1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_reset_hw_82575(struct e1000_hw *);
49 static s32  igb_reset_hw_82580(struct e1000_hw *);
50 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
52 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
53 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
54 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
55 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
56 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
57 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
58 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
59 						 u16 *);
60 static s32  igb_get_phy_id_82575(struct e1000_hw *);
61 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
62 static bool igb_sgmii_active_82575(struct e1000_hw *);
63 static s32  igb_reset_init_script_82575(struct e1000_hw *);
64 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
66 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
67 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
68 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
70 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
71 static const u16 e1000_82580_rxpbs_table[] = {
72 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
73 
74 /**
75  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
76  *  @hw: pointer to the HW structure
77  *
78  *  Called to determine if the I2C pins are being used for I2C or as an
79  *  external MDIO interface since the two options are mutually exclusive.
80  **/
81 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
82 {
83 	u32 reg = 0;
84 	bool ext_mdio = false;
85 
86 	switch (hw->mac.type) {
87 	case e1000_82575:
88 	case e1000_82576:
89 		reg = rd32(E1000_MDIC);
90 		ext_mdio = !!(reg & E1000_MDIC_DEST);
91 		break;
92 	case e1000_82580:
93 	case e1000_i350:
94 	case e1000_i354:
95 	case e1000_i210:
96 	case e1000_i211:
97 		reg = rd32(E1000_MDICNFG);
98 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
99 		break;
100 	default:
101 		break;
102 	}
103 	return ext_mdio;
104 }
105 
106 /**
107  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
108  *  @hw: pointer to the HW structure
109  *
110  *  Poll the M88E1112 interfaces to see which interface achieved link.
111  */
112 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
113 {
114 	struct e1000_phy_info *phy = &hw->phy;
115 	s32 ret_val;
116 	u16 data;
117 	u8 port = 0;
118 
119 	/* Check the copper medium. */
120 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
121 	if (ret_val)
122 		return ret_val;
123 
124 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
125 	if (ret_val)
126 		return ret_val;
127 
128 	if (data & E1000_M88E1112_STATUS_LINK)
129 		port = E1000_MEDIA_PORT_COPPER;
130 
131 	/* Check the other medium. */
132 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
133 	if (ret_val)
134 		return ret_val;
135 
136 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
137 	if (ret_val)
138 		return ret_val;
139 
140 
141 	if (data & E1000_M88E1112_STATUS_LINK)
142 		port = E1000_MEDIA_PORT_OTHER;
143 
144 	/* Determine if a swap needs to happen. */
145 	if (port && (hw->dev_spec._82575.media_port != port)) {
146 		hw->dev_spec._82575.media_port = port;
147 		hw->dev_spec._82575.media_changed = true;
148 	}
149 
150 	if (port == E1000_MEDIA_PORT_COPPER) {
151 		/* reset page to 0 */
152 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
153 		if (ret_val)
154 			return ret_val;
155 		igb_check_for_link_82575(hw);
156 	} else {
157 		igb_check_for_link_82575(hw);
158 		/* reset page to 0 */
159 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160 		if (ret_val)
161 			return ret_val;
162 	}
163 
164 	return 0;
165 }
166 
167 /**
168  *  igb_init_phy_params_82575 - Init PHY func ptrs.
169  *  @hw: pointer to the HW structure
170  **/
171 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
172 {
173 	struct e1000_phy_info *phy = &hw->phy;
174 	s32 ret_val = 0;
175 	u32 ctrl_ext;
176 
177 	if (hw->phy.media_type != e1000_media_type_copper) {
178 		phy->type = e1000_phy_none;
179 		goto out;
180 	}
181 
182 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
183 	phy->reset_delay_us	= 100;
184 
185 	ctrl_ext = rd32(E1000_CTRL_EXT);
186 
187 	if (igb_sgmii_active_82575(hw)) {
188 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
189 		ctrl_ext |= E1000_CTRL_I2C_ENA;
190 	} else {
191 		phy->ops.reset = igb_phy_hw_reset;
192 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
193 	}
194 
195 	wr32(E1000_CTRL_EXT, ctrl_ext);
196 	igb_reset_mdicnfg_82580(hw);
197 
198 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
199 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
200 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
201 	} else {
202 		switch (hw->mac.type) {
203 		case e1000_82580:
204 		case e1000_i350:
205 		case e1000_i354:
206 		case e1000_i210:
207 		case e1000_i211:
208 			phy->ops.read_reg = igb_read_phy_reg_82580;
209 			phy->ops.write_reg = igb_write_phy_reg_82580;
210 			break;
211 		default:
212 			phy->ops.read_reg = igb_read_phy_reg_igp;
213 			phy->ops.write_reg = igb_write_phy_reg_igp;
214 		}
215 	}
216 
217 	/* set lan id */
218 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
219 			E1000_STATUS_FUNC_SHIFT;
220 
221 	/* Set phy->phy_addr and phy->id. */
222 	ret_val = igb_get_phy_id_82575(hw);
223 	if (ret_val)
224 		return ret_val;
225 
226 	/* Verify phy id and set remaining function pointers */
227 	switch (phy->id) {
228 	case M88E1543_E_PHY_ID:
229 	case M88E1512_E_PHY_ID:
230 	case I347AT4_E_PHY_ID:
231 	case M88E1112_E_PHY_ID:
232 	case M88E1111_I_PHY_ID:
233 		phy->type		= e1000_phy_m88;
234 		phy->ops.check_polarity	= igb_check_polarity_m88;
235 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
236 		if (phy->id != M88E1111_I_PHY_ID)
237 			phy->ops.get_cable_length =
238 					 igb_get_cable_length_m88_gen2;
239 		else
240 			phy->ops.get_cable_length = igb_get_cable_length_m88;
241 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
242 		/* Check if this PHY is configured for media swap. */
243 		if (phy->id == M88E1112_E_PHY_ID) {
244 			u16 data;
245 
246 			ret_val = phy->ops.write_reg(hw,
247 						     E1000_M88E1112_PAGE_ADDR,
248 						     2);
249 			if (ret_val)
250 				goto out;
251 
252 			ret_val = phy->ops.read_reg(hw,
253 						    E1000_M88E1112_MAC_CTRL_1,
254 						    &data);
255 			if (ret_val)
256 				goto out;
257 
258 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
259 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
260 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
261 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
262 				hw->mac.ops.check_for_link =
263 						igb_check_for_link_media_swap;
264 		}
265 		if (phy->id == M88E1512_E_PHY_ID) {
266 			ret_val = igb_initialize_M88E1512_phy(hw);
267 			if (ret_val)
268 				goto out;
269 		}
270 		if (phy->id == M88E1543_E_PHY_ID) {
271 			ret_val = igb_initialize_M88E1543_phy(hw);
272 			if (ret_val)
273 				goto out;
274 		}
275 		break;
276 	case IGP03E1000_E_PHY_ID:
277 		phy->type = e1000_phy_igp_3;
278 		phy->ops.get_phy_info = igb_get_phy_info_igp;
279 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
280 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
281 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
282 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
283 		break;
284 	case I82580_I_PHY_ID:
285 	case I350_I_PHY_ID:
286 		phy->type = e1000_phy_82580;
287 		phy->ops.force_speed_duplex =
288 					 igb_phy_force_speed_duplex_82580;
289 		phy->ops.get_cable_length = igb_get_cable_length_82580;
290 		phy->ops.get_phy_info = igb_get_phy_info_82580;
291 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
292 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
293 		break;
294 	case I210_I_PHY_ID:
295 		phy->type		= e1000_phy_i210;
296 		phy->ops.check_polarity	= igb_check_polarity_m88;
297 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
298 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
299 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
300 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
301 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
302 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
303 		break;
304 	default:
305 		ret_val = -E1000_ERR_PHY;
306 		goto out;
307 	}
308 
309 out:
310 	return ret_val;
311 }
312 
313 /**
314  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
315  *  @hw: pointer to the HW structure
316  **/
317 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
318 {
319 	struct e1000_nvm_info *nvm = &hw->nvm;
320 	u32 eecd = rd32(E1000_EECD);
321 	u16 size;
322 
323 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
324 		     E1000_EECD_SIZE_EX_SHIFT);
325 
326 	/* Added to a constant, "size" becomes the left-shift value
327 	 * for setting word_size.
328 	 */
329 	size += NVM_WORD_SIZE_BASE_SHIFT;
330 
331 	/* Just in case size is out of range, cap it to the largest
332 	 * EEPROM size supported
333 	 */
334 	if (size > 15)
335 		size = 15;
336 
337 	nvm->word_size = 1 << size;
338 	nvm->opcode_bits = 8;
339 	nvm->delay_usec = 1;
340 
341 	switch (nvm->override) {
342 	case e1000_nvm_override_spi_large:
343 		nvm->page_size = 32;
344 		nvm->address_bits = 16;
345 		break;
346 	case e1000_nvm_override_spi_small:
347 		nvm->page_size = 8;
348 		nvm->address_bits = 8;
349 		break;
350 	default:
351 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
352 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
353 				    16 : 8;
354 		break;
355 	}
356 	if (nvm->word_size == (1 << 15))
357 		nvm->page_size = 128;
358 
359 	nvm->type = e1000_nvm_eeprom_spi;
360 
361 	/* NVM Function Pointers */
362 	nvm->ops.acquire = igb_acquire_nvm_82575;
363 	nvm->ops.release = igb_release_nvm_82575;
364 	nvm->ops.write = igb_write_nvm_spi;
365 	nvm->ops.validate = igb_validate_nvm_checksum;
366 	nvm->ops.update = igb_update_nvm_checksum;
367 	if (nvm->word_size < (1 << 15))
368 		nvm->ops.read = igb_read_nvm_eerd;
369 	else
370 		nvm->ops.read = igb_read_nvm_spi;
371 
372 	/* override generic family function pointers for specific descendants */
373 	switch (hw->mac.type) {
374 	case e1000_82580:
375 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
376 		nvm->ops.update = igb_update_nvm_checksum_82580;
377 		break;
378 	case e1000_i354:
379 	case e1000_i350:
380 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
381 		nvm->ops.update = igb_update_nvm_checksum_i350;
382 		break;
383 	default:
384 		break;
385 	}
386 
387 	return 0;
388 }
389 
390 /**
391  *  igb_init_mac_params_82575 - Init MAC func ptrs.
