1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 #include <linux/i2c.h>
37 
38 #include "e1000_mac.h"
39 #include "e1000_82575.h"
40 #include "e1000_i210.h"
41 
42 static s32  igb_get_invariants_82575(struct e1000_hw *);
43 static s32  igb_acquire_phy_82575(struct e1000_hw *);
44 static void igb_release_phy_82575(struct e1000_hw *);
45 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
46 static void igb_release_nvm_82575(struct e1000_hw *);
47 static s32  igb_check_for_link_82575(struct e1000_hw *);
48 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
49 static s32  igb_init_hw_82575(struct e1000_hw *);
50 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
51 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
52 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
53 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
54 static s32  igb_reset_hw_82575(struct e1000_hw *);
55 static s32  igb_reset_hw_82580(struct e1000_hw *);
56 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
57 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
59 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
60 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
61 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
63 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
64 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
65 						 u16 *);
66 static s32  igb_get_phy_id_82575(struct e1000_hw *);
67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
68 static bool igb_sgmii_active_82575(struct e1000_hw *);
69 static s32  igb_reset_init_script_82575(struct e1000_hw *);
70 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
71 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
72 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
73 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
77 static const u16 e1000_82580_rxpbs_table[] =
78 	{ 36, 72, 144, 1, 2, 4, 8, 16,
79 	  35, 70, 140 };
80 #define E1000_82580_RXPBS_TABLE_SIZE \
81 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
82 
83 /**
84  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
85  *  @hw: pointer to the HW structure
86  *
87  *  Called to determine if the I2C pins are being used for I2C or as an
88  *  external MDIO interface since the two options are mutually exclusive.
89  **/
90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
91 {
92 	u32 reg = 0;
93 	bool ext_mdio = false;
94 
95 	switch (hw->mac.type) {
96 	case e1000_82575:
97 	case e1000_82576:
98 		reg = rd32(E1000_MDIC);
99 		ext_mdio = !!(reg & E1000_MDIC_DEST);
100 		break;
101 	case e1000_82580:
102 	case e1000_i350:
103 	case e1000_i210:
104 	case e1000_i211:
105 		reg = rd32(E1000_MDICNFG);
106 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
107 		break;
108 	default:
109 		break;
110 	}
111 	return ext_mdio;
112 }
113 
114 /**
115  *  igb_init_phy_params_82575 - Init PHY func ptrs.
116  *  @hw: pointer to the HW structure
117  **/
118 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
119 {
120 	struct e1000_phy_info *phy = &hw->phy;
121 	s32 ret_val = 0;
122 	u32 ctrl_ext;
123 
124 	if (hw->phy.media_type != e1000_media_type_copper) {
125 		phy->type = e1000_phy_none;
126 		goto out;
127 	}
128 
129 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
130 	phy->reset_delay_us	= 100;
131 
132 	ctrl_ext = rd32(E1000_CTRL_EXT);
133 
134 	if (igb_sgmii_active_82575(hw)) {
135 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
136 		ctrl_ext |= E1000_CTRL_I2C_ENA;
137 	} else {
138 		phy->ops.reset = igb_phy_hw_reset;
139 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
140 	}
141 
142 	wr32(E1000_CTRL_EXT, ctrl_ext);
143 	igb_reset_mdicnfg_82580(hw);
144 
145 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
146 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
147 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
148 	} else {
149 		switch (hw->mac.type) {
150 		case e1000_82580:
151 		case e1000_i350:
152 			phy->ops.read_reg = igb_read_phy_reg_82580;
153 			phy->ops.write_reg = igb_write_phy_reg_82580;
154 			break;
155 		case e1000_i210:
156 		case e1000_i211:
157 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
158 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
159 			break;
160 		default:
161 			phy->ops.read_reg = igb_read_phy_reg_igp;
162 			phy->ops.write_reg = igb_write_phy_reg_igp;
163 		}
164 	}
165 
166 	/* set lan id */
167 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
168 			E1000_STATUS_FUNC_SHIFT;
169 
170 	/* Set phy->phy_addr and phy->id. */
171 	ret_val = igb_get_phy_id_82575(hw);
172 	if (ret_val)
173 		return ret_val;
174 
175 	/* Verify phy id and set remaining function pointers */
176 	switch (phy->id) {
177 	case I347AT4_E_PHY_ID:
178 	case M88E1112_E_PHY_ID:
179 	case M88E1111_I_PHY_ID:
180 		phy->type		= e1000_phy_m88;
181 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
182 		if (phy->id == I347AT4_E_PHY_ID ||
183 		    phy->id == M88E1112_E_PHY_ID)
184 			phy->ops.get_cable_length =
185 					 igb_get_cable_length_m88_gen2;
186 		else
187 			phy->ops.get_cable_length = igb_get_cable_length_m88;
188 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
189 		break;
190 	case IGP03E1000_E_PHY_ID:
191 		phy->type = e1000_phy_igp_3;
192 		phy->ops.get_phy_info = igb_get_phy_info_igp;
193 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
194 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
195 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
196 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
197 		break;
198 	case I82580_I_PHY_ID:
199 	case I350_I_PHY_ID:
200 		phy->type = e1000_phy_82580;
201 		phy->ops.force_speed_duplex =
202 					 igb_phy_force_speed_duplex_82580;
203 		phy->ops.get_cable_length = igb_get_cable_length_82580;
204 		phy->ops.get_phy_info = igb_get_phy_info_82580;
205 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
206 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
207 		break;
208 	case I210_I_PHY_ID:
209 		phy->type		= e1000_phy_i210;
210 		phy->ops.check_polarity	= igb_check_polarity_m88;
211 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
212 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
213 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
214 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
215 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
216 		break;
217 	default:
218 		ret_val = -E1000_ERR_PHY;
219 		goto out;
220 	}
221 
222 out:
223 	return ret_val;
224 }
225 
226 /**
227  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
228  *  @hw: pointer to the HW structure
229  **/
230 s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
231 {
232 	struct e1000_nvm_info *nvm = &hw->nvm;
233 	u32 eecd = rd32(E1000_EECD);
234 	u16 size;
235 
236 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 		     E1000_EECD_SIZE_EX_SHIFT);
238 	/* Added to a constant, "size" becomes the left-shift value
239 	 * for setting word_size.
240 	 */
241 	size += NVM_WORD_SIZE_BASE_SHIFT;
242 
243 	/* Just in case size is out of range, cap it to the largest
244 	 * EEPROM size supported
245 	 */
246 	if (size > 15)
247 		size = 15;
248 
249 	nvm->word_size = 1 << size;
250 	if (hw->mac.type < e1000_i210) {
251 		nvm->opcode_bits = 8;
252 		nvm->delay_usec = 1;
253 
254 		switch (nvm->override) {
255 		case e1000_nvm_override_spi_large:
256 			nvm->page_size = 32;
257 			nvm->address_bits = 16;
258 			break;
259 		case e1000_nvm_override_spi_small:
260 			nvm->page_size = 8;
261 			nvm->address_bits = 8;
262 			break;
263 		default:
264 			nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
265 			nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
266 					    16 : 8;
267 			break;
268 		}
269 		if (nvm->word_size == (1 << 15))
270 			nvm->page_size = 128;
271 
272 		nvm->type = e1000_nvm_eeprom_spi;
273 	} else {
274 		nvm->type = e1000_nvm_flash_hw;
275 	}
276 
277 	/* NVM Function Pointers */
278 	switch (hw->mac.type) {
279 	case e1000_82580:
280 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
281 		nvm->ops.update = igb_update_nvm_checksum_82580;
282 		nvm->ops.acquire = igb_acquire_nvm_82575;
283 		nvm->ops.release = igb_release_nvm_82575;
284 		if (nvm->word_size < (1 << 15))
285 			nvm->ops.read = igb_read_nvm_eerd;
286 		else
287 			nvm->ops.read = igb_read_nvm_spi;
288 		nvm->ops.write = igb_write_nvm_spi;
289 		break;
290 	case e1000_i350:
291 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
292 		nvm->ops.update = igb_update_nvm_checksum_i350;
293 		nvm->ops.acquire = igb_acquire_nvm_82575;
294 		nvm->ops.release = igb_release_nvm_82575;
295 		if (nvm->word_size < (1 << 15))
296 			nvm->ops.read = igb_read_nvm_eerd;
297 		else
298 			nvm->ops.read = igb_read_nvm_spi;
299 		nvm->ops.write = igb_write_nvm_spi;
300 		break;
301 	case e1000_i210:
302 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
303 		nvm->ops.update   = igb_update_nvm_checksum_i210;
304 		nvm->ops.acquire = igb_acquire_nvm_i210;
305 		nvm->ops.release = igb_release_nvm_i210;
306 		nvm->ops.read    = igb_read_nvm_srrd_i210;
307 		nvm->ops.write   = igb_write_nvm_srwr_i210;
308 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
309 		break;
310 	case e1000_i211:
311 		nvm->ops.acquire  = igb_acquire_nvm_i210;
312 		nvm->ops.release  = igb_release_nvm_i210;
313 		nvm->ops.read     = igb_read_nvm_i211;
314 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
315 		nvm->ops.validate = NULL;
316 		nvm->ops.update   = NULL;
317 		nvm->ops.write    = NULL;
318 		break;
319 	default:
320 		nvm->ops.validate = igb_validate_nvm_checksum;
321 		nvm->ops.update = igb_update_nvm_checksum;
322 		nvm->ops.acquire = igb_acquire_nvm_82575;
323 		nvm->ops.release = igb_release_nvm_82575;
324 		if (nvm->word_size < (1 << 15))
325 			nvm->ops.read = igb_read_nvm_eerd;
326 		else
327 			nvm->ops.read = igb_read_nvm_spi;
328 		nvm->ops.write = igb_write_nvm_spi;
329 		break;
330 	}
331 
332 	return 0;
333 }
334 
335 /**
336  *  igb_init_mac_params_82575 - Init MAC func ptrs.
