1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 	u32 reg = 0;
86 	bool ext_mdio = false;
87 
88 	switch (hw->mac.type) {
89 	case e1000_82575:
90 	case e1000_82576:
91 		reg = rd32(E1000_MDIC);
92 		ext_mdio = !!(reg & E1000_MDIC_DEST);
93 		break;
94 	case e1000_82580:
95 	case e1000_i350:
96 	case e1000_i354:
97 	case e1000_i210:
98 	case e1000_i211:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 	struct e1000_phy_info *phy = &hw->phy;
117 	s32 ret_val;
118 	u16 data;
119 	u8 port = 0;
120 
121 	/* Check the copper medium. */
122 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 	if (ret_val)
124 		return ret_val;
125 
126 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 	if (ret_val)
128 		return ret_val;
129 
130 	if (data & E1000_M88E1112_STATUS_LINK)
131 		port = E1000_MEDIA_PORT_COPPER;
132 
133 	/* Check the other medium. */
134 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 	if (ret_val)
136 		return ret_val;
137 
138 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 	if (ret_val)
140 		return ret_val;
141 
142 
143 	if (data & E1000_M88E1112_STATUS_LINK)
144 		port = E1000_MEDIA_PORT_OTHER;
145 
146 	/* Determine if a swap needs to happen. */
147 	if (port && (hw->dev_spec._82575.media_port != port)) {
148 		hw->dev_spec._82575.media_port = port;
149 		hw->dev_spec._82575.media_changed = true;
150 	}
151 
152 	if (port == E1000_MEDIA_PORT_COPPER) {
153 		/* reset page to 0 */
154 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
155 		if (ret_val)
156 			return ret_val;
157 		igb_check_for_link_82575(hw);
158 	} else {
159 		igb_check_for_link_82575(hw);
160 		/* reset page to 0 */
161 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
162 		if (ret_val)
163 			return ret_val;
164 	}
165 
166 	return 0;
167 }
168 
169 /**
170  *  igb_init_phy_params_82575 - Init PHY func ptrs.
171  *  @hw: pointer to the HW structure
172  **/
173 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
174 {
175 	struct e1000_phy_info *phy = &hw->phy;
176 	s32 ret_val = 0;
177 	u32 ctrl_ext;
178 
179 	if (hw->phy.media_type != e1000_media_type_copper) {
180 		phy->type = e1000_phy_none;
181 		goto out;
182 	}
183 
184 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
185 	phy->reset_delay_us	= 100;
186 
187 	ctrl_ext = rd32(E1000_CTRL_EXT);
188 
189 	if (igb_sgmii_active_82575(hw)) {
190 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
191 		ctrl_ext |= E1000_CTRL_I2C_ENA;
192 	} else {
193 		phy->ops.reset = igb_phy_hw_reset;
194 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
195 	}
196 
197 	wr32(E1000_CTRL_EXT, ctrl_ext);
198 	igb_reset_mdicnfg_82580(hw);
199 
200 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
201 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
202 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
203 	} else {
204 		switch (hw->mac.type) {
205 		case e1000_82580:
206 		case e1000_i350:
207 		case e1000_i354:
208 			phy->ops.read_reg = igb_read_phy_reg_82580;
209 			phy->ops.write_reg = igb_write_phy_reg_82580;
210 			break;
211 		case e1000_i210:
212 		case e1000_i211:
213 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
214 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
215 			break;
216 		default:
217 			phy->ops.read_reg = igb_read_phy_reg_igp;
218 			phy->ops.write_reg = igb_write_phy_reg_igp;
219 		}
220 	}
221 
222 	/* set lan id */
223 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
224 			E1000_STATUS_FUNC_SHIFT;
225 
226 	/* Set phy->phy_addr and phy->id. */
227 	ret_val = igb_get_phy_id_82575(hw);
228 	if (ret_val)
229 		return ret_val;
230 
231 	/* Verify phy id and set remaining function pointers */
232 	switch (phy->id) {
233 	case M88E1543_E_PHY_ID:
234 	case M88E1512_E_PHY_ID:
235 	case I347AT4_E_PHY_ID:
236 	case M88E1112_E_PHY_ID:
237 	case M88E1111_I_PHY_ID:
238 		phy->type		= e1000_phy_m88;
239 		phy->ops.check_polarity	= igb_check_polarity_m88;
240 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
241 		if (phy->id != M88E1111_I_PHY_ID)
242 			phy->ops.get_cable_length =
243 					 igb_get_cable_length_m88_gen2;
244 		else
245 			phy->ops.get_cable_length = igb_get_cable_length_m88;
246 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
247 		/* Check if this PHY is configured for media swap. */
248 		if (phy->id == M88E1112_E_PHY_ID) {
249 			u16 data;
250 
251 			ret_val = phy->ops.write_reg(hw,
252 						     E1000_M88E1112_PAGE_ADDR,
253 						     2);
254 			if (ret_val)
255 				goto out;
256 
257 			ret_val = phy->ops.read_reg(hw,
258 						    E1000_M88E1112_MAC_CTRL_1,
259 						    &data);
260 			if (ret_val)
261 				goto out;
262 
263 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
264 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
265 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
266 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
267 				hw->mac.ops.check_for_link =
268 						igb_check_for_link_media_swap;
269 		}
270 		if (phy->id == M88E1512_E_PHY_ID) {
271 			ret_val = igb_initialize_M88E1512_phy(hw);
272 			if (ret_val)
273 				goto out;
274 		}
275 		break;
276 	case IGP03E1000_E_PHY_ID:
277 		phy->type = e1000_phy_igp_3;
278 		phy->ops.get_phy_info = igb_get_phy_info_igp;
279 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
280 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
281 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
282 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
283 		break;
284 	case I82580_I_PHY_ID:
285 	case I350_I_PHY_ID:
286 		phy->type = e1000_phy_82580;
287 		phy->ops.force_speed_duplex =
288 					 igb_phy_force_speed_duplex_82580;
289 		phy->ops.get_cable_length = igb_get_cable_length_82580;
290 		phy->ops.get_phy_info = igb_get_phy_info_82580;
291 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
292 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
293 		break;
294 	case I210_I_PHY_ID:
295 		phy->type		= e1000_phy_i210;
296 		phy->ops.check_polarity	= igb_check_polarity_m88;
297 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
298 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
299 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
300 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
301 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
302 		break;
303 	default:
304 		ret_val = -E1000_ERR_PHY;
305 		goto out;
306 	}
307 
308 out:
309 	return ret_val;
310 }
311 
312 /**
313  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
314  *  @hw: pointer to the HW structure
315  **/
316 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
317 {
318 	struct e1000_nvm_info *nvm = &hw->nvm;
319 	u32 eecd = rd32(E1000_EECD);
320 	u16 size;
321 
322 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
323 		     E1000_EECD_SIZE_EX_SHIFT);
324 
325 	/* Added to a constant, "size" becomes the left-shift value
326 	 * for setting word_size.
327 	 */
328 	size += NVM_WORD_SIZE_BASE_SHIFT;
329 
330 	/* Just in case size is out of range, cap it to the largest
331 	 * EEPROM size supported
332 	 */
333 	if (size > 15)
334 		size = 15;
335 
336 	nvm->word_size = 1 << size;
337 	nvm->opcode_bits = 8;
338 	nvm->delay_usec = 1;
339 
340 	switch (nvm->override) {
341 	case e1000_nvm_override_spi_large:
342 		nvm->page_size = 32;
343 		nvm->address_bits = 16;
344 		break;
345 	case e1000_nvm_override_spi_small:
346 		nvm->page_size = 8;
347 		nvm->address_bits = 8;
348 		break;
349 	default:
350 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
351 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
352 				    16 : 8;
353 		break;
354 	}
355 	if (nvm->word_size == (1 << 15))
356 		nvm->page_size = 128;
357 
358 	nvm->type = e1000_nvm_eeprom_spi;
359 
360 	/* NVM Function Pointers */
361 	nvm->ops.acquire = igb_acquire_nvm_82575;
362 	nvm->ops.release = igb_release_nvm_82575;
363 	nvm->ops.write = igb_write_nvm_spi;
364 	nvm->ops.validate = igb_validate_nvm_checksum;
365 	nvm->ops.update = igb_update_nvm_checksum;
366 	if (nvm->word_size < (1 << 15))
367 		nvm->ops.read = igb_read_nvm_eerd;
368 	else
369 		nvm->ops.read = igb_read_nvm_spi;
370 
371 	/* override generic family function pointers for specific descendants */
372 	switch (hw->mac.type) {
373 	case e1000_82580:
374 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
375 		nvm->ops.update = igb_update_nvm_checksum_82580;
376 		break;
377 	case e1000_i354:
378 	case e1000_i350:
379 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
380 		nvm->ops.update = igb_update_nvm_checksum_i350;
381 		break;
382 	default:
383 		break;
384 	}
385 
386 	return 0;
387 }
388 
389 /**
390  *  igb_init_mac_params_82575 - Init MAC func ptrs.
391  *  @hw: pointer to the HW structure
392  **/
393 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
394 {
395 	struct e1000_mac_info *mac = &hw->mac;
396 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
397 
398 	/* Set mta register count */
399 	mac->mta_reg_count = 128;
400 	/* Set rar entry count */
401 	switch (mac->type) {
402 	case e1000_82576:
403 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
404 		break;
405 	case e1000_82580:
406 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
407 		break;
408 	case e1000_i350:
409 	case e1000_i354:
410 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
411 		break;
412 	default:
413 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
414 		break;
415 	}
416 	/* reset */
417 	if (mac->type >= e1000_82580)
418 		mac->ops.reset_hw = igb_reset_hw_82580;
419 	else
420 		mac->ops.reset_hw = igb_reset_hw_82575;
421 
422 	if (mac->type >= e1000_i210) {
423 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
424 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
425 
426 	} else {
427 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
428 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
429 	}
430 
431 	/* Set if part includes ASF firmware */
432 	mac->asf_firmware_present = true;
433 	/* Set if manageability features are enabled. */
434 	mac->arc_subsystem_valid =
435 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
436 			? true : false;
437 	/* enable EEE on i350 parts and later parts */
438 	if (mac->type >= e1000_i350)
439 		dev_spec->eee_disable = false;
440 	else
441 		dev_spec->eee_disable = true;
442 	/* Allow a single clear of the SW semaphore on I210 and newer */
443 	if (mac->type >= e1000_i210)
444 		dev_spec->clear_semaphore_once = true;
445 	/* physical interface link setup */
446 	mac->ops.setup_physical_interface =
447 		(hw->phy.media_type == e1000_media_type_copper)
448 			? igb_setup_copper_link_82575
449 			: igb_setup_serdes_link_82575;
450 
451 	if (mac->type == e1000_82580) {
452 		switch (hw->device_id) {
453 		/* feature not supported on these id's */
454 		case E1000_DEV_ID_DH89XXCC_SGMII:
455 		case E1000_DEV_ID_DH89XXCC_SERDES:
456 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
457 		case E1000_DEV_ID_DH89XXCC_SFP:
458 			break;
459 		default:
460 			hw->dev_spec._82575.mas_capable = true;
461 			break;
462 		}
463 	}
464 	return 0;
465 }
466 
467 /**
468  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
469  *  @hw: pointer to the HW structure
470  *
471  *  The media type is chosen based on SFP module.
