1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 #include "igb.h"
38 
39 static s32  igb_get_invariants_82575(struct e1000_hw *);
40 static s32  igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32  igb_check_for_link_82575(struct e1000_hw *);
45 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32  igb_init_hw_82575(struct e1000_hw *);
47 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32  igb_reset_hw_82575(struct e1000_hw *);
50 static s32  igb_reset_hw_82580(struct e1000_hw *);
51 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
52 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
53 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
55 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
56 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
59 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 						 u16 *);
61 static s32  igb_get_phy_id_82575(struct e1000_hw *);
62 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63 static bool igb_sgmii_active_82575(struct e1000_hw *);
64 static s32  igb_reset_init_script_82575(struct e1000_hw *);
65 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
66 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
67 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
68 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
71 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
72 static const u16 e1000_82580_rxpbs_table[] = {
73 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
74 
75 /* Due to a hw errata, if the host tries to  configure the VFTA register
76  * while performing queries from the BMC or DMA, then the VFTA in some
77  * cases won't be written.
78  */
79 
80 /**
81  *  igb_write_vfta_i350 - Write value to VLAN filter table
82  *  @hw: pointer to the HW structure
83  *  @offset: register offset in VLAN filter table
84  *  @value: register value written to VLAN filter table
85  *
86  *  Writes value at the given offset in the register array which stores
87  *  the VLAN filter table.
88  **/
89 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
90 {
91 	struct igb_adapter *adapter = hw->back;
92 	int i;
93 
94 	for (i = 10; i--;)
95 		array_wr32(E1000_VFTA, offset, value);
96 
97 	wrfl();
98 	adapter->shadow_vfta[offset] = value;
99 }
100 
101 /**
102  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
103  *  @hw: pointer to the HW structure
104  *
105  *  Called to determine if the I2C pins are being used for I2C or as an
106  *  external MDIO interface since the two options are mutually exclusive.
107  **/
108 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
109 {
110 	u32 reg = 0;
111 	bool ext_mdio = false;
112 
113 	switch (hw->mac.type) {
114 	case e1000_82575:
115 	case e1000_82576:
116 		reg = rd32(E1000_MDIC);
117 		ext_mdio = !!(reg & E1000_MDIC_DEST);
118 		break;
119 	case e1000_82580:
120 	case e1000_i350:
121 	case e1000_i354:
122 	case e1000_i210:
123 	case e1000_i211:
124 		reg = rd32(E1000_MDICNFG);
125 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
126 		break;
127 	default:
128 		break;
129 	}
130 	return ext_mdio;
131 }
132 
133 /**
134  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
135  *  @hw: pointer to the HW structure
136  *
137  *  Poll the M88E1112 interfaces to see which interface achieved link.
138  */
139 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	s32 ret_val;
143 	u16 data;
144 	u8 port = 0;
145 
146 	/* Check the copper medium. */
147 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148 	if (ret_val)
149 		return ret_val;
150 
151 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
152 	if (ret_val)
153 		return ret_val;
154 
155 	if (data & E1000_M88E1112_STATUS_LINK)
156 		port = E1000_MEDIA_PORT_COPPER;
157 
158 	/* Check the other medium. */
159 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
160 	if (ret_val)
161 		return ret_val;
162 
163 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
164 	if (ret_val)
165 		return ret_val;
166 
167 
168 	if (data & E1000_M88E1112_STATUS_LINK)
169 		port = E1000_MEDIA_PORT_OTHER;
170 
171 	/* Determine if a swap needs to happen. */
172 	if (port && (hw->dev_spec._82575.media_port != port)) {
173 		hw->dev_spec._82575.media_port = port;
174 		hw->dev_spec._82575.media_changed = true;
175 	}
176 
177 	if (port == E1000_MEDIA_PORT_COPPER) {
178 		/* reset page to 0 */
179 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
180 		if (ret_val)
181 			return ret_val;
182 		igb_check_for_link_82575(hw);
183 	} else {
184 		igb_check_for_link_82575(hw);
185 		/* reset page to 0 */
186 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
187 		if (ret_val)
188 			return ret_val;
189 	}
190 
191 	return 0;
192 }
193 
194 /**
195  *  igb_init_phy_params_82575 - Init PHY func ptrs.
196  *  @hw: pointer to the HW structure
197  **/
198 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
199 {
200 	struct e1000_phy_info *phy = &hw->phy;
201 	s32 ret_val = 0;
202 	u32 ctrl_ext;
203 
204 	if (hw->phy.media_type != e1000_media_type_copper) {
205 		phy->type = e1000_phy_none;
206 		goto out;
207 	}
208 
209 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
210 	phy->reset_delay_us	= 100;
211 
212 	ctrl_ext = rd32(E1000_CTRL_EXT);
213 
214 	if (igb_sgmii_active_82575(hw)) {
215 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
216 		ctrl_ext |= E1000_CTRL_I2C_ENA;
217 	} else {
218 		phy->ops.reset = igb_phy_hw_reset;
219 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
220 	}
221 
222 	wr32(E1000_CTRL_EXT, ctrl_ext);
223 	igb_reset_mdicnfg_82580(hw);
224 
225 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
226 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
228 	} else {
229 		switch (hw->mac.type) {
230 		case e1000_82580:
231 		case e1000_i350:
232 		case e1000_i354:
233 		case e1000_i210:
234 		case e1000_i211:
235 			phy->ops.read_reg = igb_read_phy_reg_82580;
236 			phy->ops.write_reg = igb_write_phy_reg_82580;
237 			break;
238 		default:
239 			phy->ops.read_reg = igb_read_phy_reg_igp;
240 			phy->ops.write_reg = igb_write_phy_reg_igp;
241 		}
242 	}
243 
244 	/* set lan id */
245 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
246 			E1000_STATUS_FUNC_SHIFT;
247 
248 	/* Make sure the PHY is in a good state. Several people have reported
249 	 * firmware leaving the PHY's page select register set to something
250 	 * other than the default of zero, which causes the PHY ID read to
251 	 * access something other than the intended register.
