);
1988 	s32 ret_val = 0;
1989 	u16 pcie_devctl2;
1990 
1991 	/* only take action if timeout value is defaulted to 0 */
1992 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1993 		goto out;
1994 
1995 	/* if capabilities version is type 1 we can write the
1996 	 * timeout of 10ms to 200ms through the GCR register
1997 	 */
1998 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1999 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2000 		goto out;
2001 	}
2002 
2003 	/* for version 2 capabilities we need to write the config space
2004 	 * directly in order to set the completion timeout value for
2005 	 * 16ms to 55ms
2006 	 */
2007 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2008 	                                &pcie_devctl2);
2009 	if (ret_val)
2010 		goto out;
2011 
2012 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2013 
2014 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2015 	                                 &pcie_devctl2);
2016 out:
2017 	/* disable completion timeout resend */
2018 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2019 
2020 	wr32(E1000_GCR, gcr);
2021 	return ret_val;
2022 }
2023 
2024 /**
2025  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2026  *  @hw: pointer to the hardware struct
2027  *  @enable: state to enter, either enabled or disabled
2028  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2029  *
2030  *  enables/disables L2 switch anti-spoofing functionality.
2031  **/
2032 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2033 {
2034 	u32 reg_val, reg_offset;
2035 
2036 	switch (hw->mac.type) {
2037 	case e1000_82576:
2038 		reg_offset = E1000_DTXSWC;
2039 		break;
2040 	case e1000_i350:
2041 	case e1000_i354:
2042 		reg_offset = E1000_TXSWC;
2043 		break;
2044 	default:
2045 		return;
2046 	}
2047 
2048 	reg_val = rd32(reg_offset);
2049 	if (enable) {
2050 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2051 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2052 		/* The PF can spoof - it has to in order to
2053 		 * support emulation mode NICs
2054 		 */
2055 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2056 	} else {
2057 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2058 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2059 	}
2060 	wr32(reg_offset, reg_val);
2061 }
2062 
2063 /**
2064  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2065  *  @hw: pointer to the hardware struct
2066  *  @enable: state to enter, either enabled or disabled
2067  *
2068  *  enables/disables L2 switch loopback functionality.
2069  **/
2070 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2071 {
2072 	u32 dtxswc;
2073 
2074 	switch (hw->mac.type) {
2075 	case e1000_82576:
2076 		dtxswc = rd32(E1000_DTXSWC);
2077 		if (enable)
2078 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2079 		else
2080 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2081 		wr32(E1000_DTXSWC, dtxswc);
2082 		break;
2083 	case e1000_i354:
2084 	case e1000_i350:
2085 		dtxswc = rd32(E1000_TXSWC);
2086 		if (enable)
2087 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2088 		else
2089 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2090 		wr32(E1000_TXSWC, dtxswc);
2091 		break;
2092 	default:
2093 		/* Currently no other hardware supports loopback */
2094 		break;
2095 	}
2096 
2097 }
2098 
2099 /**
2100  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2101  *  @hw: pointer to the hardware struct
2102  *  @enable: state to enter, either enabled or disabled
2103  *
2104  *  enables/disables replication of packets across multiple pools.
2105  **/
2106 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2107 {
2108 	u32 vt_ctl = rd32(E1000_VT_CTL);
2109 
2110 	if (enable)
2111 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2112 	else
2113 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2114 
2115 	wr32(E1000_VT_CTL, vt_ctl);
2116 }
2117 
2118 /**
2119  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2120  *  @hw: pointer to the HW structure
2121  *  @offset: register offset to be read
2122  *  @data: pointer to the read data
2123  *
2124  *  Reads the MDI control register in the PHY at offset and stores the
2125  *  information read to data.
2126  **/
2127 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2128 {
2129 	s32 ret_val;
2130 
2131 	ret_val = hw->phy.ops.acquire(hw);
2132 	if (ret_val)
2133 		goto out;
2134 
2135 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2136 
2137 	hw->phy.ops.release(hw);
2138 
2139 out:
2140 	return ret_val;
2141 }
2142 
2143 /**
2144  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2145  *  @hw: pointer to the HW structure
2146  *  @offset: register offset to write to
2147  *  @data: data to write to register at offset
2148  *
2149  *  Writes data to MDI control register in the PHY at offset.