337  *  @hw: pointer to the HW structure
338  **/
339 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
340 {
341 	struct e1000_mac_info *mac = &hw->mac;
342 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
343 
344 	/* Set mta register count */
345 	mac->mta_reg_count = 128;
346 	/* Set rar entry count */
347 	switch (mac->type) {
348 	case e1000_82576:
349 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
350 		break;
351 	case e1000_82580:
352 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
353 		break;
354 	case e1000_i350:
355 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
356 		break;
357 	default:
358 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
359 		break;
360 	}
361 	/* reset */
362 	if (mac->type >= e1000_82580)
363 		mac->ops.reset_hw = igb_reset_hw_82580;
364 	else
365 		mac->ops.reset_hw = igb_reset_hw_82575;
366 
367 	if (mac->type >= e1000_i210) {
368 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
369 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
370 
371 	} else {
372 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
373 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
374 	}
375 
376 	/* Set if part includes ASF firmware */
377 	mac->asf_firmware_present = true;
378 	/* Set if manageability features are enabled. */
379 	mac->arc_subsystem_valid =
380 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
381 			? true : false;
382 	/* enable EEE on i350 parts and later parts */
383 	if (mac->type >= e1000_i350)
384 		dev_spec->eee_disable = false;
385 	else
386 		dev_spec->eee_disable = true;
387 	/* physical interface link setup */
388 	mac->ops.setup_physical_interface =
389 		(hw->phy.media_type == e1000_media_type_copper)
390 			? igb_setup_copper_link_82575
391 			: igb_setup_serdes_link_82575;
392 
393 	return 0;
394 }
395 
396 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
397 {
398 	struct e1000_mac_info *mac = &hw->mac;
399 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
400 	s32 ret_val;
401 	u32 ctrl_ext = 0;
402 
403 	switch (hw->device_id) {
404 	case E1000_DEV_ID_82575EB_COPPER:
405 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
406 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
407 		mac->type = e1000_82575;
408 		break;
409 	case E1000_DEV_ID_82576:
410 	case E1000_DEV_ID_82576_NS:
411 	case E1000_DEV_ID_82576_NS_SERDES:
412 	case E1000_DEV_ID_82576_FIBER:
413 	case E1000_DEV_ID_82576_SERDES:
414 	case E1000_DEV_ID_82576_QUAD_COPPER:
415 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
416 	case E1000_DEV_ID_82576_SERDES_QUAD:
417 		mac->type = e1000_82576;
418 		break;
419 	case E1000_DEV_ID_82580_COPPER:
420 	case E1000_DEV_ID_82580_FIBER:
421 	case E1000_DEV_ID_82580_QUAD_FIBER:
422 	case E1000_DEV_ID_82580_SERDES:
423 	case E1000_DEV_ID_82580_SGMII:
424 	case E1000_DEV_ID_82580_COPPER_DUAL:
425 	case E1000_DEV_ID_DH89XXCC_SGMII:
426 	case E1000_DEV_ID_DH89XXCC_SERDES:
427 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
428 	case E1000_DEV_ID_DH89XXCC_SFP:
429 		mac->type = e1000_82580;
430 		break;
431 	case E1000_DEV_ID_I350_COPPER:
432 	case E1000_DEV_ID_I350_FIBER:
433 	case E1000_DEV_ID_I350_SERDES:
434 	case E1000_DEV_ID_I350_SGMII:
435 		mac->type = e1000_i350;
436 		break;
437 	case E1000_DEV_ID_I210_COPPER:
438 	case E1000_DEV_ID_I210_COPPER_OEM1:
439 	case E1000_DEV_ID_I210_COPPER_IT:
440 	case E1000_DEV_ID_I210_FIBER:
441 	case E1000_DEV_ID_I210_SERDES:
442 	case E1000_DEV_ID_I210_SGMII:
443 		mac->type = e1000_i210;
444 		break;
445 	case E1000_DEV_ID_I211_COPPER:
446 		mac->type = e1000_i211;
447 		break;
448 	default:
449 		return -E1000_ERR_MAC_INIT;
450 		break;
451 	}
452 
453 	/* Set media type */
454 	/*
455 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
456 	 * based on the EEPROM. We cannot rely upon device ID. There
457 	 * is no distinguishable difference between fiber and internal
458 	 * SerDes mode on the 82575. There can be an external PHY attached
459 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
460 	 */
461 	hw->phy.media_type = e1000_media_type_copper;
462 	dev_spec->sgmii_active = false;
463 
464 	ctrl_ext = rd32(E1000_CTRL_EXT);
465 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
466 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
467 		dev_spec->sgmii_active = true;
468 		break;
469 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
470 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
471 		hw->phy.media_type = e1000_media_type_internal_serdes;
472 		break;
473 	default:
474 		break;
475 	}
476 
477 	/* mac initialization and operations */
478 	ret_val = igb_init_mac_params_82575(hw);
479 	if (ret_val)
480 		goto out;
481 
482 	/* NVM initialization */
483 	ret_val = igb_init_nvm_params_82575(hw);
484 	if (ret_val)
485 		goto out;
486 
487 	/* if part supports SR-IOV then initialize mailbox parameters */
488 	switch (mac->type) {
489 	case e1000_82576:
490 	case e1000_i350:
491 		igb_init_mbx_params_pf(hw);
492 		break;
493 	default:
494 		break;
495 	}
496 
497 	/* setup PHY parameters */
498 	ret_val = igb_init_phy_params_82575(hw);
499 
500 out:
501 	return ret_val;
502 }
503 
504 /**
505  *  igb_acquire_phy_82575 - Acquire rights to access PHY
506  *  @hw: pointer to the HW structure
507  *
508  *  Acquire access rights to the correct PHY.  This is a
509  *  function pointer entry point called by the api module.
510  **/
511 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
512 {
513 	u16 mask = E1000_SWFW_PHY0_SM;
514 
515 	if (hw->bus.func == E1000_FUNC_1)
516 		mask = E1000_SWFW_PHY1_SM;
517 	else if (hw->bus.func == E1000_FUNC_2)
518 		mask = E1000_SWFW_PHY2_SM;
519 	else if (hw->bus.func == E1000_FUNC_3)
520 		mask = E1000_SWFW_PHY3_SM;
521 
522 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
523 }
524 
525 /**
526  *  igb_release_phy_82575 - Release rights to access PHY
527  *  @hw: pointer to the HW structure
528  *
529  *  A wrapper to release access rights to the correct PHY.  This is a
530  *  function pointer entry point called by the api module.
531  **/
532 static void igb_release_phy_82575(struct e1000_hw *hw)
533 {
534 	u16 mask = E1000_SWFW_PHY0_SM;
535 
536 	if (hw->bus.func == E1000_FUNC_1)
537 		mask = E1000_SWFW_PHY1_SM;
538 	else if (hw->bus.func == E1000_FUNC_2)
539 		mask = E1000_SWFW_PHY2_SM;
540 	else if (hw->bus.func == E1000_FUNC_3)
541 		mask = E1000_SWFW_PHY3_SM;
542 
543 	hw->mac.ops.release_swfw_sync(hw, mask);
544 }
545 
546 /**
547  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
548  *  @hw: pointer to the HW structure
549  *  @offset: register offset to be read
550  *  @data: pointer to the read data
551  *
552  *  Reads the PHY register at offset using the serial gigabit media independent
553  *  interface and stores the retrieved information in data.
554  **/
555 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
556 					  u16 *data)
557 {
558 	s32 ret_val = -E1000_ERR_PARAM;
559 
560 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
561 		hw_dbg("PHY Address %u is out of range\n", offset);
562 		goto out;
563 	}
564 
565 	ret_val = hw->phy.ops.acquire(hw);
566 	if (ret_val)
567 		goto out;
568 
569 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
570 
571 	hw->phy.ops.release(hw);
572 
573 out:
574 	return ret_val;
575 }
576 
577 /**
578  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
579  *  @hw: pointer to the HW structure
580  *  @offset: register offset to write to
581  *  @data: data to write at register offset
582  *
583  *  Writes the data to PHY register at the offset using the serial gigabit
584  *  media independent interface.
585  **/
586 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
587 					   u16 data)
588 {
589 	s32 ret_val = -E1000_ERR_PARAM;
590 
591 
592 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
593 		hw_dbg("PHY Address %d is out of range\n", offset);
594 		goto out;
595 	}
596 
597 	ret_val = hw->phy.ops.acquire(hw);
598 	if (ret_val)
599 		goto out;
600 
601 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
602 
603 	hw->phy.ops.release(hw);
604 
605 out:
606 	return ret_val;
607 }
608 
609 /**
610  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
611  *  @hw: pointer to the HW structure
612  *
613  *  Retrieves the PHY address and ID for both PHY's which do and do not use
614  *  sgmi interface.