392  *  @hw: pointer to the HW structure
393  **/
394 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
395 {
396 	struct e1000_mac_info *mac = &hw->mac;
397 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
398 
399 	/* Set mta register count */
400 	mac->mta_reg_count = 128;
401 	/* Set rar entry count */
402 	switch (mac->type) {
403 	case e1000_82576:
404 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
405 		break;
406 	case e1000_82580:
407 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
408 		break;
409 	case e1000_i350:
410 	case e1000_i354:
411 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
412 		break;
413 	default:
414 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
415 		break;
416 	}
417 	/* reset */
418 	if (mac->type >= e1000_82580)
419 		mac->ops.reset_hw = igb_reset_hw_82580;
420 	else
421 		mac->ops.reset_hw = igb_reset_hw_82575;
422 
423 	if (mac->type >= e1000_i210) {
424 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
425 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
426 
427 	} else {
428 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
429 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
430 	}
431 
432 	/* Set if part includes ASF firmware */
433 	mac->asf_firmware_present = true;
434 	/* Set if manageability features are enabled. */
435 	mac->arc_subsystem_valid =
436 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
437 			? true : false;
438 	/* enable EEE on i350 parts and later parts */
439 	if (mac->type >= e1000_i350)
440 		dev_spec->eee_disable = false;
441 	else
442 		dev_spec->eee_disable = true;
443 	/* Allow a single clear of the SW semaphore on I210 and newer */
444 	if (mac->type >= e1000_i210)
445 		dev_spec->clear_semaphore_once = true;
446 	/* physical interface link setup */
447 	mac->ops.setup_physical_interface =
448 		(hw->phy.media_type == e1000_media_type_copper)
449 			? igb_setup_copper_link_82575
450 			: igb_setup_serdes_link_82575;
451 
452 	if (mac->type == e1000_82580) {
453 		switch (hw->device_id) {
454 		/* feature not supported on these id's */
455 		case E1000_DEV_ID_DH89XXCC_SGMII:
456 		case E1000_DEV_ID_DH89XXCC_SERDES:
457 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
458 		case E1000_DEV_ID_DH89XXCC_SFP:
459 			break;
460 		default:
461 			hw->dev_spec._82575.mas_capable = true;
462 			break;
463 		}
464 	}
465 	return 0;
466 }
467 
468 /**
469  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
470  *  @hw: pointer to the HW structure
471  *
472  *  The media type is chosen based on SFP module.
473  *  compatibility flags retrieved from SFP ID EEPROM.
474  **/
475 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
476 {
477 	s32 ret_val = E1000_ERR_CONFIG;
478 	u32 ctrl_ext = 0;
479 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
480 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
481 	u8 tranceiver_type = 0;
482 	s32 timeout = 3;
483 
484 	/* Turn I2C interface ON and power on sfp cage */
485 	ctrl_ext = rd32(E1000_CTRL_EXT);
486 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
487 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
488 
489 	wrfl();
490 
491 	/* Read SFP module data */
492 	while (timeout) {
493 		ret_val = igb_read_sfp_data_byte(hw,
494 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
495 			&tranceiver_type);
496 		if (ret_val == 0)
497 			break;
498 		msleep(100);
499 		timeout--;
500 	}
501 	if (ret_val != 0)
502 		goto out;
503 
504 	ret_val = igb_read_sfp_data_byte(hw,
505 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
506 			(u8 *)eth_flags);
507 	if (ret_val != 0)
508 		goto out;
509 
510 	/* Check if there is some SFP module plugged and powered */
511 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
512 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
513 		dev_spec->module_plugged = true;
514 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
515 			hw->phy.media_type = e1000_media_type_internal_serdes;
516 		} else if (eth_flags->e100_base_fx) {
517 			dev_spec->sgmii_active = true;
518 			hw->phy.media_type = e1000_media_type_internal_serdes;
519 		} else if (eth_flags->e1000_base_t) {
520 			dev_spec->sgmii_active = true;
521 			hw->phy.media_type = e1000_media_type_copper;
522 		} else {
523 			hw->phy.media_type = e1000_media_type_unknown;
524 			hw_dbg("PHY module has not been recognized\n");
525 			goto out;
526 		}
527 	} else {
528 		hw->phy.media_type = e1000_media_type_unknown;
529 	}
530 	ret_val = 0;
531 out:
532 	/* Restore I2C interface setting */
533 	wr32(E1000_CTRL_EXT, ctrl_ext);
534 	return ret_val;
535 }
536 
537 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
538 {
539 	struct e1000_mac_info *mac = &hw->mac;
540 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
541 	s32 ret_val;
542 	u32 ctrl_ext = 0;
543 	u32 link_mode = 0;
544 
545 	switch (hw->device_id) {
546 	case E1000_DEV_ID_82575EB_COPPER:
547 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
548 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
549 		mac->type = e1000_82575;
550 		break;
551 	case E1000_DEV_ID_82576:
552 	case E1000_DEV_ID_82576_NS:
553 	case E1000_DEV_ID_82576_NS_SERDES:
554 	case E1000_DEV_ID_82576_FIBER:
555 	case E1000_DEV_ID_82576_SERDES:
556 	case E1000_DEV_ID_82576_QUAD_COPPER:
557 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
558 	case E1000_DEV_ID_82576_SERDES_QUAD:
559 		mac->type = e1000_82576;
560 		break;
561 	case E1000_DEV_ID_82580_COPPER:
562 	case E1000_DEV_ID_82580_FIBER:
563 	case E1000_DEV_ID_82580_QUAD_FIBER:
564 	case E1000_DEV_ID_82580_SERDES:
565 	case E1000_DEV_ID_82580_SGMII:
566 	case E1000_DEV_ID_82580_COPPER_DUAL:
567 	case E1000_DEV_ID_DH89XXCC_SGMII:
568 	case E1000_DEV_ID_DH89XXCC_SERDES:
569 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
570 	case E1000_DEV_ID_DH89XXCC_SFP:
571 		mac->type = e1000_82580;
572 		break;
573 	case E1000_DEV_ID_I350_COPPER:
574 	case E1000_DEV_ID_I350_FIBER:
575 	case E1000_DEV_ID_I350_SERDES:
576 	case E1000_DEV_ID_I350_SGMII:
577 		mac->type = e1000_i350;
578 		break;
579 	case E1000_DEV_ID_I210_COPPER:
580 	case E1000_DEV_ID_I210_FIBER:
581 	case E1000_DEV_ID_I210_SERDES:
582 	case E1000_DEV_ID_I210_SGMII:
583 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
584 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
585 		mac->type = e1000_i210;
586 		break;
587 	case E1000_DEV_ID_I211_COPPER:
588 		mac->type = e1000_i211;
589 		break;
590 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
591 	case E1000_DEV_ID_I354_SGMII:
592 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
593 		mac->type = e1000_i354;
594 		break;
595 	default:
596 		return -E1000_ERR_MAC_INIT;
597 	}
598 
599 	/* Set media type */
600 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
601 	 * based on the EEPROM. We cannot rely upon device ID. There
602 	 * is no distinguishable difference between fiber and internal
603 	 * SerDes mode on the 82575. There can be an external PHY attached
604 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
605 	 */
606 	hw->phy.media_type = e1000_media_type_copper;
607 	dev_spec->sgmii_active = false;
608 	dev_spec->module_plugged = false;
609 
610 	ctrl_ext = rd32(E1000_CTRL_EXT);
611 
612 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
613 	switch (link_mode) {
614 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
615 		hw->phy.media_type = e1000_media_type_internal_serdes;
616 		break;
617 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
618 		/* Get phy control interface type set (MDIO vs. I2C)*/
619 		if (igb_sgmii_uses_mdio_82575(hw)) {
620 			hw->phy.media_type = e1000_media_type_copper;
621 			dev_spec->sgmii_active = true;
622 			break;
623 		}
624 		/* fall through for I2C based SGMII */
625 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
626 		/* read media type from SFP EEPROM */
627 		ret_val = igb_set_sfp_media_type_82575(hw);
628 		if ((ret_val != 0) ||
629 		    (hw->phy.media_type == e1000_media_type_unknown)) {
630 			/* If media type was not identified then return media
631 			 * type defined by the CTRL_EXT settings.
632 			 */
633 			hw->phy.media_type = e1000_media_type_internal_serdes;
634 
635 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
636 				hw->phy.media_type = e1000_media_type_copper;
637 				dev_spec->sgmii_active = true;
638 			}
639 
640 			break;
641 		}
642 
643 		/* do not change link mode for 100BaseFX */
644 		if (dev_spec->eth_flags.e100_base_fx)
645 			break;
646 
647 		/* change current link mode setting */
648 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
649 
650 		if (hw->phy.media_type == e1000_media_type_copper)
651 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
652 		else
653 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
654 
655 		wr32(E1000_CTRL_EXT, ctrl_ext);
656 
657 		break;
658 	default:
659 		break;
660 	}
661 
662 	/* mac initialization and operations */
663 	ret_val = igb_init_mac_params_82575(hw);
664 	if (ret_val)
665 		goto out;
666 
667 	/* NVM initialization */
668 	ret_val = igb_init_nvm_params_82575(hw);
669 	switch (hw->mac.type) {
670 	case e1000_i210:
671 	case e1000_i211:
672 		ret_val = igb_init_nvm_params_i210(hw);
673 		break;
674 	default:
675 		break;
676 	}
677 
678 	if (ret_val)
679 		goto out;
680 
681 	/* if part supports SR-IOV then initialize mailbox parameters */
682 	switch (mac->type) {
683 	case e1000_82576:
684 	case e1000_i350:
685 		igb_init_mbx_params_pf(hw);
686 		break;
687 	default:
688 		break;
689 	}
690 
691 	/* setup PHY parameters */
692 	ret_val = igb_init_phy_params_82575(hw);
693 
694 out:
695 	return ret_val;
696 }
697 
698 /**
699  *  igb_acquire_phy_82575 - Acquire rights to access PHY
700  *  @hw: pointer to the HW structure
701  *
702  *  Acquire access rights to the correct PHY.  This is a
703  *  function pointer entry point called by the api module.
704  **/
705 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
706 {
707 	u16 mask = E1000_SWFW_PHY0_SM;
708 
709 	if (hw->bus.func == E1000_FUNC_1)
710 		mask = E1000_SWFW_PHY1_SM;
711 	else if (hw->bus.func == E1000_FUNC_2)
712 		mask = E1000_SWFW_PHY2_SM;
713 	else if (hw->bus.func == E1000_FUNC_3)
714 		mask = E1000_SWFW_PHY3_SM;
715 
716 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
717 }
718 
719 /**
720  *  igb_release_phy_82575 - Release rights to access PHY
721  *  @hw: pointer to the HW structure
722  *
723  *  A wrapper to release access rights to the correct PHY.  This is a
724  *  function pointer entry point called by the api module.