2150  **/
2151 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2152 {
2153 	s32 ret_val;
2154 
2155 
2156 	ret_val = hw->phy.ops.acquire(hw);
2157 	if (ret_val)
2158 		goto out;
2159 
2160 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2161 
2162 	hw->phy.ops.release(hw);
2163 
2164 out:
2165 	return ret_val;
2166 }
2167 
2168 /**
2169  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2170  *  @hw: pointer to the HW structure
2171  *
2172  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2173  *  the values found in the EEPROM.  This addresses an issue in which these
2174  *  bits are not restored from EEPROM after reset.
2175  **/
2176 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2177 {
2178 	s32 ret_val = 0;
2179 	u32 mdicnfg;
2180 	u16 nvm_data = 0;
2181 
2182 	if (hw->mac.type != e1000_82580)
2183 		goto out;
2184 	if (!igb_sgmii_active_82575(hw))
2185 		goto out;
2186 
2187 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2188 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2189 				   &nvm_data);
2190 	if (ret_val) {
2191 		hw_dbg("NVM Read Error\n");
2192 		goto out;
2193 	}
2194 
2195 	mdicnfg = rd32(E1000_MDICNFG);
2196 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2197 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2198 	if (nvm_data & NVM_WORD24_COM_MDIO)
2199 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2200 	wr32(E1000_MDICNFG, mdicnfg);
2201 out:
2202 	return ret_val;
2203 }
2204 
2205 /**
2206  *  igb_reset_hw_82580 - Reset hardware
2207  *  @hw: pointer to the HW structure
2208  *
2209  *  This resets function or entire device (all ports, etc.)
2210  *  to a known state.
2211  **/
2212 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2213 {
2214 	s32 ret_val = 0;
2215 	/* BH SW mailbox bit in SW_FW_SYNC */
2216 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2217 	u32 ctrl;
2218 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2219 
2220 	hw->dev_spec._82575.global_device_reset = false;
2221 
2222 	/* due to hw errata, global device reset doesn't always
2223 	 * work on 82580
2224 	 */
2225 	if (hw->mac.type == e1000_82580)
2226 		global_device_reset = false;
2227 
2228 	/* Get current control state. */
2229 	ctrl = rd32(E1000_CTRL);
2230 
2231 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2232 	 * on the last TLP read/write transaction when MAC is reset.
2233 	 */
2234 	ret_val = igb_disable_pcie_master(hw);
2235 	if (ret_val)
2236 		hw_dbg("PCI-E Master disable polling has failed.\n");
2237 
2238 	hw_dbg("Masking off all interrupts\n");
2239 	wr32(E1000_IMC, 0xffffffff);
2240 	wr32(E1000_RCTL, 0);
2241 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2242 	wrfl();
2243 
2244 	msleep(10);
2245 
2246 	/* Determine whether or not a global dev reset is requested */
2247 	if (global_device_reset &&
2248 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2249 			global_device_reset = false;
2250 
2251 	if (global_device_reset &&
2252 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2253 		ctrl |= E1000_CTRL_DEV_RST;
2254 	else
2255 		ctrl |= E1000_CTRL_RST;
2256 
2257 	wr32(E1000_CTRL, ctrl);
2258 	wrfl();
2259 
2260 	/* Add delay to insure DEV_RST has time to complete */
2261 	if (global_device_reset)
2262 		msleep(5);
2263 
2264 	ret_val = igb_get_auto_rd_done(hw);
2265 	if (ret_val) {
2266 		/* When auto config read does not complete, do not
2267 		 * return with an error. This can happen in situations
2268 		 * where there is no eeprom and prevents getting link.