252 	 */
253 	ret_val = hw->phy.ops.reset(hw);
254 	if (ret_val) {
255 		hw_dbg("Error resetting the PHY.\n");
256 		goto out;
257 	}
258 
259 	/* Set phy->phy_addr and phy->id. */
260 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
261 	ret_val = igb_get_phy_id_82575(hw);
262 	if (ret_val)
263 		return ret_val;
264 
265 	/* Verify phy id and set remaining function pointers */
266 	switch (phy->id) {
267 	case M88E1543_E_PHY_ID:
268 	case M88E1512_E_PHY_ID:
269 	case I347AT4_E_PHY_ID:
270 	case M88E1112_E_PHY_ID:
271 	case M88E1111_I_PHY_ID:
272 		phy->type		= e1000_phy_m88;
273 		phy->ops.check_polarity	= igb_check_polarity_m88;
274 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
275 		if (phy->id != M88E1111_I_PHY_ID)
276 			phy->ops.get_cable_length =
277 					 igb_get_cable_length_m88_gen2;
278 		else
279 			phy->ops.get_cable_length = igb_get_cable_length_m88;
280 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
281 		/* Check if this PHY is configured for media swap. */
282 		if (phy->id == M88E1112_E_PHY_ID) {
283 			u16 data;
284 
285 			ret_val = phy->ops.write_reg(hw,
286 						     E1000_M88E1112_PAGE_ADDR,
287 						     2);
288 			if (ret_val)
289 				goto out;
290 
291 			ret_val = phy->ops.read_reg(hw,
292 						    E1000_M88E1112_MAC_CTRL_1,
293 						    &data);
294 			if (ret_val)
295 				goto out;
296 
297 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
298 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
299 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
300 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
301 				hw->mac.ops.check_for_link =
302 						igb_check_for_link_media_swap;
303 		}
304 		if (phy->id == M88E1512_E_PHY_ID) {
305 			ret_val = igb_initialize_M88E1512_phy(hw);
306 			if (ret_val)
307 				goto out;
308 		}
309 		if (phy->id == M88E1543_E_PHY_ID) {
310 			ret_val = igb_initialize_M88E1543_phy(hw);
311 			if (ret_val)
312 				goto out;
313 		}
314 		break;
315 	case IGP03E1000_E_PHY_ID:
316 		phy->type = e1000_phy_igp_3;
317 		phy->ops.get_phy_info = igb_get_phy_info_igp;
318 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
319 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
320 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
321 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
322 		break;
323 	case I82580_I_PHY_ID:
324 	case I350_I_PHY_ID:
325 		phy->type = e1000_phy_82580;
326 		phy->ops.force_speed_duplex =
327 					 igb_phy_force_speed_duplex_82580;
328 		phy->ops.get_cable_length = igb_get_cable_length_82580;
329 		phy->ops.get_phy_info = igb_get_phy_info_82580;
330 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
331 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
332 		break;
333 	case I210_I_PHY_ID:
334 		phy->type		= e1000_phy_i210;
335 		phy->ops.check_polarity	= igb_check_polarity_m88;
336 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
337 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
338 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
339 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
340 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
341 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
342 		break;
343 	case BCM54616_E_PHY_ID:
344 		phy->type = e1000_phy_bcm54616;
345 		break;
346 	default:
347 		ret_val = -E1000_ERR_PHY;
348 		goto out;
349 	}
350 
351 out:
352 	return ret_val;
353 }
354 
355 /**
356  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
357  *  @hw: pointer to the HW structure
358  **/
359 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
360 {
361 	struct e1000_nvm_info *nvm = &hw->nvm;
362 	u32 eecd = rd32(E1000_EECD);
363 	u16 size;
364 
365 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
366 		     E1000_EECD_SIZE_EX_SHIFT);
367 
368 	/* Added to a constant, "size" becomes the left-shift value
369 	 * for setting word_size.
370 	 */
371 	size += NVM_WORD_SIZE_BASE_SHIFT;
372 
373 	/* Just in case size is out of range, cap it to the largest
374 	 * EEPROM size supported
375 	 */
376 	if (size > 15)
377 		size = 15;
378 
379 	nvm->word_size = BIT(size);
380 	nvm->opcode_bits = 8;
381 	nvm->delay_usec = 1;
382 
383 	switch (nvm->override) {
384 	case e1000_nvm_override_spi_large:
385 		nvm->page_size = 32;
386 		nvm->address_bits = 16;
387 		break;
388 	case e1000_nvm_override_spi_small:
389 		nvm->page_size = 8;
390 		nvm->address_bits = 8;
391 		break;
392 	default:
393 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
394 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
395 				    16 : 8;
396 		break;
397 	}
398 	if (nvm->word_size == BIT(15))
399 		nvm->page_size = 128;
400 
401 	nvm->type = e1000_nvm_eeprom_spi;
402 
403 	/* NVM Function Pointers */
404 	nvm->ops.acquire = igb_acquire_nvm_82575;
405 	nvm->ops.release = igb_release_nvm_82575;
406 	nvm->ops.write = igb_write_nvm_spi;
407 	nvm->ops.validate = igb_validate_nvm_checksum;
408 	nvm->ops.update = igb_update_nvm_checksum;
409 	if (nvm->word_size < BIT(15))
410 		nvm->ops.read = igb_read_nvm_eerd;
411 	else
412 		nvm->ops.read = igb_read_nvm_spi;
413 
414 	/* override generic family function pointers for specific descendants */
415 	switch (hw->mac.type) {
416 	case e1000_82580:
417 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
418 		nvm->ops.update = igb_update_nvm_checksum_82580;
419 		break;
420 	case e1000_i354:
421 	case e1000_i350:
422 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
423 		nvm->ops.update = igb_update_nvm_checksum_i350;
424 		break;
425 	default:
426 		break;
427 	}
428 
429 	return 0;
430 }
431 
432 /**
433  *  igb_init_mac_params_82575 - Init MAC func ptrs.
434  *  @hw: pointer to the HW structure
435  **/
436 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
437 {
438 	struct e1000_mac_info *mac = &hw->mac;
439 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
440 
441 	/* Set mta register count */
442 	mac->mta_reg_count = 128;
443 	/* Set uta register count */
444 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
445 	/* Set rar entry count */
446 	switch (mac->type) {
447 	case e1000_82576:
448 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
449 		break;
450 	case e1000_82580:
451 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
452 		break;
453 	case e1000_i350:
454 	case e1000_i354:
455 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
456 		break;
457 	default:
458 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
459 		break;
460 	}
461 	/* reset */
462 	if (mac->type >= e1000_82580)
463 		mac->ops.reset_hw = igb_reset_hw_82580;
464 	else
465 		mac->ops.reset_hw = igb_reset_hw_82575;
466 
467 	if (mac->type >= e1000_i210) {
468 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
469 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
470 
471 	} else {
472 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
473 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
474 	}
475 
476 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
477 		mac->ops.write_vfta = igb_write_vfta_i350;
478 	else
479 		mac->ops.write_vfta = igb_write_vfta;
480 
481 	/* Set if part includes ASF firmware */
482 	mac->asf_firmware_present = true;
483 	/* Set if manageability features are enabled. */
484 	mac->arc_subsystem_valid =
485 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
486 			? true : false;
487 	/* enable EEE on i350 parts and later parts */
488 	if (mac->type >= e1000_i350)
489 		dev_spec->eee_disable = false;
490 	else
491 		dev_spec->eee_disable = true;
492 	/* Allow a single clear of the SW semaphore on I210 and newer */
493 	if (mac->type >= e1000_i210)
494 		dev_spec->clear_semaphore_once = true;
495 	/* physical interface link setup */
496 	mac->ops.setup_physical_interface =
497 		(hw->phy.media_type == e1000_media_type_copper)
498 			? igb_setup_copper_link_82575
499 			: igb_setup_serdes_link_82575;
500 
501 	if (mac->type == e1000_82580) {
502 		switch (hw->device_id) {
503 		/* feature not supported on these id's */
504 		case E1000_DEV_ID_DH89XXCC_SGMII:
505 		case E1000_DEV_ID_DH89XXCC_SERDES:
506 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
507 		case E1000_DEV_ID_DH89XXCC_SFP:
508 			break;
509 		default:
510 			hw->dev_spec._82575.mas_capable = true;
511 			break;
512 		}
513 	}
514 	return 0;
515 }
516 
517 /**
518  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
519  *  @hw: pointer to the HW structure
520  *
521  *  The media type is chosen based on SFP module.