725  **/
726 static void igb_release_phy_82575(struct e1000_hw *hw)
727 {
728 	u16 mask = E1000_SWFW_PHY0_SM;
729 
730 	if (hw->bus.func == E1000_FUNC_1)
731 		mask = E1000_SWFW_PHY1_SM;
732 	else if (hw->bus.func == E1000_FUNC_2)
733 		mask = E1000_SWFW_PHY2_SM;
734 	else if (hw->bus.func == E1000_FUNC_3)
735 		mask = E1000_SWFW_PHY3_SM;
736 
737 	hw->mac.ops.release_swfw_sync(hw, mask);
738 }
739 
740 /**
741  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
742  *  @hw: pointer to the HW structure
743  *  @offset: register offset to be read
744  *  @data: pointer to the read data
745  *
746  *  Reads the PHY register at offset using the serial gigabit media independent
747  *  interface and stores the retrieved information in data.
748  **/
749 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
750 					  u16 *data)
751 {
752 	s32 ret_val = -E1000_ERR_PARAM;
753 
754 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
755 		hw_dbg("PHY Address %u is out of range\n", offset);
756 		goto out;
757 	}
758 
759 	ret_val = hw->phy.ops.acquire(hw);
760 	if (ret_val)
761 		goto out;
762 
763 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
764 
765 	hw->phy.ops.release(hw);
766 
767 out:
768 	return ret_val;
769 }
770 
771 /**
772  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
773  *  @hw: pointer to the HW structure
774  *  @offset: register offset to write to
775  *  @data: data to write at register offset
776  *
777  *  Writes the data to PHY register at the offset using the serial gigabit
778  *  media independent interface.
779  **/
780 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
781 					   u16 data)
782 {
783 	s32 ret_val = -E1000_ERR_PARAM;
784 
785 
786 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
787 		hw_dbg("PHY Address %d is out of range\n", offset);
788 		goto out;
789 	}
790 
791 	ret_val = hw->phy.ops.acquire(hw);
792 	if (ret_val)
793 		goto out;
794 
795 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
796 
797 	hw->phy.ops.release(hw);
798 
799 out:
800 	return ret_val;
801 }
802 
803 /**
804  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
805  *  @hw: pointer to the HW structure
806  *
807  *  Retrieves the PHY address and ID for both PHY's which do and do not use
808  *  sgmi interface.
809  **/
810 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
811 {
812 	struct e1000_phy_info *phy = &hw->phy;
813 	s32  ret_val = 0;
814 	u16 phy_id;
815 	u32 ctrl_ext;
816 	u32 mdic;
817 
818 	/* Extra read required for some PHY's on i354 */
819 	if (hw->mac.type == e1000_i354)
820 		igb_get_phy_id(hw);
821 
822 	/* For SGMII PHYs, we try the list of possible addresses until
823 	 * we find one that works.  For non-SGMII PHYs
824 	 * (e.g. integrated copper PHYs), an address of 1 should
825 	 * work.  The result of this function should mean phy->phy_addr
826 	 * and phy->id are set correctly.
827 	 */
828 	if (!(igb_sgmii_active_82575(hw))) {
829 		phy->addr = 1;
830 		ret_val = igb_get_phy_id(hw);
831 		goto out;
832 	}
833 
834 	if (igb_sgmii_uses_mdio_82575(hw)) {
835 		switch (hw->mac.type) {
836 		case e1000_82575:
837 		case e1000_82576:
838 			mdic = rd32(E1000_MDIC);
839 			mdic &= E1000_MDIC_PHY_MASK;
840 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
841 			break;
842 		case e1000_82580:
843 		case e1000_i350:
844 		case e1000_i354:
845 		case e1000_i210:
846 		case e1000_i211:
847 			mdic = rd32(E1000_MDICNFG);
848 			mdic &= E1000_MDICNFG_PHY_MASK;
849 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
850 			break;
851 		default:
852 			ret_val = -E1000_ERR_PHY;
853 			goto out;
854 		}
855 		ret_val = igb_get_phy_id(hw);
856 		goto out;
857 	}
858 
859 	/* Power on sgmii phy if it is disabled */
860 	ctrl_ext = rd32(E1000_CTRL_EXT);
861 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
862 	wrfl();
863 	msleep(300);
864 
865 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
866 	 * Therefore, we need to test 1-7
867 	 */
868 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
869 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
870 		if (ret_val == 0) {
871 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
872 			       phy_id, phy->addr);
873 			/* At the time of this writing, The M88 part is
874 			 * the only supported SGMII PHY product.
875 			 */
876 			if (phy_id == M88_VENDOR)
877 				break;
878 		} else {
879 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
880 		}
881 	}
882 
883 	/* A valid PHY type couldn't be found. */
884 	if (phy->addr == 8) {
885 		phy->addr = 0;
886 		ret_val = -E1000_ERR_PHY;
887 		goto out;
888 	} else {
889 		ret_val = igb_get_phy_id(hw);
890 	}
891 
892 	/* restore previous sfp cage power state */
893 	wr32(E1000_CTRL_EXT, ctrl_ext);
894 
895 out:
896 	return ret_val;
897 }
898 
899 /**
900  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
901  *  @hw: pointer to the HW structure
902  *
903  *  Resets the PHY using the serial gigabit media independent interface.
904  **/
905 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
906 {
907 	struct e1000_phy_info *phy = &hw->phy;
908 	s32 ret_val;
909 
910 	/* This isn't a true "hard" reset, but is the only reset
911 	 * available to us at this time.
912 	 */
913 
914 	hw_dbg("Soft resetting SGMII attached PHY...\n");
915 
916 	/* SFP documentation requires the following to configure the SPF module
917 	 * to work on SGMII.  No further documentation is given.
918 	 */
919 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
920 	if (ret_val)
921 		goto out;
922 
923 	ret_val = igb_phy_sw_reset(hw);
924 	if (ret_val)
925 		goto out;
926 
927 	if (phy->id == M88E1512_E_PHY_ID)
928 		ret_val = igb_initialize_M88E1512_phy(hw);
929 	if (phy->id == M88E1543_E_PHY_ID)
930 		ret_val = igb_initialize_M88E1543_phy(hw);
931 out:
932 	return ret_val;
933 }
934 
935 /**
936  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
937  *  @hw: pointer to the HW structure
938  *  @active: true to enable LPLU, false to disable
939  *
940  *  Sets the LPLU D0 state according to the active flag.  When
941  *  activating LPLU this function also disables smart speed
942  *  and vice versa.  LPLU will not be activated unless the
943  *  device autonegotiation advertisement meets standards of
944  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
945  *  This is a function pointer entry point only called by
946  *  PHY setup routines.
947  **/
948 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
949 {
950 	struct e1000_phy_info *phy = &hw->phy;
951 	s32 ret_val;
952 	u16 data;
953 
954 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
955 	if (ret_val)
956 		goto out;
957 
958 	if (active) {
959 		data |= IGP02E1000_PM_D0_LPLU;
960 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
961 						 data);
962 		if (ret_val)
963 			goto out;
964 
965 		/* When LPLU is enabled, we should disable SmartSpeed */
966 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
967 						&data);
968 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
969 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
970 						 data);
971 		if (ret_val)
972 			goto out;
973 	} else {
974 		data &= ~IGP02E1000_PM_D0_LPLU;
975 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
976 						 data);
977 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
978 		 * during Dx states where the power conservation is most
979 		 * important.  During driver activity we should enable
980 		 * SmartSpeed, so performance is maintained.
981 		 */
982 		if (phy->smart_speed == e1000_smart_speed_on) {
983 			ret_val = phy->ops.read_reg(hw,
984 					IGP01E1000_PHY_PORT_CONFIG, &data);
985 			if (ret_val)
986 				goto out;
987 
988 			data |= IGP01E1000_PSCFR_SMART_SPEED;
989 			ret_val = phy->ops.write_reg(hw,
990 					IGP01E1000_PHY_PORT_CONFIG, data);
991 			if (ret_val)
992 				goto out;
993 		} else if (phy->smart_speed == e1000_smart_speed_off) {
994 			ret_val = phy->ops.read_reg(hw,
995 					IGP01E1000_PHY_PORT_CONFIG, &data);
996 			if (ret_val)
997 				goto out;
998 
999 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1000 			ret_val = phy->ops.write_reg(hw,
1001 					IGP01E1000_PHY_PORT_CONFIG, data);
1002 			if (ret_val)
1003 				goto out;
1004 		}
1005 	}
1006 
1007 out:
1008 	return ret_val;
1009 }
1010 
1011 /**
1012  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1013  *  @hw: pointer to the HW structure
1014  *  @active: true to enable LPLU, false to disable
1015  *
1016  *  Sets the LPLU D0 state according to the active flag.  When
1017  *  activating LPLU this function also disables smart speed
1018  *  and vice versa.  LPLU will not be activated unless the
1019  *  device autonegotiation advertisement meets standards of
1020  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1021  *  This is a function pointer entry point only called by
1022  *  PHY setup routines.
1023  **/
1024 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1025 {
1026 	struct e1000_phy_info *phy = &hw->phy;
1027 	u16 data;
1028 
1029 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1030 
1031 	if (active) {
1032 		data |= E1000_82580_PM_D0_LPLU;
1033 
1034 		/* When LPLU is enabled, we should disable SmartSpeed */
1035 		data &= ~E1000_82580_PM_SPD;
1036 	} else {
1037 		data &= ~E1000_82580_PM_D0_LPLU;
1038 
1039 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1040 		 * during Dx states where the power conservation is most
1041 		 * important.  During driver activity we should enable
1042 		 * SmartSpeed, so performance is maintained.
1043 		 */
1044 		if (phy->smart_speed == e1000_smart_speed_on)
1045 			data |= E1000_82580_PM_SPD;
1046 		else if (phy->smart_speed == e1000_smart_speed_off)
1047 			data &= ~E1000_82580_PM_SPD; }
1048 
1049 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1050 	return 0;
1051 }
1052 
1053 /**
1054  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1055  *  @hw: pointer to the HW structure
1056  *  @active: boolean used to enable/disable lplu
1057  *
1058  *  Success returns 0, Failure returns 1
1059  *
1060  *  The low power link up (lplu) state is set to the power management level D3
1061  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1062  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1063  *  is used during Dx states where the power conservation is most important.
1064  *  During driver activity, SmartSpeed should be enabled so performance is
1065  *  maintained.
1066  **/
1067 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1068 {
1069 	struct e1000_phy_info *phy = &hw->phy;
1070 	u16 data;
1071 
1072 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1073 
1074 	if (!active) {
1075 		data &= ~E1000_82580_PM_D3_LPLU;
1076 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1077 		 * during Dx states where the power conservation is most
1078 		 * important.  During driver activity we should enable
1079 		 * SmartSpeed, so performance is maintained.
