1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* e1000_82575 29 * e1000_82576 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/types.h> 35 #include <linux/if_ether.h> 36 #include <linux/i2c.h> 37 38 #include "e1000_mac.h" 39 #include "e1000_82575.h" 40 #include "e1000_i210.h" 41 42 static s32 igb_get_invariants_82575(struct e1000_hw *); 43 static s32 igb_acquire_phy_82575(struct e1000_hw *); 44 static void igb_release_phy_82575(struct e1000_hw *); 45 static s32 igb_acquire_nvm_82575(struct e1000_hw *); 46 static void igb_release_nvm_82575(struct e1000_hw *); 47 static s32 igb_check_for_link_82575(struct e1000_hw *); 48 static s32 igb_get_cfg_done_82575(struct e1000_hw *); 49 static s32 igb_init_hw_82575(struct e1000_hw *); 50 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); 51 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); 52 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); 53 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); 54 static s32 igb_reset_hw_82575(struct e1000_hw *); 55 static s32 igb_reset_hw_82580(struct e1000_hw *); 56 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); 57 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); 58 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); 59 static s32 igb_setup_copper_link_82575(struct e1000_hw *); 60 static s32 igb_setup_serdes_link_82575(struct e1000_hw *); 61 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); 62 static void igb_clear_hw_cntrs_82575(struct e1000_hw *); 63 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); 64 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, 65 u16 *); 66 static s32 igb_get_phy_id_82575(struct e1000_hw *); 67 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); 68 static bool igb_sgmii_active_82575(struct e1000_hw *); 69 static s32 igb_reset_init_script_82575(struct e1000_hw *); 70 static s32 igb_read_mac_addr_82575(struct e1000_hw *); 71 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); 72 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); 73 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); 74 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); 75 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); 76 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); 77 static const u16 e1000_82580_rxpbs_table[] = 78 { 36, 72, 144, 1, 2, 4, 8, 16, 79 35, 70, 140 }; 80 #define E1000_82580_RXPBS_TABLE_SIZE \ 81 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) 82 83 /** 84 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO 85 * @hw: pointer to the HW structure 86 * 87 * Called to determine if the I2C pins are being used for I2C or as an 88 * external MDIO interface since the two options are mutually exclusive. 89 **/ 90 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) 91 { 92 u32 reg = 0; 93 bool ext_mdio = false; 94 95 switch (hw->mac.type) { 96 case e1000_82575: 97 case e1000_82576: 98 reg = rd32(E1000_MDIC); 99 ext_mdio = !!(reg & E1000_MDIC_DEST); 100 break; 101 case e1000_82580: 102 case e1000_i350: 103 case e1000_i210: 104 case e1000_i211: 105 reg = rd32(E1000_MDICNFG); 106 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); 107 break; 108 default: 109 break; 110 } 111 return ext_mdio; 112 } 113 114 /** 115 * igb_init_phy_params_82575 - Init PHY func ptrs. 116 * @hw: pointer to the HW structure 117 **/ 118 static s32 igb_init_phy_params_82575(struct e1000_hw *hw) 119 { 120 struct e1000_phy_info *phy = &hw->phy; 121 s32 ret_val = 0; 122 u32 ctrl_ext; 123 124 if (hw->phy.media_type != e1000_media_type_copper) { 125 phy->type = e1000_phy_none; 126 goto out; 127 } 128 129 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 130 phy->reset_delay_us = 100; 131 132 ctrl_ext = rd32(E1000_CTRL_EXT); 133 134 if (igb_sgmii_active_82575(hw)) { 135 phy->ops.reset = igb_phy_hw_reset_sgmii_82575; 136 ctrl_ext |= E1000_CTRL_I2C_ENA; 137 } else { 138 phy->ops.reset = igb_phy_hw_reset; 139 ctrl_ext &= ~E1000_CTRL_I2C_ENA; 140 } 141 142 wr32(E1000_CTRL_EXT, ctrl_ext); 143 igb_reset_mdicnfg_82580(hw); 144 145 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { 146 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; 147 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; 148 } else { 149 switch (hw->mac.type) { 150 case e1000_82580: 151 case e1000_i350: 152 phy->ops.read_reg = igb_read_phy_reg_82580; 153 phy->ops.write_reg = igb_write_phy_reg_82580; 154 break; 155 case e1000_i210: 156 case e1000_i211: 157 phy->ops.read_reg = igb_read_phy_reg_gs40g; 158 phy->ops.write_reg = igb_write_phy_reg_gs40g; 159 break; 160 default: 161 phy->ops.read_reg = igb_read_phy_reg_igp; 162 phy->ops.write_reg = igb_write_phy_reg_igp; 163 } 164 } 165 166 /* set lan id */ 167 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> 168 E1000_STATUS_FUNC_SHIFT; 169 170 /* Set phy->phy_addr and phy->id. */ 171 ret_val = igb_get_phy_id_82575(hw); 172 if (ret_val) 173 return ret_val; 174 175 /* Verify phy id and set remaining function pointers */ 176 switch (phy->id) { 177 case I347AT4_E_PHY_ID: 178 case M88E1112_E_PHY_ID: 179 case M88E1111_I_PHY_ID: 180 phy->type = e1000_phy_m88; 181 phy->ops.get_phy_info = igb_get_phy_info_m88; 182 if (phy->id == I347AT4_E_PHY_ID || 183 phy->id == M88E1112_E_PHY_ID) 184 phy->ops.get_cable_length = 185 igb_get_cable_length_m88_gen2; 186 else 187 phy->ops.get_cable_length = igb_get_cable_length_m88; 188 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 189 break; 190 case IGP03E1000_E_PHY_ID: 191 phy->type = e1000_phy_igp_3; 192 phy->ops.get_phy_info = igb_get_phy_info_igp; 193 phy->ops.get_cable_length = igb_get_cable_length_igp_2; 194 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; 195 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; 196 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; 197 break; 198 case I82580_I_PHY_ID: 199 case I350_I_PHY_ID: 200 phy->type = e1000_phy_82580; 201 phy->ops.force_speed_duplex = 202 igb_phy_force_speed_duplex_82580; 203 phy->ops.get_cable_length = igb_get_cable_length_82580; 204 phy->ops.get_phy_info = igb_get_phy_info_82580; 205 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 206 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 207 break; 208 case I210_I_PHY_ID: 209 phy->type = e1000_phy_i210; 210 phy->ops.check_polarity = igb_check_polarity_m88; 211 phy->ops.get_phy_info = igb_get_phy_info_m88; 212 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; 213 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 214 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 215 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 216 break; 217 default: 218 ret_val = -E1000_ERR_PHY; 219 goto out; 220 } 221 222 out: 223 return ret_val; 224 } 225 226 /** 227 * igb_init_nvm_params_82575 - Init NVM func ptrs. 228 * @hw: pointer to the HW structure 229 **/ 230 s32 igb_init_nvm_params_82575(struct e1000_hw *hw) 231 { 232 struct e1000_nvm_info *nvm = &hw->nvm; 233 u32 eecd = rd32(E1000_EECD); 234 u16 size; 235 236 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 237 E1000_EECD_SIZE_EX_SHIFT); 238 /* Added to a constant, "size" becomes the left-shift value 239 * for setting word_size. 240 */ 241 size += NVM_WORD_SIZE_BASE_SHIFT; 242 243 /* Just in case size is out of range, cap it to the largest 244 * EEPROM size supported 245 */ 246 if (size > 15) 247 size = 15; 248 249 nvm->word_size = 1 << size; 250 if (hw->mac.type < e1000_i210) { 251 nvm->opcode_bits = 8; 252 nvm->delay_usec = 1; 253 254 switch (nvm->override) { 255 case e1000_nvm_override_spi_large: 256 nvm->page_size = 32; 257 nvm->address_bits = 16; 258 break; 259 case e1000_nvm_override_spi_small: 260 nvm->page_size = 8; 261 nvm->address_bits = 8; 262 break; 263 default: 264 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; 265 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 266 16 : 8; 267 break; 268 } 269 if (nvm->word_size == (1 << 15)) 270 nvm->page_size = 128; 271 272 nvm->type = e1000_nvm_eeprom_spi; 273 } else { 274 nvm->type = e1000_nvm_flash_hw; 275 } 276 277 /* NVM Function Pointers */ 278 switch (hw->mac.type) { 279 case e1000_82580: 280 nvm->ops.validate = igb_validate_nvm_checksum_82580; 281 nvm->ops.update = igb_update_nvm_checksum_82580; 282 nvm->ops.acquire = igb_acquire_nvm_82575; 283 nvm->ops.release = igb_release_nvm_82575; 284 if (nvm->word_size < (1 << 15)) 285 nvm->ops.read = igb_read_nvm_eerd; 286 else 287 nvm->ops.read = igb_read_nvm_spi; 288 nvm->ops.write = igb_write_nvm_spi; 289 break; 290 case e1000_i350: 291 nvm->ops.validate = igb_validate_nvm_checksum_i350; 292 nvm->ops.update = igb_update_nvm_checksum_i350; 293 nvm->ops.acquire = igb_acquire_nvm_82575; 294 nvm->ops.release = igb_release_nvm_82575; 295 if (nvm->word_size < (1 << 15)) 296 nvm->ops.read = igb_read_nvm_eerd; 297 else 298 nvm->ops.read = igb_read_nvm_spi; 299 nvm->ops.write = igb_write_nvm_spi; 300 break; 301 case e1000_i210: 302 nvm->ops.validate = igb_validate_nvm_checksum_i210; 303 nvm->ops.update = igb_update_nvm_checksum_i210; 304 nvm->ops.acquire = igb_acquire_nvm_i210; 305 nvm->ops.release = igb_release_nvm_i210; 306 nvm->ops.read = igb_read_nvm_srrd_i210; 307 nvm->ops.write = igb_write_nvm_srwr_i210; 308 nvm->ops.valid_led_default = igb_valid_led_default_i210; 309 break; 310 case e1000_i211: 311 nvm->ops.acquire = igb_acquire_nvm_i210; 312 nvm->ops.release = igb_release_nvm_i210; 313 nvm->ops.read = igb_read_nvm_i211; 314 nvm->ops.valid_led_default = igb_valid_led_default_i210; 315 nvm->ops.validate = NULL; 316 nvm->ops.update = NULL; 317 nvm->ops.write = NULL; 318 break; 319 default: 320 nvm->ops.validate = igb_validate_nvm_checksum; 321 nvm->ops.update = igb_update_nvm_checksum; 322 nvm->ops.acquire = igb_acquire_nvm_82575; 323 nvm->ops.release = igb_release_nvm_82575; 324 if (nvm->word_size < (1 << 15)) 325 nvm->ops.read = igb_read_nvm_eerd; 326 else 327 nvm->ops.read = igb_read_nvm_spi; 328 nvm->ops.write = igb_write_nvm_spi; 329 break; 330 } 331 332 return 0; 333 } 334 335 /** 336 * igb_init_mac_params_82575 - Init MAC func ptrs. 337 * @hw: pointer to the HW structure 338 **/ 339 static s32 igb_init_mac_params_82575(struct e1000_hw *hw) 340 { 341 struct e1000_mac_info *mac = &hw->mac; 342 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 343 344 /* Set mta register count */ 345 mac->mta_reg_count = 128; 346 /* Set rar entry count */ 347 switch (mac->type) { 348 case e1000_82576: 349 mac->rar_entry_count = E1000_RAR_ENTRIES_82576; 350 break; 351 case e1000_82580: 352 mac->rar_entry_count = E1000_RAR_ENTRIES_82580; 353 break; 354 case e1000_i350: 355 mac->rar_entry_count = E1000_RAR_ENTRIES_I350; 356 break; 357 default: 358 mac->rar_entry_count = E1000_RAR_ENTRIES_82575; 359 break; 360 } 361 /* reset */ 362 if (mac->type >= e1000_82580) 363 mac->ops.reset_hw = igb_reset_hw_82580; 364 else 365 mac->ops.reset_hw = igb_reset_hw_82575; 366 367 if (mac->type >= e1000_i210) { 368 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; 369 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; 370 371 } else { 372 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; 373 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; 374 } 375 376 /* Set if part includes ASF firmware */ 377 mac->asf_firmware_present = true; 378 /* Set if manageability features are enabled. */ 379 mac->arc_subsystem_valid = 380 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) 381 ? true : false; 382 /* enable EEE on i350 parts and later parts */ 383 if (mac->type >= e1000_i350) 384 dev_spec->eee_disable = false; 385 else 386 dev_spec->eee_disable = true; 387 /* physical interface link setup */ 388 mac->ops.setup_physical_interface = 389 (hw->phy.media_type == e1000_media_type_copper) 390 ? igb_setup_copper_link_82575 391 : igb_setup_serdes_link_82575; 392 393 return 0; 394 } 395 396 static s32 igb_get_invariants_82575(struct e1000_hw *hw) 397 { 398 struct e1000_mac_info *mac = &hw->mac; 399 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; 400 s32 ret_val; 401 u32 ctrl_ext = 0; 402 403 switch (hw->device_id) { 404 case E1000_DEV_ID_82575EB_COPPER: 405 case E1000_DEV_ID_82575EB_FIBER_SERDES: 406 case E1000_DEV_ID_82575GB_QUAD_COPPER: 407 mac->type = e1000_82575; 408 break; 409 case E1000_DEV_ID_82576: 410 case E1000_DEV_ID_82576_NS: 411 case E1000_DEV_ID_82576_NS_SERDES: 412 case E1000_DEV_ID_82576_FIBER: 413 case E1000_DEV_ID_82576_SERDES: 414 case E1000_DEV_ID_82576_QUAD_COPPER: 415 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 416 case E1000_DEV_ID_82576_SERDES_QUAD: 417 mac->type = e1000_82576; 418 break; 419 case E1000_DEV_ID_82580_COPPER: 420 case E1000_DEV_ID_82580_FIBER: 421 case E1000_DEV_ID_82580_QUAD_FIBER: 422 case E1000_DEV_ID_82580_SERDES: 423 case E1000_DEV_ID_82580_SGMII: 424 case E1000_DEV_ID_82580_COPPER_DUAL: 425 case E1000_DEV_ID_DH89XXCC_SGMII: 426 case E1000_DEV_ID_DH89XXCC_SERDES: 427 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 428 case E1000_DEV_ID_DH89XXCC_SFP: 429 mac->type = e1000_82580; 430 break; 431 case E1000_DEV_ID_I350_COPPER: 432 case E1000_DEV_ID_I350_FIBER: 433 case E1000_DEV_ID_I350_SERDES: 434 case E1000_DEV_ID_I350_SGMII: 435 mac->type = e1000_i350; 436 break; 437 case E1000_DEV_ID_I210_COPPER: 438 case E1000_DEV_ID_I210_COPPER_OEM1: 439 case E1000_DEV_ID_I210_COPPER_IT: 440 case E1000_DEV_ID_I210_FIBER: 441 case E1000_DEV_ID_I210_SERDES: 442 case E1000_DEV_ID_I210_SGMII: 443 mac->type = e1000_i210; 444 break; 445 case E1000_DEV_ID_I211_COPPER: 446 mac->type = e1000_i211; 447 break; 448 default: 449 return -E1000_ERR_MAC_INIT; 450 break; 451 } 452 453 /* Set media type */ 454 /* 455 * The 82575 uses bits 22:23 for link mode. The mode can be changed 456 * based on the EEPROM. We cannot rely upon device ID. There 457 * is no distinguishable difference between fiber and internal 458 * SerDes mode on the 82575. There can be an external PHY attached 459 * on the SGMII interface. For this, we'll set sgmii_active to true. 460 */ 461 hw->phy.media_type = e1000_media_type_copper; 462 dev_spec->sgmii_active = false; 463 464 ctrl_ext = rd32(E1000_CTRL_EXT); 465 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 466 case E1000_CTRL_EXT_LINK_MODE_SGMII: 467 dev_spec->sgmii_active = true; 468 break; 469 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 470 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: 471 hw->phy.media_type = e1000_media_type_internal_serdes; 472 break; 473 default: 474 break; 475 } 476 477 /* mac initialization and operations */ 478 ret_val = igb_init_mac_params_82575(hw); 479 if (ret_val) 480 goto out; 481 482 /* NVM initialization */ 483 ret_val = igb_init_nvm_params_82575(hw); 484 if (ret_val) 485 goto out; 486 487 /* if part supports SR-IOV then initialize mailbox parameters */ 488 switch (mac->type) { 489 case e1000_82576: 490 case e1000_i350: 491 igb_init_mbx_params_pf(hw); 492 break; 493 default: 494 break; 495 } 496 497 /* setup PHY parameters */ 498 ret_val = igb_init_phy_params_82575(hw); 499 500 out: 501 return ret_val; 502 } 503 504 /** 505 * igb_acquire_phy_82575 - Acquire rights to access PHY 506 * @hw: pointer to the HW structure 507 * 508 * Acquire access rights to the correct PHY. This is a 509 * function pointer entry point called by the api module. 510 **/ 511 static s32 igb_acquire_phy_82575(struct e1000_hw *hw) 512 { 513 u16 mask = E1000_SWFW_PHY0_SM; 514 515 if (hw->bus.func == E1000_FUNC_1) 516 mask = E1000_SWFW_PHY1_SM; 517 else if (hw->bus.func == E1000_FUNC_2) 518 mask = E1000_SWFW_PHY2_SM; 519 else if (hw->bus.func == E1000_FUNC_3) 520 mask = E1000_SWFW_PHY3_SM; 521 522 return hw->mac.ops.acquire_swfw_sync(hw, mask); 523 } 524 525 /** 526 * igb_release_phy_82575 - Release rights to access PHY 527 * @hw: pointer to the HW structure 528 * 529 * A wrapper to release access rights to the correct PHY. This is a 530 * function pointer entry point called by the api module. 531 **/ 532 static void igb_release_phy_82575(struct e1000_hw *hw) 533 { 534 u16 mask = E1000_SWFW_PHY0_SM; 535 536 if (hw->bus.func == E1000_FUNC_1) 537 mask = E1000_SWFW_PHY1_SM; 538 else if (hw->bus.func == E1000_FUNC_2) 539 mask = E1000_SWFW_PHY2_SM; 540 else if (hw->bus.func == E1000_FUNC_3) 541 mask = E1000_SWFW_PHY3_SM; 542 543 hw->mac.ops.release_swfw_sync(hw, mask); 544 } 545 546 /** 547 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii 548 * @hw: pointer to the HW structure 549 * @offset: register offset to be read 550 * @data: pointer to the read data 551 * 552 * Reads the PHY register at offset using the serial gigabit media independent 553 * interface and stores the retrieved information in data. 554 **/ 555 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 556 u16 *data) 557 { 558 s32 ret_val = -E1000_ERR_PARAM; 559 560 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 561 hw_dbg("PHY Address %u is out of range\n", offset); 562 goto out; 563 } 564 565 ret_val = hw->phy.ops.acquire(hw); 566 if (ret_val) 567 goto out; 568 569 ret_val = igb_read_phy_reg_i2c(hw, offset, data); 570 571 hw->phy.ops.release(hw); 572 573 out: 574 return ret_val; 575 } 576 577 /** 578 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii 579 * @hw: pointer to the HW structure 580 * @offset: register offset to write to 581 * @data: data to write at register offset 582 * 583 * Writes the data to PHY register at the offset using the serial gigabit 584 * media independent interface. 585 **/ 586 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 587 u16 data) 588 { 589 s32 ret_val = -E1000_ERR_PARAM; 590 591 592 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 593 hw_dbg("PHY Address %d is out of range\n", offset); 594 goto out; 595 } 596 597 ret_val = hw->phy.ops.acquire(hw); 598 if (ret_val) 599 goto out; 600 601 ret_val = igb_write_phy_reg_i2c(hw, offset, data); 602 603 hw->phy.ops.release(hw); 604 605 out: 606 return ret_val; 607 } 608 609 /** 610 * igb_get_phy_id_82575 - Retrieve PHY addr and id 611 * @hw: pointer to the HW structure 612 * 613 * Retrieves the PHY address and ID for both PHY's which do and do not use 614 * sgmi interface. 615 **/ 616 static s32 igb_get_phy_id_82575(struct e1000_hw *hw) 617 { 618 struct e1000_phy_info *phy = &hw->phy; 619 s32 ret_val = 0; 620 u16 phy_id; 621 u32 ctrl_ext; 622 u32 mdic; 623 624 /* 625 * For SGMII PHYs, we try the list of possible addresses until 626 * we find one that works. For non-SGMII PHYs 627 * (e.g. integrated copper PHYs), an address of 1 should 628 * work. The result of this function should mean phy->phy_addr 629 * and phy->id are set correctly. 630 */ 631 if (!