2269 		 */
2270 		hw_dbg("Auto Read Done did not complete\n");
2271 	}
2272 
2273 	/* clear global device reset status bit */
2274 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2275 
2276 	/* Clear any pending interrupt events. */
2277 	wr32(E1000_IMC, 0xffffffff);
2278 	rd32(E1000_ICR);
2279 
2280 	ret_val = igb_reset_mdicnfg_82580(hw);
2281 	if (ret_val)
2282 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2283 
2284 	/* Install any alternate MAC address into RAR0 */
2285 	ret_val = igb_check_alt_mac_addr(hw);
2286 
2287 	/* Release semaphore */
2288 	if (global_device_reset)
2289 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2290 
2291 	return ret_val;
2292 }
2293 
2294 /**
2295  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2296  *  @data: data received by reading RXPBS register
2297  *
2298  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2299  *  This function converts the retrieved value into the correct table value
2300  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2301  *  0x0 36  72 144   1   2   4   8  16
2302  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2303  */
2304 u16 igb_rxpbs_adjust_82580(u32 data)
2305 {
2306 	u16 ret_val = 0;
2307 
2308 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2309 		ret_val = e1000_82580_rxpbs_table[data];
2310 
2311 	return ret_val;
2312 }
2313 
2314 /**
2315  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2316  *  checksum
2317  *  @hw: pointer to the HW structure
2318  *  @offset: offset in words of the checksum protected region
2319  *
2320  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2321  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2322  **/
2323 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2324 						 u16 offset)
2325 {
2326 	s32 ret_val = 0;
2327 	u16 checksum = 0;
2328 	u16 i, nvm_data;
2329 
2330 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2331 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2332 		if (ret_val) {
2333 			hw_dbg("NVM Read Error\n");
2334 			goto out;
2335 		}
2336 		checksum += nvm_data;
2337 	}
2338 
2339 	if (checksum != (u16) NVM_SUM) {
2340 		hw_dbg("NVM Checksum Invalid\n");
2341 		ret_val = -E1000_ERR_NVM;
2342 		goto out;
2343 	}
2344 
2345 out:
2346 	return ret_val;
2347 }
2348 
2349 /**
2350  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2351  *  checksum
2352  *  @hw: pointer to the HW structure
2353  *  @offset: offset in words of the checksum protected region
2354  *
2355  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2356  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2357  *  value to the EEPROM.
2358  **/
2359 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2360 {
2361 	s32 ret_val;
2362 	u16 checksum = 0;
2363 	u16 i, nvm_data;
2364 
2365 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2366 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2367 		if (ret_val) {
2368 			hw_dbg("NVM Read Error while updating checksum.\n");
2369 			goto out;
2370 		}
2371 		checksum += nvm_data;
2372 	}
2373 	checksum = (u16) NVM_SUM - checksum;
2374 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2375 				&checksum);
2376 	if (ret_val)
2377 		hw_dbg("NVM Write Error while updating checksum.\n");
2378 
2379 out:
2380 	return ret_val;
2381 }
2382 
2383 /**
2384  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2385  *  @hw: pointer to the HW structure
2386  *
2387  *  Calculates the EEPROM section checksum by reading/adding each word of
2388  *  the EEPROM and then verifies that the sum of the EEPROM is
2389  *  equal to 0xBABA.
2390  **/
2391 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2392 {
2393 	s32 ret_val = 0;
2394 	u16 eeprom_regions_count = 1;
2395 	u16 j, nvm_data;
2396 	u16 nvm_offset;
2397 
2398 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2399 	if (ret_val) {
2400 		hw_dbg("NVM Read Error\n");
2401 		goto out;
2402 	}
2403 
2404 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2405 		/* if checksums compatibility bit is set validate checksums
2406 		 * for all 4 ports.
2407 		 */
2408 		eeprom_regions_count = 4;
2409 	}
2410 
2411 	for (j = 0; j < eeprom_regions_count; j++) {
2412 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2413 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2414 								nvm_offset);
2415 		if (ret_val != 0)
2416 			goto out;
2417 	}
2418 
2419 out:
2420 	return ret_val;
2421 }
2422 
2423 /**
2424  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2425  *  @hw: pointer to the HW structure
2426  *
2427  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2428  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2429  *  checksum and writes the value to the EEPROM.
2430  **/
2431 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2432 {
2433 	s32 ret_val;
2434 	u16 j, nvm_data;
2435 	u16 nvm_offset;
2436 
2437 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2438 	if (ret_val) {
2439 		hw_dbg("NVM Read Error while updating checksum"
2440 			" compatibility bit.\n");
2441 		goto out;
2442 	}
2443 
2444 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2445 		/* set compatibility bit to validate checksums appropriately */
2446 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2447 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2448 					&nvm_data);
2449 		if (ret_val) {
2450 			hw_dbg("NVM Write Error while updating checksum"
2451 				" compatibility bit.\n");
2452 			goto out;
2453 		}
2454 	}
2455 
2456 	for (j = 0; j < 4; j++) {
2457 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2458 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2459 		if (ret_val)
2460 			goto out;
2461 	}
2462 
2463 out:
2464 	return ret_val;
2465 }
2466 
2467 /**
2468  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2469  *  @hw: pointer to the HW structure
2470  *
2471  *  Calculates the EEPROM section checksum by reading/adding each word of
2472  *  the EEPROM and then verifies that the sum of the EEPROM is
2473  *  equal to 0xBABA.