1080 		 */
1081 		if (phy->smart_speed == e1000_smart_speed_on)
1082 			data |= E1000_82580_PM_SPD;
1083 		else if (phy->smart_speed == e1000_smart_speed_off)
1084 			data &= ~E1000_82580_PM_SPD;
1085 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1086 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1087 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1088 		data |= E1000_82580_PM_D3_LPLU;
1089 		/* When LPLU is enabled, we should disable SmartSpeed */
1090 		data &= ~E1000_82580_PM_SPD;
1091 	}
1092 
1093 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1094 	return 0;
1095 }
1096 
1097 /**
1098  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1099  *  @hw: pointer to the HW structure
1100  *
1101  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1102  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1103  *  Return successful if access grant bit set, else clear the request for
1104  *  EEPROM access and return -E1000_ERR_NVM (-1).
1105  **/
1106 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1107 {
1108 	s32 ret_val;
1109 
1110 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1111 	if (ret_val)
1112 		goto out;
1113 
1114 	ret_val = igb_acquire_nvm(hw);
1115 
1116 	if (ret_val)
1117 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1118 
1119 out:
1120 	return ret_val;
1121 }
1122 
1123 /**
1124  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1125  *  @hw: pointer to the HW structure
1126  *
1127  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1128  *  then release the semaphores acquired.
1129  **/
1130 static void igb_release_nvm_82575(struct e1000_hw *hw)
1131 {
1132 	igb_release_nvm(hw);
1133 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1134 }
1135 
1136 /**
1137  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1138  *  @hw: pointer to the HW structure
1139  *  @mask: specifies which semaphore to acquire
1140  *
1141  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1142  *  will also specify which port we're acquiring the lock for.
1143  **/
1144 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1145 {
1146 	u32 swfw_sync;
1147 	u32 swmask = mask;
1148 	u32 fwmask = mask << 16;
1149 	s32 ret_val = 0;
1150 	s32 i = 0, timeout = 200;
1151 
1152 	while (i < timeout) {
1153 		if (igb_get_hw_semaphore(hw)) {
1154 			ret_val = -E1000_ERR_SWFW_SYNC;
1155 			goto out;
1156 		}
1157 
1158 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1159 		if (!(swfw_sync & (fwmask | swmask)))
1160 			break;
1161 
1162 		/* Firmware currently using resource (fwmask)
1163 		 * or other software thread using resource (swmask)
1164 		 */
1165 		igb_put_hw_semaphore(hw);
1166 		mdelay(5);
1167 		i++;
1168 	}
1169 
1170 	if (i == timeout) {
1171 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1172 		ret_val = -E1000_ERR_SWFW_SYNC;
1173 		goto out;
1174 	}
1175 
1176 	swfw_sync |= swmask;
1177 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1178 
1179 	igb_put_hw_semaphore(hw);
1180 
1181 out:
1182 	return ret_val;
1183 }
1184 
1185 /**
1186  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1187  *  @hw: pointer to the HW structure
1188  *  @mask: specifies which semaphore to acquire
1189  *
1190  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1191  *  will also specify which port we're releasing the lock for.
1192  **/
1193 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1194 {
1195 	u32 swfw_sync;
1196 
1197 	while (igb_get_hw_semaphore(hw) != 0)
1198 		; /* Empty */
1199 
1200 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1201 	swfw_sync &= ~mask;
1202 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1203 
1204 	igb_put_hw_semaphore(hw);
1205 }
1206 
1207 /**
1208  *  igb_get_cfg_done_82575 - Read config done bit
1209  *  @hw: pointer to the HW structure
1210  *
1211  *  Read the management control register for the config done bit for
1212  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1213  *  to read the config done bit, so an error is *ONLY* logged and returns
1214  *  0.  If we were to return with error, EEPROM-less silicon
1215  *  would not be able to be reset or change link.
1216  **/
1217 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1218 {
1219 	s32 timeout = PHY_CFG_TIMEOUT;
1220 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1221 
1222 	if (hw->bus.func == 1)
1223 		mask = E1000_NVM_CFG_DONE_PORT_1;
1224 	else if (hw->bus.func == E1000_FUNC_2)
1225 		mask = E1000_NVM_CFG_DONE_PORT_2;
1226 	else if (hw->bus.func == E1000_FUNC_3)
1227 		mask = E1000_NVM_CFG_DONE_PORT_3;
1228 
1229 	while (timeout) {
1230 		if (rd32(E1000_EEMNGCTL) & mask)
1231 			break;
1232 		usleep_range(1000, 2000);
1233 		timeout--;
1234 	}
1235 	if (!timeout)
1236 		hw_dbg("MNG configuration cycle has not completed.\n");
1237 
1238 	/* If EEPROM is not marked present, init the PHY manually */
1239 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1240 	    (hw->phy.type == e1000_phy_igp_3))
1241 		igb_phy_init_script_igp3(hw);
1242 
1243 	return 0;
1244 }
1245 
1246 /**
1247  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1248  *  @hw: pointer to the HW structure
1249  *  @speed: stores the current speed
1250  *  @duplex: stores the current duplex
1251  *
1252  *  This is a wrapper function, if using the serial gigabit media independent
1253  *  interface, use PCS to retrieve the link speed and duplex information.
1254  *  Otherwise, use the generic function to get the link speed and duplex info.
1255  **/
1256 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1257 					u16 *duplex)
1258 {
1259 	s32 ret_val;
1260 
1261 	if (hw->phy.media_type != e1000_media_type_copper)
1262 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1263 							       duplex);
1264 	else
1265 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1266 								    duplex);
1267 
1268 	return ret_val;
1269 }
1270 
1271 /**
1272  *  igb_check_for_link_82575 - Check for link
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1276  *  use the generic interface for determining link.
1277  **/
1278 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1279 {
1280 	s32 ret_val;
1281 	u16 speed, duplex;
1282 
1283 	if (hw->phy.media_type != e1000_media_type_copper) {
1284 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1285 							     &duplex);
1286 		/* Use this flag to determine if link needs to be checked or
1287 		 * not.  If  we have link clear the flag so that we do not
1288 		 * continue to check for link.
1289 		 */
1290 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1291 
1292 		/* Configure Flow Control now that Auto-Neg has completed.
1293 		 * First, we need to restore the desired flow control
1294 		 * settings because we may have had to re-autoneg with a
1295 		 * different link partner.
1296 		 */
1297 		ret_val = igb_config_fc_after_link_up(hw);
1298 		if (ret_val)
1299 			hw_dbg("Error configuring flow control\n");
1300 	} else {
1301 		ret_val = igb_check_for_copper_link(hw);
1302 	}
1303 
1304 	return ret_val;
1305 }
1306 
1307 /**
1308  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1309  *  @hw: pointer to the HW structure
1310  **/
1311 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1312 {
1313 	u32 reg;
1314 
1315 
1316 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1317 	    !igb_sgmii_active_82575(hw))
1318 		return;
1319 
1320 	/* Enable PCS to turn on link */
1321 	reg = rd32(E1000_PCS_CFG0);
1322 	reg |= E1000_PCS_CFG_PCS_EN;
1323 	wr32(E1000_PCS_CFG0, reg);
1324 
1325 	/* Power up the laser */
1326 	reg = rd32(E1000_CTRL_EXT);
1327 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1328 	wr32(E1000_CTRL_EXT, reg);
1329 
1330 	/* flush the write to verify completion */
1331 	wrfl();
1332 	usleep_range(1000, 2000);
1333 }
1334 
1335 /**
1336  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1337  *  @hw: pointer to the HW structure
1338  *  @speed: stores the current speed
1339  *  @duplex: stores the current duplex
1340  *
1341  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1342  *  duplex, then store the values in the pointers provided.
1343  **/
1344 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1345 						u16 *duplex)
1346 {
1347 	struct e1000_mac_info *mac = &hw->mac;
1348 	u32 pcs, status;
1349 
1350 	/* Set up defaults for the return values of this function */
1351 	mac->serdes_has_link = false;
1352 	*speed = 0;
1353 	*duplex = 0;
1354 
1355 	/* Read the PCS Status register for link state. For non-copper mode,
1356 	 * the status register is not accurate. The PCS status register is
1357 	 * used instead.
1358 	 */
1359 	pcs = rd32(E1000_PCS_LSTAT);
1360 
1361 	/* The link up bit determines when link is up on autoneg. The sync ok
1362 	 * gets set once both sides sync up and agree upon link. Stable link
1363 	 * can be determined by checking for both link up and link sync ok
1364 	 */
1365 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1366 		mac->serdes_has_link = true;
1367 
1368 		/* Detect and store PCS speed */
1369 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1370 			*speed = SPEED_1000;
1371 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1372 			*speed = SPEED_100;
1373 		else
1374 			*speed = SPEED_10;
1375 
1376 		/* Detect and store PCS duplex */
1377 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1378 			*duplex = FULL_DUPLEX;
1379 		else
1380 			*duplex = HALF_DUPLEX;
1381 
1382 	/* Check if it is an I354 2.5Gb backplane connection. */
1383 		if (mac->type == e1000_i354) {
1384 			status = rd32(E1000_STATUS);
1385 			if ((status & E1000_STATUS_2P5_SKU) &&
1386 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1387 				*speed = SPEED_2500;
1388 				*duplex = FULL_DUPLEX;
1389 				hw_dbg("2500 Mbs, ");
1390 				hw_dbg("Full Duplex\n");
1391 			}
1392 		}
1393 
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1401  *  @hw: pointer to the HW structure
1402  *
1403  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1404  *  when management pass thru is not enabled.
1405  **/
1406 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1407 {
1408 	u32 reg;
1409 
1410 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1411 	    igb_sgmii_active_82575(hw))
1412 		return;
1413 
1414 	if (!igb_enable_mng_pass_thru(hw)) {
1415 		/* Disable PCS to turn off link */
1416 		reg = rd32(E1000_PCS_CFG0);
1417 		reg &= ~E1000_PCS_CFG_PCS_EN;
1418 		wr32(E1000_PCS_CFG0, reg);
1419 
1420 		/* shutdown the laser */
1421 		reg = rd32(E1000_CTRL_EXT);
1422 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1423 		wr32(E1000_CTRL_EXT, reg);
1424 
1425 		/* flush the write to verify completion */
1426 		wrfl();
1427 		usleep_range(1000, 2000);
1428 	}
1429 }
1430 
1431 /**
1432  *  igb_reset_hw_82575 - Reset hardware
1433  *  @hw: pointer to the HW structure
1434  *
1435  *  This resets the hardware into a known state.  This is a
1436  *  function pointer entry point called by the api module.
1437  **/
1438 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1439 {
1440 	u32 ctrl;
1441 	s32 ret_val;
1442 
1443 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1444 	 * on the last TLP read/write transaction when MAC is reset.