615  **/
616 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
617 {
618 	struct e1000_phy_info *phy = &hw->phy;
619 	s32  ret_val = 0;
620 	u16 phy_id;
621 	u32 ctrl_ext;
622 	u32 mdic;
623 
624 	/*
625 	 * For SGMII PHYs, we try the list of possible addresses until
626 	 * we find one that works.  For non-SGMII PHYs
627 	 * (e.g. integrated copper PHYs), an address of 1 should
628 	 * work.  The result of this function should mean phy->phy_addr
629 	 * and phy->id are set correctly.
630 	 */
631 	if (!(igb_sgmii_active_82575(hw))) {
632 		phy->addr = 1;
633 		ret_val = igb_get_phy_id(hw);
634 		goto out;
635 	}
636 
637 	if (igb_sgmii_uses_mdio_82575(hw)) {
638 		switch (hw->mac.type) {
639 		case e1000_82575:
640 		case e1000_82576:
641 			mdic = rd32(E1000_MDIC);
642 			mdic &= E1000_MDIC_PHY_MASK;
643 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
644 			break;
645 		case e1000_82580:
646 		case e1000_i350:
647 		case e1000_i210:
648 		case e1000_i211:
649 			mdic = rd32(E1000_MDICNFG);
650 			mdic &= E1000_MDICNFG_PHY_MASK;
651 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
652 			break;
653 		default:
654 			ret_val = -E1000_ERR_PHY;
655 			goto out;
656 			break;
657 		}
658 		ret_val = igb_get_phy_id(hw);
659 		goto out;
660 	}
661 
662 	/* Power on sgmii phy if it is disabled */
663 	ctrl_ext = rd32(E1000_CTRL_EXT);
664 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
665 	wrfl();
666 	msleep(300);
667 
668 	/*
669 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
670 	 * Therefore, we need to test 1-7
671 	 */
672 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
673 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
674 		if (ret_val == 0) {
675 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
676 			       phy_id, phy->addr);
677 			/*
678 			 * At the time of this writing, The M88 part is
679 			 * the only supported SGMII PHY product.
680 			 */
681 			if (phy_id == M88_VENDOR)
682 				break;
683 		} else {
684 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
685 		}
686 	}
687 
688 	/* A valid PHY type couldn't be found. */
689 	if (phy->addr == 8) {
690 		phy->addr = 0;
691 		ret_val = -E1000_ERR_PHY;
692 		goto out;
693 	} else {
694 		ret_val = igb_get_phy_id(hw);
695 	}
696 
697 	/* restore previous sfp cage power state */
698 	wr32(E1000_CTRL_EXT, ctrl_ext);
699 
700 out:
701 	return ret_val;
702 }
703 
704 /**
705  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
706  *  @hw: pointer to the HW structure
707  *
708  *  Resets the PHY using the serial gigabit media independent interface.
709  **/
710 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
711 {
712 	s32 ret_val;
713 
714 	/*
715 	 * This isn't a true "hard" reset, but is the only reset
716 	 * available to us at this time.
717 	 */
718 
719 	hw_dbg("Soft resetting SGMII attached PHY...\n");
720 
721 	/*
722 	 * SFP documentation requires the following to configure the SPF module
723 	 * to work on SGMII.  No further documentation is given.
724 	 */
725 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
726 	if (ret_val)
727 		goto out;
728 
729 	ret_val = igb_phy_sw_reset(hw);
730 
731 out:
732 	return ret_val;
733 }
734 
735 /**
736  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
737  *  @hw: pointer to the HW structure
738  *  @active: true to enable LPLU, false to disable
739  *
740  *  Sets the LPLU D0 state according to the active flag.  When
741  *  activating LPLU this function also disables smart speed
742  *  and vice versa.  LPLU will not be activated unless the
743  *  device autonegotiation advertisement meets standards of
744  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
745  *  This is a function pointer entry point only called by
746  *  PHY setup routines.
747  **/
748 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
749 {
750 	struct e1000_phy_info *phy = &hw->phy;
751 	s32 ret_val;
752 	u16 data;
753 
754 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
755 	if (ret_val)
756 		goto out;
757 
758 	if (active) {
759 		data |= IGP02E1000_PM_D0_LPLU;
760 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
761 						 data);
762 		if (ret_val)
763 			goto out;
764 
765 		/* When LPLU is enabled, we should disable SmartSpeed */
766 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
767 						&data);
768 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
769 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
770 						 data);
771 		if (ret_val)
772 			goto out;
773 	} else {
774 		data &= ~IGP02E1000_PM_D0_LPLU;
775 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
776 						 data);
777 		/*
778 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
779 		 * during Dx states where the power conservation is most
780 		 * important.  During driver activity we should enable
781 		 * SmartSpeed, so performance is maintained.
782 		 */
783 		if (phy->smart_speed == e1000_smart_speed_on) {
784 			ret_val = phy->ops.read_reg(hw,
785 					IGP01E1000_PHY_PORT_CONFIG, &data);
786 			if (ret_val)
787 				goto out;
788 
789 			data |= IGP01E1000_PSCFR_SMART_SPEED;
790 			ret_val = phy->ops.write_reg(hw,
791 					IGP01E1000_PHY_PORT_CONFIG, data);
792 			if (ret_val)
793 				goto out;
794 		} else if (phy->smart_speed == e1000_smart_speed_off) {
795 			ret_val = phy->ops.read_reg(hw,
796 					IGP01E1000_PHY_PORT_CONFIG, &data);
797 			if (ret_val)
798 				goto out;
799 
800 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 			ret_val = phy->ops.write_reg(hw,
802 					IGP01E1000_PHY_PORT_CONFIG, data);
803 			if (ret_val)
804 				goto out;
805 		}
806 	}
807 
808 out:
809 	return ret_val;
810 }
811 
812 /**
813  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
814  *  @hw: pointer to the HW structure
815  *  @active: true to enable LPLU, false to disable
816  *
817  *  Sets the LPLU D0 state according to the active flag.  When
818  *  activating LPLU this function also disables smart speed
819  *  and vice versa.  LPLU will not be activated unless the
820  *  device autonegotiation advertisement meets standards of
821  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
822  *  This is a function pointer entry point only called by
823  *  PHY setup routines.
824  **/
825 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
826 {
827 	struct e1000_phy_info *phy = &hw->phy;
828 	s32 ret_val = 0;
829 	u16 data;
830 
831 	data = rd32(E1000_82580_PHY_POWER_MGMT);
832 
833 	if (active) {
834 		data |= E1000_82580_PM_D0_LPLU;
835 
836 		/* When LPLU is enabled, we should disable SmartSpeed */
837 		data &= ~E1000_82580_PM_SPD;
838 	} else {
839 		data &= ~E1000_82580_PM_D0_LPLU;
840 
841 		/*
842 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
843 		 * during Dx states where the power conservation is most
844 		 * important.  During driver activity we should enable
845 		 * SmartSpeed, so performance is maintained.
846 		 */
847 		if (phy->smart_speed == e1000_smart_speed_on)
848 			data |= E1000_82580_PM_SPD;
849 		else if (phy->smart_speed == e1000_smart_speed_off)
850 			data &= ~E1000_82580_PM_SPD; }
851 
852 	wr32(E1000_82580_PHY_POWER_MGMT, data);
853 	return ret_val;
854 }
855 
856 /**
857  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
858  *  @hw: pointer to the HW structure
859  *  @active: boolean used to enable/disable lplu
860  *
861  *  Success returns 0, Failure returns 1
862  *
863  *  The low power link up (lplu) state is set to the power management level D3
864  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
865  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
866  *  is used during Dx states where the power conservation is most important.
867  *  During driver activity, SmartSpeed should be enabled so performance is
868  *  maintained.
869  **/
870 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
871 {
872 	struct e1000_phy_info *phy = &hw->phy;
873 	s32 ret_val = 0;
874 	u16 data;
875 
876 	data = rd32(E1000_82580_PHY_POWER_MGMT);
877 
878 	if (!active) {
879 		data &= ~E1000_82580_PM_D3_LPLU;
880 		/*
881 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
882 		 * during Dx states where the power conservation is most
883 		 * important.  During driver activity we should enable
884 		 * SmartSpeed, so performance is maintained.
885 		 */
886 		if (phy->smart_speed == e1000_smart_speed_on)
887 			data |= E1000_82580_PM_SPD;
888 		else if (phy->smart_speed == e1000_smart_speed_off)
889 			data &= ~E1000_82580_PM_SPD;
890 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
891 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
892 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
893 		data |= E1000_82580_PM_D3_LPLU;
894 		/* When LPLU is enabled, we should disable SmartSpeed */
895 		data &= ~E1000_82580_PM_SPD;
896 	}
897 
898 	wr32(E1000_82580_PHY_POWER_MGMT, data);
899 	return ret_val;
900 }
901 
902 /**
903  *  igb_acquire_nvm_82575 - Request for access to EEPROM
904  *  @hw: pointer to the HW structure
905  *
906  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
907  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
908  *  Return successful if access grant bit set, else clear the request for
909  *  EEPROM access and return -E1000_ERR_NVM (-1).
910  **/
911 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
912 {
913 	s32 ret_val;
914 
915 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
916 	if (ret_val)
917 		goto out;
918 
919 	ret_val = igb_acquire_nvm(hw);
920 
921 	if (ret_val)
922 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
923 
924 out:
925 	return ret_val;
926 }
927 
928 /**
929  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
930  *  @hw: pointer to the HW structure
931  *
932  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
933  *  then release the semaphores acquired.