522  *  compatibility flags retrieved from SFP ID EEPROM.
523  **/
524 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
525 {
526 	s32 ret_val = E1000_ERR_CONFIG;
527 	u32 ctrl_ext = 0;
528 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
529 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
530 	u8 tranceiver_type = 0;
531 	s32 timeout = 3;
532 
533 	/* Turn I2C interface ON and power on sfp cage */
534 	ctrl_ext = rd32(E1000_CTRL_EXT);
535 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
536 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
537 
538 	wrfl();
539 
540 	/* Read SFP module data */
541 	while (timeout) {
542 		ret_val = igb_read_sfp_data_byte(hw,
543 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
544 			&tranceiver_type);
545 		if (ret_val == 0)
546 			break;
547 		msleep(100);
548 		timeout--;
549 	}
550 	if (ret_val != 0)
551 		goto out;
552 
553 	ret_val = igb_read_sfp_data_byte(hw,
554 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
555 			(u8 *)eth_flags);
556 	if (ret_val != 0)
557 		goto out;
558 
559 	/* Check if there is some SFP module plugged and powered */
560 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
561 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
562 		dev_spec->module_plugged = true;
563 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
564 			hw->phy.media_type = e1000_media_type_internal_serdes;
565 		} else if (eth_flags->e100_base_fx) {
566 			dev_spec->sgmii_active = true;
567 			hw->phy.media_type = e1000_media_type_internal_serdes;
568 		} else if (eth_flags->e1000_base_t) {
569 			dev_spec->sgmii_active = true;
570 			hw->phy.media_type = e1000_media_type_copper;
571 		} else {
572 			hw->phy.media_type = e1000_media_type_unknown;
573 			hw_dbg("PHY module has not been recognized\n");
574 			goto out;
575 		}
576 	} else {
577 		hw->phy.media_type = e1000_media_type_unknown;
578 	}
579 	ret_val = 0;
580 out:
581 	/* Restore I2C interface setting */
582 	wr32(E1000_CTRL_EXT, ctrl_ext);
583 	return ret_val;
584 }
585 
586 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
587 {
588 	struct e1000_mac_info *mac = &hw->mac;
589 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
590 	s32 ret_val;
591 	u32 ctrl_ext = 0;
592 	u32 link_mode = 0;
593 
594 	switch (hw->device_id) {
595 	case E1000_DEV_ID_82575EB_COPPER:
596 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
597 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
598 		mac->type = e1000_82575;
599 		break;
600 	case E1000_DEV_ID_82576:
601 	case E1000_DEV_ID_82576_NS:
602 	case E1000_DEV_ID_82576_NS_SERDES:
603 	case E1000_DEV_ID_82576_FIBER:
604 	case E1000_DEV_ID_82576_SERDES:
605 	case E1000_DEV_ID_82576_QUAD_COPPER:
606 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
607 	case E1000_DEV_ID_82576_SERDES_QUAD:
608 		mac->type = e1000_82576;
609 		break;
610 	case E1000_DEV_ID_82580_COPPER:
611 	case E1000_DEV_ID_82580_FIBER:
612 	case E1000_DEV_ID_82580_QUAD_FIBER:
613 	case E1000_DEV_ID_82580_SERDES:
614 	case E1000_DEV_ID_82580_SGMII:
615 	case E1000_DEV_ID_82580_COPPER_DUAL:
616 	case E1000_DEV_ID_DH89XXCC_SGMII:
617 	case E1000_DEV_ID_DH89XXCC_SERDES:
618 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
619 	case E1000_DEV_ID_DH89XXCC_SFP:
620 		mac->type = e1000_82580;
621 		break;
622 	case E1000_DEV_ID_I350_COPPER:
623 	case E1000_DEV_ID_I350_FIBER:
624 	case E1000_DEV_ID_I350_SERDES:
625 	case E1000_DEV_ID_I350_SGMII:
626 		mac->type = e1000_i350;
627 		break;
628 	case E1000_DEV_ID_I210_COPPER:
629 	case E1000_DEV_ID_I210_FIBER:
630 	case E1000_DEV_ID_I210_SERDES:
631 	case E1000_DEV_ID_I210_SGMII:
632 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
633 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
634 		mac->type = e1000_i210;
635 		break;
636 	case E1000_DEV_ID_I211_COPPER:
637 		mac->type = e1000_i211;
638 		break;
639 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
640 	case E1000_DEV_ID_I354_SGMII:
641 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
642 		mac->type = e1000_i354;
643 		break;
644 	default:
645 		return -E1000_ERR_MAC_INIT;
646 	}
647 
648 	/* Set media type */
649 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
650 	 * based on the EEPROM. We cannot rely upon device ID. There
651 	 * is no distinguishable difference between fiber and internal
652 	 * SerDes mode on the 82575. There can be an external PHY attached
653 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
654 	 */
655 	hw->phy.media_type = e1000_media_type_copper;
656 	dev_spec->sgmii_active = false;
657 	dev_spec->module_plugged = false;
658 
659 	ctrl_ext = rd32(E1000_CTRL_EXT);
660 
661 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
662 	switch (link_mode) {
663 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
664 		hw->phy.media_type = e1000_media_type_internal_serdes;
665 		break;
666 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
667 		/* Get phy control interface type set (MDIO vs. I2C)*/
668 		if (igb_sgmii_uses_mdio_82575(hw)) {
669 			hw->phy.media_type = e1000_media_type_copper;
670 			dev_spec->sgmii_active = true;
671 			break;
672 		}
673 		/* fall through for I2C based SGMII */
674 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
675 		/* read media type from SFP EEPROM */
676 		ret_val = igb_set_sfp_media_type_82575(hw);
677 		if ((ret_val != 0) ||
678 		    (hw->phy.media_type == e1000_media_type_unknown)) {
679 			/* If media type was not identified then return media
680 			 * type defined by the CTRL_EXT settings.