472  *  compatibility flags retrieved from SFP ID EEPROM.
473  **/
474 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
475 {
476 	s32 ret_val = E1000_ERR_CONFIG;
477 	u32 ctrl_ext = 0;
478 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
479 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
480 	u8 tranceiver_type = 0;
481 	s32 timeout = 3;
482 
483 	/* Turn I2C interface ON and power on sfp cage */
484 	ctrl_ext = rd32(E1000_CTRL_EXT);
485 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
486 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
487 
488 	wrfl();
489 
490 	/* Read SFP module data */
491 	while (timeout) {
492 		ret_val = igb_read_sfp_data_byte(hw,
493 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
494 			&tranceiver_type);
495 		if (ret_val == 0)
496 			break;
497 		msleep(100);
498 		timeout--;
499 	}
500 	if (ret_val != 0)
501 		goto out;
502 
503 	ret_val = igb_read_sfp_data_byte(hw,
504 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
505 			(u8 *)eth_flags);
506 	if (ret_val != 0)
507 		goto out;
508 
509 	/* Check if there is some SFP module plugged and powered */
510 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
511 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
512 		dev_spec->module_plugged = true;
513 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
514 			hw->phy.media_type = e1000_media_type_internal_serdes;
515 		} else if (eth_flags->e100_base_fx) {
516 			dev_spec->sgmii_active = true;
517 			hw->phy.media_type = e1000_media_type_internal_serdes;
518 		} else if (eth_flags->e1000_base_t) {
519 			dev_spec->sgmii_active = true;
520 			hw->phy.media_type = e1000_media_type_copper;
521 		} else {
522 			hw->phy.media_type = e1000_media_type_unknown;
523 			hw_dbg("PHY module has not been recognized\n");
524 			goto out;
525 		}
526 	} else {
527 		hw->phy.media_type = e1000_media_type_unknown;
528 	}
529 	ret_val = 0;
530 out:
531 	/* Restore I2C interface setting */
532 	wr32(E1000_CTRL_EXT, ctrl_ext);
533 	return ret_val;
534 }
535 
536 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
537 {
538 	struct e1000_mac_info *mac = &hw->mac;
539 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
540 	s32 ret_val;
541 	u32 ctrl_ext = 0;
542 	u32 link_mode = 0;
543 
544 	switch (hw->device_id) {
545 	case E1000_DEV_ID_82575EB_COPPER:
546 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
547 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
548 		mac->type = e1000_82575;
549 		break;
550 	case E1000_DEV_ID_82576:
551 	case E1000_DEV_ID_82576_NS:
552 	case E1000_DEV_ID_82576_NS_SERDES:
553 	case E1000_DEV_ID_82576_FIBER:
554 	case E1000_DEV_ID_82576_SERDES:
555 	case E1000_DEV_ID_82576_QUAD_COPPER:
556 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
557 	case E1000_DEV_ID_82576_SERDES_QUAD:
558 		mac->type = e1000_82576;
559 		break;
560 	case E1000_DEV_ID_82580_COPPER:
561 	case E1000_DEV_ID_82580_FIBER:
562 	case E1000_DEV_ID_82580_QUAD_FIBER:
563 	case E1000_DEV_ID_82580_SERDES:
564 	case E1000_DEV_ID_82580_SGMII:
565 	case E1000_DEV_ID_82580_COPPER_DUAL:
566 	case E1000_DEV_ID_DH89XXCC_SGMII:
567 	case E1000_DEV_ID_DH89XXCC_SERDES:
568 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
569 	case E1000_DEV_ID_DH89XXCC_SFP:
570 		mac->type = e1000_82580;
571 		break;
572 	case E1000_DEV_ID_I350_COPPER:
573 	case E1000_DEV_ID_I350_FIBER:
574 	case E1000_DEV_ID_I350_SERDES:
575 	case E1000_DEV_ID_I350_SGMII:
576 		mac->type = e1000_i350;
577 		break;
578 	case E1000_DEV_ID_I210_COPPER:
579 	case E1000_DEV_ID_I210_FIBER:
580 	case E1000_DEV_ID_I210_SERDES:
581 	case E1000_DEV_ID_I210_SGMII:
582 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
583 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
584 		mac->type = e1000_i210;
585 		break;
586 	case E1000_DEV_ID_I211_COPPER:
587 		mac->type = e1000_i211;
588 		break;
589 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
590 	case E1000_DEV_ID_I354_SGMII:
591 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
592 		mac->type = e1000_i354;
593 		break;
594 	default:
595 		return -E1000_ERR_MAC_INIT;
596 	}
597 
598 	/* Set media type */
599 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
600 	 * based on the EEPROM. We cannot rely upon device ID. There
601 	 * is no distinguishable difference between fiber and internal
602 	 * SerDes mode on the 82575. There can be an external PHY attached
603 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
604 	 */
605 	hw->phy.media_type = e1000_media_type_copper;
606 	dev_spec->sgmii_active = false;
607 	dev_spec->module_plugged = false;
608 
609 	ctrl_ext = rd32(E1000_CTRL_EXT);
610 
611 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
612 	switch (link_mode) {
613 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
614 		hw->phy.media_type = e1000_media_type_internal_serdes;
615 		break;
616 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
617 		/* Get phy control interface type set (MDIO vs. I2C)*/
618 		if (igb_sgmii_uses_mdio_82575(hw)) {
619 			hw->phy.media_type = e1000_media_type_copper;
620 			dev_spec->sgmii_active = true;
621 			break;
622 		}
623 		/* fall through for I2C based SGMII */
624 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
625 		/* read media type from SFP EEPROM */
626 		ret_val = igb_set_sfp_media_type_82575(hw);
627 		if ((ret_val != 0) ||
628 		    (hw->phy.media_type == e1000_media_type_unknown)) {
629 			/* If media type was not identified then return media
630 			 * type defined by the CTRL_EXT settings.
631 			 */
632 			hw->phy.media_type = e1000_media_type_internal_serdes;
633 
634 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
635 				hw->phy.media_type = e1000_media_type_copper;
636 				dev_spec->sgmii_active = true;
637 			}
638 
639 			break;
640 		}
641 
642 		/* do not change link mode for 100BaseFX */
643 		if (dev_spec->eth_flags.e100_base_fx)
644 			break;
645 
646 		/* change current link mode setting */
647 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
648 
649 		if (hw->phy.media_type == e1000_media_type_copper)
650 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
651 		else
652 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
653 
654 		wr32(E1000_CTRL_EXT, ctrl_ext);
655 
656 		break;
657 	default:
658 		break;
659 	}
660 
661 	/* mac initialization and operations */
662 	ret_val = igb_init_mac_params_82575(hw);
663 	if (ret_val)
664 		goto out;
665 
666 	/* NVM initialization */
667 	ret_val = igb_init_nvm_params_82575(hw);
668 	switch (hw->mac.type) {
669 	case e1000_i210:
670 	case e1000_i211:
671 		ret_val = igb_init_nvm_params_i210(hw);
672 		break;
673 	default:
674 		break;
675 	}
676 
677 	if (ret_val)
678 		goto out;
679 
680 	/* if part supports SR-IOV then initialize mailbox parameters */
681 	switch (mac->type) {
682 	case e1000_82576:
683 	case e1000_i350:
684 		igb_init_mbx_params_pf(hw);
685 		break;
686 	default:
687 		break;
688 	}
689 
690 	/* setup PHY parameters */
691 	ret_val = igb_init_phy_params_82575(hw);
692 
693 out:
694 	return ret_val;
695 }
696 
697 /**
698  *  igb_acquire_phy_82575 - Acquire rights to access PHY
699  *  @hw: pointer to the HW structure
700  *
701  *  Acquire access rights to the correct PHY.  This is a
702  *  function pointer entry point called by the api module.
703  **/
704 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
705 {
706 	u16 mask = E1000_SWFW_PHY0_SM;
707 
708 	if (hw->bus.func == E1000_FUNC_1)
709 		mask = E1000_SWFW_PHY1_SM;
710 	else if (hw->bus.func == E1000_FUNC_2)
711 		mask = E1000_SWFW_PHY2_SM;
712 	else if (hw->bus.func == E1000_FUNC_3)
713 		mask = E1000_SWFW_PHY3_SM;
714 
715 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
716 }
717 
718 /**
719  *  igb_release_phy_82575 - Release rights to access PHY
720  *  @hw: pointer to the HW structure
721  *
722  *  A wrapper to release access rights to the correct PHY.  This is a
723  *  function pointer entry point called by the api module.
724  **/
725 static void igb_release_phy_82575(struct e1000_hw *hw)
726 {
727 	u16 mask = E1000_SWFW_PHY0_SM;
728 
729 	if (hw->bus.func == E1000_FUNC_1)
730 		mask = E1000_SWFW_PHY1_SM;
731 	else if (hw->bus.func == E1000_FUNC_2)
732 		mask = E1000_SWFW_PHY2_SM;
733 	else if (hw->bus.func == E1000_FUNC_3)
734 		mask = E1000_SWFW_PHY3_SM;
735 
736 	hw->mac.ops.release_swfw_sync(hw, mask);
737 }
738 
739 /**
740  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
741  *  @hw: pointer to the HW structure
742  *  @offset: register offset to be read
743  *  @data: pointer to the read data
744  *
745  *  Reads the PHY register at offset using the serial gigabit media independent
746  *  interface and stores the retrieved information in data.
747  **/
748 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
749 					  u16 *data)
750 {
751 	s32 ret_val = -E1000_ERR_PARAM;
752 
753 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
754 		hw_dbg("PHY Address %u is out of range\n", offset);
755 		goto out;
756 	}
757 
758 	ret_val = hw->phy.ops.acquire(hw);
759 	if (ret_val)
760 		goto out;
761 
762 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
763 
764 	hw->phy.ops.release(hw);
765 
766 out:
767 	return ret_val;
768 }
769 
770 /**
771  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
772  *  @hw: pointer to the HW structure
773  *  @offset: register offset to write to
774  *  @data: data to write at register offset
775  *
776  *  Writes the data to PHY register at the offset using the serial gigabit
777  *  media independent interface.