1445 	 */
1446 	ret_val = igb_disable_pcie_master(hw);
1447 	if (ret_val)
1448 		hw_dbg("PCI-E Master disable polling has failed.\n");
1449 
1450 	/* set the completion timeout for interface */
1451 	ret_val = igb_set_pcie_completion_timeout(hw);
1452 	if (ret_val)
1453 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1454 
1455 	hw_dbg("Masking off all interrupts\n");
1456 	wr32(E1000_IMC, 0xffffffff);
1457 
1458 	wr32(E1000_RCTL, 0);
1459 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1460 	wrfl();
1461 
1462 	usleep_range(10000, 20000);
1463 
1464 	ctrl = rd32(E1000_CTRL);
1465 
1466 	hw_dbg("Issuing a global reset to MAC\n");
1467 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1468 
1469 	ret_val = igb_get_auto_rd_done(hw);
1470 	if (ret_val) {
1471 		/* When auto config read does not complete, do not
1472 		 * return with an error. This can happen in situations
1473 		 * where there is no eeprom and prevents getting link.
1474 		 */
1475 		hw_dbg("Auto Read Done did not complete\n");
1476 	}
1477 
1478 	/* If EEPROM is not present, run manual init scripts */
1479 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1480 		igb_reset_init_script_82575(hw);
1481 
1482 	/* Clear any pending interrupt events. */
1483 	wr32(E1000_IMC, 0xffffffff);
1484 	rd32(E1000_ICR);
1485 
1486 	/* Install any alternate MAC address into RAR0 */
1487 	ret_val = igb_check_alt_mac_addr(hw);
1488 
1489 	return ret_val;
1490 }
1491 
1492 /**
1493  *  igb_init_hw_82575 - Initialize hardware
1494  *  @hw: pointer to the HW structure
1495  *
1496  *  This inits the hardware readying it for operation.
1497  **/
1498 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1499 {
1500 	struct e1000_mac_info *mac = &hw->mac;
1501 	s32 ret_val;
1502 	u16 i, rar_count = mac->rar_entry_count;
1503 
1504 	if ((hw->mac.type >= e1000_i210) &&
1505 	    !(igb_get_flash_presence_i210(hw))) {
1506 		ret_val = igb_pll_workaround_i210(hw);
1507 		if (ret_val)
1508 			return ret_val;
1509 	}
1510 
1511 	/* Initialize identification LED */
1512 	ret_val = igb_id_led_init(hw);
1513 	if (ret_val) {
1514 		hw_dbg("Error initializing identification LED\n");
1515 		/* This is not fatal and we should not stop init due to this */
1516 	}
1517 
1518 	/* Disabling VLAN filtering */
1519 	hw_dbg("Initializing the IEEE VLAN\n");
1520 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1521 		igb_clear_vfta_i350(hw);
1522 	else
1523 		igb_clear_vfta(hw);
1524 
1525 	/* Setup the receive address */
1526 	igb_init_rx_addrs(hw, rar_count);
1527 
1528 	/* Zero out the Multicast HASH table */
1529 	hw_dbg("Zeroing the MTA\n");
1530 	for (i = 0; i < mac->mta_reg_count; i++)
1531 		array_wr32(E1000_MTA, i, 0);
1532 
1533 	/* Zero out the Unicast HASH table */
1534 	hw_dbg("Zeroing the UTA\n");
1535 	for (i = 0; i < mac->uta_reg_count; i++)
1536 		array_wr32(E1000_UTA, i, 0);
1537 
1538 	/* Setup link and flow control */
1539 	ret_val = igb_setup_link(hw);
1540 
1541 	/* Clear all of the statistics registers (clear on read).  It is
1542 	 * important that we do this after we have tried to establish link
1543 	 * because the symbol error count will increment wildly if there
1544 	 * is no link.
1545 	 */
1546 	igb_clear_hw_cntrs_82575(hw);
1547 	return ret_val;
1548 }
1549 
1550 /**
1551  *  igb_setup_copper_link_82575 - Configure copper link settings
1552  *  @hw: pointer to the HW structure
1553  *
1554  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1555  *  for link, once link is established calls to configure collision distance
1556  *  and flow control are called.
1557  **/
1558 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1559 {
1560 	u32 ctrl;
1561 	s32  ret_val;
1562 	u32 phpm_reg;
1563 
1564 	ctrl = rd32(E1000_CTRL);
1565 	ctrl |= E1000_CTRL_SLU;
1566 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1567 	wr32(E1000_CTRL, ctrl);
1568 
1569 	/* Clear Go Link Disconnect bit on supported devices */
1570 	switch (hw->mac.type) {
1571 	case e1000_82580:
1572 	case e1000_i350:
1573 	case e1000_i210:
1574 	case e1000_i211:
1575 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1576 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1577 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1578 		break;
1579 	default:
1580 		break;
1581 	}
1582 
1583 	ret_val = igb_setup_serdes_link_82575(hw);
1584 	if (ret_val)
1585 		goto out;
1586 
1587 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1588 		/* allow time for SFP cage time to power up phy */
1589 		msleep(300);
1590 
1591 		ret_val = hw->phy.ops.reset(hw);
1592 		if (ret_val) {
1593 			hw_dbg("Error resetting the PHY.\n");
1594 			goto out;
1595 		}
1596 	}
1597 	switch (hw->phy.type) {
1598 	case e1000_phy_i210:
1599 	case e1000_phy_m88:
1600 		switch (hw->phy.id) {
1601 		case I347AT4_E_PHY_ID:
1602 		case M88E1112_E_PHY_ID:
1603 		case M88E1543_E_PHY_ID:
1604 		case M88E1512_E_PHY_ID:
1605 		case I210_I_PHY_ID:
1606 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1607 			break;
1608 		default:
1609 			ret_val = igb_copper_link_setup_m88(hw);
1610 			break;
1611 		}
1612 		break;
1613 	case e1000_phy_igp_3:
1614 		ret_val = igb_copper_link_setup_igp(hw);
1615 		break;
1616 	case e1000_phy_82580:
1617 		ret_val = igb_copper_link_setup_82580(hw);
1618 		break;
1619 	default:
1620 		ret_val = -E1000_ERR_PHY;
1621 		break;
1622 	}
1623 
1624 	if (ret_val)
1625 		goto out;
1626 
1627 	ret_val = igb_setup_copper_link(hw);
1628 out:
1629 	return ret_val;
1630 }
1631 
1632 /**
1633  *  igb_setup_serdes_link_82575 - Setup link for serdes
1634  *  @hw: pointer to the HW structure
1635  *
1636  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1637  *  used on copper connections where the serialized gigabit media independent
1638  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1639  *  for auto-negotiation or forces speed/duplex.
1640  **/
1641 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1642 {
1643 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1644 	bool pcs_autoneg;
1645 	s32 ret_val = 0;
1646 	u16 data;
1647 
1648 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1649 	    !igb_sgmii_active_82575(hw))
1650 		return ret_val;
1651 
1652 
1653 	/* On the 82575, SerDes loopback mode persists until it is
1654 	 * explicitly turned off or a power cycle is performed.  A read to
1655 	 * the register does not indicate its status.  Therefore, we ensure
1656 	 * loopback mode is disabled during initialization.
1657 	 */
1658 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1659 
1660 	/* power on the sfp cage if present and turn on I2C */
1661 	ctrl_ext = rd32(E1000_CTRL_EXT);
1662 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1663 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1664 	wr32(E1000_CTRL_EXT, ctrl_ext);
1665 
1666 	ctrl_reg = rd32(E1000_CTRL);
1667 	ctrl_reg |= E1000_CTRL_SLU;
1668 
1669 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1670 		/* set both sw defined pins */
1671 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1672 
1673 		/* Set switch control to serdes energy detect */
1674 		reg = rd32(E1000_CONNSW);
1675 		reg |= E1000_CONNSW_ENRGSRC;
1676 		wr32(E1000_CONNSW, reg);
1677 	}
1678 
1679 	reg = rd32(E1000_PCS_LCTL);
1680 
1681 	/* default pcs_autoneg to the same setting as mac autoneg */
1682 	pcs_autoneg = hw->mac.autoneg;
1683 
1684 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1685 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1686 		/* sgmii mode lets the phy handle forcing speed/duplex */
1687 		pcs_autoneg = true;
1688 		/* autoneg time out should be disabled for SGMII mode */
1689 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1690 		break;
1691 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1692 		/* disable PCS autoneg and support parallel detect only */
1693 		pcs_autoneg = false;
1694 	default:
1695 		if (hw->mac.type == e1000_82575 ||
1696 		    hw->mac.type == e1000_82576) {
1697 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1698 			if (ret_val) {
1699 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1700 				return ret_val;
1701 			}
1702 
1703 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1704 				pcs_autoneg = false;
1705 		}
1706 
1707 		/* non-SGMII modes only supports a speed of 1000/Full for the
1708 		 * link so it is best to just force the MAC and let the pcs
1709 		 * link either autoneg or be forced to 1000/Full
1710 		 */
1711 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1712 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1713 
1714 		/* set speed of 1000/Full if speed/duplex is forced */
1715 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1716 		break;
1717 	}
1718 
1719 	wr32(E1000_CTRL, ctrl_reg);
1720 
1721 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1722 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1723 	 * mode that will be compatible with older link partners and switches.
1724 	 * However, both are supported by the hardware and some drivers/tools.
1725 	 */
1726 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1727 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1728 
1729 	if (pcs_autoneg) {
1730 		/* Set PCS register for autoneg */
1731 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1732 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1733 
1734 		/* Disable force flow control for autoneg */
1735 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1736 
1737 		/* Configure flow control advertisement for autoneg */
1738 		anadv_reg = rd32(E1000_PCS_ANADV);
1739 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1740 		switch (hw->fc.requested_mode) {
1741 		case e1000_fc_full:
1742 		case e1000_fc_rx_pause:
1743 			anadv_reg |= E1000_TXCW_ASM_DIR;
1744 			anadv_reg |= E1000_TXCW_PAUSE;
1745 			break;
1746 		case e1000_fc_tx_pause:
1747 			anadv_reg |= E1000_TXCW_ASM_DIR;
1748 			break;
1749 		default:
1750 			break;
1751 		}
1752 		wr32(E1000_PCS_ANADV, anadv_reg);
1753 
1754 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1755 	} else {
1756 		/* Set PCS register for forced link */
1757 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1758 
1759 		/* Force flow control for forced link */
1760 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1761 
1762 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1763 	}
1764 
1765 	wr32(E1000_PCS_LCTL, reg);
1766 
1767 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1768 		igb_force_mac_fc(hw);
1769 
1770 	return ret_val;
1771 }
1772 
1773 /**
1774  *  igb_sgmii_active_82575 - Return sgmii state
1775  *  @hw: pointer to the HW structure
1776  *
1777  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1778  *  which can be enabled for use in the embedded applications.  Simply
1779  *  return the current state of the sgmii interface.