681 			 */
682 			hw->phy.media_type = e1000_media_type_internal_serdes;
683 
684 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
685 				hw->phy.media_type = e1000_media_type_copper;
686 				dev_spec->sgmii_active = true;
687 			}
688 
689 			break;
690 		}
691 
692 		/* do not change link mode for 100BaseFX */
693 		if (dev_spec->eth_flags.e100_base_fx)
694 			break;
695 
696 		/* change current link mode setting */
697 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
698 
699 		if (hw->phy.media_type == e1000_media_type_copper)
700 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
701 		else
702 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
703 
704 		wr32(E1000_CTRL_EXT, ctrl_ext);
705 
706 		break;
707 	default:
708 		break;
709 	}
710 
711 	/* mac initialization and operations */
712 	ret_val = igb_init_mac_params_82575(hw);
713 	if (ret_val)
714 		goto out;
715 
716 	/* NVM initialization */
717 	ret_val = igb_init_nvm_params_82575(hw);
718 	switch (hw->mac.type) {
719 	case e1000_i210:
720 	case e1000_i211:
721 		ret_val = igb_init_nvm_params_i210(hw);
722 		break;
723 	default:
724 		break;
725 	}
726 
727 	if (ret_val)
728 		goto out;
729 
730 	/* if part supports SR-IOV then initialize mailbox parameters */
731 	switch (mac->type) {
732 	case e1000_82576:
733 	case e1000_i350:
734 		igb_init_mbx_params_pf(hw);
735 		break;
736 	default:
737 		break;
738 	}
739 
740 	/* setup PHY parameters */
741 	ret_val = igb_init_phy_params_82575(hw);
742 
743 out:
744 	return ret_val;
745 }
746 
747 /**
748  *  igb_acquire_phy_82575 - Acquire rights to access PHY
749  *  @hw: pointer to the HW structure
750  *
751  *  Acquire access rights to the correct PHY.  This is a
752  *  function pointer entry point called by the api module.
753  **/
754 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
755 {
756 	u16 mask = E1000_SWFW_PHY0_SM;
757 
758 	if (hw->bus.func == E1000_FUNC_1)
759 		mask = E1000_SWFW_PHY1_SM;
760 	else if (hw->bus.func == E1000_FUNC_2)
761 		mask = E1000_SWFW_PHY2_SM;
762 	else if (hw->bus.func == E1000_FUNC_3)
763 		mask = E1000_SWFW_PHY3_SM;
764 
765 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
766 }
767 
768 /**
769  *  igb_release_phy_82575 - Release rights to access PHY
770  *  @hw: pointer to the HW structure
771  *
772  *  A wrapper to release access rights to the correct PHY.  This is a
773  *  function pointer entry point called by the api module.
774  **/
775 static void igb_release_phy_82575(struct e1000_hw *hw)
776 {
777 	u16 mask = E1000_SWFW_PHY0_SM;
778 
779 	if (hw->bus.func == E1000_FUNC_1)
780 		mask = E1000_SWFW_PHY1_SM;
781 	else if (hw->bus.func == E1000_FUNC_2)
782 		mask = E1000_SWFW_PHY2_SM;
783 	else if (hw->bus.func == E1000_FUNC_3)
784 		mask = E1000_SWFW_PHY3_SM;
785 
786 	hw->mac.ops.release_swfw_sync(hw, mask);
787 }
788 
789 /**
790  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
791  *  @hw: pointer to the HW structure
792  *  @offset: register offset to be read
793  *  @data: pointer to the read data
794  *
795  *  Reads the PHY register at offset using the serial gigabit media independent
796  *  interface and stores the retrieved information in data.
797  **/
798 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
799 					  u16 *data)
800 {
801 	s32 ret_val = -E1000_ERR_PARAM;
802 
803 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
804 		hw_dbg("PHY Address %u is out of range\n", offset);
805 		goto out;
806 	}
807 
808 	ret_val = hw->phy.ops.acquire(hw);
809 	if (ret_val)
810 		goto out;
811 
812 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
813 
814 	hw->phy.ops.release(hw);
815 
816 out:
817 	return ret_val;
818 }
819 
820 /**
821  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
822  *  @hw: pointer to the HW structure
823  *  @offset: register offset to write to
824  *  @data: data to write at register offset
825  *
826  *  Writes the data to PHY register at the offset using the serial gigabit
827  *  media independent interface.
828  **/
829 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
830 					   u16 data)
831 {
832 	s32 ret_val = -E1000_ERR_PARAM;
833 
834 
835 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
836 		hw_dbg("PHY Address %d is out of range\n", offset);
837 		goto out;
838 	}
839 
840 	ret_val = hw->phy.ops.acquire(hw);
841 	if (ret_val)
842 		goto out;
843 
844 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
845 
846 	hw->phy.ops.release(hw);
847 
848 out:
849 	return ret_val;
850 }
851 
852 /**
853  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
854  *  @hw: pointer to the HW structure
855  *
856  *  Retrieves the PHY address and ID for both PHY's which do and do not use
857  *  sgmi interface.
858  **/
859 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
860 {
861 	struct e1000_phy_info *phy = &hw->phy;
862 	s32  ret_val = 0;
863 	u16 phy_id;
864 	u32 ctrl_ext;
865 	u32 mdic;
866 
867 	/* Extra read required for some PHY's on i354 */
868 	if (hw->mac.type == e1000_i354)
869 		igb_get_phy_id(hw);
870 
871 	/* For SGMII PHYs, we try the list of possible addresses until
872 	 * we find one that works.  For non-SGMII PHYs
873 	 * (e.g. integrated copper PHYs), an address of 1 should
874 	 * work.  The result of this function should mean phy->phy_addr
875 	 * and phy->id are set correctly.