778  **/
779 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
780 					   u16 data)
781 {
782 	s32 ret_val = -E1000_ERR_PARAM;
783 
784 
785 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
786 		hw_dbg("PHY Address %d is out of range\n", offset);
787 		goto out;
788 	}
789 
790 	ret_val = hw->phy.ops.acquire(hw);
791 	if (ret_val)
792 		goto out;
793 
794 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
795 
796 	hw->phy.ops.release(hw);
797 
798 out:
799 	return ret_val;
800 }
801 
802 /**
803  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
804  *  @hw: pointer to the HW structure
805  *
806  *  Retrieves the PHY address and ID for both PHY's which do and do not use
807  *  sgmi interface.
808  **/
809 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
810 {
811 	struct e1000_phy_info *phy = &hw->phy;
812 	s32  ret_val = 0;
813 	u16 phy_id;
814 	u32 ctrl_ext;
815 	u32 mdic;
816 
817 	/* Extra read required for some PHY's on i354 */
818 	if (hw->mac.type == e1000_i354)
819 		igb_get_phy_id(hw);
820 
821 	/* For SGMII PHYs, we try the list of possible addresses until
822 	 * we find one that works.  For non-SGMII PHYs
823 	 * (e.g. integrated copper PHYs), an address of 1 should
824 	 * work.  The result of this function should mean phy->phy_addr
825 	 * and phy->id are set correctly.
826 	 */
827 	if (!(igb_sgmii_active_82575(hw))) {
828 		phy->addr = 1;
829 		ret_val = igb_get_phy_id(hw);
830 		goto out;
831 	}
832 
833 	if (igb_sgmii_uses_mdio_82575(hw)) {
834 		switch (hw->mac.type) {
835 		case e1000_82575:
836 		case e1000_82576:
837 			mdic = rd32(E1000_MDIC);
838 			mdic &= E1000_MDIC_PHY_MASK;
839 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
840 			break;
841 		case e1000_82580:
842 		case e1000_i350:
843 		case e1000_i354:
844 		case e1000_i210:
845 		case e1000_i211:
846 			mdic = rd32(E1000_MDICNFG);
847 			mdic &= E1000_MDICNFG_PHY_MASK;
848 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
849 			break;
850 		default:
851 			ret_val = -E1000_ERR_PHY;
852 			goto out;
853 		}
854 		ret_val = igb_get_phy_id(hw);
855 		goto out;
856 	}
857 
858 	/* Power on sgmii phy if it is disabled */
859 	ctrl_ext = rd32(E1000_CTRL_EXT);
860 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
861 	wrfl();
862 	msleep(300);
863 
864 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
865 	 * Therefore, we need to test 1-7
866 	 */
867 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
868 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
869 		if (ret_val == 0) {
870 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
871 			       phy_id, phy->addr);
872 			/* At the time of this writing, The M88 part is
873 			 * the only supported SGMII PHY product.
874 			 */
875 			if (phy_id == M88_VENDOR)
876 				break;
877 		} else {
878 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
879 		}
880 	}
881 
882 	/* A valid PHY type couldn't be found. */
883 	if (phy->addr == 8) {
884 		phy->addr = 0;
885 		ret_val = -E1000_ERR_PHY;
886 		goto out;
887 	} else {
888 		ret_val = igb_get_phy_id(hw);
889 	}
890 
891 	/* restore previous sfp cage power state */
892 	wr32(E1000_CTRL_EXT, ctrl_ext);
893 
894 out:
895 	return ret_val;
896 }
897 
898 /**
899  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
900  *  @hw: pointer to the HW structure
901  *
902  *  Resets the PHY using the serial gigabit media independent interface.
903  **/
904 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
905 {
906 	struct e1000_phy_info *phy = &hw->phy;
907 	s32 ret_val;
908 
909 	/* This isn't a true "hard" reset, but is the only reset
910 	 * available to us at this time.
911 	 */
912 
913 	hw_dbg("Soft resetting SGMII attached PHY...\n");
914 
915 	/* SFP documentation requires the following to configure the SPF module
916 	 * to work on SGMII.  No further documentation is given.
917 	 */
918 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
919 	if (ret_val)
920 		goto out;
921 
922 	ret_val = igb_phy_sw_reset(hw);
923 	if (ret_val)
924 		goto out;
925 
926 	if (phy->id == M88E1512_E_PHY_ID)
927 		ret_val = igb_initialize_M88E1512_phy(hw);
928 out:
929 	return ret_val;
930 }
931 
932 /**
933  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
934  *  @hw: pointer to the HW structure
935  *  @active: true to enable LPLU, false to disable
936  *
937  *  Sets the LPLU D0 state according to the active flag.  When
938  *  activating LPLU this function also disables smart speed
939  *  and vice versa.  LPLU will not be activated unless the
940  *  device autonegotiation advertisement meets standards of
941  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
942  *  This is a function pointer entry point only called by
943  *  PHY setup routines.
944  **/
945 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
946 {
947 	struct e1000_phy_info *phy = &hw->phy;
948 	s32 ret_val;
949 	u16 data;
950 
951 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
952 	if (ret_val)
953 		goto out;
954 
955 	if (active) {
956 		data |= IGP02E1000_PM_D0_LPLU;
957 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
958 						 data);
959 		if (ret_val)
960 			goto out;
961 
962 		/* When LPLU is enabled, we should disable SmartSpeed */
963 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
964 						&data);
965 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
966 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
967 						 data);
968 		if (ret_val)
969 			goto out;
970 	} else {
971 		data &= ~IGP02E1000_PM_D0_LPLU;
972 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
973 						 data);
974 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
975 		 * during Dx states where the power conservation is most
976 		 * important.  During driver activity we should enable
977 		 * SmartSpeed, so performance is maintained.
978 		 */
979 		if (phy->smart_speed == e1000_smart_speed_on) {
980 			ret_val = phy->ops.read_reg(hw,
981 					IGP01E1000_PHY_PORT_CONFIG, &data);
982 			if (ret_val)
983 				goto out;
984 
985 			data |= IGP01E1000_PSCFR_SMART_SPEED;
986 			ret_val = phy->ops.write_reg(hw,
987 					IGP01E1000_PHY_PORT_CONFIG, data);
988 			if (ret_val)
989 				goto out;
990 		} else if (phy->smart_speed == e1000_smart_speed_off) {
991 			ret_val = phy->ops.read_reg(hw,
992 					IGP01E1000_PHY_PORT_CONFIG, &data);
993 			if (ret_val)
994 				goto out;
995 
996 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
997 			ret_val = phy->ops.write_reg(hw,
998 					IGP01E1000_PHY_PORT_CONFIG, data);
999 			if (ret_val)
1000 				goto out;
1001 		}
1002 	}
1003 
1004 out:
1005 	return ret_val;
1006 }
1007 
1008 /**
1009  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1010  *  @hw: pointer to the HW structure
1011  *  @active: true to enable LPLU, false to disable
1012  *
1013  *  Sets the LPLU D0 state according to the active flag.  When
1014  *  activating LPLU this function also disables smart speed
1015  *  and vice versa.  LPLU will not be activated unless the
1016  *  device autonegotiation advertisement meets standards of
1017  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1018  *  This is a function pointer entry point only called by
1019  *  PHY setup routines.
1020  **/
1021 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1022 {
1023 	struct e1000_phy_info *phy = &hw->phy;
1024 	u16 data;
1025 
1026 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1027 
1028 	if (active) {
1029 		data |= E1000_82580_PM_D0_LPLU;
1030 
1031 		/* When LPLU is enabled, we should disable SmartSpeed */
1032 		data &= ~E1000_82580_PM_SPD;
1033 	} else {
1034 		data &= ~E1000_82580_PM_D0_LPLU;
1035 
1036 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1037 		 * during Dx states where the power conservation is most
1038 		 * important.  During driver activity we should enable
1039 		 * SmartSpeed, so performance is maintained.
1040 		 */
1041 		if (phy->smart_speed == e1000_smart_speed_on)
1042 			data |= E1000_82580_PM_SPD;
1043 		else if (phy->smart_speed == e1000_smart_speed_off)
1044 			data &= ~E1000_82580_PM_SPD; }
1045 
1046 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1047 	return 0;
1048 }
1049 
1050 /**
1051  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1052  *  @hw: pointer to the HW structure
1053  *  @active: boolean used to enable/disable lplu
1054  *
1055  *  Success returns 0, Failure returns 1
1056  *
1057  *  The low power link up (lplu) state is set to the power management level D3
1058  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1059  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1060  *  is used during Dx states where the power conservation is most important.
1061  *  During driver activity, SmartSpeed should be enabled so performance is
1062  *  maintained.
1063  **/
1064 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1065 {
1066 	struct e1000_phy_info *phy = &hw->phy;
1067 	u16 data;
1068 
1069 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1070 
1071 	if (!active) {
1072 		data &= ~E1000_82580_PM_D3_LPLU;
1073 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1074 		 * during Dx states where the power conservation is most
1075 		 * important.  During driver activity we should enable
1076 		 * SmartSpeed, so performance is maintained.
1077 		 */
1078 		if (phy->smart_speed == e1000_smart_speed_on)
1079 			data |= E1000_82580_PM_SPD;
1080 		else if (phy->smart_speed == e1000_smart_speed_off)
1081 			data &= ~E1000_82580_PM_SPD;
1082 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1083 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1084 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1085 		data |= E1000_82580_PM_D3_LPLU;
1086 		/* When LPLU is enabled, we should disable SmartSpeed */
1087 		data &= ~E1000_82580_PM_SPD;
1088 	}
1089 
1090 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1091 	return 0;
1092 }
1093 
1094 /**
1095  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1096  *  @hw: pointer to the HW structure
1097  *
1098  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1099  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1100  *  Return successful if access grant bit set, else clear the request for
1101  *  EEPROM access and return -E1000_ERR_NVM (-1).
1102  **/
1103 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1104 {
1105 	s32 ret_val;
1106 
1107 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1108 	if (ret_val)
1109 		goto out;
1110 
1111 	ret_val = igb_acquire_nvm(hw);
1112 
1113 	if (ret_val)
1114 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1115 
1116 out:
1117 	return ret_val;
1118 }
1119 
1120 /**
1121  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1125  *  then release the semaphores acquired.