(igb_sgmii_active_82575(hw))) { 632 phy->addr = 1; 633 ret_val = igb_get_phy_id(hw); 634 goto out; 635 } 636 637 if (igb_sgmii_uses_mdio_82575(hw)) { 638 switch (hw->mac.type) { 639 case e1000_82575: 640 case e1000_82576: 641 mdic = rd32(E1000_MDIC); 642 mdic &= E1000_MDIC_PHY_MASK; 643 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; 644 break; 645 case e1000_82580: 646 case e1000_i350: 647 case e1000_i210: 648 case e1000_i211: 649 mdic = rd32(E1000_MDICNFG); 650 mdic &= E1000_MDICNFG_PHY_MASK; 651 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; 652 break; 653 default: 654 ret_val = -E1000_ERR_PHY; 655 goto out; 656 break; 657 } 658 ret_val = igb_get_phy_id(hw); 659 goto out; 660 } 661 662 /* Power on sgmii phy if it is disabled */ 663 ctrl_ext = rd32(E1000_CTRL_EXT); 664 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); 665 wrfl(); 666 msleep(300); 667 668 /* 669 * The address field in the I2CCMD register is 3 bits and 0 is invalid. 670 * Therefore, we need to test 1-7 671 */ 672 for (phy->addr = 1; phy->addr < 8; phy->addr++) { 673 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); 674 if (ret_val == 0) { 675 hw_dbg("Vendor ID 0x%08X read at address %u\n", 676 phy_id, phy->addr); 677 /* 678 * At the time of this writing, The M88 part is 679 * the only supported SGMII PHY product. 680 */ 681 if (phy_id == M88_VENDOR) 682 break; 683 } else { 684 hw_dbg("PHY address %u was unreadable\n", phy->addr); 685 } 686 } 687 688 /* A valid PHY type couldn't be found. */ 689 if (phy->addr == 8) { 690 phy->addr = 0; 691 ret_val = -E1000_ERR_PHY; 692 goto out; 693 } else { 694 ret_val = igb_get_phy_id(hw); 695 } 696 697 /* restore previous sfp cage power state */ 698 wr32(E1000_CTRL_EXT, ctrl_ext); 699 700 out: 701 return ret_val; 702 } 703 704 /** 705 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset 706 * @hw: pointer to the HW structure 707 * 708 * Resets the PHY using the serial gigabit media independent interface. 709 **/ 710 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) 711 { 712 s32 ret_val; 713 714 /* 715 * This isn't a true "hard" reset, but is the only reset 716 * available to us at this time. 717 */ 718 719 hw_dbg("Soft resetting SGMII attached PHY...\n"); 720 721 /* 722 * SFP documentation requires the following to configure the SPF module 723 * to work on SGMII. No further documentation is given. 724 */ 725 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); 726 if (ret_val) 727 goto out; 728 729 ret_val = igb_phy_sw_reset(hw); 730 731 out: 732 return ret_val; 733 } 734 735 /** 736 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state 737 * @hw: pointer to the HW structure 738 * @active: true to enable LPLU, false to disable 739 * 740 * Sets the LPLU D0 state according to the active flag. When 741 * activating LPLU this function also disables smart speed 742 * and vice versa. LPLU will not be activated unless the 743 * device autonegotiation advertisement meets standards of 744 * either 10 or 10/100 or 10/100/1000 at all duplexes. 745 * This is a function pointer entry point only called by 746 * PHY setup routines. 747 **/ 748 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) 749 { 750 struct e1000_phy_info *phy = &hw->phy; 751 s32 ret_val; 752 u16 data; 753 754 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 755 if (ret_val) 756 goto out; 757 758 if (active) { 759 data |= IGP02E1000_PM_D0_LPLU; 760 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 761 data); 762 if (ret_val) 763 goto out; 764 765 /* When LPLU is enabled, we should disable SmartSpeed */ 766 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 767 &data); 768 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 769 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 770 data); 771 if (ret_val) 772 goto out; 773 } else { 774 data &= ~IGP02E1000_PM_D0_LPLU; 775 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 776 data); 777 /* 778 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 779 * during Dx states where the power conservation is most 780 * important. During driver activity we should enable 781 * SmartSpeed, so performance is maintained. 782 */ 783 if (phy->smart_speed == e1000_smart_speed_on) { 784 ret_val = phy->ops.read_reg(hw, 785 IGP01E1000_PHY_PORT_CONFIG, &data); 786 if (ret_val) 787 goto out; 788 789 data |= IGP01E1000_PSCFR_SMART_SPEED; 790 ret_val = phy->ops.write_reg(hw, 791 IGP01E1000_PHY_PORT_CONFIG, data); 792 if (ret_val) 793 goto out; 794 } else if (phy->smart_speed == e1000_smart_speed_off) { 795 ret_val = phy->ops.read_reg(hw, 796 IGP01E1000_PHY_PORT_CONFIG, &data); 797 if (ret_val) 798 goto out; 799 800 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 801 ret_val = phy->ops.write_reg(hw, 802 IGP01E1000_PHY_PORT_CONFIG, data); 803 if (ret_val) 804 goto out; 805 } 806 } 807 808 out: 809 return ret_val; 810 } 811 812 /** 813 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state 814 * @hw: pointer to the HW structure 815 * @active: true to enable LPLU, false to disable 816 * 817 * Sets the LPLU D0 state according to the active flag. When 818 * activating LPLU this function also disables smart speed 819 * and vice versa. LPLU will not be activated unless the 820 * device autonegotiation advertisement meets standards of 821 * either 10 or 10/100 or 10/100/1000 at all duplexes. 822 * This is a function pointer entry point only called by 823 * PHY setup routines. 824 **/ 825 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) 826 { 827 struct e1000_phy_info *phy = &hw->phy; 828 s32 ret_val = 0; 829 u16 data; 830 831 data = rd32(E1000_82580_PHY_POWER_MGMT); 832 833 if (active) { 834 data |= E1000_82580_PM_D0_LPLU; 835 836 /* When LPLU is enabled, we should disable SmartSpeed */ 837 data &= ~E1000_82580_PM_SPD; 838 } else { 839 data &= ~E1000_82580_PM_D0_LPLU; 840 841 /* 842 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 843 * during Dx states where the power conservation is most 844 * important. During driver activity we should enable 845 * SmartSpeed, so performance is maintained. 846 */ 847 if (phy->smart_speed == e1000_smart_speed_on) 848 data |= E1000_82580_PM_SPD; 849 else if (phy->smart_speed == e1000_smart_speed_off) 850 data &= ~E1000_82580_PM_SPD; } 851 852 wr32(E1000_82580_PHY_POWER_MGMT, data); 853 return ret_val; 854 } 855 856 /** 857 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 858 * @hw: pointer to the HW structure 859 * @active: boolean used to enable/disable lplu 860 * 861 * Success returns 0, Failure returns 1 862 * 863 * The low power link up (lplu) state is set to the power management level D3 864 * and SmartSpeed is disabled when active is true, else clear lplu for D3 865 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 866 * is used during Dx states where the power conservation is most important. 867 * During driver activity, SmartSpeed should be enabled so performance is 868 * maintained. 869 **/ 870 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) 871 { 872 struct e1000_phy_info *phy = &hw->phy; 873 s32 ret_val = 0; 874 u16 data; 875 876 data = rd32(E1000_82580_PHY_POWER_MGMT); 877 878 if (!active) { 879 data &= ~E1000_82580_PM_D3_LPLU; 880 /* 881 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 882 * during Dx states where the power conservation is most 883 * important. During driver activity we should enable 884 * SmartSpeed, so performance is maintained. 885 */ 886 if (phy->smart_speed == e1000_smart_speed_on) 887 data |= E1000_82580_PM_SPD; 888 else if (phy->smart_speed == e1000_smart_speed_off) 889 data &= ~E1000_82580_PM_SPD; 890 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 891 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 892 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 893 data |= E1000_82580_PM_D3_LPLU; 894 /* When LPLU is enabled, we should disable SmartSpeed */ 895 data &= ~E1000_82580_PM_SPD; 896 } 897 898 wr32(E1000_82580_PHY_POWER_MGMT, data); 899 return ret_val; 900 } 901 902 /** 903 * igb_acquire_nvm_82575 - Request for access to EEPROM 904 * @hw: pointer to the HW structure 905 * 906 * Acquire the necessary semaphores for exclusive access to the EEPROM. 907 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 908 * Return successful if access grant bit set, else clear the request for 909 * EEPROM access and return -E1000_ERR_NVM (-1). 910 **/ 911 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) 912 { 913 s32 ret_val; 914 915 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); 916 if (ret_val) 917 goto out; 918 919 ret_val = igb_acquire_nvm(hw); 920 921 if (ret_val) 922 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 923 924 out: 925 return ret_val; 926 } 927 928 /** 929 * igb_release_nvm_82575 - Release exclusive access to EEPROM 930 * @hw: pointer to the HW structure 931 * 932 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 933 * then release the semaphores acquired. 934 **/ 935 static void igb_release_nvm_82575(struct e1000_hw *hw) 936 { 937 igb_release_nvm(hw); 938 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 939 } 940 941 /** 942 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore 943 * @hw: pointer to the HW structure 944 * @mask: specifies which semaphore to acquire 945 * 946 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 947 * will also specify which port we're acquiring the lock for. 948 **/ 949 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 950 { 951 u32 swfw_sync; 952 u32 swmask = mask; 953 u32 fwmask = mask << 16; 954 s32 ret_val = 0; 955 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ 956 957 while (i < timeout) { 958 if (igb_get_hw_semaphore(hw)) { 959 ret_val = -E1000_ERR_SWFW_SYNC; 960 goto out; 961 } 962 963 swfw_sync = rd32(E1000_SW_FW_SYNC); 964 if (!