876 	 */
877 	if (!(igb_sgmii_active_82575(hw))) {
878 		phy->addr = 1;
879 		ret_val = igb_get_phy_id(hw);
880 		goto out;
881 	}
882 
883 	if (igb_sgmii_uses_mdio_82575(hw)) {
884 		switch (hw->mac.type) {
885 		case e1000_82575:
886 		case e1000_82576:
887 			mdic = rd32(E1000_MDIC);
888 			mdic &= E1000_MDIC_PHY_MASK;
889 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
890 			break;
891 		case e1000_82580:
892 		case e1000_i350:
893 		case e1000_i354:
894 		case e1000_i210:
895 		case e1000_i211:
896 			mdic = rd32(E1000_MDICNFG);
897 			mdic &= E1000_MDICNFG_PHY_MASK;
898 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
899 			break;
900 		default:
901 			ret_val = -E1000_ERR_PHY;
902 			goto out;
903 		}
904 		ret_val = igb_get_phy_id(hw);
905 		goto out;
906 	}
907 
908 	/* Power on sgmii phy if it is disabled */
909 	ctrl_ext = rd32(E1000_CTRL_EXT);
910 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
911 	wrfl();
912 	msleep(300);
913 
914 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
915 	 * Therefore, we need to test 1-7
916 	 */
917 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
918 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
919 		if (ret_val == 0) {
920 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
921 			       phy_id, phy->addr);
922 			/* At the time of this writing, The M88 part is
923 			 * the only supported SGMII PHY product.
924 			 */
925 			if (phy_id == M88_VENDOR)
926 				break;
927 		} else {
928 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
929 		}
930 	}
931 
932 	/* A valid PHY type couldn't be found. */
933 	if (phy->addr == 8) {
934 		phy->addr = 0;
935 		ret_val = -E1000_ERR_PHY;
936 		goto out;
937 	} else {
938 		ret_val = igb_get_phy_id(hw);
939 	}
940 
941 	/* restore previous sfp cage power state */
942 	wr32(E1000_CTRL_EXT, ctrl_ext);
943 
944 out:
945 	return ret_val;
946 }
947 
948 /**
949  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
950  *  @hw: pointer to the HW structure
951  *
952  *  Resets the PHY using the serial gigabit media independent interface.
953  **/
954 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
955 {
956 	struct e1000_phy_info *phy = &hw->phy;
957 	s32 ret_val;
958 
959 	/* This isn't a true "hard" reset, but is the only reset
960 	 * available to us at this time.
961 	 */
962 
963 	hw_dbg("Soft resetting SGMII attached PHY...\n");
964 
965 	/* SFP documentation requires the following to configure the SPF module
966 	 * to work on SGMII.  No further documentation is given.
967 	 */
968 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
969 	if (ret_val)
970 		goto out;
971 
972 	ret_val = igb_phy_sw_reset(hw);
973 	if (ret_val)
974 		goto out;
975 
976 	if (phy->id == M88E1512_E_PHY_ID)
977 		ret_val = igb_initialize_M88E1512_phy(hw);
978 	if (phy->id == M88E1543_E_PHY_ID)
979 		ret_val = igb_initialize_M88E1543_phy(hw);
980 out:
981 	return ret_val;
982 }
983 
984 /**
985  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
986  *  @hw: pointer to the HW structure
987  *  @active: true to enable LPLU, false to disable
988  *
989  *  Sets the LPLU D0 state according to the active flag.  When
990  *  activating LPLU this function also disables smart speed
991  *  and vice versa.  LPLU will not be activated unless the
992  *  device autonegotiation advertisement meets standards of
993  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
994  *  This is a function pointer entry point only called by
995  *  PHY setup routines.
996  **/
997 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
998 {
999 	struct e1000_phy_info *phy = &hw->phy;
1000 	s32 ret_val;
1001 	u16 data;
1002 
1003 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1004 	if (ret_val)
1005 		goto out;
1006 
1007 	if (active) {
1008 		data |= IGP02E1000_PM_D0_LPLU;
1009 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010 						 data);
1011 		if (ret_val)
1012 			goto out;
1013 
1014 		/* When LPLU is enabled, we should disable SmartSpeed */
1015 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1016 						&data);
1017 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1018 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1019 						 data);
1020 		if (ret_val)
1021 			goto out;
1022 	} else {
1023 		data &= ~IGP02E1000_PM_D0_LPLU;
1024 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1025 						 data);
1026 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1027 		 * during Dx states where the power conservation is most
1028 		 * important.  During driver activity we should enable
1029 		 * SmartSpeed, so performance is maintained.
1030 		 */
1031 		if (phy->smart_speed == e1000_smart_speed_on) {
1032 			ret_val = phy->ops.read_reg(hw,
1033 					IGP01E1000_PHY_PORT_CONFIG, &data);
1034 			if (ret_val)
1035 				goto out;
1036 
1037 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1038 			ret_val = phy->ops.write_reg(hw,
1039 					IGP01E1000_PHY_PORT_CONFIG, data);
1040 			if (ret_val)
1041 				goto out;
1042 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1043 			ret_val = phy->ops.read_reg(hw,
1044 					IGP01E1000_PHY_PORT_CONFIG, &data);
1045 			if (ret_val)
1046 				goto out;
1047 
1048 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1049 			ret_val = phy->ops.write_reg(hw,
1050 					IGP01E1000_PHY_PORT_CONFIG, data);
1051 			if (ret_val)
1052 				goto out;
1053 		}
1054 	}
1055 
1056 out:
1057 	return ret_val;
1058 }
1059 
1060 /**
1061  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1062  *  @hw: pointer to the HW structure
1063  *  @active: true to enable LPLU, false to disable
1064  *
1065  *  Sets the LPLU D0 state according to the active flag.  When
1066  *  activating LPLU this function also disables smart speed
1067  *  and vice versa.  LPLU will not be activated unless the
1068  *  device autonegotiation advertisement meets standards of
1069  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1070  *  This is a function pointer entry point only called by
1071  *  PHY setup routines.
1072  **/
1073 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1074 {
1075 	struct e1000_phy_info *phy = &hw->phy;
1076 	u16 data;
1077 
1078 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1079 
1080 	if (active) {
1081 		data |= E1000_82580_PM_D0_LPLU;
1082 
1083 		/* When LPLU is enabled, we should disable SmartSpeed */
1084 		data &= ~E1000_82580_PM_SPD;
1085 	} else {
1086 		data &= ~E1000_82580_PM_D0_LPLU;
1087 
1088 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1089 		 * during Dx states where the power conservation is most
1090 		 * important.  During driver activity we should enable
1091 		 * SmartSpeed, so performance is maintained.
1092 		 */
1093 		if (phy->smart_speed == e1000_smart_speed_on)
1094 			data |= E1000_82580_PM_SPD;
1095 		else if (phy->smart_speed == e1000_smart_speed_off)
1096 			data &= ~E1000_82580_PM_SPD; }
1097 
1098 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1099 	return 0;
1100 }
1101 
1102 /**
1103  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1104  *  @hw: pointer to the HW structure
1105  *  @active: boolean used to enable/disable lplu
1106  *
1107  *  Success returns 0, Failure returns 1
1108  *
1109  *  The low power link up (lplu) state is set to the power management level D3
1110  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1111  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1112  *  is used during Dx states where the power conservation is most important.