1780  **/
1781 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1782 {
1783 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1784 	return dev_spec->sgmii_active;
1785 }
1786 
1787 /**
1788  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1789  *  @hw: pointer to the HW structure
1790  *
1791  *  Inits recommended HW defaults after a reset when there is no EEPROM
1792  *  detected. This is only for the 82575.
1793  **/
1794 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1795 {
1796 	if (hw->mac.type == e1000_82575) {
1797 		hw_dbg("Running reset init script for 82575\n");
1798 		/* SerDes configuration via SERDESCTRL */
1799 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1800 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1801 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1802 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1803 
1804 		/* CCM configuration via CCMCTL register */
1805 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1806 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1807 
1808 		/* PCIe lanes configuration */
1809 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1810 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1811 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1812 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1813 
1814 		/* PCIe PLL Configuration */
1815 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1816 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1817 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  *  igb_read_mac_addr_82575 - Read device MAC address
1825  *  @hw: pointer to the HW structure
1826  **/
1827 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1828 {
1829 	s32 ret_val = 0;
1830 
1831 	/* If there's an alternate MAC address place it in RAR0
1832 	 * so that it will override the Si installed default perm
1833 	 * address.
1834 	 */
1835 	ret_val = igb_check_alt_mac_addr(hw);
1836 	if (ret_val)
1837 		goto out;
1838 
1839 	ret_val = igb_read_mac_addr(hw);
1840 
1841 out:
1842 	return ret_val;
1843 }
1844 
1845 /**
1846  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1847  * @hw: pointer to the HW structure
1848  *
1849  * In the case of a PHY power down to save power, or to turn off link during a
1850  * driver unload, or wake on lan is not enabled, remove the link.
1851  **/
1852 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1853 {
1854 	/* If the management interface is not enabled, then power down */
1855 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1856 		igb_power_down_phy_copper(hw);
1857 }
1858 
1859 /**
1860  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1861  *  @hw: pointer to the HW structure
1862  *
1863  *  Clears the hardware counters by reading the counter registers.
1864  **/
1865 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1866 {
1867 	igb_clear_hw_cntrs_base(hw);
1868 
1869 	rd32(E1000_PRC64);
1870 	rd32(E1000_PRC127);
1871 	rd32(E1000_PRC255);
1872 	rd32(E1000_PRC511);
1873 	rd32(E1000_PRC1023);
1874 	rd32(E1000_PRC1522);
1875 	rd32(E1000_PTC64);
1876 	rd32(E1000_PTC127);
1877 	rd32(E1000_PTC255);
1878 	rd32(E1000_PTC511);
1879 	rd32(E1000_PTC1023);
1880 	rd32(E1000_PTC1522);
1881 
1882 	rd32(E1000_ALGNERRC);
1883 	rd32(E1000_RXERRC);
1884 	rd32(E1000_TNCRS);
1885 	rd32(E1000_CEXTERR);
1886 	rd32(E1000_TSCTC);
1887 	rd32(E1000_TSCTFC);
1888 
1889 	rd32(E1000_MGTPRC);
1890 	rd32(E1000_MGTPDC);
1891 	rd32(E1000_MGTPTC);
1892 
1893 	rd32(E1000_IAC);
1894 	rd32(E1000_ICRXOC);
1895 
1896 	rd32(E1000_ICRXPTC);
1897 	rd32(E1000_ICRXATC);
1898 	rd32(E1000_ICTXPTC);
1899 	rd32(E1000_ICTXATC);
1900 	rd32(E1000_ICTXQEC);
1901 	rd32(E1000_ICTXQMTC);
1902 	rd32(E1000_ICRXDMTC);
1903 
1904 	rd32(E1000_CBTMPC);
1905 	rd32(E1000_HTDPMC);
1906 	rd32(E1000_CBRMPC);
1907 	rd32(E1000_RPTHC);
1908 	rd32(E1000_HGPTC);
1909 	rd32(E1000_HTCBDPC);
1910 	rd32(E1000_HGORCL);
1911 	rd32(E1000_HGORCH);
1912 	rd32(E1000_HGOTCL);
1913 	rd32(E1000_HGOTCH);
1914 	rd32(E1000_LENERRS);
1915 
1916 	/* This register should not be read in copper configurations */
1917 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1918 	    igb_sgmii_active_82575(hw))
1919 		rd32(E1000_SCVPC);
1920 }
1921 
1922 /**
1923  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1924  *  @hw: pointer to the HW structure
1925  *
1926  *  After rx enable if manageability is enabled then there is likely some
1927  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1928  *  function clears the fifos and flushes any packets that came in as rx was
1929  *  being enabled.
1930  **/
1931 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1932 {
1933 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1934 	int i, ms_wait;
1935 
1936 	/* disable IPv6 options as per hardware errata */
1937 	rfctl = rd32(E1000_RFCTL);
1938 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1939 	wr32(E1000_RFCTL, rfctl);
1940 
1941 	if (hw->mac.type != e1000_82575 ||
1942 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1943 		return;
1944 
1945 	/* Disable all RX queues */
1946 	for (i = 0; i < 4; i++) {
1947 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1948 		wr32(E1000_RXDCTL(i),
1949 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1950 	}
1951 	/* Poll all queues to verify they have shut down */
1952 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1953 		usleep_range(1000, 2000);
1954 		rx_enabled = 0;
1955 		for (i = 0; i < 4; i++)
1956 			rx_enabled |= rd32(E1000_RXDCTL(i));
1957 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1958 			break;
1959 	}
1960 
1961 	if (ms_wait == 10)
1962 		hw_dbg("Queue disable timed out after 10ms\n");
1963 
1964 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1965 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1966 	 * any packet that was coming in as RCTL.EN was set is flushed
1967 	 */
1968 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1969 
1970 	rlpml = rd32(E1000_RLPML);
1971 	wr32(E1000_RLPML, 0);
1972 
1973 	rctl = rd32(E1000_RCTL);
1974 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1975 	temp_rctl |= E1000_RCTL_LPE;
1976 
1977 	wr32(E1000_RCTL, temp_rctl);
1978 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1979 	wrfl();
1980 	usleep_range(2000, 3000);
1981 
1982 	/* Enable RX queues that were previously enabled and restore our
1983 	 * previous state
1984 	 */
1985 	for (i = 0; i < 4; i++)
1986 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1987 	wr32(E1000_RCTL, rctl);
1988 	wrfl();
1989 
1990 	wr32(E1000_RLPML, rlpml);
1991 	wr32(E1000_RFCTL, rfctl);
1992 
1993 	/* Flush receive errors generated by workaround */
1994 	rd32(E1000_ROC);
1995 	rd32(E1000_RNBC);
1996 	rd32(E1000_MPC);
1997 }
1998 
1999 /**
2000  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2001  *  @hw: pointer to the HW structure
2002  *
2003  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2004  *  however the hardware default for these parts is 500us to 1ms which is less
2005  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2006  *  increase the value to either 10ms to 200ms for capability version 1 config,
2007  *  or 16ms to 55ms for version 2.
2008  **/
2009 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2010 {
2011 	u32 gcr = rd32(E1000_GCR);
2012 	s32 ret_val = 0;
2013 	u16 pcie_devctl2;
2014 
2015 	/* only take action if timeout value is defaulted to 0 */
2016 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2017 		goto out;
2018 
2019 	/* if capabilities version is type 1 we can write the
2020 	 * timeout of 10ms to 200ms through the GCR register
2021 	 */
2022 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2023 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2024 		goto out;
2025 	}
2026 
2027 	/* for version 2 capabilities we need to write the config space
2028 	 * directly in order to set the completion timeout value for
2029 	 * 16ms to 55ms
2030 	 */
2031 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2032 					&pcie_devctl2);
2033 	if (ret_val)
2034 		goto out;
2035 
2036 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2037 
2038 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2039 					 &pcie_devctl2);
2040 out:
2041 	/* disable completion timeout resend */
2042 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2043 
2044 	wr32(E1000_GCR, gcr);
2045 	return ret_val;
2046 }
2047 
2048 /**
2049  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2050  *  @hw: pointer to the hardware struct
2051  *  @enable: state to enter, either enabled or disabled
2052  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2053  *
2054  *  enables/disables L2 switch anti-spoofing functionality.
2055  **/
2056 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2057 {
2058 	u32 reg_val, reg_offset;
2059 
2060 	switch (hw->mac.type) {
2061 	case e1000_82576:
2062 		reg_offset = E1000_DTXSWC;
2063 		break;
2064 	case e1000_i350:
2065 	case e1000_i354:
2066 		reg_offset = E1000_TXSWC;
2067 		break;
2068 	default:
2069 		return;
2070 	}
2071 
2072 	reg_val = rd32(reg_offset);
2073 	if (enable) {
2074 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2075 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2076 		/* The PF can spoof - it has to in order to
2077 		 * support emulation mode NICs
2078 		 */
2079 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2080 	} else {
2081 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2082 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2083 	}
2084 	wr32(reg_offset, reg_val);
2085 }
2086 
2087 /**
2088  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2089  *  @hw: pointer to the hardware struct
2090  *  @enable: state to enter, either enabled or disabled
2091  *
2092  *  enables/disables L2 switch loopback functionality.
2093  **/
2094 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2095 {
2096 	u32 dtxswc;
2097 
2098 	switch (hw->mac.type) {
2099 	case e1000_82576:
2100 		dtxswc = rd32(E1000_DTXSWC);
2101 		if (enable)
2102 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2103 		else
2104 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2105 		wr32(E1000_DTXSWC, dtxswc);
2106 		break;
2107 	case e1000_i354:
2108 	case e1000_i350:
2109 		dtxswc = rd32(E1000_TXSWC);
2110 		if (enable)
2111 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2112 		else
2113 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2114 		wr32(E1000_TXSWC, dtxswc);
2115 		break;
2116 	default:
2117 		/* Currently no other hardware supports loopback */
2118 		break;
2119 	}
2120 
2121 }
2122 
2123 /**
2124  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2125  *  @hw: pointer to the hardware struct
2126  *  @enable: state to enter, either enabled or disabled
2127  *
2128  *  enables/disables replication of packets across multiple pools.
2129  **/
2130 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2131 {
2132 	u32 vt_ctl = rd32(E1000_VT_CTL);
2133 
2134 	if (enable)
2135 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2136 	else
2137 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2138 
2139 	wr32(E1000_VT_CTL, vt_ctl);
2140 }
2141 
2142 /**
2143  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2144  *  @hw: pointer to the HW structure
2145  *  @offset: register offset to be read
2146  *  @data: pointer to the read data
2147  *
2148  *  Reads the MDI control register in the PHY at offset and stores the
2149  *  information read to data.