2474  **/
2475 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2476 {
2477 	s32 ret_val = 0;
2478 	u16 j;
2479 	u16 nvm_offset;
2480 
2481 	for (j = 0; j < 4; j++) {
2482 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2483 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2484 								nvm_offset);
2485 		if (ret_val != 0)
2486 			goto out;
2487 	}
2488 
2489 out:
2490 	return ret_val;
2491 }
2492 
2493 /**
2494  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2495  *  @hw: pointer to the HW structure
2496  *
2497  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2498  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2499  *  checksum and writes the value to the EEPROM.
2500  **/
2501 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2502 {
2503 	s32 ret_val = 0;
2504 	u16 j;
2505 	u16 nvm_offset;
2506 
2507 	for (j = 0; j < 4; j++) {
2508 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2509 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2510 		if (ret_val != 0)
2511 			goto out;
2512 	}
2513 
2514 out:
2515 	return ret_val;
2516 }
2517 
2518 /**
2519  *  __igb_access_emi_reg - Read/write EMI register
2520  *  @hw: pointer to the HW structure
2521  *  @addr: EMI address to program
2522  *  @data: pointer to value to read/write from/to the EMI address
2523  *  @read: boolean flag to indicate read or write
2524  **/
2525 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2526 				  u16 *data, bool read)
2527 {
2528 	s32 ret_val = E1000_SUCCESS;
2529 
2530 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2531 	if (ret_val)
2532 		return ret_val;
2533 
2534 	if (read)
2535 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2536 	else
2537 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2538 
2539 	return ret_val;
2540 }
2541 
2542 /**
2543  *  igb_read_emi_reg - Read Extended Management Interface register
2544  *  @hw: pointer to the HW structure
2545  *  @addr: EMI address to program
2546  *  @data: value to be read from the EMI address
2547  **/
2548 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2549 {
2550 	return __igb_access_emi_reg(hw, addr, data, true);
2551 }
2552 
2553 /**
2554  *  igb_set_eee_i350 - Enable/disable EEE support
2555  *  @hw: pointer to the HW structure
2556  *
2557  *  Enable/disable EEE based on setting in dev_spec structure.
2558  *
2559  **/
2560 s32 igb_set_eee_i350(struct e1000_hw *hw)
2561 {
2562 	s32 ret_val = 0;
2563 	u32 ipcnfg, eeer;
2564 
2565 	if ((hw->mac.type < e1000_i350) ||
2566 	    (hw->phy.media_type != e1000_media_type_copper))
2567 		goto out;
2568 	ipcnfg = rd32(E1000_IPCNFG);
2569 	eeer = rd32(E1000_EEER);
2570 
2571 	/* enable or disable per user setting */
2572 	if (!(hw->dev_spec._82575.eee_disable)) {
2573 		u32 eee_su = rd32(E1000_EEE_SU);
2574 
2575 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2576 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2577 			E1000_EEER_LPI_FC);
2578 
2579 		/* This bit should not be set in normal operation. */
2580 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2581 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2582 
2583 	} else {
2584 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2585 			E1000_IPCNFG_EEE_100M_AN);
2586 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2587 			E1000_EEER_RX_LPI_EN |
2588 			E1000_EEER_LPI_FC);
2589 	}
2590 	wr32(E1000_IPCNFG, ipcnfg);
2591 	wr32(E1000_EEER, eeer);
2592 	rd32(E1000_IPCNFG);
2593 	rd32(E1000_EEER);
2594 out:
2595 
2596 	return ret_val;
2597 }
2598 
2599 /**
2600  *  igb_set_eee_i354 - Enable/disable EEE support
2601  *  @hw: pointer to the HW structure
2602  *
2603  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2604  *
2605  **/
2606 s32 igb_set_eee_i354(struct e1000_hw *hw)
2607 {
2608 	struct e1000_phy_info *phy = &hw->phy;
2609 	s32 ret_val = 0;
2610 	u16 phy_data;
2611 
2612 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2613 	    (phy->id != M88E1543_E_PHY_ID))
2614 		goto out;
2615 
2616 	if (!hw->dev_spec._82575.eee_disable) {
2617 		/* Switch to PHY page 18. */
2618 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2619 		if (ret_val)