(swfw_sync & (fwmask | swmask))) 965 break; 966 967 /* 968 * Firmware currently using resource (fwmask) 969 * or other software thread using resource (swmask) 970 */ 971 igb_put_hw_semaphore(hw); 972 mdelay(5); 973 i++; 974 } 975 976 if (i == timeout) { 977 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); 978 ret_val = -E1000_ERR_SWFW_SYNC; 979 goto out; 980 } 981 982 swfw_sync |= swmask; 983 wr32(E1000_SW_FW_SYNC, swfw_sync); 984 985 igb_put_hw_semaphore(hw); 986 987 out: 988 return ret_val; 989 } 990 991 /** 992 * igb_release_swfw_sync_82575 - Release SW/FW semaphore 993 * @hw: pointer to the HW structure 994 * @mask: specifies which semaphore to acquire 995 * 996 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 997 * will also specify which port we're releasing the lock for. 998 **/ 999 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 1000 { 1001 u32 swfw_sync; 1002 1003 while (igb_get_hw_semaphore(hw) != 0); 1004 /* Empty */ 1005 1006 swfw_sync = rd32(E1000_SW_FW_SYNC); 1007 swfw_sync &= ~mask; 1008 wr32(E1000_SW_FW_SYNC, swfw_sync); 1009 1010 igb_put_hw_semaphore(hw); 1011 } 1012 1013 /** 1014 * igb_get_cfg_done_82575 - Read config done bit 1015 * @hw: pointer to the HW structure 1016 * 1017 * Read the management control register for the config done bit for 1018 * completion status. NOTE: silicon which is EEPROM-less will fail trying 1019 * to read the config done bit, so an error is *ONLY* logged and returns 1020 * 0. If we were to return with error, EEPROM-less silicon 1021 * would not be able to be reset or change link. 1022 **/ 1023 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) 1024 { 1025 s32 timeout = PHY_CFG_TIMEOUT; 1026 s32 ret_val = 0; 1027 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 1028 1029 if (hw->bus.func == 1) 1030 mask = E1000_NVM_CFG_DONE_PORT_1; 1031 else if (hw->bus.func == E1000_FUNC_2) 1032 mask = E1000_NVM_CFG_DONE_PORT_2; 1033 else if (hw->bus.func == E1000_FUNC_3) 1034 mask = E1000_NVM_CFG_DONE_PORT_3; 1035 1036 while (timeout) { 1037 if (rd32(E1000_EEMNGCTL) & mask) 1038 break; 1039 msleep(1); 1040 timeout--; 1041 } 1042 if (!timeout) 1043 hw_dbg("MNG configuration cycle has not completed.\n"); 1044 1045 /* If EEPROM is not marked present, init the PHY manually */ 1046 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && 1047 (hw->phy.type == e1000_phy_igp_3)) 1048 igb_phy_init_script_igp3(hw); 1049 1050 return ret_val; 1051 } 1052 1053 /** 1054 * igb_check_for_link_82575 - Check for link 1055 * @hw: pointer to the HW structure 1056 * 1057 * If sgmii is enabled, then use the pcs register to determine link, otherwise 1058 * use the generic interface for determining link. 1059 **/ 1060 static s32 igb_check_for_link_82575(struct e1000_hw *hw) 1061 { 1062 s32 ret_val; 1063 u16 speed, duplex; 1064 1065 if (hw->phy.media_type != e1000_media_type_copper) { 1066 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, 1067 &duplex); 1068 /* 1069 * Use this flag to determine if link needs to be checked or 1070 * not. If we have link clear the flag so that we do not 1071 * continue to check for link. 1072 */ 1073 hw->mac.get_link_status = !hw->mac.serdes_has_link; 1074 1075 /* Configure Flow Control now that Auto-Neg has completed. 1076 * First, we need to restore the desired flow control 1077 * settings because we may have had to re-autoneg with a 1078 * different link partner. 1079 */ 1080 ret_val = igb_config_fc_after_link_up(hw); 1081 if (ret_val) 1082 hw_dbg("Error configuring flow control\n"); 1083 } else { 1084 ret_val = igb_check_for_copper_link(hw); 1085 } 1086 1087 return ret_val; 1088 } 1089 1090 /** 1091 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown 1092 * @hw: pointer to the HW structure 1093 **/ 1094 void igb_power_up_serdes_link_82575(struct e1000_hw *hw) 1095 { 1096 u32 reg; 1097 1098 1099 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1100 !igb_sgmii_active_82575(hw)) 1101 return; 1102 1103 /* Enable PCS to turn on link */ 1104 reg = rd32(E1000_PCS_CFG0); 1105 reg |= E1000_PCS_CFG_PCS_EN; 1106 wr32(E1000_PCS_CFG0, reg); 1107 1108 /* Power up the laser */ 1109 reg = rd32(E1000_CTRL_EXT); 1110 reg &= ~E1000_CTRL_EXT_SDP3_DATA; 1111 wr32(E1000_CTRL_EXT, reg); 1112 1113 /* flush the write to verify completion */ 1114 wrfl(); 1115 msleep(1); 1116 } 1117 1118 /** 1119 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex 1120 * @hw: pointer to the HW structure 1121 * @speed: stores the current speed 1122 * @duplex: stores the current duplex 1123 * 1124 * Using the physical coding sub-layer (PCS), retrieve the current speed and 1125 * duplex, then store the values in the pointers provided. 1126 **/ 1127 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, 1128 u16 *duplex) 1129 { 1130 struct e1000_mac_info *mac = &hw->mac; 1131 u32 pcs; 1132 1133 /* Set up defaults for the return values of this function */ 1134 mac->serdes_has_link = false; 1135 *speed = 0; 1136 *duplex = 0; 1137 1138 /* 1139 * Read the PCS Status register for link state. For non-copper mode, 1140 * the status register is not accurate. The PCS status register is 1141 * used instead. 1142 */ 1143 pcs = rd32(E1000_PCS_LSTAT); 1144 1145 /* 1146 * The link up bit determines when link is up on autoneg. The sync ok 1147 * gets set once both sides sync up and agree upon link. Stable link 1148 * can be determined by checking for both link up and link sync ok 1149 */ 1150 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { 1151 mac->serdes_has_link = true; 1152 1153 /* Detect and store PCS speed */ 1154 if (pcs & E1000_PCS_LSTS_SPEED_1000) { 1155 *speed = SPEED_1000; 1156 } else if (pcs & E1000_PCS_LSTS_SPEED_100) { 1157 *speed = SPEED_100; 1158 } else { 1159 *speed = SPEED_10; 1160 } 1161 1162 /* Detect and store PCS duplex */ 1163 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { 1164 *duplex = FULL_DUPLEX; 1165 } else { 1166 *duplex = HALF_DUPLEX; 1167 } 1168 } 1169 1170 return 0; 1171 } 1172 1173 /** 1174 * igb_shutdown_serdes_link_82575 - Remove link during power down 1175 * @hw: pointer to the HW structure 1176 * 1177 * In the case of fiber serdes, shut down optics and PCS on driver unload 1178 * when management pass thru is not enabled. 1179 **/ 1180 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) 1181 { 1182 u32 reg; 1183 1184 if (hw->phy.media_type != e1000_media_type_internal_serdes && 1185 igb_sgmii_active_82575(hw)) 1186 return; 1187 1188 if (!igb_enable_mng_pass_thru(hw)) { 1189 /* Disable PCS to turn off link */ 1190 reg = rd32(E1000_PCS_CFG0); 1191 reg &= ~E1000_PCS_CFG_PCS_EN; 1192 wr32(E1000_PCS_CFG0, reg); 1193 1194 /* shutdown the laser */ 1195 reg = rd32(E1000_CTRL_EXT); 1196 reg |= E1000_CTRL_EXT_SDP3_DATA; 1197 wr32(E1000_CTRL_EXT, reg); 1198 1199 /* flush the write to verify completion */ 1200 wrfl(); 1201 msleep(1); 1202 } 1203 } 1204 1205 /** 1206 * igb_reset_hw_82575 - Reset hardware 1207 * @hw: pointer to the HW structure 1208 * 1209 * This resets the hardware into a known state. This is a 1210 * function pointer entry point called by the api module. 1211 **/ 1212 static s32 igb_reset_hw_82575(struct e1000_hw *hw) 1213 { 1214 u32 ctrl, icr; 1215 s32 ret_val; 1216 1217 /* 1218 * Prevent the PCI-E bus from sticking if there is no TLP connection 1219 * on the last TLP read/write transaction when MAC is reset. 1220 */ 1221 ret_val = igb_disable_pcie_master(hw); 1222 if (ret_val) 1223 hw_dbg("PCI-E Master disable polling has failed.\n"); 1224 1225 /* set the completion timeout for interface */ 1226 ret_val = igb_set_pcie_completion_timeout(hw); 1227 if (ret_val) { 1228 hw_dbg("PCI-E Set completion timeout has failed.\n"); 1229 } 1230 1231 hw_dbg("Masking off all interrupts\n"); 1232 wr32(E1000_IMC, 0xffffffff); 1233 1234 wr32(E1000_RCTL, 0); 1235 wr32(E1000_TCTL, E1000_TCTL_PSP); 1236 wrfl(); 1237 1238 msleep(10); 1239 1240 ctrl = rd32(E1000_CTRL); 1241 1242 hw_dbg("Issuing a global reset to MAC\n"); 1243 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); 1244 1245 ret_val = igb_get_auto_rd_done(hw); 1246 if (ret_val) { 1247 /* 1248 * When auto config read does not complete, do not 1249 * return with an error. This can happen in situations 1250 * where there is no eeprom and prevents getting link. 1251 */ 1252 hw_dbg("Auto Read Done did not complete\n"); 1253 } 1254 1255 /* If EEPROM is not present, run manual init scripts */ 1256 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 1257 igb_reset_init_script_82575(hw); 1258 1259 /* Clear any pending interrupt events. */ 1260 wr32(E1000_IMC, 0xffffffff); 1261 icr = rd32(E1000_ICR); 1262 1263 /* Install any alternate MAC address into RAR0 */ 1264 ret_val = igb_check_alt_mac_addr(hw); 1265 1266 return ret_val; 1267 } 1268 1269 /** 1270 * igb_init_hw_82575 - Initialize hardware 1271 * @hw: pointer to the HW structure 1272 * 1273 * This inits the hardware readying it for operation. 