934  **/
935 static void igb_release_nvm_82575(struct e1000_hw *hw)
936 {
937 	igb_release_nvm(hw);
938 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
939 }
940 
941 /**
942  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
943  *  @hw: pointer to the HW structure
944  *  @mask: specifies which semaphore to acquire
945  *
946  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
947  *  will also specify which port we're acquiring the lock for.
948  **/
949 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
950 {
951 	u32 swfw_sync;
952 	u32 swmask = mask;
953 	u32 fwmask = mask << 16;
954 	s32 ret_val = 0;
955 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
956 
957 	while (i < timeout) {
958 		if (igb_get_hw_semaphore(hw)) {
959 			ret_val = -E1000_ERR_SWFW_SYNC;
960 			goto out;
961 		}
962 
963 		swfw_sync = rd32(E1000_SW_FW_SYNC);
964 		if (!(swfw_sync & (fwmask | swmask)))
965 			break;
966 
967 		/*
968 		 * Firmware currently using resource (fwmask)
969 		 * or other software thread using resource (swmask)
970 		 */
971 		igb_put_hw_semaphore(hw);
972 		mdelay(5);
973 		i++;
974 	}
975 
976 	if (i == timeout) {
977 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
978 		ret_val = -E1000_ERR_SWFW_SYNC;
979 		goto out;
980 	}
981 
982 	swfw_sync |= swmask;
983 	wr32(E1000_SW_FW_SYNC, swfw_sync);
984 
985 	igb_put_hw_semaphore(hw);
986 
987 out:
988 	return ret_val;
989 }
990 
991 /**
992  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
993  *  @hw: pointer to the HW structure
994  *  @mask: specifies which semaphore to acquire
995  *
996  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
997  *  will also specify which port we're releasing the lock for.
998  **/
999 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1000 {
1001 	u32 swfw_sync;
1002 
1003 	while (igb_get_hw_semaphore(hw) != 0);
1004 	/* Empty */
1005 
1006 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1007 	swfw_sync &= ~mask;
1008 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1009 
1010 	igb_put_hw_semaphore(hw);
1011 }
1012 
1013 /**
1014  *  igb_get_cfg_done_82575 - Read config done bit
1015  *  @hw: pointer to the HW structure
1016  *
1017  *  Read the management control register for the config done bit for
1018  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1019  *  to read the config done bit, so an error is *ONLY* logged and returns
1020  *  0.  If we were to return with error, EEPROM-less silicon
1021  *  would not be able to be reset or change link.
1022  **/
1023 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1024 {
1025 	s32 timeout = PHY_CFG_TIMEOUT;
1026 	s32 ret_val = 0;
1027 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1028 
1029 	if (hw->bus.func == 1)
1030 		mask = E1000_NVM_CFG_DONE_PORT_1;
1031 	else if (hw->bus.func == E1000_FUNC_2)
1032 		mask = E1000_NVM_CFG_DONE_PORT_2;
1033 	else if (hw->bus.func == E1000_FUNC_3)
1034 		mask = E1000_NVM_CFG_DONE_PORT_3;
1035 
1036 	while (timeout) {
1037 		if (rd32(E1000_EEMNGCTL) & mask)
1038 			break;
1039 		msleep(1);
1040 		timeout--;
1041 	}
1042 	if (!timeout)
1043 		hw_dbg("MNG configuration cycle has not completed.\n");
1044 
1045 	/* If EEPROM is not marked present, init the PHY manually */
1046 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1047 	    (hw->phy.type == e1000_phy_igp_3))
1048 		igb_phy_init_script_igp3(hw);
1049 
1050 	return ret_val;
1051 }
1052 
1053 /**
1054  *  igb_check_for_link_82575 - Check for link
1055  *  @hw: pointer to the HW structure
1056  *
1057  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1058  *  use the generic interface for determining link.
1059  **/
1060 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1061 {
1062 	s32 ret_val;
1063 	u16 speed, duplex;
1064 
1065 	if (hw->phy.media_type != e1000_media_type_copper) {
1066 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1067 		                                             &duplex);
1068 		/*
1069 		 * Use this flag to determine if link needs to be checked or
1070 		 * not.  If  we have link clear the flag so that we do not
1071 		 * continue to check for link.
1072 		 */
1073 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1074 
1075 		/* Configure Flow Control now that Auto-Neg has completed.
1076 		 * First, we need to restore the desired flow control
1077 		 * settings because we may have had to re-autoneg with a
1078 		 * different link partner.
1079 		 */
1080 		ret_val = igb_config_fc_after_link_up(hw);
1081 		if (ret_val)
1082 			hw_dbg("Error configuring flow control\n");
1083 	} else {
1084 		ret_val = igb_check_for_copper_link(hw);
1085 	}
1086 
1087 	return ret_val;
1088 }
1089 
1090 /**
1091  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1092  *  @hw: pointer to the HW structure
1093  **/
1094 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1095 {
1096 	u32 reg;
1097 
1098 
1099 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1100 	    !igb_sgmii_active_82575(hw))
1101 		return;
1102 
1103 	/* Enable PCS to turn on link */
1104 	reg = rd32(E1000_PCS_CFG0);
1105 	reg |= E1000_PCS_CFG_PCS_EN;
1106 	wr32(E1000_PCS_CFG0, reg);
1107 
1108 	/* Power up the laser */
1109 	reg = rd32(E1000_CTRL_EXT);
1110 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1111 	wr32(E1000_CTRL_EXT, reg);
1112 
1113 	/* flush the write to verify completion */
1114 	wrfl();
1115 	msleep(1);
1116 }
1117 
1118 /**
1119  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1120  *  @hw: pointer to the HW structure
1121  *  @speed: stores the current speed
1122  *  @duplex: stores the current duplex
1123  *
1124  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1125  *  duplex, then store the values in the pointers provided.
1126  **/
1127 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1128 						u16 *duplex)
1129 {
1130 	struct e1000_mac_info *mac = &hw->mac;
1131 	u32 pcs;
1132 
1133 	/* Set up defaults for the return values of this function */
1134 	mac->serdes_has_link = false;
1135 	*speed = 0;
1136 	*duplex = 0;
1137 
1138 	/*
1139 	 * Read the PCS Status register for link state. For non-copper mode,
1140 	 * the status register is not accurate. The PCS status register is
1141 	 * used instead.
1142 	 */
1143 	pcs = rd32(E1000_PCS_LSTAT);
1144 
1145 	/*
1146 	 * The link up bit determines when link is up on autoneg. The sync ok
1147 	 * gets set once both sides sync up and agree upon link. Stable link
1148 	 * can be determined by checking for both link up and link sync ok
1149 	 */
1150 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1151 		mac->serdes_has_link = true;
1152 
1153 		/* Detect and store PCS speed */
1154 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1155 			*speed = SPEED_1000;
1156 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1157 			*speed = SPEED_100;
1158 		} else {
1159 			*speed = SPEED_10;
1160 		}
1161 
1162 		/* Detect and store PCS duplex */
1163 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1164 			*duplex = FULL_DUPLEX;
1165 		} else {
1166 			*duplex = HALF_DUPLEX;
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 /**
1174  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1175  *  @hw: pointer to the HW structure
1176  *
1177  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1178  *  when management pass thru is not enabled.
1179  **/
1180 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1181 {
1182 	u32 reg;
1183 
1184 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1185 	    igb_sgmii_active_82575(hw))
1186 		return;
1187 
1188 	if (!igb_enable_mng_pass_thru(hw)) {
1189 		/* Disable PCS to turn off link */
1190 		reg = rd32(E1000_PCS_CFG0);
1191 		reg &= ~E1000_PCS_CFG_PCS_EN;
1192 		wr32(E1000_PCS_CFG0, reg);
1193 
1194 		/* shutdown the laser */
1195 		reg = rd32(E1000_CTRL_EXT);
1196 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1197 		wr32(E1000_CTRL_EXT, reg);
1198 
1199 		/* flush the write to verify completion */
1200 		wrfl();
1201 		msleep(1);
1202 	}
1203 }
1204 
1205 /**
1206  *  igb_reset_hw_82575 - Reset hardware
1207  *  @hw: pointer to the HW structure
1208  *
1209  *  This resets the hardware into a known state.  This is a
1210  *  function pointer entry point called by the api module.
1211  **/
1212 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1213 {
1214 	u32 ctrl, icr;
1215 	s32 ret_val;
1216 
1217 	/*
1218 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1219 	 * on the last TLP read/write transaction when MAC is reset.
1220 	 */
1221 	ret_val = igb_disable_pcie_master(hw);
1222 	if (ret_val)
1223 		hw_dbg("PCI-E Master disable polling has failed.\n");
1224 
1225 	/* set the completion timeout for interface */
1226 	ret_val = igb_set_pcie_completion_timeout(hw);
1227 	if (ret_val) {
1228 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1229 	}
1230 
1231 	hw_dbg("Masking off all interrupts\n");
1232 	wr32(E1000_IMC, 0xffffffff);
1233 
1234 	wr32(E1000_RCTL, 0);
1235 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1236 	wrfl();
1237 
1238 	msleep(10);
1239 
1240 	ctrl = rd32(E1000_CTRL);
1241 
1242 	hw_dbg("Issuing a global reset to MAC\n");
1243 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1244 
1245 	ret_val = igb_get_auto_rd_done(hw);
1246 	if (ret_val) {
1247 		/*
1248 		 * When auto config read does not complete, do not
1249 		 * return with an error. This can happen in situations
1250 		 * where there is no eeprom and prevents getting link.