1126  **/
1127 static void igb_release_nvm_82575(struct e1000_hw *hw)
1128 {
1129 	igb_release_nvm(hw);
1130 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1131 }
1132 
1133 /**
1134  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1135  *  @hw: pointer to the HW structure
1136  *  @mask: specifies which semaphore to acquire
1137  *
1138  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1139  *  will also specify which port we're acquiring the lock for.
1140  **/
1141 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1142 {
1143 	u32 swfw_sync;
1144 	u32 swmask = mask;
1145 	u32 fwmask = mask << 16;
1146 	s32 ret_val = 0;
1147 	s32 i = 0, timeout = 200;
1148 
1149 	while (i < timeout) {
1150 		if (igb_get_hw_semaphore(hw)) {
1151 			ret_val = -E1000_ERR_SWFW_SYNC;
1152 			goto out;
1153 		}
1154 
1155 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1156 		if (!(swfw_sync & (fwmask | swmask)))
1157 			break;
1158 
1159 		/* Firmware currently using resource (fwmask)
1160 		 * or other software thread using resource (swmask)
1161 		 */
1162 		igb_put_hw_semaphore(hw);
1163 		mdelay(5);
1164 		i++;
1165 	}
1166 
1167 	if (i == timeout) {
1168 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1169 		ret_val = -E1000_ERR_SWFW_SYNC;
1170 		goto out;
1171 	}
1172 
1173 	swfw_sync |= swmask;
1174 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1175 
1176 	igb_put_hw_semaphore(hw);
1177 
1178 out:
1179 	return ret_val;
1180 }
1181 
1182 /**
1183  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1184  *  @hw: pointer to the HW structure
1185  *  @mask: specifies which semaphore to acquire
1186  *
1187  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1188  *  will also specify which port we're releasing the lock for.
1189  **/
1190 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1191 {
1192 	u32 swfw_sync;
1193 
1194 	while (igb_get_hw_semaphore(hw) != 0)
1195 		; /* Empty */
1196 
1197 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1198 	swfw_sync &= ~mask;
1199 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1200 
1201 	igb_put_hw_semaphore(hw);
1202 }
1203 
1204 /**
1205  *  igb_get_cfg_done_82575 - Read config done bit
1206  *  @hw: pointer to the HW structure
1207  *
1208  *  Read the management control register for the config done bit for
1209  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1210  *  to read the config done bit, so an error is *ONLY* logged and returns
1211  *  0.  If we were to return with error, EEPROM-less silicon
1212  *  would not be able to be reset or change link.
1213  **/
1214 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1215 {
1216 	s32 timeout = PHY_CFG_TIMEOUT;
1217 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1218 
1219 	if (hw->bus.func == 1)
1220 		mask = E1000_NVM_CFG_DONE_PORT_1;
1221 	else if (hw->bus.func == E1000_FUNC_2)
1222 		mask = E1000_NVM_CFG_DONE_PORT_2;
1223 	else if (hw->bus.func == E1000_FUNC_3)
1224 		mask = E1000_NVM_CFG_DONE_PORT_3;
1225 
1226 	while (timeout) {
1227 		if (rd32(E1000_EEMNGCTL) & mask)
1228 			break;
1229 		usleep_range(1000, 2000);
1230 		timeout--;
1231 	}
1232 	if (!timeout)
1233 		hw_dbg("MNG configuration cycle has not completed.\n");
1234 
1235 	/* If EEPROM is not marked present, init the PHY manually */
1236 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1237 	    (hw->phy.type == e1000_phy_igp_3))
1238 		igb_phy_init_script_igp3(hw);
1239 
1240 	return 0;
1241 }
1242 
1243 /**
1244  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1245  *  @hw: pointer to the HW structure
1246  *  @speed: stores the current speed
1247  *  @duplex: stores the current duplex
1248  *
1249  *  This is a wrapper function, if using the serial gigabit media independent
1250  *  interface, use PCS to retrieve the link speed and duplex information.
1251  *  Otherwise, use the generic function to get the link speed and duplex info.
1252  **/
1253 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1254 					u16 *duplex)
1255 {
1256 	s32 ret_val;
1257 
1258 	if (hw->phy.media_type != e1000_media_type_copper)
1259 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1260 							       duplex);
1261 	else
1262 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1263 								    duplex);
1264 
1265 	return ret_val;
1266 }
1267 
1268 /**
1269  *  igb_check_for_link_82575 - Check for link
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1273  *  use the generic interface for determining link.
1274  **/
1275 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1276 {
1277 	s32 ret_val;
1278 	u16 speed, duplex;
1279 
1280 	if (hw->phy.media_type != e1000_media_type_copper) {
1281 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1282 							     &duplex);
1283 		/* Use this flag to determine if link needs to be checked or
1284 		 * not.  If  we have link clear the flag so that we do not
1285 		 * continue to check for link.
1286 		 */
1287 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1288 
1289 		/* Configure Flow Control now that Auto-Neg has completed.
1290 		 * First, we need to restore the desired flow control
1291 		 * settings because we may have had to re-autoneg with a
1292 		 * different link partner.
1293 		 */
1294 		ret_val = igb_config_fc_after_link_up(hw);
1295 		if (ret_val)
1296 			hw_dbg("Error configuring flow control\n");
1297 	} else {
1298 		ret_val = igb_check_for_copper_link(hw);
1299 	}
1300 
1301 	return ret_val;
1302 }
1303 
1304 /**
1305  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1306  *  @hw: pointer to the HW structure
1307  **/
1308 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1309 {
1310 	u32 reg;
1311 
1312 
1313 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1314 	    !igb_sgmii_active_82575(hw))
1315 		return;
1316 
1317 	/* Enable PCS to turn on link */
1318 	reg = rd32(E1000_PCS_CFG0);
1319 	reg |= E1000_PCS_CFG_PCS_EN;
1320 	wr32(E1000_PCS_CFG0, reg);
1321 
1322 	/* Power up the laser */
1323 	reg = rd32(E1000_CTRL_EXT);
1324 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1325 	wr32(E1000_CTRL_EXT, reg);
1326 
1327 	/* flush the write to verify completion */
1328 	wrfl();
1329 	usleep_range(1000, 2000);
1330 }
1331 
1332 /**
1333  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1334  *  @hw: pointer to the HW structure
1335  *  @speed: stores the current speed
1336  *  @duplex: stores the current duplex
1337  *
1338  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1339  *  duplex, then store the values in the pointers provided.
1340  **/
1341 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1342 						u16 *duplex)
1343 {
1344 	struct e1000_mac_info *mac = &hw->mac;
1345 	u32 pcs, status;
1346 
1347 	/* Set up defaults for the return values of this function */
1348 	mac->serdes_has_link = false;
1349 	*speed = 0;
1350 	*duplex = 0;
1351 
1352 	/* Read the PCS Status register for link state. For non-copper mode,
1353 	 * the status register is not accurate. The PCS status register is
1354 	 * used instead.
1355 	 */
1356 	pcs = rd32(E1000_PCS_LSTAT);
1357 
1358 	/* The link up bit determines when link is up on autoneg. The sync ok
1359 	 * gets set once both sides sync up and agree upon link. Stable link
1360 	 * can be determined by checking for both link up and link sync ok
1361 	 */
1362 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1363 		mac->serdes_has_link = true;
1364 
1365 		/* Detect and store PCS speed */
1366 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1367 			*speed = SPEED_1000;
1368 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1369 			*speed = SPEED_100;
1370 		else
1371 			*speed = SPEED_10;
1372 
1373 		/* Detect and store PCS duplex */
1374 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1375 			*duplex = FULL_DUPLEX;
1376 		else
1377 			*duplex = HALF_DUPLEX;
1378 
1379 	/* Check if it is an I354 2.5Gb backplane connection. */
1380 		if (mac->type == e1000_i354) {
1381 			status = rd32(E1000_STATUS);
1382 			if ((status & E1000_STATUS_2P5_SKU) &&
1383 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1384 				*speed = SPEED_2500;
1385 				*duplex = FULL_DUPLEX;
1386 				hw_dbg("2500 Mbs, ");
1387 				hw_dbg("Full Duplex\n");
1388 			}
1389 		}
1390 
1391 	}
1392 
1393 	return 0;
1394 }
1395 
1396 /**
1397  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1398  *  @hw: pointer to the HW structure
1399  *
1400  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1401  *  when management pass thru is not enabled.
1402  **/
1403 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1404 {
1405 	u32 reg;
1406 
1407 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1408 	    igb_sgmii_active_82575(hw))
1409 		return;
1410 
1411 	if (!igb_enable_mng_pass_thru(hw)) {
1412 		/* Disable PCS to turn off link */
1413 		reg = rd32(E1000_PCS_CFG0);
1414 		reg &= ~E1000_PCS_CFG_PCS_EN;
1415 		wr32(E1000_PCS_CFG0, reg);
1416 
1417 		/* shutdown the laser */
1418 		reg = rd32(E1000_CTRL_EXT);
1419 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1420 		wr32(E1000_CTRL_EXT, reg);
1421 
1422 		/* flush the write to verify completion */
1423 		wrfl();
1424 		usleep_range(1000, 2000);
1425 	}
1426 }
1427 
1428 /**
1429  *  igb_reset_hw_82575 - Reset hardware
1430  *  @hw: pointer to the HW structure
1431  *
1432  *  This resets the hardware into a known state.  This is a
1433  *  function pointer entry point called by the api module.
1434  **/
1435 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1436 {
1437 	u32 ctrl;
1438 	s32 ret_val;
1439 
1440 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1441 	 * on the last TLP read/write transaction when MAC is reset.
1442 	 */
1443 	ret_val = igb_disable_pcie_master(hw);
1444 	if (ret_val)
1445 		hw_dbg("PCI-E Master disable polling has failed.\n");
1446 
1447 	/* set the completion timeout for interface */
1448 	ret_val = igb_set_pcie_completion_timeout(hw);
1449 	if (ret_val)
1450 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1451 
1452 	hw_dbg("Masking off all interrupts\n");
1453 	wr32(E1000_IMC, 0xffffffff);
1454 
1455 	wr32(E1000_RCTL, 0);
1456 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1457 	wrfl();
1458 
1459 	usleep_range(10000, 20000);
1460 
1461 	ctrl = rd32(E1000_CTRL);
1462 
1463 	hw_dbg("Issuing a global reset to MAC\n");
1464 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1465 
1466 	ret_val = igb_get_auto_rd_done(hw);
1467 	if (ret_val) {
1468 		/* When auto config read does not complete, do not
1469 		 * return with an error. This can happen in situations
1470 		 * where there is no eeprom and prevents getting link.