1274 **/ 1275 static s32 igb_init_hw_82575(struct e1000_hw *hw) 1276 { 1277 struct e1000_mac_info *mac = &hw->mac; 1278 s32 ret_val; 1279 u16 i, rar_count = mac->rar_entry_count; 1280 1281 /* Initialize identification LED */ 1282 ret_val = igb_id_led_init(hw); 1283 if (ret_val) { 1284 hw_dbg("Error initializing identification LED\n"); 1285 /* This is not fatal and we should not stop init due to this */ 1286 } 1287 1288 /* Disabling VLAN filtering */ 1289 hw_dbg("Initializing the IEEE VLAN\n"); 1290 if (hw->mac.type == e1000_i350) 1291 igb_clear_vfta_i350(hw); 1292 else 1293 igb_clear_vfta(hw); 1294 1295 /* Setup the receive address */ 1296 igb_init_rx_addrs(hw, rar_count); 1297 1298 /* Zero out the Multicast HASH table */ 1299 hw_dbg("Zeroing the MTA\n"); 1300 for (i = 0; i < mac->mta_reg_count; i++) 1301 array_wr32(E1000_MTA, i, 0); 1302 1303 /* Zero out the Unicast HASH table */ 1304 hw_dbg("Zeroing the UTA\n"); 1305 for (i = 0; i < mac->uta_reg_count; i++) 1306 array_wr32(E1000_UTA, i, 0); 1307 1308 /* Setup link and flow control */ 1309 ret_val = igb_setup_link(hw); 1310 1311 /* 1312 * Clear all of the statistics registers (clear on read). It is 1313 * important that we do this after we have tried to establish link 1314 * because the symbol error count will increment wildly if there 1315 * is no link. 1316 */ 1317 igb_clear_hw_cntrs_82575(hw); 1318 return ret_val; 1319 } 1320 1321 /** 1322 * igb_setup_copper_link_82575 - Configure copper link settings 1323 * @hw: pointer to the HW structure 1324 * 1325 * Configures the link for auto-neg or forced speed and duplex. Then we check 1326 * for link, once link is established calls to configure collision distance 1327 * and flow control are called. 1328 **/ 1329 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) 1330 { 1331 u32 ctrl; 1332 s32 ret_val; 1333 u32 phpm_reg; 1334 1335 ctrl = rd32(E1000_CTRL); 1336 ctrl |= E1000_CTRL_SLU; 1337 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1338 wr32(E1000_CTRL, ctrl); 1339 1340 /* Clear Go Link Disconnect bit */ 1341 if (hw->mac.type >= e1000_82580) { 1342 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT); 1343 phpm_reg &= ~E1000_82580_PM_GO_LINKD; 1344 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg); 1345 } 1346 1347 ret_val = igb_setup_serdes_link_82575(hw); 1348 if (ret_val) 1349 goto out; 1350 1351 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { 1352 /* allow time for SFP cage time to power up phy */ 1353 msleep(300); 1354 1355 ret_val = hw->phy.ops.reset(hw); 1356 if (ret_val) { 1357 hw_dbg("Error resetting the PHY.\n"); 1358 goto out; 1359 } 1360 } 1361 switch (hw->phy.type) { 1362 case e1000_phy_i210: 1363 case e1000_phy_m88: 1364 if (hw->phy.id == I347AT4_E_PHY_ID || 1365 hw->phy.id == M88E1112_E_PHY_ID) 1366 ret_val = igb_copper_link_setup_m88_gen2(hw); 1367 else 1368 ret_val = igb_copper_link_setup_m88(hw); 1369 break; 1370 case e1000_phy_igp_3: 1371 ret_val = igb_copper_link_setup_igp(hw); 1372 break; 1373 case e1000_phy_82580: 1374 ret_val = igb_copper_link_setup_82580(hw); 1375 break; 1376 default: 1377 ret_val = -E1000_ERR_PHY; 1378 break; 1379 } 1380 1381 if (ret_val) 1382 goto out; 1383 1384 ret_val = igb_setup_copper_link(hw); 1385 out: 1386 return ret_val; 1387 } 1388 1389 /** 1390 * igb_setup_serdes_link_82575 - Setup link for serdes 1391 * @hw: pointer to the HW structure 1392 * 1393 * Configure the physical coding sub-layer (PCS) link. The PCS link is 1394 * used on copper connections where the serialized gigabit media independent 1395 * interface (sgmii), or serdes fiber is being used. Configures the link 1396 * for auto-negotiation or forces speed/duplex. 1397 **/ 1398 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) 1399 { 1400 u32 ctrl_ext, ctrl_reg, reg, anadv_reg; 1401 bool pcs_autoneg; 1402 s32 ret_val = E1000_SUCCESS; 1403 u16 data; 1404 1405 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1406 !igb_sgmii_active_82575(hw)) 1407 return ret_val; 1408 1409 1410 /* 1411 * On the 82575, SerDes loopback mode persists until it is 1412 * explicitly turned off or a power cycle is performed. A read to 1413 * the register does not indicate its status. Therefore, we ensure 1414 * loopback mode is disabled during initialization. 1415 */ 1416 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1417 1418 /* power on the sfp cage if present */ 1419 ctrl_ext = rd32(E1000_CTRL_EXT); 1420 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1421 wr32(E1000_CTRL_EXT, ctrl_ext); 1422 1423 ctrl_reg = rd32(E1000_CTRL); 1424 ctrl_reg |= E1000_CTRL_SLU; 1425 1426 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { 1427 /* set both sw defined pins */ 1428 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; 1429 1430 /* Set switch control to serdes energy detect */ 1431 reg = rd32(E1000_CONNSW); 1432 reg |= E1000_CONNSW_ENRGSRC; 1433 wr32(E1000_CONNSW, reg); 1434 } 1435 1436 reg = rd32(E1000_PCS_LCTL); 1437 1438 /* default pcs_autoneg to the same setting as mac autoneg */ 1439 pcs_autoneg = hw->mac.autoneg; 1440 1441 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 1442 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1443 /* sgmii mode lets the phy handle forcing speed/duplex */ 1444 pcs_autoneg = true; 1445 /* autoneg time out should be disabled for SGMII mode */ 1446 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); 1447 break; 1448 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1449 /* disable PCS autoneg and support parallel detect only */ 1450 pcs_autoneg = false; 1451 default: 1452 if (hw->mac.type == e1000_82575 || 1453 hw->mac.type == e1000_82576) { 1454 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); 1455 if (ret_val) { 1456 printk(KERN_DEBUG "NVM Read Error\n\n"); 1457 return ret_val; 1458 } 1459 1460 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) 1461 pcs_autoneg = false; 1462 } 1463 1464 /* 1465 * non-SGMII modes only supports a speed of 1000/Full for the 1466 * link so it is best to just force the MAC and let the pcs 1467 * link either autoneg or be forced to 1000/Full 1468 */ 1469 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | 1470 E1000_CTRL_FD | E1000_CTRL_FRCDPX; 1471 1472 /* set speed of 1000/Full if speed/duplex is forced */ 1473 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; 1474 break; 1475 } 1476 1477 wr32(E1000_CTRL, ctrl_reg); 1478 1479 /* 1480 * New SerDes mode allows for forcing speed or autonegotiating speed 1481 * at 1gb. Autoneg should be default set by most drivers. This is the 1482 * mode that will be compatible with older link partners and switches. 1483 * However, both are supported by the hardware and some drivers/tools. 1484 */ 1485 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | 1486 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); 1487 1488 if (pcs_autoneg) { 1489 /* Set PCS register for autoneg */ 1490 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ 1491 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ 1492 1493 /* Disable force flow control for autoneg */ 1494 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; 1495 1496 /* Configure flow control advertisement for autoneg */ 1497 anadv_reg = rd32(E1000_PCS_ANADV); 1498 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); 1499 switch (hw->fc.requested_mode) { 1500 case e1000_fc_full: 1501 case e1000_fc_rx_pause: 1502 anadv_reg |= E1000_TXCW_ASM_DIR; 1503 anadv_reg |= E1000_TXCW_PAUSE; 1504 break; 1505 case e1000_fc_tx_pause: 1506 anadv_reg |= E1000_TXCW_ASM_DIR; 1507 break; 1508 default: 1509 break; 1510 } 1511 wr32(E1000_PCS_ANADV, anadv_reg); 1512 1513 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); 1514 } else { 1515 /* Set PCS register for forced link */ 1516 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ 1517 1518 /* Force flow control for forced link */ 1519 reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1520 1521 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); 1522 } 1523 1524 wr32(E1000_PCS_LCTL, reg); 1525 1526 if (!pcs_autoneg && !igb_sgmii_active_82575(hw)) 1527 igb_force_mac_fc(hw); 1528 1529 return ret_val; 1530 } 1531 1532 /** 1533 * igb_sgmii_active_82575 - Return sgmii state 1534 * @hw: pointer to the HW structure 1535 * 1536 * 82575 silicon has a serialized gigabit media independent interface (sgmii) 1537 * which can be enabled for use in the embedded applications. Simply 1538 * return the current state of the sgmii interface. 1539 **/ 1540 static bool igb_sgmii_active_82575(struct e1000_hw *hw) 1541 { 1542 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1543 return dev_spec->sgmii_active; 1544 } 1545 1546 /** 1547 * igb_reset_init_script_82575 - Inits HW defaults after reset 1548 * @hw: pointer to the HW structure 1549 * 1550 * Inits recommended HW defaults after a reset when there is no EEPROM 1551 * detected. This is only for the 82575. 