1113  *  During driver activity, SmartSpeed should be enabled so performance is
1114  *  maintained.
1115  **/
1116 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1117 {
1118 	struct e1000_phy_info *phy = &hw->phy;
1119 	u16 data;
1120 
1121 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1122 
1123 	if (!active) {
1124 		data &= ~E1000_82580_PM_D3_LPLU;
1125 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1126 		 * during Dx states where the power conservation is most
1127 		 * important.  During driver activity we should enable
1128 		 * SmartSpeed, so performance is maintained.
1129 		 */
1130 		if (phy->smart_speed == e1000_smart_speed_on)
1131 			data |= E1000_82580_PM_SPD;
1132 		else if (phy->smart_speed == e1000_smart_speed_off)
1133 			data &= ~E1000_82580_PM_SPD;
1134 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1135 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1136 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1137 		data |= E1000_82580_PM_D3_LPLU;
1138 		/* When LPLU is enabled, we should disable SmartSpeed */
1139 		data &= ~E1000_82580_PM_SPD;
1140 	}
1141 
1142 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1143 	return 0;
1144 }
1145 
1146 /**
1147  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1151  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1152  *  Return successful if access grant bit set, else clear the request for
1153  *  EEPROM access and return -E1000_ERR_NVM (-1).
1154  **/
1155 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1156 {
1157 	s32 ret_val;
1158 
1159 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1160 	if (ret_val)
1161 		goto out;
1162 
1163 	ret_val = igb_acquire_nvm(hw);
1164 
1165 	if (ret_val)
1166 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1167 
1168 out:
1169 	return ret_val;
1170 }
1171 
1172 /**
1173  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1174  *  @hw: pointer to the HW structure
1175  *
1176  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1177  *  then release the semaphores acquired.
1178  **/
1179 static void igb_release_nvm_82575(struct e1000_hw *hw)
1180 {
1181 	igb_release_nvm(hw);
1182 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1183 }
1184 
1185 /**
1186  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1187  *  @hw: pointer to the HW structure
1188  *  @mask: specifies which semaphore to acquire
1189  *
1190  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1191  *  will also specify which port we're acquiring the lock for.
1192  **/
1193 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1194 {
1195 	u32 swfw_sync;
1196 	u32 swmask = mask;
1197 	u32 fwmask = mask << 16;
1198 	s32 ret_val = 0;
1199 	s32 i = 0, timeout = 200;
1200 
1201 	while (i < timeout) {
1202 		if (igb_get_hw_semaphore(hw)) {
1203 			ret_val = -E1000_ERR_SWFW_SYNC;
1204 			goto out;
1205 		}
1206 
1207 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1208 		if (!(swfw_sync & (fwmask | swmask)))
1209 			break;
1210 
1211 		/* Firmware currently using resource (fwmask)
1212 		 * or other software thread using resource (swmask)
1213 		 */
1214 		igb_put_hw_semaphore(hw);
1215 		mdelay(5);
1216 		i++;
1217 	}
1218 
1219 	if (i == timeout) {
1220 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1221 		ret_val = -E1000_ERR_SWFW_SYNC;
1222 		goto out;
1223 	}
1224 
1225 	swfw_sync |= swmask;
1226 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1227 
1228 	igb_put_hw_semaphore(hw);
1229 
1230 out:
1231 	return ret_val;
1232 }
1233 
1234 /**
1235  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1236  *  @hw: pointer to the HW structure
1237  *  @mask: specifies which semaphore to acquire
1238  *
1239  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1240  *  will also specify which port we're releasing the lock for.
1241  **/
1242 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1243 {
1244 	u32 swfw_sync;
1245 
1246 	while (igb_get_hw_semaphore(hw) != 0)
1247 		; /* Empty */
1248 
1249 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1250 	swfw_sync &= ~mask;
1251 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1252 
1253 	igb_put_hw_semaphore(hw);
1254 }
1255 
1256 /**
1257  *  igb_get_cfg_done_82575 - Read config done bit
1258  *  @hw: pointer to the HW structure
1259  *
1260  *  Read the management control register for the config done bit for
1261  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1262  *  to read the config done bit, so an error is *ONLY* logged and returns
1263  *  0.  If we were to return with error, EEPROM-less silicon
1264  *  would not be able to be reset or change link.
1265  **/
1266 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1267 {
1268 	s32 timeout = PHY_CFG_TIMEOUT;
1269 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1270 
1271 	if (hw->bus.func == 1)
1272 		mask = E1000_NVM_CFG_DONE_PORT_1;
1273 	else if (hw->bus.func == E1000_FUNC_2)
1274 		mask = E1000_NVM_CFG_DONE_PORT_2;
1275 	else if (hw->bus.func == E1000_FUNC_3)
1276 		mask = E1000_NVM_CFG_DONE_PORT_3;
1277 
1278 	while (timeout) {
1279 		if (rd32(E1000_EEMNGCTL) & mask)
1280 			break;
1281 		usleep_range(1000, 2000);
1282 		timeout--;
1283 	}
1284 	if (!timeout)
1285 		hw_dbg("MNG configuration cycle has not completed.\n");
1286 
1287 	/* If EEPROM is not marked present, init the PHY manually */
1288 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1289 	    (hw->phy.type == e1000_phy_igp_3))
1290 		igb_phy_init_script_igp3(hw);
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1297  *  @hw: pointer to the HW structure
1298  *  @speed: stores the current speed
1299  *  @duplex: stores the current duplex
1300  *
1301  *  This is a wrapper function, if using the serial gigabit media independent
1302  *  interface, use PCS to retrieve the link speed and duplex information.
1303  *  Otherwise, use the generic function to get the link speed and duplex info.
1304  **/
1305 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1306 					u16 *duplex)
1307 {
1308 	s32 ret_val;
1309 
1310 	if (hw->phy.media_type != e1000_media_type_copper)
1311 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1312 							       duplex);
1313 	else
1314 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1315 								    duplex);
1316 
1317 	return ret_val;
1318 }
1319 
1320 /**
1321  *  igb_check_for_link_82575 - Check for link
1322  *  @hw: pointer to the HW structure
1323  *
1324  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1325  *  use the generic interface for determining link.
1326  **/
1327 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1328 {
1329 	s32 ret_val;
1330 	u16 speed, duplex;
1331 
1332 	if (hw->phy.media_type != e1000_media_type_copper) {
1333 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1334 							     &duplex);
1335 		/* Use this flag to determine if link needs to be checked or
1336 		 * not.  If  we have link clear the flag so that we do not
1337 		 * continue to check for link.
1338 		 */
1339 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1340 
1341 		/* Configure Flow Control now that Auto-Neg has completed.