1471 		 */
1472 		hw_dbg("Auto Read Done did not complete\n");
1473 	}
1474 
1475 	/* If EEPROM is not present, run manual init scripts */
1476 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1477 		igb_reset_init_script_82575(hw);
1478 
1479 	/* Clear any pending interrupt events. */
1480 	wr32(E1000_IMC, 0xffffffff);
1481 	rd32(E1000_ICR);
1482 
1483 	/* Install any alternate MAC address into RAR0 */
1484 	ret_val = igb_check_alt_mac_addr(hw);
1485 
1486 	return ret_val;
1487 }
1488 
1489 /**
1490  *  igb_init_hw_82575 - Initialize hardware
1491  *  @hw: pointer to the HW structure
1492  *
1493  *  This inits the hardware readying it for operation.
1494  **/
1495 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1496 {
1497 	struct e1000_mac_info *mac = &hw->mac;
1498 	s32 ret_val;
1499 	u16 i, rar_count = mac->rar_entry_count;
1500 
1501 	if ((hw->mac.type >= e1000_i210) &&
1502 	    !(igb_get_flash_presence_i210(hw))) {
1503 		ret_val = igb_pll_workaround_i210(hw);
1504 		if (ret_val)
1505 			return ret_val;
1506 	}
1507 
1508 	/* Initialize identification LED */
1509 	ret_val = igb_id_led_init(hw);
1510 	if (ret_val) {
1511 		hw_dbg("Error initializing identification LED\n");
1512 		/* This is not fatal and we should not stop init due to this */
1513 	}
1514 
1515 	/* Disabling VLAN filtering */
1516 	hw_dbg("Initializing the IEEE VLAN\n");
1517 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1518 		igb_clear_vfta_i350(hw);
1519 	else
1520 		igb_clear_vfta(hw);
1521 
1522 	/* Setup the receive address */
1523 	igb_init_rx_addrs(hw, rar_count);
1524 
1525 	/* Zero out the Multicast HASH table */
1526 	hw_dbg("Zeroing the MTA\n");
1527 	for (i = 0; i < mac->mta_reg_count; i++)
1528 		array_wr32(E1000_MTA, i, 0);
1529 
1530 	/* Zero out the Unicast HASH table */
1531 	hw_dbg("Zeroing the UTA\n");
1532 	for (i = 0; i < mac->uta_reg_count; i++)
1533 		array_wr32(E1000_UTA, i, 0);
1534 
1535 	/* Setup link and flow control */
1536 	ret_val = igb_setup_link(hw);
1537 
1538 	/* Clear all of the statistics registers (clear on read).  It is
1539 	 * important that we do this after we have tried to establish link
1540 	 * because the symbol error count will increment wildly if there
1541 	 * is no link.
1542 	 */
1543 	igb_clear_hw_cntrs_82575(hw);
1544 	return ret_val;
1545 }
1546 
1547 /**
1548  *  igb_setup_copper_link_82575 - Configure copper link settings
1549  *  @hw: pointer to the HW structure
1550  *
1551  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1552  *  for link, once link is established calls to configure collision distance
1553  *  and flow control are called.
1554  **/
1555 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1556 {
1557 	u32 ctrl;
1558 	s32  ret_val;
1559 	u32 phpm_reg;
1560 
1561 	ctrl = rd32(E1000_CTRL);
1562 	ctrl |= E1000_CTRL_SLU;
1563 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1564 	wr32(E1000_CTRL, ctrl);
1565 
1566 	/* Clear Go Link Disconnect bit on supported devices */
1567 	switch (hw->mac.type) {
1568 	case e1000_82580:
1569 	case e1000_i350:
1570 	case e1000_i210:
1571 	case e1000_i211:
1572 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1573 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1574 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1575 		break;
1576 	default:
1577 		break;
1578 	}
1579 
1580 	ret_val = igb_setup_serdes_link_82575(hw);
1581 	if (ret_val)
1582 		goto out;
1583 
1584 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1585 		/* allow time for SFP cage time to power up phy */
1586 		msleep(300);
1587 
1588 		ret_val = hw->phy.ops.reset(hw);
1589 		if (ret_val) {
1590 			hw_dbg("Error resetting the PHY.\n");
1591 			goto out;
1592 		}
1593 	}
1594 	switch (hw->phy.type) {
1595 	case e1000_phy_i210:
1596 	case e1000_phy_m88:
1597 		switch (hw->phy.id) {
1598 		case I347AT4_E_PHY_ID:
1599 		case M88E1112_E_PHY_ID:
1600 		case M88E1543_E_PHY_ID:
1601 		case M88E1512_E_PHY_ID:
1602 		case I210_I_PHY_ID:
1603 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1604 			break;
1605 		default:
1606 			ret_val = igb_copper_link_setup_m88(hw);
1607 			break;
1608 		}
1609 		break;
1610 	case e1000_phy_igp_3:
1611 		ret_val = igb_copper_link_setup_igp(hw);
1612 		break;
1613 	case e1000_phy_82580:
1614 		ret_val = igb_copper_link_setup_82580(hw);
1615 		break;
1616 	default:
1617 		ret_val = -E1000_ERR_PHY;
1618 		break;
1619 	}
1620 
1621 	if (ret_val)
1622 		goto out;
1623 
1624 	ret_val = igb_setup_copper_link(hw);
1625 out:
1626 	return ret_val;
1627 }
1628 
1629 /**
1630  *  igb_setup_serdes_link_82575 - Setup link for serdes
1631  *  @hw: pointer to the HW structure
1632  *
1633  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1634  *  used on copper connections where the serialized gigabit media independent
1635  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1636  *  for auto-negotiation or forces speed/duplex.
1637  **/
1638 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1639 {
1640 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1641 	bool pcs_autoneg;
1642 	s32 ret_val = 0;
1643 	u16 data;
1644 
1645 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1646 	    !igb_sgmii_active_82575(hw))
1647 		return ret_val;
1648 
1649 
1650 	/* On the 82575, SerDes loopback mode persists until it is
1651 	 * explicitly turned off or a power cycle is performed.  A read to
1652 	 * the register does not indicate its status.  Therefore, we ensure
1653 	 * loopback mode is disabled during initialization.
1654 	 */
1655 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1656 
1657 	/* power on the sfp cage if present and turn on I2C */
1658 	ctrl_ext = rd32(E1000_CTRL_EXT);
1659 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1660 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1661 	wr32(E1000_CTRL_EXT, ctrl_ext);
1662 
1663 	ctrl_reg = rd32(E1000_CTRL);
1664 	ctrl_reg |= E1000_CTRL_SLU;
1665 
1666 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1667 		/* set both sw defined pins */
1668 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1669 
1670 		/* Set switch control to serdes energy detect */
1671 		reg = rd32(E1000_CONNSW);
1672 		reg |= E1000_CONNSW_ENRGSRC;
1673 		wr32(E1000_CONNSW, reg);
1674 	}
1675 
1676 	reg = rd32(E1000_PCS_LCTL);
1677 
1678 	/* default pcs_autoneg to the same setting as mac autoneg */
1679 	pcs_autoneg = hw->mac.autoneg;
1680 
1681 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1682 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1683 		/* sgmii mode lets the phy handle forcing speed/duplex */
1684 		pcs_autoneg = true;
1685 		/* autoneg time out should be disabled for SGMII mode */
1686 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1687 		break;
1688 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1689 		/* disable PCS autoneg and support parallel detect only */
1690 		pcs_autoneg = false;
1691 	default:
1692 		if (hw->mac.type == e1000_82575 ||
1693 		    hw->mac.type == e1000_82576) {
1694 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1695 			if (ret_val) {
1696 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1697 				return ret_val;
1698 			}
1699 
1700 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1701 				pcs_autoneg = false;
1702 		}
1703 
1704 		/* non-SGMII modes only supports a speed of 1000/Full for the
1705 		 * link so it is best to just force the MAC and let the pcs
1706 		 * link either autoneg or be forced to 1000/Full
1707 		 */
1708 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1709 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1710 
1711 		/* set speed of 1000/Full if speed/duplex is forced */
1712 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1713 		break;
1714 	}
1715 
1716 	wr32(E1000_CTRL, ctrl_reg);
1717 
1718 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1719 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1720 	 * mode that will be compatible with older link partners and switches.
1721 	 * However, both are supported by the hardware and some drivers/tools.
1722 	 */
1723 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1724 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1725 
1726 	if (pcs_autoneg) {
1727 		/* Set PCS register for autoneg */
1728 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1729 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1730 
1731 		/* Disable force flow control for autoneg */
1732 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1733 
1734 		/* Configure flow control advertisement for autoneg */
1735 		anadv_reg = rd32(E1000_PCS_ANADV);
1736 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1737 		switch (hw->fc.requested_mode) {
1738 		case e1000_fc_full:
1739 		case e1000_fc_rx_pause:
1740 			anadv_reg |= E1000_TXCW_ASM_DIR;
1741 			anadv_reg |= E1000_TXCW_PAUSE;
1742 			break;
1743 		case e1000_fc_tx_pause:
1744 			anadv_reg |= E1000_TXCW_ASM_DIR;
1745 			break;
1746 		default:
1747 			break;
1748 		}
1749 		wr32(E1000_PCS_ANADV, anadv_reg);
1750 
1751 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1752 	} else {
1753 		/* Set PCS register for forced link */
1754 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1755 
1756 		/* Force flow control for forced link */
1757 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1758 
1759 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1760 	}
1761 
1762 	wr32(E1000_PCS_LCTL, reg);
1763 
1764 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1765 		igb_force_mac_fc(hw);
1766 
1767 	return ret_val;
1768 }
1769 
1770 /**
1771  *  igb_sgmii_active_82575 - Return sgmii state
1772  *  @hw: pointer to the HW structure
1773  *
1774  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1775  *  which can be enabled for use in the embedded applications.  Simply
1776  *  return the current state of the sgmii interface.
1777  **/
1778 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1779 {
1780 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1781 	return dev_spec->sgmii_active;
1782 }
1783 
1784 /**
1785  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Inits recommended HW defaults after a reset when there is no EEPROM
1789  *  detected. This is only for the 82575.