1552 **/ 1553 static s32 igb_reset_init_script_82575(struct e1000_hw *hw) 1554 { 1555 if (hw->mac.type == e1000_82575) { 1556 hw_dbg("Running reset init script for 82575\n"); 1557 /* SerDes configuration via SERDESCTRL */ 1558 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); 1559 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); 1560 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); 1561 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); 1562 1563 /* CCM configuration via CCMCTL register */ 1564 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); 1565 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); 1566 1567 /* PCIe lanes configuration */ 1568 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); 1569 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); 1570 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); 1571 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); 1572 1573 /* PCIe PLL Configuration */ 1574 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); 1575 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); 1576 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); 1577 } 1578 1579 return 0; 1580 } 1581 1582 /** 1583 * igb_read_mac_addr_82575 - Read device MAC address 1584 * @hw: pointer to the HW structure 1585 **/ 1586 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) 1587 { 1588 s32 ret_val = 0; 1589 1590 /* 1591 * If there's an alternate MAC address place it in RAR0 1592 * so that it will override the Si installed default perm 1593 * address. 1594 */ 1595 ret_val = igb_check_alt_mac_addr(hw); 1596 if (ret_val) 1597 goto out; 1598 1599 ret_val = igb_read_mac_addr(hw); 1600 1601 out: 1602 return ret_val; 1603 } 1604 1605 /** 1606 * igb_power_down_phy_copper_82575 - Remove link during PHY power down 1607 * @hw: pointer to the HW structure 1608 * 1609 * In the case of a PHY power down to save power, or to turn off link during a 1610 * driver unload, or wake on lan is not enabled, remove the link. 1611 **/ 1612 void igb_power_down_phy_copper_82575(struct e1000_hw *hw) 1613 { 1614 /* If the management interface is not enabled, then power down */ 1615 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) 1616 igb_power_down_phy_copper(hw); 1617 } 1618 1619 /** 1620 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters 1621 * @hw: pointer to the HW structure 1622 * 1623 * Clears the hardware counters by reading the counter registers. 1624 **/ 1625 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) 1626 { 1627 igb_clear_hw_cntrs_base(hw); 1628 1629 rd32(E1000_PRC64); 1630 rd32(E1000_PRC127); 1631 rd32(E1000_PRC255); 1632 rd32(E1000_PRC511); 1633 rd32(E1000_PRC1023); 1634 rd32(E1000_PRC1522); 1635 rd32(E1000_PTC64); 1636 rd32(E1000_PTC127); 1637 rd32(E1000_PTC255); 1638 rd32(E1000_PTC511); 1639 rd32(E1000_PTC1023); 1640 rd32(E1000_PTC1522); 1641 1642 rd32(E1000_ALGNERRC); 1643 rd32(E1000_RXERRC); 1644 rd32(E1000_TNCRS); 1645 rd32(E1000_CEXTERR); 1646 rd32(E1000_TSCTC); 1647 rd32(E1000_TSCTFC); 1648 1649 rd32(E1000_MGTPRC); 1650 rd32(E1000_MGTPDC); 1651 rd32(E1000_MGTPTC); 1652 1653 rd32(E1000_IAC); 1654 rd32(E1000_ICRXOC); 1655 1656 rd32(E1000_ICRXPTC); 1657 rd32(E1000_ICRXATC); 1658 rd32(E1000_ICTXPTC); 1659 rd32(E1000_ICTXATC); 1660 rd32(E1000_ICTXQEC); 1661 rd32(E1000_ICTXQMTC); 1662 rd32(E1000_ICRXDMTC); 1663 1664 rd32(E1000_CBTMPC); 1665 rd32(E1000_HTDPMC); 1666 rd32(E1000_CBRMPC); 1667 rd32(E1000_RPTHC); 1668 rd32(E1000_HGPTC); 1669 rd32(E1000_HTCBDPC); 1670 rd32(E1000_HGORCL); 1671 rd32(E1000_HGORCH); 1672 rd32(E1000_HGOTCL); 1673 rd32(E1000_HGOTCH); 1674 rd32(E1000_LENERRS); 1675 1676 /* This register should not be read in copper configurations */ 1677 if (hw->phy.media_type == e1000_media_type_internal_serdes || 1678 igb_sgmii_active_82575(hw)) 1679 rd32(E1000_SCVPC); 1680 } 1681 1682 /** 1683 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable 1684 * @hw: pointer to the HW structure 1685 * 1686 * After rx enable if managability is enabled then there is likely some 1687 * bad data at the start of the fifo and possibly in the DMA fifo. This 1688 * function clears the fifos and flushes any packets that came in as rx was 1689 * being enabled. 1690 **/ 1691 void igb_rx_fifo_flush_82575(struct e1000_hw *hw) 1692 { 1693 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; 1694 int i, ms_wait; 1695 1696 if (hw->mac.type != e1000_82575 || 1697 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) 1698 return; 1699 1700 /* Disable all RX queues */ 1701 for (i = 0; i < 4; i++) { 1702 rxdctl[i] = rd32(E1000_RXDCTL(i)); 1703 wr32(E1000_RXDCTL(i), 1704 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); 1705 } 1706 /* Poll all queues to verify they have shut down */ 1707 for (ms_wait = 0; ms_wait < 10; ms_wait++) { 1708 msleep(1); 1709 rx_enabled = 0; 1710 for (i = 0; i < 4; i++) 1711 rx_enabled |= rd32(E1000_RXDCTL(i)); 1712 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) 1713 break; 1714 } 1715 1716 if (ms_wait == 10) 1717 hw_dbg("Queue disable timed out after 10ms\n"); 1718 1719 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all 1720 * incoming packets are rejected. Set enable and wait 2ms so that 1721 * any packet that was coming in as RCTL.EN was set is flushed 1722 */ 1723 rfctl = rd32(E1000_RFCTL); 1724 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); 1725 1726 rlpml = rd32(E1000_RLPML); 1727 wr32(E1000_RLPML, 0); 1728 1729 rctl = rd32(E1000_RCTL); 1730 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); 1731 temp_rctl |= E1000_RCTL_LPE; 1732 1733 wr32(E1000_RCTL, temp_rctl); 1734 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); 1735 wrfl(); 1736 msleep(2); 1737 1738 /* Enable RX queues that were previously enabled and restore our 1739 * previous state 1740 */ 1741 for (i = 0; i < 4; i++) 1742 wr32(E1000_RXDCTL(i), rxdctl[i]); 1743 wr32(E1000_RCTL, rctl); 1744 wrfl(); 1745 1746 wr32(E1000_RLPML, rlpml); 1747 wr32(E1000_RFCTL, rfctl); 1748 1749 /* Flush receive errors generated by workaround */ 1750 rd32(E1000_ROC); 1751 rd32(E1000_RNBC); 1752 rd32(E1000_MPC); 1753 } 1754 1755 /** 1756 * igb_set_pcie_completion_timeout - set pci-e completion timeout 1757 * @hw: pointer to the HW structure 1758 * 1759 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, 1760 * however the hardware default for these parts is 500us to 1ms which is less 1761 * than the 10ms recommended by the pci-e spec. To address this we need to 1762 * increase the value to either 10ms to 200ms for capability version 1 config, 1763 * or 16ms to 55ms for version 2. 1764 **/ 1765 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) 1766 { 1767 u32 gcr = rd32(E1000_GCR); 1768 s32 ret_val = 0; 1769 u16 pcie_devctl2; 1770 1771 /* only take action if timeout value is defaulted to 0 */ 1772 if (gcr & E1000_GCR_CMPL_TMOUT_MASK) 1773 goto out; 1774 1775 /* 1776 * if capababilities version is type 1 we can write the 1777 * timeout of 10ms to 200ms through the GCR register 1778 */ 1779 if (!(gcr & E1000_GCR_CAP_VER2)) { 1780 gcr |= E1000_GCR_CMPL_TMOUT_10ms; 1781 goto out; 1782 } 1783 1784 /* 1785 * for version 2 capabilities we need to write the config space 1786 * directly in order to set the completion timeout value for 1787 * 16ms to 55ms 1788 */ 1789 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 1790 &pcie_devctl2); 1791 if (ret_val) 1792 goto out; 1793 1794 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; 1795 1796 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 1797 &pcie_devctl2); 1798 out: 1799 /* disable completion timeout resend */ 1800 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; 1801 1802 wr32(E1000_GCR, gcr); 1803 return ret_val; 1804 } 1805 1806 /** 1807 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing 1808 * @hw: pointer to the hardware struct 1809 * @enable: state to enter, either enabled or disabled 1810 * @pf: Physical Function pool - do not set anti-spoofing for the PF 1811 * 1812 * enables/disables L2 switch anti-spoofing functionality. 1813 **/ 1814 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) 1815 { 1816 u32 dtxswc; 1817 1818 switch (hw->mac.type) { 1819 case e1000_82576: 1820 case e1000_i350: 1821 dtxswc = rd32(E1000_DTXSWC); 1822 if (enable) { 1823 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | 1824 E1000_DTXSWC_VLAN_SPOOF_MASK); 1825 /* The PF can spoof - it has to in order to 1826 * support emulation mode NICs */ 1827 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); 1828 } else { 1829 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | 1830 E1000_DTXSWC_VLAN_SPOOF_MASK); 1831 } 1832 wr32(E1000_DTXSWC, dtxswc); 1833 break; 1834 default: 1835 break; 1836 } 1837 } 1838 1839 /** 1840 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback 1841 * @hw: pointer to the hardware struct 1842 * @enable: state to enter, either enabled or disabled 1843 * 1844 * enables/disables L2 switch loopback functionality. 1845 **/ 1846 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) 1847 { 1848 u32 dtxswc; 1849 1850 switch (hw->mac.type) { 1851 case e1000_82576: 1852 dtxswc = rd32(E1000_DTXSWC); 1853 if (enable) 1854 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1855 else 1856 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1857 wr32(E1000_DTXSWC, dtxswc); 1858 break; 1859 case e1000_i350: 1860 dtxswc = rd32(E1000_TXSWC); 1861 if (enable) 1862 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1863 else 1864 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1865 wr32(E1000_TXSWC, dtxswc); 1866 break; 1867 default: 1868 /* Currently no other hardware supports loopback */ 1869 break; 1870 } 1871 1872 1873 } 1874 1875 /** 1876 * igb_vmdq_set_replication_pf - enable or disable vmdq replication 1877 * @hw: pointer to the hardware struct 1878 * @enable: state to enter, either enabled or disabled 1879 * 1880 * enables/disables replication of packets across multiple pools. 