1342 		 * First, we need to restore the desired flow control
1343 		 * settings because we may have had to re-autoneg with a
1344 		 * different link partner.
1345 		 */
1346 		ret_val = igb_config_fc_after_link_up(hw);
1347 		if (ret_val)
1348 			hw_dbg("Error configuring flow control\n");
1349 	} else {
1350 		ret_val = igb_check_for_copper_link(hw);
1351 	}
1352 
1353 	return ret_val;
1354 }
1355 
1356 /**
1357  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1358  *  @hw: pointer to the HW structure
1359  **/
1360 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1361 {
1362 	u32 reg;
1363 
1364 
1365 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1366 	    !igb_sgmii_active_82575(hw))
1367 		return;
1368 
1369 	/* Enable PCS to turn on link */
1370 	reg = rd32(E1000_PCS_CFG0);
1371 	reg |= E1000_PCS_CFG_PCS_EN;
1372 	wr32(E1000_PCS_CFG0, reg);
1373 
1374 	/* Power up the laser */
1375 	reg = rd32(E1000_CTRL_EXT);
1376 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1377 	wr32(E1000_CTRL_EXT, reg);
1378 
1379 	/* flush the write to verify completion */
1380 	wrfl();
1381 	usleep_range(1000, 2000);
1382 }
1383 
1384 /**
1385  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1386  *  @hw: pointer to the HW structure
1387  *  @speed: stores the current speed
1388  *  @duplex: stores the current duplex
1389  *
1390  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1391  *  duplex, then store the values in the pointers provided.
1392  **/
1393 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1394 						u16 *duplex)
1395 {
1396 	struct e1000_mac_info *mac = &hw->mac;
1397 	u32 pcs, status;
1398 
1399 	/* Set up defaults for the return values of this function */
1400 	mac->serdes_has_link = false;
1401 	*speed = 0;
1402 	*duplex = 0;
1403 
1404 	/* Read the PCS Status register for link state. For non-copper mode,
1405 	 * the status register is not accurate. The PCS status register is
1406 	 * used instead.
1407 	 */
1408 	pcs = rd32(E1000_PCS_LSTAT);
1409 
1410 	/* The link up bit determines when link is up on autoneg. The sync ok
1411 	 * gets set once both sides sync up and agree upon link. Stable link
1412 	 * can be determined by checking for both link up and link sync ok
1413 	 */
1414 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1415 		mac->serdes_has_link = true;
1416 
1417 		/* Detect and store PCS speed */
1418 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1419 			*speed = SPEED_1000;
1420 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1421 			*speed = SPEED_100;
1422 		else
1423 			*speed = SPEED_10;
1424 
1425 		/* Detect and store PCS duplex */
1426 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1427 			*duplex = FULL_DUPLEX;
1428 		else
1429 			*duplex = HALF_DUPLEX;
1430 
1431 	/* Check if it is an I354 2.5Gb backplane connection. */
1432 		if (mac->type == e1000_i354) {
1433 			status = rd32(E1000_STATUS);
1434 			if ((status & E1000_STATUS_2P5_SKU) &&
1435 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1436 				*speed = SPEED_2500;
1437 				*duplex = FULL_DUPLEX;
1438 				hw_dbg("2500 Mbs, ");
1439 				hw_dbg("Full Duplex\n");
1440 			}
1441 		}
1442 
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1450  *  @hw: pointer to the HW structure
1451  *
1452  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1453  *  when management pass thru is not enabled.
1454  **/
1455 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1456 {
1457 	u32 reg;
1458 
1459 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1460 	    igb_sgmii_active_82575(hw))
1461 		return;
1462 
1463 	if (!igb_enable_mng_pass_thru(hw)) {
1464 		/* Disable PCS to turn off link */
1465 		reg = rd32(E1000_PCS_CFG0);
1466 		reg &= ~E1000_PCS_CFG_PCS_EN;
1467 		wr32(E1000_PCS_CFG0, reg);
1468 
1469 		/* shutdown the laser */
1470 		reg = rd32(E1000_CTRL_EXT);
1471 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1472 		wr32(E1000_CTRL_EXT, reg);
1473 
1474 		/* flush the write to verify completion */
1475 		wrfl();
1476 		usleep_range(1000, 2000);
1477 	}
1478 }
1479 
1480 /**
1481  *  igb_reset_hw_82575 - Reset hardware
1482  *  @hw: pointer to the HW structure
1483  *
1484  *  This resets the hardware into a known state.  This is a
1485  *  function pointer entry point called by the api module.
1486  **/
1487 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1488 {
1489 	u32 ctrl;
1490 	s32 ret_val;
1491 
1492 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1493 	 * on the last TLP read/write transaction when MAC is reset.
1494 	 */
1495 	ret_val = igb_disable_pcie_master(hw);
1496 	if (ret_val)
1497 		hw_dbg("PCI-E Master disable polling has failed.\n");
1498 
1499 	/* set the completion timeout for interface */
1500 	ret_val = igb_set_pcie_completion_timeout(hw);
1501 	if (ret_val)
1502 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1503 
1504 	hw_dbg("Masking off all interrupts\n");
1505 	wr32(E1000_IMC, 0xffffffff);
1506 
1507 	wr32(E1000_RCTL, 0);
1508 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1509 	wrfl();
1510 
1511 	usleep_range(10000, 20000);
1512 
1513 	ctrl = rd32(E1000_CTRL);
1514 
1515 	hw_dbg("Issuing a global reset to MAC\n");
1516 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1517 
1518 	ret_val = igb_get_auto_rd_done(hw);
1519 	if (ret_val) {
1520 		/* When auto config read does not complete, do not
1521 		 * return with an error. This can happen in situations
1522 		 * where there is no eeprom and prevents getting link.
1523 		 */
1524 		hw_dbg("Auto Read Done did not complete\n");
1525 	}
1526 
1527 	/* If EEPROM is not present, run manual init scripts */
1528 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1529 		igb_reset_init_script_82575(hw);
1530 
1531 	/* Clear any pending interrupt events. */
1532 	wr32(E1000_IMC, 0xffffffff);
1533 	rd32(E1000_ICR);
1534 
1535 	/* Install any alternate MAC address into RAR0 */
1536 	ret_val = igb_check_alt_mac_addr(hw);
1537 
1538 	return ret_val;
1539 }
1540 
1541 /**
1542  *  igb_init_hw_82575 - Initialize hardware
1543  *  @hw: pointer to the HW structure
1544  *
1545  *  This inits the hardware readying it for operation.