1790  **/
1791 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1792 {
1793 	if (hw->mac.type == e1000_82575) {
1794 		hw_dbg("Running reset init script for 82575\n");
1795 		/* SerDes configuration via SERDESCTRL */
1796 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1797 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1798 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1799 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1800 
1801 		/* CCM configuration via CCMCTL register */
1802 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1803 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1804 
1805 		/* PCIe lanes configuration */
1806 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1807 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1808 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1809 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1810 
1811 		/* PCIe PLL Configuration */
1812 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1813 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1814 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1815 	}
1816 
1817 	return 0;
1818 }
1819 
1820 /**
1821  *  igb_read_mac_addr_82575 - Read device MAC address
1822  *  @hw: pointer to the HW structure
1823  **/
1824 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1825 {
1826 	s32 ret_val = 0;
1827 
1828 	/* If there's an alternate MAC address place it in RAR0
1829 	 * so that it will override the Si installed default perm
1830 	 * address.
1831 	 */
1832 	ret_val = igb_check_alt_mac_addr(hw);
1833 	if (ret_val)
1834 		goto out;
1835 
1836 	ret_val = igb_read_mac_addr(hw);
1837 
1838 out:
1839 	return ret_val;
1840 }
1841 
1842 /**
1843  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1844  * @hw: pointer to the HW structure
1845  *
1846  * In the case of a PHY power down to save power, or to turn off link during a
1847  * driver unload, or wake on lan is not enabled, remove the link.
1848  **/
1849 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1850 {
1851 	/* If the management interface is not enabled, then power down */
1852 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1853 		igb_power_down_phy_copper(hw);
1854 }
1855 
1856 /**
1857  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1858  *  @hw: pointer to the HW structure
1859  *
1860  *  Clears the hardware counters by reading the counter registers.
1861  **/
1862 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1863 {
1864 	igb_clear_hw_cntrs_base(hw);
1865 
1866 	rd32(E1000_PRC64);
1867 	rd32(E1000_PRC127);
1868 	rd32(E1000_PRC255);
1869 	rd32(E1000_PRC511);
1870 	rd32(E1000_PRC1023);
1871 	rd32(E1000_PRC1522);
1872 	rd32(E1000_PTC64);
1873 	rd32(E1000_PTC127);
1874 	rd32(E1000_PTC255);
1875 	rd32(E1000_PTC511);
1876 	rd32(E1000_PTC1023);
1877 	rd32(E1000_PTC1522);
1878 
1879 	rd32(E1000_ALGNERRC);
1880 	rd32(E1000_RXERRC);
1881 	rd32(E1000_TNCRS);
1882 	rd32(E1000_CEXTERR);
1883 	rd32(E1000_TSCTC);
1884 	rd32(E1000_TSCTFC);
1885 
1886 	rd32(E1000_MGTPRC);
1887 	rd32(E1000_MGTPDC);
1888 	rd32(E1000_MGTPTC);
1889 
1890 	rd32(E1000_IAC);
1891 	rd32(E1000_ICRXOC);
1892 
1893 	rd32(E1000_ICRXPTC);
1894 	rd32(E1000_ICRXATC);
1895 	rd32(E1000_ICTXPTC);
1896 	rd32(E1000_ICTXATC);
1897 	rd32(E1000_ICTXQEC);
1898 	rd32(E1000_ICTXQMTC);
1899 	rd32(E1000_ICRXDMTC);
1900 
1901 	rd32(E1000_CBTMPC);
1902 	rd32(E1000_HTDPMC);
1903 	rd32(E1000_CBRMPC);
1904 	rd32(E1000_RPTHC);
1905 	rd32(E1000_HGPTC);
1906 	rd32(E1000_HTCBDPC);
1907 	rd32(E1000_HGORCL);
1908 	rd32(E1000_HGORCH);
1909 	rd32(E1000_HGOTCL);
1910 	rd32(E1000_HGOTCH);
1911 	rd32(E1000_LENERRS);
1912 
1913 	/* This register should not be read in copper configurations */
1914 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1915 	    igb_sgmii_active_82575(hw))
1916 		rd32(E1000_SCVPC);
1917 }
1918 
1919 /**
1920  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1921  *  @hw: pointer to the HW structure
1922  *
1923  *  After rx enable if manageability is enabled then there is likely some
1924  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1925  *  function clears the fifos and flushes any packets that came in as rx was
1926  *  being enabled.
1927  **/
1928 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1929 {
1930 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1931 	int i, ms_wait;
1932 
1933 	/* disable IPv6 options as per hardware errata */
1934 	rfctl = rd32(E1000_RFCTL);
1935 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1936 	wr32(E1000_RFCTL, rfctl);
1937 
1938 	if (hw->mac.type != e1000_82575 ||
1939 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1940 		return;
1941 
1942 	/* Disable all RX queues */
1943 	for (i = 0; i < 4; i++) {
1944 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1945 		wr32(E1000_RXDCTL(i),
1946 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1947 	}
1948 	/* Poll all queues to verify they have shut down */
1949 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1950 		usleep_range(1000, 2000);
1951 		rx_enabled = 0;
1952 		for (i = 0; i < 4; i++)
1953 			rx_enabled |= rd32(E1000_RXDCTL(i));
1954 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1955 			break;
1956 	}
1957 
1958 	if (ms_wait == 10)
1959 		hw_dbg("Queue disable timed out after 10ms\n");
1960 
1961 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1962 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1963 	 * any packet that was coming in as RCTL.EN was set is flushed
1964 	 */
1965 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1966 
1967 	rlpml = rd32(E1000_RLPML);
1968 	wr32(E1000_RLPML, 0);
1969 
1970 	rctl = rd32(E1000_RCTL);
1971 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1972 	temp_rctl |= E1000_RCTL_LPE;
1973 
1974 	wr32(E1000_RCTL, temp_rctl);
1975 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1976 	wrfl();
1977 	usleep_range(2000, 3000);
1978 
1979 	/* Enable RX queues that were previously enabled and restore our
1980 	 * previous state
1981 	 */
1982 	for (i = 0; i < 4; i++)
1983 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1984 	wr32(E1000_RCTL, rctl);
1985 	wrfl();
1986 
1987 	wr32(E1000_RLPML, rlpml);
1988 	wr32(E1000_RFCTL, rfctl);
1989 
1990 	/* Flush receive errors generated by workaround */
1991 	rd32(E1000_ROC);
1992 	rd32(E1000_RNBC);
1993 	rd32(E1000_MPC);
1994 }
1995 
1996 /**
1997  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1998  *  @hw: pointer to the HW structure
1999  *
2000  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2001  *  however the hardware default for these parts is 500us to 1ms which is less
2002  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2003  *  increase the value to either 10ms to 200ms for capability version 1 config,
2004  *  or 16ms to 55ms for version 2.
2005  **/
2006 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2007 {
2008 	u32 gcr = rd32(E1000_GCR);
2009 	s32 ret_val = 0;
2010 	u16 pcie_devctl2;
2011 
2012 	/* only take action if timeout value is defaulted to 0 */
2013 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2014 		goto out;
2015 
2016 	/* if capabilities version is type 1 we can write the
2017 	 * timeout of 10ms to 200ms through the GCR register
2018 	 */
2019 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2020 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2021 		goto out;
2022 	}
2023 
2024 	/* for version 2 capabilities we need to write the config space
2025 	 * directly in order to set the completion timeout value for
2026 	 * 16ms to 55ms
2027 	 */
2028 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2029 					&pcie_devctl2);
2030 	if (ret_val)
2031 		goto out;
2032 
2033 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2034 
2035 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2036 					 &pcie_devctl2);
2037 out:
2038 	/* disable completion timeout resend */
2039 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2040 
2041 	wr32(E1000_GCR, gcr);
2042 	return ret_val;
2043 }
2044 
2045 /**
2046  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2047  *  @hw: pointer to the hardware struct
2048  *  @enable: state to enter, either enabled or disabled
2049  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2050  *
2051  *  enables/disables L2 switch anti-spoofing functionality.
2052  **/
2053 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2054 {
2055 	u32 reg_val, reg_offset;
2056 
2057 	switch (hw->mac.type) {
2058 	case e1000_82576:
2059 		reg_offset = E1000_DTXSWC;
2060 		break;
2061 	case e1000_i350:
2062 	case e1000_i354:
2063 		reg_offset = E1000_TXSWC;
2064 		break;
2065 	default:
2066 		return;
2067 	}
2068 
2069 	reg_val = rd32(reg_offset);
2070 	if (enable) {
2071 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2072 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2073 		/* The PF can spoof - it has to in order to
2074 		 * support emulation mode NICs
2075 		 */
2076 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2077 	} else {
2078 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2079 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2080 	}
2081 	wr32(reg_offset, reg_val);
2082 }
2083 
2084 /**
2085  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2086  *  @hw: pointer to the hardware struct
2087  *  @enable: state to enter, either enabled or disabled
2088  *
2089  *  enables/disables L2 switch loopback functionality.
2090  **/
2091 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2092 {
2093 	u32 dtxswc;
2094 
2095 	switch (hw->mac.type) {
2096 	case e1000_82576:
2097 		dtxswc = rd32(E1000_DTXSWC);
2098 		if (enable)
2099 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2100 		else
2101 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2102 		wr32(E1000_DTXSWC, dtxswc);
2103 		break;
2104 	case e1000_i354:
2105 	case e1000_i350:
2106 		dtxswc = rd32(E1000_TXSWC);
2107 		if (enable)
2108 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2109 		else
2110 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2111 		wr32(E1000_TXSWC, dtxswc);
2112 		break;
2113 	default:
2114 		/* Currently no other hardware supports loopback */
2115 		break;
2116 	}
2117 
2118 }
2119 
2120 /**
2121  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2122  *  @hw: pointer to the hardware struct
2123  *  @enable: state to enter, either enabled or disabled
2124  *
2125  *  enables/disables replication of packets across multiple pools.
2126  **/
2127 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2128 {
2129 	u32 vt_ctl = rd32(E1000_VT_CTL);
2130 
2131 	if (enable)
2132 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2133 	else
2134 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2135 
2136 	wr32(E1000_VT_CTL, vt_ctl);
2137 }
2138 
2139 /**
2140  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2141  *  @hw: pointer to the HW structure
2142  *  @offset: register offset to be read
2143  *  @data: pointer to the read data
2144  *
2145  *  Reads the MDI control register in the PHY at offset and stores the
2146  *  information read to data.
2147  **/
2148 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2149 {
2150 	s32 ret_val;
2151 
2152 	ret_val = hw->phy.ops.acquire(hw);
2153 	if (ret_val)
2154 		goto out;
2155 
2156 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2157 
2158 	hw->phy.ops.release(hw);
2159 
2160 out:
2161 	return ret_val;
2162 }
2163 
2164 /**
2165  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2166  *  @hw: pointer to the HW structure
2167  *  @offset: register offset to write to
2168  *  @data: data to write to register at offset
2169  *
2170  *  Writes data to MDI control register in the PHY at offset.