1881 **/ 1882 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) 1883 { 1884 u32 vt_ctl = rd32(E1000_VT_CTL); 1885 1886 if (enable) 1887 vt_ctl |= E1000_VT_CTL_VM_REPL_EN; 1888 else 1889 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; 1890 1891 wr32(E1000_VT_CTL, vt_ctl); 1892 } 1893 1894 /** 1895 * igb_read_phy_reg_82580 - Read 82580 MDI control register 1896 * @hw: pointer to the HW structure 1897 * @offset: register offset to be read 1898 * @data: pointer to the read data 1899 * 1900 * Reads the MDI control register in the PHY at offset and stores the 1901 * information read to data. 1902 **/ 1903 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) 1904 { 1905 s32 ret_val; 1906 1907 1908 ret_val = hw->phy.ops.acquire(hw); 1909 if (ret_val) 1910 goto out; 1911 1912 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 1913 1914 hw->phy.ops.release(hw); 1915 1916 out: 1917 return ret_val; 1918 } 1919 1920 /** 1921 * igb_write_phy_reg_82580 - Write 82580 MDI control register 1922 * @hw: pointer to the HW structure 1923 * @offset: register offset to write to 1924 * @data: data to write to register at offset 1925 * 1926 * Writes data to MDI control register in the PHY at offset. 1927 **/ 1928 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) 1929 { 1930 s32 ret_val; 1931 1932 1933 ret_val = hw->phy.ops.acquire(hw); 1934 if (ret_val) 1935 goto out; 1936 1937 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 1938 1939 hw->phy.ops.release(hw); 1940 1941 out: 1942 return ret_val; 1943 } 1944 1945 /** 1946 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits 1947 * @hw: pointer to the HW structure 1948 * 1949 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on 1950 * the values found in the EEPROM. This addresses an issue in which these 1951 * bits are not restored from EEPROM after reset. 1952 **/ 1953 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) 1954 { 1955 s32 ret_val = 0; 1956 u32 mdicnfg; 1957 u16 nvm_data = 0; 1958 1959 if (hw->mac.type != e1000_82580) 1960 goto out; 1961 if (!igb_sgmii_active_82575(hw)) 1962 goto out; 1963 1964 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 1965 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 1966 &nvm_data); 1967 if (ret_val) { 1968 hw_dbg("NVM Read Error\n"); 1969 goto out; 1970 } 1971 1972 mdicnfg = rd32(E1000_MDICNFG); 1973 if (nvm_data & NVM_WORD24_EXT_MDIO) 1974 mdicnfg |= E1000_MDICNFG_EXT_MDIO; 1975 if (nvm_data & NVM_WORD24_COM_MDIO) 1976 mdicnfg |= E1000_MDICNFG_COM_MDIO; 1977 wr32(E1000_MDICNFG, mdicnfg); 1978 out: 1979 return ret_val; 1980 } 1981 1982 /** 1983 * igb_reset_hw_82580 - Reset hardware 1984 * @hw: pointer to the HW structure 1985 * 1986 * This resets function or entire device (all ports, etc.) 1987 * to a known state. 1988 **/ 1989 static s32 igb_reset_hw_82580(struct e1000_hw *hw) 1990 { 1991 s32 ret_val = 0; 1992 /* BH SW mailbox bit in SW_FW_SYNC */ 1993 u16 swmbsw_mask = E1000_SW_SYNCH_MB; 1994 u32 ctrl, icr; 1995 bool global_device_reset = hw->dev_spec._82575.global_device_reset; 1996 1997 1998 hw->dev_spec._82575.global_device_reset = false; 1999 2000 /* due to hw errata, global device reset doesn't always 2001 * work on 82580 2002 */ 2003 if (hw->mac.type == e1000_82580) 2004 global_device_reset = false; 2005 2006 /* Get current control state. */ 2007 ctrl = rd32(E1000_CTRL); 2008 2009 /* 2010 * Prevent the PCI-E bus from sticking if there is no TLP connection 2011 * on the last TLP read/write transaction when MAC is reset. 2012 */ 2013 ret_val = igb_disable_pcie_master(hw); 2014 if (ret_val) 2015 hw_dbg("PCI-E Master disable polling has failed.\n"); 2016 2017 hw_dbg("Masking off all interrupts\n"); 2018 wr32(E1000_IMC, 0xffffffff); 2019 wr32(E1000_RCTL, 0); 2020 wr32(E1000_TCTL, E1000_TCTL_PSP); 2021 wrfl(); 2022 2023 msleep(10); 2024 2025 /* Determine whether or not a global dev reset is requested */ 2026 if (global_device_reset && 2027 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) 2028 global_device_reset = false; 2029 2030 if (global_device_reset && 2031 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) 2032 ctrl |= E1000_CTRL_DEV_RST; 2033 else 2034 ctrl |= E1000_CTRL_RST; 2035 2036 wr32(E1000_CTRL, ctrl); 2037 wrfl(); 2038 2039 /* Add delay to insure DEV_RST has time to complete */ 2040 if (global_device_reset) 2041 msleep(5); 2042 2043 ret_val = igb_get_auto_rd_done(hw); 2044 if (ret_val) { 2045 /* 2046 * When auto config read does not complete, do not 2047 * return with an error. This can happen in situations 2048 * where there is no eeprom and prevents getting link. 2049 */ 2050 hw_dbg("Auto Read Done did not complete\n"); 2051 } 2052 2053 /* If EEPROM is not present, run manual init scripts */ 2054 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 2055 igb_reset_init_script_82575(hw); 2056 2057 /* clear global device reset status bit */ 2058 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); 2059 2060 /* Clear any pending interrupt events. */ 2061 wr32(E1000_IMC, 0xffffffff); 2062 icr = rd32(E1000_ICR); 2063 2064 ret_val = igb_reset_mdicnfg_82580(hw); 2065 if (ret_val) 2066 hw_dbg("Could not reset MDICNFG based on EEPROM\n"); 2067 2068 /* Install any alternate MAC address into RAR0 */ 2069 ret_val = igb_check_alt_mac_addr(hw); 2070 2071 /* Release semaphore */ 2072 if (global_device_reset) 2073 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); 2074 2075 return ret_val; 2076 } 2077 2078 /** 2079 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size 2080 * @data: data received by reading RXPBS register 2081 * 2082 * The 82580 uses a table based approach for packet buffer allocation sizes. 2083 * This function converts the retrieved value into the correct table value 2084 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 2085 * 0x0 36 72 144 1 2 4 8 16 2086 * 0x8 35 70 140 rsv rsv rsv rsv rsv 2087 */ 2088 u16 igb_rxpbs_adjust_82580(u32 data) 2089 { 2090 u16 ret_val = 0; 2091 2092 if (data < E1000_82580_RXPBS_TABLE_SIZE) 2093 ret_val = e1000_82580_rxpbs_table[data]; 2094 2095 return ret_val; 2096 } 2097 2098 /** 2099 * igb_validate_nvm_checksum_with_offset - Validate EEPROM 2100 * checksum 2101 * @hw: pointer to the HW structure 2102 * @offset: offset in words of the checksum protected region 2103 * 2104 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2105 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2106 **/ 2107 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, 2108 u16 offset) 2109 { 2110 s32 ret_val = 0; 2111 u16 checksum = 0; 2112 u16 i, nvm_data; 2113 2114 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { 2115 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2116 if (ret_val) { 2117 hw_dbg("NVM Read Error\n"); 2118 goto out; 2119 } 2120 checksum += nvm_data; 2121 } 2122 2123 if (checksum != (u16) NVM_SUM) { 2124 hw_dbg("NVM Checksum Invalid\n"); 2125 ret_val = -E1000_ERR_NVM; 2126 goto out; 2127 } 2128 2129 out: 2130 return ret_val; 2131 } 2132 2133 /** 2134 * igb_update_nvm_checksum_with_offset - Update EEPROM 2135 * checksum 2136 * @hw: pointer to the HW structure 2137 * @offset: offset in words of the checksum protected region 2138 * 2139 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2140 * up to the checksum. Then calculates the EEPROM checksum and writes the 2141 * value to the EEPROM. 2142 **/ 2143 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2144 { 2145 s32 ret_val; 2146 u16 checksum = 0; 2147 u16 i, nvm_data; 2148 2149 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { 2150 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2151 if (ret_val) { 2152 hw_dbg("NVM Read Error while updating checksum.\n"); 2153 goto out; 2154 } 2155 checksum += nvm_data; 2156 } 2157 checksum = (u16) NVM_SUM - checksum; 2158 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, 2159 &checksum); 2160 if (ret_val) 2161 hw_dbg("NVM Write Error while updating checksum.\n"); 2162 2163 out: 2164 return ret_val; 2165 } 2166 2167 /** 2168 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum 2169 * @hw: pointer to the HW structure 2170 * 2171 * Calculates the EEPROM section checksum by reading/adding each word of 2172 * the EEPROM and then verifies that the sum of the EEPROM is 2173 * equal to 0xBABA. 2174 **/ 2175 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) 2176 { 2177 s32 ret_val = 0; 2178 u16 eeprom_regions_count = 1; 2179 u16 j, nvm_data; 2180 u16 nvm_offset; 2181 2182 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2183 if (ret_val) { 2184 hw_dbg("NVM Read Error\n"); 2185 goto out; 2186 } 2187 2188 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { 2189 /* if checksums compatibility bit is set validate checksums 2190 * for all 4 ports. */ 2191 eeprom_regions_count = 4; 2192 } 2193 2194 for (j = 0; j < eeprom_regions_count; j++) { 2195 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2196 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2197 nvm_offset); 2198 if (ret_val != 0) 2199 goto out; 2200 } 2201 2202 out: 2203 return ret_val; 2204 } 2205 2206 /** 2207 * igb_update_nvm_checksum_82580 - Update EEPROM checksum 2208 * @hw: pointer to the HW structure 2209 * 2210 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2211 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2212 * checksum and writes the value to the EEPROM. 