2150  **/
2151 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2152 {
2153 	s32 ret_val;
2154 
2155 	ret_val = hw->phy.ops.acquire(hw);
2156 	if (ret_val)
2157 		goto out;
2158 
2159 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2160 
2161 	hw->phy.ops.release(hw);
2162 
2163 out:
2164 	return ret_val;
2165 }
2166 
2167 /**
2168  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2169  *  @hw: pointer to the HW structure
2170  *  @offset: register offset to write to
2171  *  @data: data to write to register at offset
2172  *
2173  *  Writes data to MDI control register in the PHY at offset.
2174  **/
2175 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2176 {
2177 	s32 ret_val;
2178 
2179 
2180 	ret_val = hw->phy.ops.acquire(hw);
2181 	if (ret_val)
2182 		goto out;
2183 
2184 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2185 
2186 	hw->phy.ops.release(hw);
2187 
2188 out:
2189 	return ret_val;
2190 }
2191 
2192 /**
2193  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2194  *  @hw: pointer to the HW structure
2195  *
2196  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2197  *  the values found in the EEPROM.  This addresses an issue in which these
2198  *  bits are not restored from EEPROM after reset.
2199  **/
2200 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2201 {
2202 	s32 ret_val = 0;
2203 	u32 mdicnfg;
2204 	u16 nvm_data = 0;
2205 
2206 	if (hw->mac.type != e1000_82580)
2207 		goto out;
2208 	if (!igb_sgmii_active_82575(hw))
2209 		goto out;
2210 
2211 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2212 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2213 				   &nvm_data);
2214 	if (ret_val) {
2215 		hw_dbg("NVM Read Error\n");
2216 		goto out;
2217 	}
2218 
2219 	mdicnfg = rd32(E1000_MDICNFG);
2220 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2221 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2222 	if (nvm_data & NVM_WORD24_COM_MDIO)
2223 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2224 	wr32(E1000_MDICNFG, mdicnfg);
2225 out:
2226 	return ret_val;
2227 }
2228 
2229 /**
2230  *  igb_reset_hw_82580 - Reset hardware
2231  *  @hw: pointer to the HW structure
2232  *
2233  *  This resets function or entire device (all ports, etc.)
2234  *  to a known state.
2235  **/
2236 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2237 {
2238 	s32 ret_val = 0;
2239 	/* BH SW mailbox bit in SW_FW_SYNC */
2240 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2241 	u32 ctrl;
2242 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2243 
2244 	hw->dev_spec._82575.global_device_reset = false;
2245 
2246 	/* due to hw errata, global device reset doesn't always
2247 	 * work on 82580
2248 	 */
2249 	if (hw->mac.type == e1000_82580)
2250 		global_device_reset = false;
2251 
2252 	/* Get current control state. */
2253 	ctrl = rd32(E1000_CTRL);
2254 
2255 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2256 	 * on the last TLP read/write transaction when MAC is reset.
2257 	 */
2258 	ret_val = igb_disable_pcie_master(hw);
2259 	if (ret_val)
2260 		hw_dbg("PCI-E Master disable polling has failed.\n");
2261 
2262 	hw_dbg("Masking off all interrupts\n");
2263 	wr32(E1000_IMC, 0xffffffff);
2264 	wr32(E1000_RCTL, 0);
2265 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2266 	wrfl();
2267 
2268 	usleep_range(10000, 11000);
2269 
2270 	/* Determine whether or not a global dev reset is requested */
2271 	if (global_device_reset &&
2272 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2273 			global_device_reset = false;
2274 
2275 	if (global_device_reset &&
2276 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2277 		ctrl |= E1000_CTRL_DEV_RST;
2278 	else
2279 		ctrl |= E1000_CTRL_RST;
2280 
2281 	wr32(E1000_CTRL, ctrl);
2282 	wrfl();
2283 
2284 	/* Add delay to insure DEV_RST has time to complete */
2285 	if (global_device_reset)
2286 		usleep_range(5000, 6000);
2287 
2288 	ret_val = igb_get_auto_rd_done(hw);
2289 	if (ret_val) {
2290 		/* When auto config read does not complete, do not
2291 		 * return with an error. This can happen in situations
2292 		 * where there is no eeprom and prevents getting link.
2293 		 */
2294 		hw_dbg("Auto Read Done did not complete\n");
2295 	}
2296 
2297 	/* clear global device reset status bit */
2298 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2299 
2300 	/* Clear any pending interrupt events. */
2301 	wr32(E1000_IMC, 0xffffffff);
2302 	rd32(E1000_ICR);
2303 
2304 	ret_val = igb_reset_mdicnfg_82580(hw);
2305 	if (ret_val)
2306 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2307 
2308 	/* Install any alternate MAC address into RAR0 */
2309 	ret_val = igb_check_alt_mac_addr(hw);
2310 
2311 	/* Release semaphore */
2312 	if (global_device_reset)
2313 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2314 
2315 	return ret_val;
2316 }
2317 
2318 /**
2319  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2320  *  @data: data received by reading RXPBS register
2321  *
2322  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2323  *  This function converts the retrieved value into the correct table value
2324  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2325  *  0x0 36  72 144   1   2   4   8  16
2326  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2327  */
2328 u16 igb_rxpbs_adjust_82580(u32 data)
2329 {
2330 	u16 ret_val = 0;
2331 
2332 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2333 		ret_val = e1000_82580_rxpbs_table[data];
2334 
2335 	return ret_val;
2336 }
2337 
2338 /**
2339  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2340  *  checksum
2341  *  @hw: pointer to the HW structure
2342  *  @offset: offset in words of the checksum protected region
2343  *
2344  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2345  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2346  **/
2347 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2348 						 u16 offset)
2349 {
2350 	s32 ret_val = 0;
2351 	u16 checksum = 0;
2352 	u16 i, nvm_data;
2353 
2354 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2355 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2356 		if (ret_val) {
2357 			hw_dbg("NVM Read Error\n");
2358 			goto out;
2359 		}
2360 		checksum += nvm_data;
2361 	}
2362 
2363 	if (checksum != (u16) NVM_SUM) {
2364 		hw_dbg("NVM Checksum Invalid\n");
2365 		ret_val = -E1000_ERR_NVM;
2366 		goto out;
2367 	}
2368 
2369 out:
2370 	return ret_val;
2371 }
2372 
2373 /**
2374  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2375  *  checksum
2376  *  @hw: pointer to the HW structure
2377  *  @offset: offset in words of the checksum protected region
2378  *
2379  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2380  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2381  *  value to the EEPROM.
2382  **/
2383 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2384 {
2385 	s32 ret_val;
2386 	u16 checksum = 0;
2387 	u16 i, nvm_data;
2388 
2389 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2390 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2391 		if (ret_val) {
2392 			hw_dbg("NVM Read Error while updating checksum.\n");
2393 			goto out;
2394 		}
2395 		checksum += nvm_data;
2396 	}
2397 	checksum = (u16) NVM_SUM - checksum;
2398 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2399 				&checksum);
2400 	if (ret_val)
2401 		hw_dbg("NVM Write Error while updating checksum.\n");
2402 
2403 out:
2404 	return ret_val;
2405 }
2406 
2407 /**
2408  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2409  *  @hw: pointer to the HW structure
2410  *
2411  *  Calculates the EEPROM section checksum by reading/adding each word of
2412  *  the EEPROM and then verifies that the sum of the EEPROM is
2413  *  equal to 0xBABA.
2414  **/
2415 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2416 {
2417 	s32 ret_val = 0;
2418 	u16 eeprom_regions_count = 1;
2419 	u16 j, nvm_data;
2420 	u16 nvm_offset;
2421 
2422 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2423 	if (ret_val) {
2424 		hw_dbg("NVM Read Error\n");
2425 		goto out;
2426 	}
2427 
2428 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2429 		/* if checksums compatibility bit is set validate checksums
2430 		 * for all 4 ports.
2431 		 */
2432 		eeprom_regions_count = 4;
2433 	}
2434 
2435 	for (j = 0; j < eeprom_regions_count; j++) {
2436 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2437 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2438 								nvm_offset);
2439 		if (ret_val != 0)
2440 			goto out;
2441 	}
2442 
2443 out:
2444 	return ret_val;
2445 }
2446 
2447 /**
2448  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2449  *  @hw: pointer to the HW structure
2450  *
2451  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2452  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2453  *  checksum and writes the value to the EEPROM.
2454  **/
2455 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2456 {
2457 	s32 ret_val;
2458 	u16 j, nvm_data;
2459 	u16 nvm_offset;
2460 
2461 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2462 	if (ret_val) {
2463 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2464 		goto out;
2465 	}
2466 
2467 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2468 		/* set compatibility bit to validate checksums appropriately */
2469 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2470 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2471 					&nvm_data);
2472 		if (ret_val) {
2473 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2474 			goto out;
2475 		}
2476 	}
2477 
2478 	for (j = 0; j < 4; j++) {
2479 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2480 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2481 		if (ret_val)
2482 			goto out;
2483 	}
2484 
2485 out:
2486 	return ret_val;
2487 }
2488 
2489 /**
2490  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2491  *  @hw: pointer to the HW structure
2492  *
2493  *  Calculates the EEPROM section checksum by reading/adding each word of
2494  *  the EEPROM and then verifies that the sum of the EEPROM is
2495  *  equal to 0xBABA.
2496  **/
2497 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2498 {
2499 	s32 ret_val = 0;
2500 	u16 j;
2501 	u16 nvm_offset;
2502 
2503 	for (j = 0; j < 4; j++) {
2504 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2505 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2506 								nvm_offset);
2507 		if (ret_val != 0)
2508 			goto out;
2509 	}
2510 
2511 out:
2512 	return ret_val;
2513 }
2514 
2515 /**
2516  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2517  *  @hw: pointer to the HW structure
2518  *
2519  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2520  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2521  *  checksum and writes the value to the EEPROM.
2522  **/
2523 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2524 {
2525 	s32 ret_val = 0;
2526 	u16 j;
2527 	u16 nvm_offset;
2528 
2529 	for (j = 0; j < 4; j++) {
2530 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2531 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2532 		if (ret_val != 0)
2533 			goto out;
2534 	}
2535 
2536 out:
2537 	return ret_val;
2538 }
2539 
2540 /**
2541  *  __igb_access_emi_reg - Read/write EMI register
2542  *  @hw: pointer to the HW structure
2543  *  @addr: EMI address to program
2544  *  @data: pointer to value to read/write from/to the EMI address
2545  *  @read: boolean flag to indicate read or write
2546  **/
2547 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2548 				  u16 *data, bool read)
2549 {
2550 	s32 ret_val = 0;
2551 
2552 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2553 	if (ret_val)
2554 		return ret_val;
2555 
2556 	if (read)
2557 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2558 	else
2559 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2560 
2561 	return ret_val;
2562 }
2563 
2564 /**
2565  *  igb_read_emi_reg - Read Extended Management Interface register
2566  *  @hw: pointer to the HW structure
2567  *  @addr: EMI address to program
2568  *  @data: value to be read from the EMI address
2569  **/
2570 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2571 {
2572 	return __igb_access_emi_reg(hw, addr, data, true);
2573 }
2574 
2575 /**
2576  *  igb_set_eee_i350 - Enable/disable EEE support
2577  *  @hw: pointer to the HW structure
2578  *  @adv1G: boolean flag enabling 1G EEE advertisement
2579  *  @adv100m: boolean flag enabling 100M EEE advertisement
2580  *
2581  *  Enable/disable EEE based on setting in dev_spec structure.