2620 			goto out;
2621 
2622 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2623 					    &phy_data);
2624 		if (ret_val)
2625 			goto out;
2626 
2627 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2628 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2629 					     phy_data);
2630 		if (ret_val)
2631 			goto out;
2632 
2633 		/* Return the PHY to page 0. */
2634 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2635 		if (ret_val)
2636 			goto out;
2637 
2638 		/* Turn on EEE advertisement. */
2639 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2640 					     E1000_EEE_ADV_DEV_I354,
2641 					     &phy_data);
2642 		if (ret_val)
2643 			goto out;
2644 
2645 		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2646 			    E1000_EEE_ADV_1000_SUPPORTED;
2647 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2648 						E1000_EEE_ADV_DEV_I354,
2649 						phy_data);
2650 	} else {
2651 		/* Turn off EEE advertisement. */
2652 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2653 					     E1000_EEE_ADV_DEV_I354,
2654 					     &phy_data);
2655 		if (ret_val)
2656 			goto out;
2657 
2658 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2659 			      E1000_EEE_ADV_1000_SUPPORTED);
2660 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2661 					      E1000_EEE_ADV_DEV_I354,
2662 					      phy_data);
2663 	}
2664 
2665 out:
2666 	return ret_val;
2667 }
2668 
2669 /**
2670  *  igb_get_eee_status_i354 - Get EEE status
2671  *  @hw: pointer to the HW structure
2672  *  @status: EEE status
2673  *
2674  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2675  *  been received.
2676  **/
2677 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2678 {
2679 	struct e1000_phy_info *phy = &hw->phy;
2680 	s32 ret_val = 0;
2681 	u16 phy_data;
2682 
2683 	/* Check if EEE is supported on this device. */
2684 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2685 	    (phy->id != M88E1543_E_PHY_ID))
2686 		goto out;
2687 
2688 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2689 				     E1000_PCS_STATUS_DEV_I354,
2690 				     &phy_data);
2691 	if (ret_val)
2692 		goto out;
2693 
2694 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2695 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2696 
2697 out:
2698 	return ret_val;
2699 }
2700 
2701 static const u8 e1000_emc_temp_data[4] = {
2702 	E1000_EMC_INTERNAL_DATA,
2703 	E1000_EMC_DIODE1_DATA,
2704 	E1000_EMC_DIODE2_DATA,
2705 	E1000_EMC_DIODE3_DATA
2706 };
2707 static const u8 e1000_emc_therm_limit[4] = {
2708 	E1000_EMC_INTERNAL_THERM_LIMIT,
2709 	E1000_EMC_DIODE1_THERM_LIMIT,
2710 	E1000_EMC_DIODE2_THERM_LIMIT,
2711 	E1000_EMC_DIODE3_THERM_LIMIT
2712 };
2713 
2714 #ifdef CONFIG_IGB_HWMON
2715 /**
2716  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2717  *  @hw: pointer to hardware structure
2718  *
2719  *  Updates the temperatures in mac.thermal_sensor_data
2720  **/
2721 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2722 {
2723 	s32 status = E1000_SUCCESS;
2724 	u16 ets_offset;
2725 	u16 ets_cfg;
2726 	u16 ets_sensor;
2727 	u8  num_sensors;
2728 	u8  sensor_index;
2729 	u8  sensor_location;
2730 	u8  i;
2731 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2732 
2733 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2734 		return E1000_NOT_IMPLEMENTED;
2735 
2736 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2737 
2738 	/* Return the internal sensor only if ETS is unsupported */
2739 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2740 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2741 		return status;
2742 
2743 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2744 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2745 	    != NVM_ETS_TYPE_EMC)
2746 		return E1000_NOT_IMPLEMENTED;
2747 
2748 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2749 	if (num_sensors > E1000_MAX_SENSORS)
2750 		num_sensors = E1000_MAX_SENSORS;
2751 
2752 	for (i = 1; i < num_sensors; i++) {
2753 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2754 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2755 				NVM_ETS_DATA_INDEX_SHIFT);