2213 **/ 2214 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) 2215 { 2216 s32 ret_val; 2217 u16 j, nvm_data; 2218 u16 nvm_offset; 2219 2220 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2221 if (ret_val) { 2222 hw_dbg("NVM Read Error while updating checksum" 2223 " compatibility bit.\n"); 2224 goto out; 2225 } 2226 2227 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { 2228 /* set compatibility bit to validate checksums appropriately */ 2229 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; 2230 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, 2231 &nvm_data); 2232 if (ret_val) { 2233 hw_dbg("NVM Write Error while updating checksum" 2234 " compatibility bit.\n"); 2235 goto out; 2236 } 2237 } 2238 2239 for (j = 0; j < 4; j++) { 2240 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2241 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2242 if (ret_val) 2243 goto out; 2244 } 2245 2246 out: 2247 return ret_val; 2248 } 2249 2250 /** 2251 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum 2252 * @hw: pointer to the HW structure 2253 * 2254 * Calculates the EEPROM section checksum by reading/adding each word of 2255 * the EEPROM and then verifies that the sum of the EEPROM is 2256 * equal to 0xBABA. 2257 **/ 2258 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) 2259 { 2260 s32 ret_val = 0; 2261 u16 j; 2262 u16 nvm_offset; 2263 2264 for (j = 0; j < 4; j++) { 2265 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2266 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2267 nvm_offset); 2268 if (ret_val != 0) 2269 goto out; 2270 } 2271 2272 out: 2273 return ret_val; 2274 } 2275 2276 /** 2277 * igb_update_nvm_checksum_i350 - Update EEPROM checksum 2278 * @hw: pointer to the HW structure 2279 * 2280 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2281 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2282 * checksum and writes the value to the EEPROM. 2283 **/ 2284 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) 2285 { 2286 s32 ret_val = 0; 2287 u16 j; 2288 u16 nvm_offset; 2289 2290 for (j = 0; j < 4; j++) { 2291 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2292 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2293 if (ret_val != 0) 2294 goto out; 2295 } 2296 2297 out: 2298 return ret_val; 2299 } 2300 2301 /** 2302 * igb_set_eee_i350 - Enable/disable EEE support 2303 * @hw: pointer to the HW structure 2304 * 2305 * Enable/disable EEE based on setting in dev_spec structure. 2306 * 2307 **/ 2308 s32 igb_set_eee_i350(struct e1000_hw *hw) 2309 { 2310 s32 ret_val = 0; 2311 u32 ipcnfg, eeer; 2312 2313 if ((hw->mac.type < e1000_i350) || 2314 (hw->phy.media_type != e1000_media_type_copper)) 2315 goto out; 2316 ipcnfg = rd32(E1000_IPCNFG); 2317 eeer = rd32(E1000_EEER); 2318 2319 /* enable or disable per user setting */ 2320 if (!(hw->dev_spec._82575.eee_disable)) { 2321 u32 eee_su = rd32(E1000_EEE_SU); 2322 2323 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); 2324 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | 2325 E1000_EEER_LPI_FC); 2326 2327 /* This bit should not be set in normal operation. */ 2328 if (eee_su & E1000_EEE_SU_LPI_CLK_STP) 2329 hw_dbg("LPI Clock Stop Bit should not be set!\n"); 2330 2331 2332 } else { 2333 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | 2334 E1000_IPCNFG_EEE_100M_AN); 2335 eeer &= ~(E1000_EEER_TX_LPI_EN | 2336 E1000_EEER_RX_LPI_EN | 2337 E1000_EEER_LPI_FC); 2338 } 2339 wr32(E1000_IPCNFG, ipcnfg); 2340 wr32(E1000_EEER, eeer); 2341 rd32(E1000_IPCNFG); 2342 rd32(E1000_EEER); 2343 out: 2344 2345 return ret_val; 2346 } 2347 2348 static const u8 e1000_emc_temp_data[4] = { 2349 E1000_EMC_INTERNAL_DATA, 2350 E1000_EMC_DIODE1_DATA, 2351 E1000_EMC_DIODE2_DATA, 2352 E1000_EMC_DIODE3_DATA 2353 }; 2354 static const u8 e1000_emc_therm_limit[4] = { 2355 E1000_EMC_INTERNAL_THERM_LIMIT, 2356 E1000_EMC_DIODE1_THERM_LIMIT, 2357 E1000_EMC_DIODE2_THERM_LIMIT, 2358 E1000_EMC_DIODE3_THERM_LIMIT 2359 }; 2360 2361 /* igb_get_thermal_sensor_data_generic - Gathers thermal sensor data 2362 * @hw: pointer to hardware structure 2363 * 2364 * Updates the temperatures in mac.thermal_sensor_data 2365 */ 2366 s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw) 2367 { 2368 s32 status = E1000_SUCCESS; 2369 u16 ets_offset; 2370 u16 ets_cfg; 2371 u16 ets_sensor; 2372 u8 num_sensors; 2373 u8 sensor_index; 2374 u8 sensor_location; 2375 u8 i; 2376 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2377 2378 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2379 return E1000_NOT_IMPLEMENTED; 2380 2381 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF); 2382 2383 /* Return the internal sensor only if ETS is unsupported */ 2384 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2385 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2386 return status; 2387 2388 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2389 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) 2390 != NVM_ETS_TYPE_EMC) 2391 return E1000_NOT_IMPLEMENTED; 2392 2393 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2394 if (num_sensors > E1000_MAX_SENSORS) 2395 num_sensors = E1000_MAX_SENSORS; 2396 2397 for (i = 1; i < num_sensors; i++) { 2398 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2399 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> 2400 NVM_ETS_DATA_INDEX_SHIFT); 2401 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> 2402 NVM_ETS_DATA_LOC_SHIFT); 2403 2404 if (sensor_location != 0) 2405 hw->phy.ops.read_i2c_byte(hw, 2406 e1000_emc_temp_data[sensor_index], 2407 E1000_I2C_THERMAL_SENSOR_ADDR, 2408 &data->sensor[i].temp); 2409 } 2410 return status; 2411 } 2412 2413 /* igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds 2414 * @hw: pointer to hardware structure 2415 * 2416 * Sets the thermal sensor thresholds according to the NVM map 2417 * and save off the threshold and location values into mac.thermal_sensor_data 2418 */ 2419 s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) 2420 { 2421 s32 status = E1000_SUCCESS; 2422 u16 ets_offset; 2423 u16 ets_cfg; 2424 u16 ets_sensor; 2425 u8 low_thresh_delta; 2426 u8 num_sensors; 2427 u8 sensor_index; 2428 u8 sensor_location; 2429 u8 therm_limit; 2430 u8 i; 2431 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 2432 2433 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) 2434 return E1000_NOT_IMPLEMENTED; 2435 2436 memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); 2437 2438 data->sensor[0].location = 0x1; 2439 data->sensor[0].caution_thresh = 2440 (rd32(E1000_THHIGHTC) & 0xFF); 2441 data->sensor[0].max_op_thresh = 2442 (rd32(E1000_THLOWTC) & 0xFF); 2443 2444 /* Return the internal sensor only if ETS is unsupported */ 2445 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); 2446 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) 2447 return status; 2448 2449 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); 2450 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) 2451 != NVM_ETS_TYPE_EMC) 2452 return E1000_NOT_IMPLEMENTED; 2453 2454 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> 2455 NVM_ETS_LTHRES_DELTA_SHIFT); 2456 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); 2457 2458 for (i = 1; i <= num_sensors; i++) { 2459 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); 2460 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> 2461 NVM_ETS_DATA_INDEX_SHIFT); 2462 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> 2463 NVM_ETS_DATA_LOC_SHIFT); 2464 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; 2465 2466 hw->phy.ops.write_i2c_byte(hw, 2467 e1000_emc_therm_limit[sensor_index], 2468 E1000_I2C_THERMAL_SENSOR_ADDR, 2469 therm_limit); 2470 2471 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { 2472 data->sensor[i].location = sensor_location; 2473 data->sensor[i].caution_thresh = therm_limit; 2474 data->sensor[i].max_op_thresh = therm_limit - 2475 low_thresh_delta; 2476 } 2477 } 2478 return status; 2479 } 2480 2481 static struct e1000_mac_operations e1000_mac_ops_82575 = { 2482 .init_hw = igb_init_hw_82575, 2483 .check_for_link = igb_check_for_link_82575, 2484 .rar_set = igb_rar_set, 2485 .read_mac_addr = igb_read_mac_addr_82575, 2486 .get_speed_and_duplex = igb_get_speed_and_duplex_copper, 2487 #ifdef CONFIG_IGB_HWMON 2488 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic, 2489 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic, 2490 #endif 2491 }; 2492 2493 static struct e1000_phy_operations e1000_phy_ops_82575 = { 2494 .acquire = igb_acquire_phy_82575, 2495 .get_cfg_done = igb_get_cfg_done_82575, 2496 .release = igb_release_phy_82575, 2497 .write_i2c_byte = igb_write_i2c_byte, 2498 .read_i2c_byte = igb_read_i2c_byte, 2499 }; 2500 2501 static struct e1000_nvm_operations e1000_nvm_ops_82575 = { 2502 .acquire = igb_acquire_nvm_82575, 2503 .read = igb_read_nvm_eerd, 2504 .release = igb_release_nvm_82575, 2505 .write = igb_write_nvm_spi, 2506 }; 2507 2508 const struct e1000_info e1000_82575_info = { 2509 .get_invariants = igb_get_invariants_82575, 2510 .mac_ops = &e1000_mac_ops_82575, 2511 .phy_ops = &e1000_phy_ops_82575, 2512 .nvm_ops = &e1000_nvm_ops_82575, 2513 }; 2514 2515