1251 		 */
1252 		hw_dbg("Auto Read Done did not complete\n");
1253 	}
1254 
1255 	/* If EEPROM is not present, run manual init scripts */
1256 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1257 		igb_reset_init_script_82575(hw);
1258 
1259 	/* Clear any pending interrupt events. */
1260 	wr32(E1000_IMC, 0xffffffff);
1261 	icr = rd32(E1000_ICR);
1262 
1263 	/* Install any alternate MAC address into RAR0 */
1264 	ret_val = igb_check_alt_mac_addr(hw);
1265 
1266 	return ret_val;
1267 }
1268 
1269 /**
1270  *  igb_init_hw_82575 - Initialize hardware
1271  *  @hw: pointer to the HW structure
1272  *
1273  *  This inits the hardware readying it for operation.
1274  **/
1275 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1276 {
1277 	struct e1000_mac_info *mac = &hw->mac;
1278 	s32 ret_val;
1279 	u16 i, rar_count = mac->rar_entry_count;
1280 
1281 	/* Initialize identification LED */
1282 	ret_val = igb_id_led_init(hw);
1283 	if (ret_val) {
1284 		hw_dbg("Error initializing identification LED\n");
1285 		/* This is not fatal and we should not stop init due to this */
1286 	}
1287 
1288 	/* Disabling VLAN filtering */
1289 	hw_dbg("Initializing the IEEE VLAN\n");
1290 	if (hw->mac.type == e1000_i350)
1291 		igb_clear_vfta_i350(hw);
1292 	else
1293 		igb_clear_vfta(hw);
1294 
1295 	/* Setup the receive address */
1296 	igb_init_rx_addrs(hw, rar_count);
1297 
1298 	/* Zero out the Multicast HASH table */
1299 	hw_dbg("Zeroing the MTA\n");
1300 	for (i = 0; i < mac->mta_reg_count; i++)
1301 		array_wr32(E1000_MTA, i, 0);
1302 
1303 	/* Zero out the Unicast HASH table */
1304 	hw_dbg("Zeroing the UTA\n");
1305 	for (i = 0; i < mac->uta_reg_count; i++)
1306 		array_wr32(E1000_UTA, i, 0);
1307 
1308 	/* Setup link and flow control */
1309 	ret_val = igb_setup_link(hw);
1310 
1311 	/*
1312 	 * Clear all of the statistics registers (clear on read).  It is
1313 	 * important that we do this after we have tried to establish link
1314 	 * because the symbol error count will increment wildly if there
1315 	 * is no link.
1316 	 */
1317 	igb_clear_hw_cntrs_82575(hw);
1318 	return ret_val;
1319 }
1320 
1321 /**
1322  *  igb_setup_copper_link_82575 - Configure copper link settings
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1326  *  for link, once link is established calls to configure collision distance
1327  *  and flow control are called.
1328  **/
1329 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1330 {
1331 	u32 ctrl;
1332 	s32  ret_val;
1333 	u32 phpm_reg;
1334 
1335 	ctrl = rd32(E1000_CTRL);
1336 	ctrl |= E1000_CTRL_SLU;
1337 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1338 	wr32(E1000_CTRL, ctrl);
1339 
1340 	/* Clear Go Link Disconnect bit */
1341 	if (hw->mac.type >= e1000_82580) {
1342 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1343 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1344 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1345 	}
1346 
1347 	ret_val = igb_setup_serdes_link_82575(hw);
1348 	if (ret_val)
1349 		goto out;
1350 
1351 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1352 		/* allow time for SFP cage time to power up phy */
1353 		msleep(300);
1354 
1355 		ret_val = hw->phy.ops.reset(hw);
1356 		if (ret_val) {
1357 			hw_dbg("Error resetting the PHY.\n");
1358 			goto out;
1359 		}
1360 	}
1361 	switch (hw->phy.type) {
1362 	case e1000_phy_i210:
1363 	case e1000_phy_m88:
1364 		switch (hw->phy.id) {
1365 		case I347AT4_E_PHY_ID:
1366 		case M88E1112_E_PHY_ID:
1367 		case I210_I_PHY_ID:
1368 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1369 			break;
1370 		default:
1371 			ret_val = igb_copper_link_setup_m88(hw);
1372 			break;
1373 		}
1374 		break;
1375 	case e1000_phy_igp_3:
1376 		ret_val = igb_copper_link_setup_igp(hw);
1377 		break;
1378 	case e1000_phy_82580:
1379 		ret_val = igb_copper_link_setup_82580(hw);
1380 		break;
1381 	default:
1382 		ret_val = -E1000_ERR_PHY;
1383 		break;
1384 	}
1385 
1386 	if (ret_val)
1387 		goto out;
1388 
1389 	ret_val = igb_setup_copper_link(hw);
1390 out:
1391 	return ret_val;
1392 }
1393 
1394 /**
1395  *  igb_setup_serdes_link_82575 - Setup link for serdes
1396  *  @hw: pointer to the HW structure
1397  *
1398  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1399  *  used on copper connections where the serialized gigabit media independent
1400  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1401  *  for auto-negotiation or forces speed/duplex.
1402  **/
1403 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1404 {
1405 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1406 	bool pcs_autoneg;
1407 	s32 ret_val = E1000_SUCCESS;
1408 	u16 data;
1409 
1410 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1411 	    !igb_sgmii_active_82575(hw))
1412 		return ret_val;
1413 
1414 
1415 	/*
1416 	 * On the 82575, SerDes loopback mode persists until it is
1417 	 * explicitly turned off or a power cycle is performed.  A read to
1418 	 * the register does not indicate its status.  Therefore, we ensure
1419 	 * loopback mode is disabled during initialization.
1420 	 */
1421 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1422 
1423 	/* power on the sfp cage if present */
1424 	ctrl_ext = rd32(E1000_CTRL_EXT);
1425 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1426 	wr32(E1000_CTRL_EXT, ctrl_ext);
1427 
1428 	ctrl_reg = rd32(E1000_CTRL);
1429 	ctrl_reg |= E1000_CTRL_SLU;
1430 
1431 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1432 		/* set both sw defined pins */
1433 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1434 
1435 		/* Set switch control to serdes energy detect */
1436 		reg = rd32(E1000_CONNSW);
1437 		reg |= E1000_CONNSW_ENRGSRC;
1438 		wr32(E1000_CONNSW, reg);
1439 	}
1440 
1441 	reg = rd32(E1000_PCS_LCTL);
1442 
1443 	/* default pcs_autoneg to the same setting as mac autoneg */
1444 	pcs_autoneg = hw->mac.autoneg;
1445 
1446 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1447 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1448 		/* sgmii mode lets the phy handle forcing speed/duplex */
1449 		pcs_autoneg = true;
1450 		/* autoneg time out should be disabled for SGMII mode */
1451 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1452 		break;
1453 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1454 		/* disable PCS autoneg and support parallel detect only */
1455 		pcs_autoneg = false;
1456 	default:
1457 		if (hw->mac.type == e1000_82575 ||
1458 		    hw->mac.type == e1000_82576) {
1459 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1460 			if (ret_val) {
1461 				printk(KERN_DEBUG "NVM Read Error\n\n");
1462 				return ret_val;
1463 			}
1464 
1465 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1466 				pcs_autoneg = false;
1467 		}
1468 
1469 		/*
1470 		 * non-SGMII modes only supports a speed of 1000/Full for the
1471 		 * link so it is best to just force the MAC and let the pcs
1472 		 * link either autoneg or be forced to 1000/Full
1473 		 */
1474 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1475 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1476 
1477 		/* set speed of 1000/Full if speed/duplex is forced */
1478 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1479 		break;
1480 	}
1481 
1482 	wr32(E1000_CTRL, ctrl_reg);
1483 
1484 	/*
1485 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1486 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1487 	 * mode that will be compatible with older link partners and switches.
1488 	 * However, both are supported by the hardware and some drivers/tools.
1489 	 */
1490 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1491 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1492 
1493 	if (pcs_autoneg) {
1494 		/* Set PCS register for autoneg */
1495 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1496 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1497 
1498 		/* Disable force flow control for autoneg */
1499 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1500 
1501 		/* Configure flow control advertisement for autoneg */
1502 		anadv_reg = rd32(E1000_PCS_ANADV);
1503 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1504 		switch (hw->fc.requested_mode) {
1505 		case e1000_fc_full:
1506 		case e1000_fc_rx_pause:
1507 			anadv_reg |= E1000_TXCW_ASM_DIR;
1508 			anadv_reg |= E1000_TXCW_PAUSE;
1509 			break;
1510 		case e1000_fc_tx_pause:
1511 			anadv_reg |= E1000_TXCW_ASM_DIR;
1512 			break;
1513 		default:
1514 			break;
1515 		}
1516 		wr32(E1000_PCS_ANADV, anadv_reg);
1517 
1518 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1519 	} else {
1520 		/* Set PCS register for forced link */
1521 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1522 
1523 		/* Force flow control for forced link */
1524 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1525 
1526 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1527 	}
1528 
1529 	wr32(E1000_PCS_LCTL, reg);
1530 
1531 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1532 		igb_force_mac_fc(hw);
1533 
1534 	return ret_val;
1535 }
1536 
1537 /**
1538  *  igb_sgmii_active_82575 - Return sgmii state
1539  *  @hw: pointer to the HW structure
1540  *
1541  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1542  *  which can be enabled for use in the embedded applications.  Simply
1543  *  return the current state of the sgmii interface.