2756 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2757 				   NVM_ETS_DATA_LOC_SHIFT);
2758 
2759 		if (sensor_location != 0)
2760 			hw->phy.ops.read_i2c_byte(hw,
2761 					e1000_emc_temp_data[sensor_index],
2762 					E1000_I2C_THERMAL_SENSOR_ADDR,
2763 					&data->sensor[i].temp);
2764 	}
2765 	return status;
2766 }
2767 
2768 /**
2769  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2770  *  @hw: pointer to hardware structure
2771  *
2772  *  Sets the thermal sensor thresholds according to the NVM map
2773  *  and save off the threshold and location values into mac.thermal_sensor_data
2774  **/
2775 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2776 {
2777 	s32 status = E1000_SUCCESS;
2778 	u16 ets_offset;
2779 	u16 ets_cfg;
2780 	u16 ets_sensor;
2781 	u8  low_thresh_delta;
2782 	u8  num_sensors;
2783 	u8  sensor_index;
2784 	u8  sensor_location;
2785 	u8  therm_limit;
2786 	u8  i;
2787 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2788 
2789 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2790 		return E1000_NOT_IMPLEMENTED;
2791 
2792 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2793 
2794 	data->sensor[0].location = 0x1;
2795 	data->sensor[0].caution_thresh =
2796 		(rd32(E1000_THHIGHTC) & 0xFF);
2797 	data->sensor[0].max_op_thresh =
2798 		(rd32(E1000_THLOWTC) & 0xFF);
2799 
2800 	/* Return the internal sensor only if ETS is unsupported */
2801 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2802 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2803 		return status;
2804 
2805 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2806 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2807 	    != NVM_ETS_TYPE_EMC)
2808 		return E1000_NOT_IMPLEMENTED;
2809 
2810 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2811 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2812 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2813 
2814 	for (i = 1; i <= num_sensors; i++) {
2815 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2816 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2817 				NVM_ETS_DATA_INDEX_SHIFT);
2818 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2819 				   NVM_ETS_DATA_LOC_SHIFT);
2820 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2821 
2822 		hw->phy.ops.write_i2c_byte(hw,
2823 			e1000_emc_therm_limit[sensor_index],
2824 			E1000_I2C_THERMAL_SENSOR_ADDR,
2825 			therm_limit);
2826 
2827 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2828 			data->sensor[i].location = sensor_location;
2829 			data->sensor[i].caution_thresh = therm_limit;
2830 			data->sensor[i].max_op_thresh = therm_limit -
2831 							low_thresh_delta;
2832 		}
2833 	}
2834 	return status;
2835 }
2836 
2837 #endif
2838 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2839 	.init_hw              = igb_init_hw_82575,
2840 	.check_for_link       = igb_check_for_link_82575,
2841 	.rar_set              = igb_rar_set,
2842 	.read_mac_addr        = igb_read_mac_addr_82575,
2843 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2844 #ifdef CONFIG_IGB_HWMON
2845 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2846 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2847 #endif
2848 };
2849 
2850 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2851 	.acquire              = igb_acquire_phy_82575,
2852 	.get_cfg_done         = igb_get_cfg_done_82575,
2853 	.release              = igb_release_phy_82575,
2854 	.write_i2c_byte       = igb_write_i2c_byte,
2855 	.read_i2c_byte        = igb_read_i2c_byte,
2856 };
2857 
2858 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2859 	.acquire              = igb_acquire_nvm_82575,
2860 	.read                 = igb_read_nvm_eerd,
2861 	.release              = igb_release_nvm_82575,
2862 	.write                = igb_write_nvm_spi,
2863 };
2864 
2865 const struct e1000_info e1000_82575_info = {
2866 	.get_invariants = igb_get_invariants_82575,
2867 	.mac_ops = &e1000_mac_ops_82575,
2868 	.phy_ops = &e1000_phy_ops_82575,
2869 	.nvm_ops = &e1000_nvm_ops_82575,
2870 };
2871 
2872