2171  **/
2172 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2173 {
2174 	s32 ret_val;
2175 
2176 
2177 	ret_val = hw->phy.ops.acquire(hw);
2178 	if (ret_val)
2179 		goto out;
2180 
2181 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2182 
2183 	hw->phy.ops.release(hw);
2184 
2185 out:
2186 	return ret_val;
2187 }
2188 
2189 /**
2190  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2191  *  @hw: pointer to the HW structure
2192  *
2193  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2194  *  the values found in the EEPROM.  This addresses an issue in which these
2195  *  bits are not restored from EEPROM after reset.
2196  **/
2197 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2198 {
2199 	s32 ret_val = 0;
2200 	u32 mdicnfg;
2201 	u16 nvm_data = 0;
2202 
2203 	if (hw->mac.type != e1000_82580)
2204 		goto out;
2205 	if (!igb_sgmii_active_82575(hw))
2206 		goto out;
2207 
2208 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2209 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2210 				   &nvm_data);
2211 	if (ret_val) {
2212 		hw_dbg("NVM Read Error\n");
2213 		goto out;
2214 	}
2215 
2216 	mdicnfg = rd32(E1000_MDICNFG);
2217 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2218 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2219 	if (nvm_data & NVM_WORD24_COM_MDIO)
2220 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2221 	wr32(E1000_MDICNFG, mdicnfg);
2222 out:
2223 	return ret_val;
2224 }
2225 
2226 /**
2227  *  igb_reset_hw_82580 - Reset hardware
2228  *  @hw: pointer to the HW structure
2229  *
2230  *  This resets function or entire device (all ports, etc.)
2231  *  to a known state.
2232  **/
2233 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2234 {
2235 	s32 ret_val = 0;
2236 	/* BH SW mailbox bit in SW_FW_SYNC */
2237 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2238 	u32 ctrl;
2239 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2240 
2241 	hw->dev_spec._82575.global_device_reset = false;
2242 
2243 	/* due to hw errata, global device reset doesn't always
2244 	 * work on 82580
2245 	 */
2246 	if (hw->mac.type == e1000_82580)
2247 		global_device_reset = false;
2248 
2249 	/* Get current control state. */
2250 	ctrl = rd32(E1000_CTRL);
2251 
2252 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2253 	 * on the last TLP read/write transaction when MAC is reset.
2254 	 */
2255 	ret_val = igb_disable_pcie_master(hw);
2256 	if (ret_val)
2257 		hw_dbg("PCI-E Master disable polling has failed.\n");
2258 
2259 	hw_dbg("Masking off all interrupts\n");
2260 	wr32(E1000_IMC, 0xffffffff);
2261 	wr32(E1000_RCTL, 0);
2262 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2263 	wrfl();
2264 
2265 	usleep_range(10000, 11000);
2266 
2267 	/* Determine whether or not a global dev reset is requested */
2268 	if (global_device_reset &&
2269 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2270 			global_device_reset = false;
2271 
2272 	if (global_device_reset &&
2273 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2274 		ctrl |= E1000_CTRL_DEV_RST;
2275 	else
2276 		ctrl |= E1000_CTRL_RST;
2277 
2278 	wr32(E1000_CTRL, ctrl);
2279 	wrfl();
2280 
2281 	/* Add delay to insure DEV_RST has time to complete */
2282 	if (global_device_reset)
2283 		usleep_range(5000, 6000);
2284 
2285 	ret_val = igb_get_auto_rd_done(hw);
2286 	if (ret_val) {
2287 		/* When auto config read does not complete, do not
2288 		 * return with an error. This can happen in situations
2289 		 * where there is no eeprom and prevents getting link.
2290 		 */
2291 		hw_dbg("Auto Read Done did not complete\n");
2292 	}
2293 
2294 	/* clear global device reset status bit */
2295 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2296 
2297 	/* Clear any pending interrupt events. */
2298 	wr32(E1000_IMC, 0xffffffff);
2299 	rd32(E1000_ICR);
2300 
2301 	ret_val = igb_reset_mdicnfg_82580(hw);
2302 	if (ret_val)
2303 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2304 
2305 	/* Install any alternate MAC address into RAR0 */
2306 	ret_val = igb_check_alt_mac_addr(hw);
2307 
2308 	/* Release semaphore */
2309 	if (global_device_reset)
2310 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2311 
2312 	return ret_val;
2313 }
2314 
2315 /**
2316  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2317  *  @data: data received by reading RXPBS register
2318  *
2319  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2320  *  This function converts the retrieved value into the correct table value
2321  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2322  *  0x0 36  72 144   1   2   4   8  16
2323  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2324  */
2325 u16 igb_rxpbs_adjust_82580(u32 data)
2326 {
2327 	u16 ret_val = 0;
2328 
2329 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2330 		ret_val = e1000_82580_rxpbs_table[data];
2331 
2332 	return ret_val;
2333 }
2334 
2335 /**
2336  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2337  *  checksum
2338  *  @hw: pointer to the HW structure
2339  *  @offset: offset in words of the checksum protected region
2340  *
2341  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2342  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2343  **/
2344 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2345 						 u16 offset)
2346 {
2347 	s32 ret_val = 0;
2348 	u16 checksum = 0;
2349 	u16 i, nvm_data;
2350 
2351 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2352 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2353 		if (ret_val) {
2354 			hw_dbg("NVM Read Error\n");
2355 			goto out;
2356 		}
2357 		checksum += nvm_data;
2358 	}
2359 
2360 	if (checksum != (u16) NVM_SUM) {
2361 		hw_dbg("NVM Checksum Invalid\n");
2362 		ret_val = -E1000_ERR_NVM;
2363 		goto out;
2364 	}
2365 
2366 out:
2367 	return ret_val;
2368 }
2369 
2370 /**
2371  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2372  *  checksum
2373  *  @hw: pointer to the HW structure
2374  *  @offset: offset in words of the checksum protected region
2375  *
2376  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2377  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2378  *  value to the EEPROM.
2379  **/
2380 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2381 {
2382 	s32 ret_val;
2383 	u16 checksum = 0;
2384 	u16 i, nvm_data;
2385 
2386 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2387 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2388 		if (ret_val) {
2389 			hw_dbg("NVM Read Error while updating checksum.\n");
2390 			goto out;
2391 		}
2392 		checksum += nvm_data;
2393 	}
2394 	checksum = (u16) NVM_SUM - checksum;
2395 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2396 				&checksum);
2397 	if (ret_val)
2398 		hw_dbg("NVM Write Error while updating checksum.\n");
2399 
2400 out:
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2406  *  @hw: pointer to the HW structure
2407  *
2408  *  Calculates the EEPROM section checksum by reading/adding each word of
2409  *  the EEPROM and then verifies that the sum of the EEPROM is
2410  *  equal to 0xBABA.
2411  **/
2412 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2413 {
2414 	s32 ret_val = 0;
2415 	u16 eeprom_regions_count = 1;
2416 	u16 j, nvm_data;
2417 	u16 nvm_offset;
2418 
2419 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2420 	if (ret_val) {
2421 		hw_dbg("NVM Read Error\n");
2422 		goto out;
2423 	}
2424 
2425 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2426 		/* if checksums compatibility bit is set validate checksums
2427 		 * for all 4 ports.
2428 		 */
2429 		eeprom_regions_count = 4;
2430 	}
2431 
2432 	for (j = 0; j < eeprom_regions_count; j++) {
2433 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2434 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2435 								nvm_offset);
2436 		if (ret_val != 0)
2437 			goto out;
2438 	}
2439 
2440 out:
2441 	return ret_val;
2442 }
2443 
2444 /**
2445  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2446  *  @hw: pointer to the HW structure
2447  *
2448  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2449  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2450  *  checksum and writes the value to the EEPROM.
2451  **/
2452 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2453 {
2454 	s32 ret_val;
2455 	u16 j, nvm_data;
2456 	u16 nvm_offset;
2457 
2458 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2459 	if (ret_val) {
2460 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2461 		goto out;
2462 	}
2463 
2464 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2465 		/* set compatibility bit to validate checksums appropriately */
2466 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2467 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2468 					&nvm_data);
2469 		if (ret_val) {
2470 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2471 			goto out;
2472 		}
2473 	}
2474 
2475 	for (j = 0; j < 4; j++) {
2476 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2477 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2478 		if (ret_val)
2479 			goto out;
2480 	}
2481 
2482 out:
2483 	return ret_val;
2484 }
2485 
2486 /**
2487  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2488  *  @hw: pointer to the HW structure
2489  *
2490  *  Calculates the EEPROM section checksum by reading/adding each word of
2491  *  the EEPROM and then verifies that the sum of the EEPROM is
2492  *  equal to 0xBABA.
2493  **/
2494 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2495 {
2496 	s32 ret_val = 0;
2497 	u16 j;
2498 	u16 nvm_offset;
2499 
2500 	for (j = 0; j < 4; j++) {
2501 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2502 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2503 								nvm_offset);
2504 		if (ret_val != 0)
2505 			goto out;
2506 	}
2507 
2508 out:
2509 	return ret_val;
2510 }
2511 
2512 /**
2513  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2514  *  @hw: pointer to the HW structure
2515  *
2516  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2517  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2518  *  checksum and writes the value to the EEPROM.
2519  **/
2520 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2521 {
2522 	s32 ret_val = 0;
2523 	u16 j;
2524 	u16 nvm_offset;
2525 
2526 	for (j = 0; j < 4; j++) {
2527 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2528 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2529 		if (ret_val != 0)
2530 			goto out;
2531 	}
2532 
2533 out:
2534 	return ret_val;
2535 }
2536 
2537 /**
2538  *  __igb_access_emi_reg - Read/write EMI register
2539  *  @hw: pointer to the HW structure
2540  *  @addr: EMI address to program
2541  *  @data: pointer to value to read/write from/to the EMI address
2542  *  @read: boolean flag to indicate read or write
2543  **/
2544 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2545 				  u16 *data, bool read)
2546 {
2547 	s32 ret_val = 0;
2548 
2549 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2550 	if (ret_val)
2551 		return ret_val;
2552 
2553 	if (read)
2554 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2555 	else
2556 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2557 
2558 	return ret_val;
2559 }
2560 
2561 /**
2562  *  igb_read_emi_reg - Read Extended Management Interface register
2563  *  @hw: pointer to the HW structure
2564  *  @addr: EMI address to program
2565  *  @data: value to be read from the EMI address
2566  **/
2567 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2568 {
2569 	return __igb_access_emi_reg(hw, addr, data, true);
2570 }
2571 
2572 /**
2573  *  igb_set_eee_i350 - Enable/disable EEE support
2574  *  @hw: pointer to the HW structure
2575  *  @adv1G: boolean flag enabling 1G EEE advertisement
2576  *  @adv100m: boolean flag enabling 100M EEE advertisement
2577  *
2578  *  Enable/disable EEE based on setting in dev_spec structure.