1544  **/
1545 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1546 {
1547 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1548 	return dev_spec->sgmii_active;
1549 }
1550 
1551 /**
1552  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1553  *  @hw: pointer to the HW structure
1554  *
1555  *  Inits recommended HW defaults after a reset when there is no EEPROM
1556  *  detected. This is only for the 82575.
1557  **/
1558 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1559 {
1560 	if (hw->mac.type == e1000_82575) {
1561 		hw_dbg("Running reset init script for 82575\n");
1562 		/* SerDes configuration via SERDESCTRL */
1563 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1564 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1565 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1566 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1567 
1568 		/* CCM configuration via CCMCTL register */
1569 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1570 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1571 
1572 		/* PCIe lanes configuration */
1573 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1574 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1575 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1576 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1577 
1578 		/* PCIe PLL Configuration */
1579 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1580 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1581 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /**
1588  *  igb_read_mac_addr_82575 - Read device MAC address
1589  *  @hw: pointer to the HW structure
1590  **/
1591 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1592 {
1593 	s32 ret_val = 0;
1594 
1595 	/*
1596 	 * If there's an alternate MAC address place it in RAR0
1597 	 * so that it will override the Si installed default perm
1598 	 * address.
1599 	 */
1600 	ret_val = igb_check_alt_mac_addr(hw);
1601 	if (ret_val)
1602 		goto out;
1603 
1604 	ret_val = igb_read_mac_addr(hw);
1605 
1606 out:
1607 	return ret_val;
1608 }
1609 
1610 /**
1611  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1612  * @hw: pointer to the HW structure
1613  *
1614  * In the case of a PHY power down to save power, or to turn off link during a
1615  * driver unload, or wake on lan is not enabled, remove the link.
1616  **/
1617 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1618 {
1619 	/* If the management interface is not enabled, then power down */
1620 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1621 		igb_power_down_phy_copper(hw);
1622 }
1623 
1624 /**
1625  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1626  *  @hw: pointer to the HW structure
1627  *
1628  *  Clears the hardware counters by reading the counter registers.
1629  **/
1630 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1631 {
1632 	igb_clear_hw_cntrs_base(hw);
1633 
1634 	rd32(E1000_PRC64);
1635 	rd32(E1000_PRC127);
1636 	rd32(E1000_PRC255);
1637 	rd32(E1000_PRC511);
1638 	rd32(E1000_PRC1023);
1639 	rd32(E1000_PRC1522);
1640 	rd32(E1000_PTC64);
1641 	rd32(E1000_PTC127);
1642 	rd32(E1000_PTC255);
1643 	rd32(E1000_PTC511);
1644 	rd32(E1000_PTC1023);
1645 	rd32(E1000_PTC1522);
1646 
1647 	rd32(E1000_ALGNERRC);
1648 	rd32(E1000_RXERRC);
1649 	rd32(E1000_TNCRS);
1650 	rd32(E1000_CEXTERR);
1651 	rd32(E1000_TSCTC);
1652 	rd32(E1000_TSCTFC);
1653 
1654 	rd32(E1000_MGTPRC);
1655 	rd32(E1000_MGTPDC);
1656 	rd32(E1000_MGTPTC);
1657 
1658 	rd32(E1000_IAC);
1659 	rd32(E1000_ICRXOC);
1660 
1661 	rd32(E1000_ICRXPTC);
1662 	rd32(E1000_ICRXATC);
1663 	rd32(E1000_ICTXPTC);
1664 	rd32(E1000_ICTXATC);
1665 	rd32(E1000_ICTXQEC);
1666 	rd32(E1000_ICTXQMTC);
1667 	rd32(E1000_ICRXDMTC);
1668 
1669 	rd32(E1000_CBTMPC);
1670 	rd32(E1000_HTDPMC);
1671 	rd32(E1000_CBRMPC);
1672 	rd32(E1000_RPTHC);
1673 	rd32(E1000_HGPTC);
1674 	rd32(E1000_HTCBDPC);
1675 	rd32(E1000_HGORCL);
1676 	rd32(E1000_HGORCH);
1677 	rd32(E1000_HGOTCL);
1678 	rd32(E1000_HGOTCH);
1679 	rd32(E1000_LENERRS);
1680 
1681 	/* This register should not be read in copper configurations */
1682 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1683 	    igb_sgmii_active_82575(hw))
1684 		rd32(E1000_SCVPC);
1685 }
1686 
1687 /**
1688  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1689  *  @hw: pointer to the HW structure
1690  *
1691  *  After rx enable if managability is enabled then there is likely some
1692  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1693  *  function clears the fifos and flushes any packets that came in as rx was
1694  *  being enabled.
1695  **/
1696 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1697 {
1698 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1699 	int i, ms_wait;
1700 
1701 	if (hw->mac.type != e1000_82575 ||
1702 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1703 		return;
1704 
1705 	/* Disable all RX queues */
1706 	for (i = 0; i < 4; i++) {
1707 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1708 		wr32(E1000_RXDCTL(i),
1709 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1710 	}
1711 	/* Poll all queues to verify they have shut down */
1712 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1713 		msleep(1);
1714 		rx_enabled = 0;
1715 		for (i = 0; i < 4; i++)
1716 			rx_enabled |= rd32(E1000_RXDCTL(i));
1717 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1718 			break;
1719 	}
1720 
1721 	if (ms_wait == 10)
1722 		hw_dbg("Queue disable timed out after 10ms\n");
1723 
1724 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1725 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1726 	 * any packet that was coming in as RCTL.EN was set is flushed
1727 	 */
1728 	rfctl = rd32(E1000_RFCTL);
1729 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1730 
1731 	rlpml = rd32(E1000_RLPML);
1732 	wr32(E1000_RLPML, 0);
1733 
1734 	rctl = rd32(E1000_RCTL);
1735 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1736 	temp_rctl |= E1000_RCTL_LPE;
1737 
1738 	wr32(E1000_RCTL, temp_rctl);
1739 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1740 	wrfl();
1741 	msleep(2);
1742 
1743 	/* Enable RX queues that were previously enabled and restore our
1744 	 * previous state
1745 	 */
1746 	for (i = 0; i < 4; i++)
1747 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1748 	wr32(E1000_RCTL, rctl);
1749 	wrfl();
1750 
1751 	wr32(E1000_RLPML, rlpml);
1752 	wr32(E1000_RFCTL, rfctl);
1753 
1754 	/* Flush receive errors generated by workaround */
1755 	rd32(E1000_ROC);
1756 	rd32(E1000_RNBC);
1757 	rd32(E1000_MPC);
1758 }
1759 
1760 /**
1761  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1762  *  @hw: pointer to the HW structure
1763  *
1764  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1765  *  however the hardware default for these parts is 500us to 1ms which is less
1766  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1767  *  increase the value to either 10ms to 200ms for capability version 1 config,
1768  *  or 16ms to 55ms for version 2.
1769  **/
1770 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1771 {
1772 	u32 gcr = rd32(E1000_GCR);
1773 	s32 ret_val = 0;
1774 	u16 pcie_devctl2;
1775 
1776 	/* only take action if timeout value is defaulted to 0 */
1777 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1778 		goto out;
1779 
1780 	/*
1781 	 * if capababilities version is type 1 we can write the
1782 	 * timeout of 10ms to 200ms through the GCR register
1783 	 */
1784 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1785 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1786 		goto out;
1787 	}
1788 
1789 	/*
1790 	 * for version 2 capabilities we need to write the config space
1791 	 * directly in order to set the completion timeout value for
1792 	 * 16ms to 55ms
1793 	 */
1794 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1795 	                                &pcie_devctl2);
1796 	if (ret_val)
1797 		goto out;
1798 
1799 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1800 
1801 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1802 	                                 &pcie_devctl2);
1803 out:
1804 	/* disable completion timeout resend */
1805 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1806 
1807 	wr32(E1000_GCR, gcr);
1808 	return ret_val;
1809 }
1810 
1811 /**
1812  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1813  *  @hw: pointer to the hardware struct
1814  *  @enable: state to enter, either enabled or disabled
1815  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1816  *
1817  *  enables/disables L2 switch anti-spoofing functionality.
1818  **/
1819 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1820 {
1821 	u32 dtxswc;
1822 
1823 	switch (hw->mac.type) {
1824 	case e1000_82576:
1825 	case e1000_i350:
1826 		dtxswc = rd32(E1000_DTXSWC);
1827 		if (enable) {
1828 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1829 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1830 			/* The PF can spoof - it has to in order to
1831 			 * support emulation mode NICs */
1832 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1833 		} else {
1834 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1835 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1836 		}
1837 		wr32(E1000_DTXSWC, dtxswc);
1838 		break;
1839 	default:
1840 		break;
1841 	}
1842 }
1843 
1844 /**
1845  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1846  *  @hw: pointer to the hardware struct
1847  *  @enable: state to enter, either enabled or disabled
1848  *
1849  *  enables/disables L2 switch loopback functionality.
1850  **/
1851 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1852 {
1853 	u32 dtxswc;
1854 
1855 	switch (hw->mac.type) {
1856 	case e1000_82576:
1857 		dtxswc = rd32(E1000_DTXSWC);
1858 		if (enable)
1859 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1860 		else
1861 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1862 		wr32(E1000_DTXSWC, dtxswc);
1863 		break;
1864 	case e1000_i350:
1865 		dtxswc = rd32(E1000_TXSWC);
1866 		if (enable)
1867 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1868 		else
1869 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1870 		wr32(E1000_TXSWC, dtxswc);
1871 		break;
1872 	default:
1873 		/* Currently no other hardware supports loopback */
1874 		break;
1875 	}
1876 
1877 
1878 }
1879 
1880 /**
1881  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1882  *  @hw: pointer to the hardware struct
1883  *  @enable: state to enter, either enabled or disabled
1884  *
1885  *  enables/disables replication of packets across multiple pools.