2582  *
2583  **/
2584 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2585 {
2586 	u32 ipcnfg, eeer;
2587 
2588 	if ((hw->mac.type < e1000_i350) ||
2589 	    (hw->phy.media_type != e1000_media_type_copper))
2590 		goto out;
2591 	ipcnfg = rd32(E1000_IPCNFG);
2592 	eeer = rd32(E1000_EEER);
2593 
2594 	/* enable or disable per user setting */
2595 	if (!(hw->dev_spec._82575.eee_disable)) {
2596 		u32 eee_su = rd32(E1000_EEE_SU);
2597 
2598 		if (adv100M)
2599 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2600 		else
2601 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2602 
2603 		if (adv1G)
2604 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2605 		else
2606 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2607 
2608 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2609 			E1000_EEER_LPI_FC);
2610 
2611 		/* This bit should not be set in normal operation. */
2612 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2613 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2614 
2615 	} else {
2616 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2617 			E1000_IPCNFG_EEE_100M_AN);
2618 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2619 			E1000_EEER_RX_LPI_EN |
2620 			E1000_EEER_LPI_FC);
2621 	}
2622 	wr32(E1000_IPCNFG, ipcnfg);
2623 	wr32(E1000_EEER, eeer);
2624 	rd32(E1000_IPCNFG);
2625 	rd32(E1000_EEER);
2626 out:
2627 
2628 	return 0;
2629 }
2630 
2631 /**
2632  *  igb_set_eee_i354 - Enable/disable EEE support
2633  *  @hw: pointer to the HW structure
2634  *  @adv1G: boolean flag enabling 1G EEE advertisement
2635  *  @adv100m: boolean flag enabling 100M EEE advertisement
2636  *
2637  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2638  *
2639  **/
2640 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2641 {
2642 	struct e1000_phy_info *phy = &hw->phy;
2643 	s32 ret_val = 0;
2644 	u16 phy_data;
2645 
2646 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2647 	    ((phy->id != M88E1543_E_PHY_ID) &&
2648 	     (phy->id != M88E1512_E_PHY_ID)))
2649 		goto out;
2650 
2651 	if (!hw->dev_spec._82575.eee_disable) {
2652 		/* Switch to PHY page 18. */
2653 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2654 		if (ret_val)
2655 			goto out;
2656 
2657 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2658 					    &phy_data);
2659 		if (ret_val)
2660 			goto out;
2661 
2662 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2663 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2664 					     phy_data);
2665 		if (ret_val)
2666 			goto out;
2667 
2668 		/* Return the PHY to page 0. */
2669 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2670 		if (ret_val)
2671 			goto out;
2672 
2673 		/* Turn on EEE advertisement. */
2674 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2675 					     E1000_EEE_ADV_DEV_I354,
2676 					     &phy_data);
2677 		if (ret_val)
2678 			goto out;
2679 
2680 		if (adv100M)
2681 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2682 		else
2683 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2684 
2685 		if (adv1G)
2686 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2687 		else
2688 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2689 
2690 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2691 						E1000_EEE_ADV_DEV_I354,
2692 						phy_data);
2693 	} else {
2694 		/* Turn off EEE advertisement. */
2695 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2696 					     E1000_EEE_ADV_DEV_I354,
2697 					     &phy_data);
2698 		if (ret_val)
2699 			goto out;
2700 
2701 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2702 			      E1000_EEE_ADV_1000_SUPPORTED);
2703 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2704 					      E1000_EEE_ADV_DEV_I354,
2705 					      phy_data);
2706 	}
2707 
2708 out:
2709 	return ret_val;
2710 }
2711 
2712 /**
2713  *  igb_get_eee_status_i354 - Get EEE status
2714  *  @hw: pointer to the HW structure
2715  *  @status: EEE status
2716  *
2717  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2718  *  been received.
2719  **/
2720 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2721 {
2722 	struct e1000_phy_info *phy = &hw->phy;
2723 	s32 ret_val = 0;
2724 	u16 phy_data;
2725 
2726 	/* Check if EEE is supported on this device. */
2727 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2728 	    ((phy->id != M88E1543_E_PHY_ID) &&
2729 	     (phy->id != M88E1512_E_PHY_ID)))
2730 		goto out;
2731 
2732 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2733 				     E1000_PCS_STATUS_DEV_I354,
2734 				     &phy_data);
2735 	if (ret_val)
2736 		goto out;
2737 
2738 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2739 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2740 
2741 out:
2742 	return ret_val;
2743 }
2744 
2745 static const u8 e1000_emc_temp_data[4] = {
2746 	E1000_EMC_INTERNAL_DATA,
2747 	E1000_EMC_DIODE1_DATA,
2748 	E1000_EMC_DIODE2_DATA,
2749 	E1000_EMC_DIODE3_DATA
2750 };
2751 static const u8 e1000_emc_therm_limit[4] = {
2752 	E1000_EMC_INTERNAL_THERM_LIMIT,
2753 	E1000_EMC_DIODE1_THERM_LIMIT,
2754 	E1000_EMC_DIODE2_THERM_LIMIT,
2755 	E1000_EMC_DIODE3_THERM_LIMIT
2756 };
2757 
2758 #ifdef CONFIG_IGB_HWMON
2759 /**
2760  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2761  *  @hw: pointer to hardware structure
2762  *
2763  *  Updates the temperatures in mac.thermal_sensor_data
2764  **/
2765 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2766 {
2767 	u16 ets_offset;
2768 	u16 ets_cfg;
2769 	u16 ets_sensor;
2770 	u8  num_sensors;
2771 	u8  sensor_index;
2772 	u8  sensor_location;
2773 	u8  i;
2774 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2775 
2776 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2777 		return E1000_NOT_IMPLEMENTED;
2778 
2779 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2780 
2781 	/* Return the internal sensor only if ETS is unsupported */
2782 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2783 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2784 		return 0;
2785 
2786 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2787 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2788 	    != NVM_ETS_TYPE_EMC)
2789 		return E1000_NOT_IMPLEMENTED;
2790 
2791 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2792 	if (num_sensors > E1000_MAX_SENSORS)
2793 		num_sensors = E1000_MAX_SENSORS;
2794 
2795 	for (i = 1; i < num_sensors; i++) {
2796 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2797 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2798 				NVM_ETS_DATA_INDEX_SHIFT);
2799 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2800 				   NVM_ETS_DATA_LOC_SHIFT);
2801 
2802 		if (sensor_location != 0)
2803 			hw->phy.ops.read_i2c_byte(hw,
2804 					e1000_emc_temp_data[sensor_index],
2805 					E1000_I2C_THERMAL_SENSOR_ADDR,
2806 					&data->sensor[i].temp);
2807 	}
2808 	return 0;
2809 }
2810 
2811 /**
2812  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2813  *  @hw: pointer to hardware structure
2814  *
2815  *  Sets the thermal sensor thresholds according to the NVM map
2816  *  and save off the threshold and location values into mac.thermal_sensor_data
2817  **/
2818 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2819 {
2820 	u16 ets_offset;
2821 	u16 ets_cfg;
2822 	u16 ets_sensor;
2823 	u8  low_thresh_delta;
2824 	u8  num_sensors;
2825 	u8  sensor_index;
2826 	u8  sensor_location;
2827 	u8  therm_limit;
2828 	u8  i;
2829 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2830 
2831 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2832 		return E1000_NOT_IMPLEMENTED;
2833 
2834 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2835 
2836 	data->sensor[0].location = 0x1;
2837 	data->sensor[0].caution_thresh =
2838 		(rd32(E1000_THHIGHTC) & 0xFF);
2839 	data->sensor[0].max_op_thresh =
2840 		(rd32(E1000_THLOWTC) & 0xFF);
2841 
2842 	/* Return the internal sensor only if ETS is unsupported */
2843 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2844 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2845 		return 0;
2846 
2847 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2848 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2849 	    != NVM_ETS_TYPE_EMC)
2850 		return E1000_NOT_IMPLEMENTED;
2851 
2852 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2853 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2854 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2855 
2856 	for (i = 1; i <= num_sensors; i++) {
2857 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2858 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2859 				NVM_ETS_DATA_INDEX_SHIFT);
2860 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2861 				   NVM_ETS_DATA_LOC_SHIFT);
2862 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2863 
2864 		hw->phy.ops.write_i2c_byte(hw,
2865 			e1000_emc_therm_limit[sensor_index],
2866 			E1000_I2C_THERMAL_SENSOR_ADDR,
2867 			therm_limit);
2868 
2869 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2870 			data->sensor[i].location = sensor_location;
2871 			data->sensor[i].caution_thresh = therm_limit;
2872 			data->sensor[i].max_op_thresh = therm_limit -
2873 							low_thresh_delta;
2874 		}
2875 	}
2876 	return 0;
2877 }
2878 
2879 #endif
2880 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2881 	.init_hw              = igb_init_hw_82575,
2882 	.check_for_link       = igb_check_for_link_82575,
2883 	.rar_set              = igb_rar_set,
2884 	.read_mac_addr        = igb_read_mac_addr_82575,
2885 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2886 #ifdef CONFIG_IGB_HWMON
2887 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2888 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2889 #endif
2890 };
2891 
2892 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2893 	.acquire              = igb_acquire_phy_82575,
2894 	.get_cfg_done         = igb_get_cfg_done_82575,
2895 	.release              = igb_release_phy_82575,
2896 	.write_i2c_byte       = igb_write_i2c_byte,
2897 	.read_i2c_byte        = igb_read_i2c_byte,
2898 };
2899 
2900 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2901 	.acquire              = igb_acquire_nvm_82575,
2902 	.read                 = igb_read_nvm_eerd,
2903 	.release              = igb_release_nvm_82575,
2904 	.write                = igb_write_nvm_spi,
2905 };
2906 
2907 const struct e1000_info e1000_82575_info = {
2908 	.get_invariants = igb_get_invariants_82575,
2909 	.mac_ops = &e1000_mac_ops_82575,
2910 	.phy_ops = &e1000_phy_ops_82575,
2911 	.nvm_ops = &e1000_nvm_ops_82575,
2912 };
2913 
2914