2579  *
2580  **/
2581 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2582 {
2583 	u32 ipcnfg, eeer;
2584 
2585 	if ((hw->mac.type < e1000_i350) ||
2586 	    (hw->phy.media_type != e1000_media_type_copper))
2587 		goto out;
2588 	ipcnfg = rd32(E1000_IPCNFG);
2589 	eeer = rd32(E1000_EEER);
2590 
2591 	/* enable or disable per user setting */
2592 	if (!(hw->dev_spec._82575.eee_disable)) {
2593 		u32 eee_su = rd32(E1000_EEE_SU);
2594 
2595 		if (adv100M)
2596 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2597 		else
2598 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2599 
2600 		if (adv1G)
2601 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2602 		else
2603 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2604 
2605 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2606 			E1000_EEER_LPI_FC);
2607 
2608 		/* This bit should not be set in normal operation. */
2609 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2610 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2611 
2612 	} else {
2613 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2614 			E1000_IPCNFG_EEE_100M_AN);
2615 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2616 			E1000_EEER_RX_LPI_EN |
2617 			E1000_EEER_LPI_FC);
2618 	}
2619 	wr32(E1000_IPCNFG, ipcnfg);
2620 	wr32(E1000_EEER, eeer);
2621 	rd32(E1000_IPCNFG);
2622 	rd32(E1000_EEER);
2623 out:
2624 
2625 	return 0;
2626 }
2627 
2628 /**
2629  *  igb_set_eee_i354 - Enable/disable EEE support
2630  *  @hw: pointer to the HW structure
2631  *  @adv1G: boolean flag enabling 1G EEE advertisement
2632  *  @adv100m: boolean flag enabling 100M EEE advertisement
2633  *
2634  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2635  *
2636  **/
2637 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2638 {
2639 	struct e1000_phy_info *phy = &hw->phy;
2640 	s32 ret_val = 0;
2641 	u16 phy_data;
2642 
2643 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2644 	    ((phy->id != M88E1543_E_PHY_ID) &&
2645 	     (phy->id != M88E1512_E_PHY_ID)))
2646 		goto out;
2647 
2648 	if (!hw->dev_spec._82575.eee_disable) {
2649 		/* Switch to PHY page 18. */
2650 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2651 		if (ret_val)
2652 			goto out;
2653 
2654 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2655 					    &phy_data);
2656 		if (ret_val)
2657 			goto out;
2658 
2659 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2660 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2661 					     phy_data);
2662 		if (ret_val)
2663 			goto out;
2664 
2665 		/* Return the PHY to page 0. */
2666 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2667 		if (ret_val)
2668 			goto out;
2669 
2670 		/* Turn on EEE advertisement. */
2671 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2672 					     E1000_EEE_ADV_DEV_I354,
2673 					     &phy_data);
2674 		if (ret_val)
2675 			goto out;
2676 
2677 		if (adv100M)
2678 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2679 		else
2680 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2681 
2682 		if (adv1G)
2683 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2684 		else
2685 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2686 
2687 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2688 						E1000_EEE_ADV_DEV_I354,
2689 						phy_data);
2690 	} else {
2691 		/* Turn off EEE advertisement. */
2692 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2693 					     E1000_EEE_ADV_DEV_I354,
2694 					     &phy_data);
2695 		if (ret_val)
2696 			goto out;
2697 
2698 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2699 			      E1000_EEE_ADV_1000_SUPPORTED);
2700 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2701 					      E1000_EEE_ADV_DEV_I354,
2702 					      phy_data);
2703 	}
2704 
2705 out:
2706 	return ret_val;
2707 }
2708 
2709 /**
2710  *  igb_get_eee_status_i354 - Get EEE status
2711  *  @hw: pointer to the HW structure
2712  *  @status: EEE status
2713  *
2714  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2715  *  been received.
2716  **/
2717 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2718 {
2719 	struct e1000_phy_info *phy = &hw->phy;
2720 	s32 ret_val = 0;
2721 	u16 phy_data;
2722 
2723 	/* Check if EEE is supported on this device. */
2724 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2725 	    ((phy->id != M88E1543_E_PHY_ID) &&
2726 	     (phy->id != M88E1512_E_PHY_ID)))
2727 		goto out;
2728 
2729 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2730 				     E1000_PCS_STATUS_DEV_I354,
2731 				     &phy_data);
2732 	if (ret_val)
2733 		goto out;
2734 
2735 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2736 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2737 
2738 out:
2739 	return ret_val;
2740 }
2741 
2742 static const u8 e1000_emc_temp_data[4] = {
2743 	E1000_EMC_INTERNAL_DATA,
2744 	E1000_EMC_DIODE1_DATA,
2745 	E1000_EMC_DIODE2_DATA,
2746 	E1000_EMC_DIODE3_DATA
2747 };
2748 static const u8 e1000_emc_therm_limit[4] = {
2749 	E1000_EMC_INTERNAL_THERM_LIMIT,
2750 	E1000_EMC_DIODE1_THERM_LIMIT,
2751 	E1000_EMC_DIODE2_THERM_LIMIT,
2752 	E1000_EMC_DIODE3_THERM_LIMIT
2753 };
2754 
2755 #ifdef CONFIG_IGB_HWMON
2756 /**
2757  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2758  *  @hw: pointer to hardware structure
2759  *
2760  *  Updates the temperatures in mac.thermal_sensor_data
2761  **/
2762 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2763 {
2764 	u16 ets_offset;
2765 	u16 ets_cfg;
2766 	u16 ets_sensor;
2767 	u8  num_sensors;
2768 	u8  sensor_index;
2769 	u8  sensor_location;
2770 	u8  i;
2771 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2772 
2773 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2774 		return E1000_NOT_IMPLEMENTED;
2775 
2776 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2777 
2778 	/* Return the internal sensor only if ETS is unsupported */
2779 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2780 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2781 		return 0;
2782 
2783 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2784 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2785 	    != NVM_ETS_TYPE_EMC)
2786 		return E1000_NOT_IMPLEMENTED;
2787 
2788 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2789 	if (num_sensors > E1000_MAX_SENSORS)
2790 		num_sensors = E1000_MAX_SENSORS;
2791 
2792 	for (i = 1; i < num_sensors; i++) {
2793 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2794 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2795 				NVM_ETS_DATA_INDEX_SHIFT);
2796 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2797 				   NVM_ETS_DATA_LOC_SHIFT);
2798 
2799 		if (sensor_location != 0)
2800 			hw->phy.ops.read_i2c_byte(hw,
2801 					e1000_emc_temp_data[sensor_index],
2802 					E1000_I2C_THERMAL_SENSOR_ADDR,
2803 					&data->sensor[i].temp);
2804 	}
2805 	return 0;
2806 }
2807 
2808 /**
2809  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2810  *  @hw: pointer to hardware structure
2811  *
2812  *  Sets the thermal sensor thresholds according to the NVM map
2813  *  and save off the threshold and location values into mac.thermal_sensor_data
2814  **/
2815 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2816 {
2817 	u16 ets_offset;
2818 	u16 ets_cfg;
2819 	u16 ets_sensor;
2820 	u8  low_thresh_delta;
2821 	u8  num_sensors;
2822 	u8  sensor_index;
2823 	u8  sensor_location;
2824 	u8  therm_limit;
2825 	u8  i;
2826 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2827 
2828 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2829 		return E1000_NOT_IMPLEMENTED;
2830 
2831 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2832 
2833 	data->sensor[0].location = 0x1;
2834 	data->sensor[0].caution_thresh =
2835 		(rd32(E1000_THHIGHTC) & 0xFF);
2836 	data->sensor[0].max_op_thresh =
2837 		(rd32(E1000_THLOWTC) & 0xFF);
2838 
2839 	/* Return the internal sensor only if ETS is unsupported */
2840 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2841 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2842 		return 0;
2843 
2844 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2845 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2846 	    != NVM_ETS_TYPE_EMC)
2847 		return E1000_NOT_IMPLEMENTED;
2848 
2849 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2850 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2851 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2852 
2853 	for (i = 1; i <= num_sensors; i++) {
2854 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2855 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2856 				NVM_ETS_DATA_INDEX_SHIFT);
2857 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2858 				   NVM_ETS_DATA_LOC_SHIFT);
2859 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2860 
2861 		hw->phy.ops.write_i2c_byte(hw,
2862 			e1000_emc_therm_limit[sensor_index],
2863 			E1000_I2C_THERMAL_SENSOR_ADDR,
2864 			therm_limit);
2865 
2866 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2867 			data->sensor[i].location = sensor_location;
2868 			data->sensor[i].caution_thresh = therm_limit;
2869 			data->sensor[i].max_op_thresh = therm_limit -
2870 							low_thresh_delta;
2871 		}
2872 	}
2873 	return 0;
2874 }
2875 
2876 #endif
2877 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2878 	.init_hw              = igb_init_hw_82575,
2879 	.check_for_link       = igb_check_for_link_82575,
2880 	.rar_set              = igb_rar_set,
2881 	.read_mac_addr        = igb_read_mac_addr_82575,
2882 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2883 #ifdef CONFIG_IGB_HWMON
2884 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2885 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2886 #endif
2887 };
2888 
2889 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2890 	.acquire              = igb_acquire_phy_82575,
2891 	.get_cfg_done         = igb_get_cfg_done_82575,
2892 	.release              = igb_release_phy_82575,
2893 	.write_i2c_byte       = igb_write_i2c_byte,
2894 	.read_i2c_byte        = igb_read_i2c_byte,
2895 };
2896 
2897 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2898 	.acquire              = igb_acquire_nvm_82575,
2899 	.read                 = igb_read_nvm_eerd,
2900 	.release              = igb_release_nvm_82575,
2901 	.write                = igb_write_nvm_spi,
2902 };
2903 
2904 const struct e1000_info e1000_82575_info = {
2905 	.get_invariants = igb_get_invariants_82575,
2906 	.mac_ops = &e1000_mac_ops_82575,
2907 	.phy_ops = &e1000_phy_ops_82575,
2908 	.nvm_ops = &e1000_nvm_ops_82575,
2909 };
2910 
2911