1886  **/
1887 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1888 {
1889 	u32 vt_ctl = rd32(E1000_VT_CTL);
1890 
1891 	if (enable)
1892 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1893 	else
1894 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1895 
1896 	wr32(E1000_VT_CTL, vt_ctl);
1897 }
1898 
1899 /**
1900  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1901  *  @hw: pointer to the HW structure
1902  *  @offset: register offset to be read
1903  *  @data: pointer to the read data
1904  *
1905  *  Reads the MDI control register in the PHY at offset and stores the
1906  *  information read to data.
1907  **/
1908 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1909 {
1910 	s32 ret_val;
1911 
1912 
1913 	ret_val = hw->phy.ops.acquire(hw);
1914 	if (ret_val)
1915 		goto out;
1916 
1917 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1918 
1919 	hw->phy.ops.release(hw);
1920 
1921 out:
1922 	return ret_val;
1923 }
1924 
1925 /**
1926  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1927  *  @hw: pointer to the HW structure
1928  *  @offset: register offset to write to
1929  *  @data: data to write to register at offset
1930  *
1931  *  Writes data to MDI control register in the PHY at offset.
1932  **/
1933 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1934 {
1935 	s32 ret_val;
1936 
1937 
1938 	ret_val = hw->phy.ops.acquire(hw);
1939 	if (ret_val)
1940 		goto out;
1941 
1942 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1943 
1944 	hw->phy.ops.release(hw);
1945 
1946 out:
1947 	return ret_val;
1948 }
1949 
1950 /**
1951  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1952  *  @hw: pointer to the HW structure
1953  *
1954  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1955  *  the values found in the EEPROM.  This addresses an issue in which these
1956  *  bits are not restored from EEPROM after reset.
1957  **/
1958 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1959 {
1960 	s32 ret_val = 0;
1961 	u32 mdicnfg;
1962 	u16 nvm_data = 0;
1963 
1964 	if (hw->mac.type != e1000_82580)
1965 		goto out;
1966 	if (!igb_sgmii_active_82575(hw))
1967 		goto out;
1968 
1969 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1970 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1971 				   &nvm_data);
1972 	if (ret_val) {
1973 		hw_dbg("NVM Read Error\n");
1974 		goto out;
1975 	}
1976 
1977 	mdicnfg = rd32(E1000_MDICNFG);
1978 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1979 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1980 	if (nvm_data & NVM_WORD24_COM_MDIO)
1981 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1982 	wr32(E1000_MDICNFG, mdicnfg);
1983 out:
1984 	return ret_val;
1985 }
1986 
1987 /**
1988  *  igb_reset_hw_82580 - Reset hardware
1989  *  @hw: pointer to the HW structure
1990  *
1991  *  This resets function or entire device (all ports, etc.)
1992  *  to a known state.
1993  **/
1994 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1995 {
1996 	s32 ret_val = 0;
1997 	/* BH SW mailbox bit in SW_FW_SYNC */
1998 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1999 	u32 ctrl, icr;
2000 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2001 
2002 
2003 	hw->dev_spec._82575.global_device_reset = false;
2004 
2005 	/* due to hw errata, global device reset doesn't always
2006 	 * work on 82580
2007 	 */
2008 	if (hw->mac.type == e1000_82580)
2009 		global_device_reset = false;
2010 
2011 	/* Get current control state. */
2012 	ctrl = rd32(E1000_CTRL);
2013 
2014 	/*
2015 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
2016 	 * on the last TLP read/write transaction when MAC is reset.
2017 	 */
2018 	ret_val = igb_disable_pcie_master(hw);
2019 	if (ret_val)
2020 		hw_dbg("PCI-E Master disable polling has failed.\n");
2021 
2022 	hw_dbg("Masking off all interrupts\n");
2023 	wr32(E1000_IMC, 0xffffffff);
2024 	wr32(E1000_RCTL, 0);
2025 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2026 	wrfl();
2027 
2028 	msleep(10);
2029 
2030 	/* Determine whether or not a global dev reset is requested */
2031 	if (global_device_reset &&
2032 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2033 			global_device_reset = false;
2034 
2035 	if (global_device_reset &&
2036 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2037 		ctrl |= E1000_CTRL_DEV_RST;
2038 	else
2039 		ctrl |= E1000_CTRL_RST;
2040 
2041 	wr32(E1000_CTRL, ctrl);
2042 	wrfl();
2043 
2044 	/* Add delay to insure DEV_RST has time to complete */
2045 	if (global_device_reset)
2046 		msleep(5);
2047 
2048 	ret_val = igb_get_auto_rd_done(hw);
2049 	if (ret_val) {
2050 		/*
2051 		 * When auto config read does not complete, do not
2052 		 * return with an error. This can happen in situations
2053 		 * where there is no eeprom and prevents getting link.
2054 		 */
2055 		hw_dbg("Auto Read Done did not complete\n");
2056 	}
2057 
2058 	/* If EEPROM is not present, run manual init scripts */
2059 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
2060 		igb_reset_init_script_82575(hw);
2061 
2062 	/* clear global device reset status bit */
2063 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2064 
2065 	/* Clear any pending interrupt events. */
2066 	wr32(E1000_IMC, 0xffffffff);
2067 	icr = rd32(E1000_ICR);
2068 
2069 	ret_val = igb_reset_mdicnfg_82580(hw);
2070 	if (ret_val)
2071 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2072 
2073 	/* Install any alternate MAC address into RAR0 */
2074 	ret_val = igb_check_alt_mac_addr(hw);
2075 
2076 	/* Release semaphore */
2077 	if (global_device_reset)
2078 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2079 
2080 	return ret_val;
2081 }
2082 
2083 /**
2084  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2085  *  @data: data received by reading RXPBS register
2086  *
2087  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2088  *  This function converts the retrieved value into the correct table value
2089  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2090  *  0x0 36  72 144   1   2   4   8  16
2091  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2092  */
2093 u16 igb_rxpbs_adjust_82580(u32 data)
2094 {
2095 	u16 ret_val = 0;
2096 
2097 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2098 		ret_val = e1000_82580_rxpbs_table[data];
2099 
2100 	return ret_val;
2101 }
2102 
2103 /**
2104  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2105  *  checksum
2106  *  @hw: pointer to the HW structure
2107  *  @offset: offset in words of the checksum protected region
2108  *
2109  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2110  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2111  **/
2112 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2113 						 u16 offset)
2114 {
2115 	s32 ret_val = 0;
2116 	u16 checksum = 0;
2117 	u16 i, nvm_data;
2118 
2119 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2120 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2121 		if (ret_val) {
2122 			hw_dbg("NVM Read Error\n");
2123 			goto out;
2124 		}
2125 		checksum += nvm_data;
2126 	}
2127 
2128 	if (checksum != (u16) NVM_SUM) {
2129 		hw_dbg("NVM Checksum Invalid\n");
2130 		ret_val = -E1000_ERR_NVM;
2131 		goto out;
2132 	}
2133 
2134 out:
2135 	return ret_val;
2136 }
2137 
2138 /**
2139  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2140  *  checksum
2141  *  @hw: pointer to the HW structure
2142  *  @offset: offset in words of the checksum protected region
2143  *
2144  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2145  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2146  *  value to the EEPROM.
2147  **/
2148 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2149 {
2150 	s32 ret_val;
2151 	u16 checksum = 0;
2152 	u16 i, nvm_data;
2153 
2154 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2155 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2156 		if (ret_val) {
2157 			hw_dbg("NVM Read Error while updating checksum.\n");
2158 			goto out;
2159 		}
2160 		checksum += nvm_data;
2161 	}
2162 	checksum = (u16) NVM_SUM - checksum;
2163 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2164 				&checksum);
2165 	if (ret_val)
2166 		hw_dbg("NVM Write Error while updating checksum.\n");
2167 
2168 out:
2169 	return ret_val;
2170 }
2171 
2172 /**
2173  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2174  *  @hw: pointer to the HW structure
2175  *
2176  *  Calculates the EEPROM section checksum by reading/adding each word of
2177  *  the EEPROM and then verifies that the sum of the EEPROM is
2178  *  equal to 0xBABA.
2179  **/
2180 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2181 {
2182 	s32 ret_val = 0;
2183 	u16 eeprom_regions_count = 1;
2184 	u16 j, nvm_data;
2185 	u16 nvm_offset;
2186 
2187 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2188 	if (ret_val) {
2189 		hw_dbg("NVM Read Error\n");
2190 		goto out;
2191 	}
2192 
2193 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2194 		/* if checksums compatibility bit is set validate checksums
2195 		 * for all 4 ports. */
2196 		eeprom_regions_count = 4;
2197 	}
2198 
2199 	for (j = 0; j < eeprom_regions_count; j++) {
2200 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2201 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2202 								nvm_offset);
2203 		if (ret_val != 0)
2204 			goto out;
2205 	}
2206 
2207 out:
2208 	return ret_val;
2209 }
2210 
2211 /**
2212  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2213  *  @hw: pointer to the HW structure
2214  *
2215  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2216  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2217  *  checksum and writes the value to the EEPROM.
2218  **/
2219 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2220 {
2221 	s32 ret_val;
2222 	u16 j, nvm_data;
2223 	u16 nvm_offset;
2224 
2225 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2226 	if (ret_val) {
2227 		hw_dbg("NVM Read Error while updating checksum"
2228 			" compatibility bit.\n");
2229 		goto out;
2230 	}
2231 
2232 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2233 		/* set compatibility bit to validate checksums appropriately */
2234 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2235 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2236 					&nvm_data);
2237 		if (ret_val) {
2238 			hw_dbg("NVM Write Error while updating checksum"
2239 				" compatibility bit.\n");
2240 			goto out;
2241 		}
2242 	}
2243 
2244 	for (j = 0; j < 4; j++) {
2245 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2246 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2247 		if (ret_val)
2248 			goto out;
2249 	}
2250 
2251 out:
2252 	return ret_val;
2253 }
2254 
2255 /**
2256  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2257  *  @hw: pointer to the HW structure
2258  *
2259  *  Calculates the EEPROM section checksum by reading/adding each word of
2260  *  the EEPROM and then verifies that the sum of the EEPROM is
2261  *  equal to 0xBABA.
2262  **/
2263 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2264 {
2265 	s32 ret_val = 0;
2266 	u16 j;
2267 	u16 nvm_offset;
2268 
2269 	for (j = 0; j < 4; j++) {
2270 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2271 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2272 								nvm_offset);
2273 		if (ret_val != 0)
2274 			goto out;
2275 	}
2276 
2277 out:
2278 	return ret_val;
2279 }
2280 
2281 /**
2282  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2283  *  @hw: pointer to the HW structure
2284  *
2285  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2286  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2287  *  checksum and writes the value to the EEPROM.
2288  **/
2289 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2290 {
2291 	s32 ret_val = 0;
2292 	u16 j;
2293 	u16 nvm_offset;
2294 
2295 	for (j = 0; j < 4; j++) {
2296 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2297 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2298 		if (ret_val != 0)
2299 			goto out;
2300 	}
2301 
2302 out:
2303 	return ret_val;
2304 }
2305 
2306 /**
2307  *  igb_set_eee_i350 - Enable/disable EEE support
2308  *  @hw: pointer to the HW structure
2309  *
2310  *  Enable/disable EEE based on setting in dev_spec structure.
2311  *
2312  **/
2313 s32 igb_set_eee_i350(struct e1000_hw *hw)
2314 {
2315 	s32 ret_val = 0;
2316 	u32 ipcnfg, eeer;
2317 
2318 	if ((hw->mac.type < e1000_i350) ||
2319 	    (hw->phy.media_type != e1000_media_type_copper))
2320 		goto out;
2321 	ipcnfg = rd32(E1000_IPCNFG);
2322 	eeer = rd32(E1000_EEER);
2323 
2324 	/* enable or disable per user setting */
2325 	if (!(hw->dev_spec._82575.eee_disable)) {
2326 		u32 eee_su = rd32(E1000_EEE_SU);
2327 
2328 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2329 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2330 			E1000_EEER_LPI_FC);
2331 
2332 		/* This bit should not be set in normal operation. */
2333 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2334 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2335 
2336 
2337 	} else {
2338 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2339 			E1000_IPCNFG_EEE_100M_AN);
2340 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2341 			E1000_EEER_RX_LPI_EN |
2342 			E1000_EEER_LPI_FC);
2343 	}
2344 	wr32(E1000_IPCNFG, ipcnfg);
2345 	wr32(E1000_EEER, eeer);
2346 	rd32(E1000_IPCNFG);
2347 	rd32(E1000_EEER);
2348 out:
2349 
2350 	return ret_val;
2351 }
2352 
2353 static const u8 e1000_emc_temp_data[4] = {
2354 	E1000_EMC_INTERNAL_DATA,
2355 	E1000_EMC_DIODE1_DATA,
2356 	E1000_EMC_DIODE2_DATA,
2357 	E1000_EMC_DIODE3_DATA
2358 };
2359 static const u8 e1000_emc_therm_limit[4] = {
2360 	E1000_EMC_INTERNAL_THERM_LIMIT,
2361 	E1000_EMC_DIODE1_THERM_LIMIT,
2362 	E1000_EMC_DIODE2_THERM_LIMIT,
2363 	E1000_EMC_DIODE3_THERM_LIMIT
2364 };
2365 
2366 /* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2367  *  @hw: pointer to hardware structure
2368  *
2369  *  Updates the temperatures in mac.thermal_sensor_data
2370  */
2371 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2372 {
2373 	s32 status = E1000_SUCCESS;
2374 	u16 ets_offset;
2375 	u16 ets_cfg;
2376 	u16 ets_sensor;
2377 	u8  num_sensors;
2378 	u8  sensor_index;
2379 	u8  sensor_location;
2380 	u8  i;
2381 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2382 
2383 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2384 		return E1000_NOT_IMPLEMENTED;
2385 
2386 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2387 
2388 	/* Return the internal sensor only if ETS is unsupported */
2389 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2390 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2391 		return status;
2392 
2393 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2394 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2395 	    != NVM_ETS_TYPE_EMC)
2396 		return E1000_NOT_IMPLEMENTED;
2397 
2398 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2399 	if (num_sensors > E1000_MAX_SENSORS)
2400 		num_sensors = E1000_MAX_SENSORS;
2401 
2402 	for (i = 1; i < num_sensors; i++) {
2403 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2404 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2405 				NVM_ETS_DATA_INDEX_SHIFT);
2406 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2407 				   NVM_ETS_DATA_LOC_SHIFT);
2408 
2409 		if (sensor_location != 0)
2410 			hw->phy.ops.read_i2c_byte(hw,
2411 					e1000_emc_temp_data[sensor_index],
2412 					E1000_I2C_THERMAL_SENSOR_ADDR,
2413 					&data->sensor[i].temp);
2414 	}
2415 	return status;
2416 }
2417 
2418 /* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2419  *  @hw: pointer to hardware structure
2420  *
2421  *  Sets the thermal sensor thresholds according to the NVM map
2422  *  and save off the threshold and location values into mac.thermal_sensor_data
2423  */
2424 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2425 {
2426 	s32 status = E1000_SUCCESS;
2427 	u16 ets_offset;
2428 	u16 ets_cfg;
2429 	u16 ets_sensor;
2430 	u8  low_thresh_delta;
2431 	u8  num_sensors;
2432 	u8  sensor_index;
2433 	u8  sensor_location;
2434 	u8  therm_limit;
2435 	u8  i;
2436 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2437 
2438 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2439 		return E1000_NOT_IMPLEMENTED;
2440 
2441 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2442 
2443 	data->sensor[0].location = 0x1;
2444 	data->sensor[0].caution_thresh =
2445 		(rd32(E1000_THHIGHTC) & 0xFF);
2446 	data->sensor[0].max_op_thresh =
2447 		(rd32(E1000_THLOWTC) & 0xFF);
2448 
2449 	/* Return the internal sensor only if ETS is unsupported */
2450 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2451 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2452 		return status;
2453 
2454 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2455 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2456 	    != NVM_ETS_TYPE_EMC)
2457 		return E1000_NOT_IMPLEMENTED;
2458 
2459 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2460 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2461 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2462 
2463 	for (i = 1; i <= num_sensors; i++) {
2464 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2465 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2466 				NVM_ETS_DATA_INDEX_SHIFT);
2467 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2468 				   NVM_ETS_DATA_LOC_SHIFT);
2469 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2470 
2471 		hw->phy.ops.write_i2c_byte(hw,
2472 			e1000_emc_therm_limit[sensor_index],
2473 			E1000_I2C_THERMAL_SENSOR_ADDR,
2474 			therm_limit);
2475 
2476 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2477 			data->sensor[i].location = sensor_location;
2478 			data->sensor[i].caution_thresh = therm_limit;
2479 			data->sensor[i].max_op_thresh = therm_limit -
2480 							low_thresh_delta;
2481 		}
2482 	}
2483 	return status;
2484 }
2485 
2486 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2487 	.init_hw              = igb_init_hw_82575,
2488 	.check_for_link       = igb_check_for_link_82575,
2489 	.rar_set              = igb_rar_set,
2490 	.read_mac_addr        = igb_read_mac_addr_82575,
2491 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2492 #ifdef CONFIG_IGB_HWMON
2493 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2494 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2495 #endif
2496 };
2497 
2498 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2499 	.acquire              = igb_acquire_phy_82575,
2500 	.get_cfg_done         = igb_get_cfg_done_82575,
2501 	.release              = igb_release_phy_82575,
2502 	.write_i2c_byte       = igb_write_i2c_byte,
2503 	.read_i2c_byte        = igb_read_i2c_byte,
2504 };
2505 
2506 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2507 	.acquire              = igb_acquire_nvm_82575,
2508 	.read                 = igb_read_nvm_eerd,
2509 	.release              = igb_release_nvm_82575,
2510 	.write                = igb_write_nvm_spi,
2511 };
2512 
2513 const struct e1000_info e1000_82575_info = {
2514 	.get_invariants = igb_get_invariants_82575,
2515 	.mac_ops = &e1000_mac_ops_82575,
2516 	.phy_ops = &e1000_phy_ops_82575,
2517 	.nvm_ops = &e1000_nvm_ops_82575,
2518 };
2519 
2520