1546  **/
1547 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1548 {
1549 	struct e1000_mac_info *mac = &hw->mac;
1550 	s32 ret_val;
1551 	u16 i, rar_count = mac->rar_entry_count;
1552 
1553 	if ((hw->mac.type >= e1000_i210) &&
1554 	    !(igb_get_flash_presence_i210(hw))) {
1555 		ret_val = igb_pll_workaround_i210(hw);
1556 		if (ret_val)
1557 			return ret_val;
1558 	}
1559 
1560 	/* Initialize identification LED */
1561 	ret_val = igb_id_led_init(hw);
1562 	if (ret_val) {
1563 		hw_dbg("Error initializing identification LED\n");
1564 		/* This is not fatal and we should not stop init due to this */
1565 	}
1566 
1567 	/* Disabling VLAN filtering */
1568 	hw_dbg("Initializing the IEEE VLAN\n");
1569 	igb_clear_vfta(hw);
1570 
1571 	/* Setup the receive address */
1572 	igb_init_rx_addrs(hw, rar_count);
1573 
1574 	/* Zero out the Multicast HASH table */
1575 	hw_dbg("Zeroing the MTA\n");
1576 	for (i = 0; i < mac->mta_reg_count; i++)
1577 		array_wr32(E1000_MTA, i, 0);
1578 
1579 	/* Zero out the Unicast HASH table */
1580 	hw_dbg("Zeroing the UTA\n");
1581 	for (i = 0; i < mac->uta_reg_count; i++)
1582 		array_wr32(E1000_UTA, i, 0);
1583 
1584 	/* Setup link and flow control */
1585 	ret_val = igb_setup_link(hw);
1586 
1587 	/* Clear all of the statistics registers (clear on read).  It is
1588 	 * important that we do this after we have tried to establish link
1589 	 * because the symbol error count will increment wildly if there
1590 	 * is no link.
1591 	 */
1592 	igb_clear_hw_cntrs_82575(hw);
1593 	return ret_val;
1594 }
1595 
1596 /**
1597  *  igb_setup_copper_link_82575 - Configure copper link settings
1598  *  @hw: pointer to the HW structure
1599  *
1600  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1601  *  for link, once link is established calls to configure collision distance
1602  *  and flow control are called.
1603  **/
1604 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1605 {
1606 	u32 ctrl;
1607 	s32  ret_val;
1608 	u32 phpm_reg;
1609 
1610 	ctrl = rd32(E1000_CTRL);
1611 	ctrl |= E1000_CTRL_SLU;
1612 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1613 	wr32(E1000_CTRL, ctrl);
1614 
1615 	/* Clear Go Link Disconnect bit on supported devices */
1616 	switch (hw->mac.type) {
1617 	case e1000_82580:
1618 	case e1000_i350:
1619 	case e1000_i210:
1620 	case e1000_i211:
1621 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1622 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1623 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1624 		break;
1625 	default:
1626 		break;
1627 	}
1628 
1629 	ret_val = igb_setup_serdes_link_82575(hw);
1630 	if (ret_val)
1631 		goto out;
1632 
1633 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1634 		/* allow time for SFP cage time to power up phy */
1635 		msleep(300);
1636 
1637 		ret_val = hw->phy.ops.reset(hw);
1638 		if (ret_val) {
1639 			hw_dbg("Error resetting the PHY.\n");
1640 			goto out;
1641 		}
1642 	}
1643 	switch (hw->phy.type) {
1644 	case e1000_phy_i210:
1645 	case e1000_phy_m88:
1646 		switch (hw->phy.id) {
1647 		case I347AT4_E_PHY_ID:
1648 		case M88E1112_E_PHY_ID:
1649 		case M88E1543_E_PHY_ID:
1650 		case M88E1512_E_PHY_ID:
1651 		case I210_I_PHY_ID:
1652 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1653 			break;
1654 		default:
1655 			ret_val = igb_copper_link_setup_m88(hw);
1656 			break;
1657 		}
1658 		break;
1659 	case e1000_phy_igp_3:
1660 		ret_val = igb_copper_link_setup_igp(hw);
1661 		break;
1662 	case e1000_phy_82580:
1663 		ret_val = igb_copper_link_setup_82580(hw);
1664 		break;
1665 	case e1000_phy_bcm54616:
1666 		ret_val = 0;
1667 		break;
1668 	default:
1669 		ret_val = -E1000_ERR_PHY;
1670 		break;
1671 	}
1672 
1673 	if (ret_val)
1674 		goto out;
1675 
1676 	ret_val = igb_setup_copper_link(hw);
1677 out:
1678 	return ret_val;
1679 }
1680 
1681 /**
1682  *  igb_setup_serdes_link_82575 - Setup link for serdes
1683  *  @hw: pointer to the HW structure
1684  *
1685  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1686  *  used on copper connections where the serialized gigabit media independent
1687  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1688  *  for auto-negotiation or forces speed/duplex.
1689  **/
1690 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1691 {
1692 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1693 	bool pcs_autoneg;
1694 	s32 ret_val = 0;
1695 	u16 data;
1696 
1697 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1698 	    !igb_sgmii_active_82575(hw))
1699 		return ret_val;
1700 
1701 
1702 	/* On the 82575, SerDes loopback mode persists until it is
1703 	 * explicitly turned off or a power cycle is performed.  A read to
1704 	 * the register does not indicate its status.  Therefore, we ensure
1705 	 * loopback mode is disabled during initialization.
1706 	 */
1707 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1708 
1709 	/* power on the sfp cage if present and turn on I2C */
1710 	ctrl_ext = rd32(E1000_CTRL_EXT);
1711 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1712 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1713 	wr32(E1000_CTRL_EXT, ctrl_ext);
1714 
1715 	ctrl_reg = rd32(E1000_CTRL);
1716 	ctrl_reg |= E1000_CTRL_SLU;
1717 
1718 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1719 		/* set both sw defined pins */
1720 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1721 
1722 		/* Set switch control to serdes energy detect */
1723 		reg = rd32(E1000_CONNSW);
1724 		reg |= E1000_CONNSW_ENRGSRC;
1725 		wr32(E1000_CONNSW, reg);
1726 	}
1727 
1728 	reg = rd32(E1000_PCS_LCTL);
1729 
1730 	/* default pcs_autoneg to the same setting as mac autoneg */
1731 	pcs_autoneg = hw->mac.autoneg;
1732 
1733 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1734 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1735 		/* sgmii mode lets the phy handle forcing speed/duplex */
1736 		pcs_autoneg = true;
1737 		/* autoneg time out should be disabled for SGMII mode */
1738 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1739 		break;
1740 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1741 		/* disable PCS autoneg and support parallel detect only */
1742 		pcs_autoneg = false;
1743 	default:
1744 		if (hw->mac.type == e1000_82575 ||
1745 		    hw->mac.type == e1000_82576) {
1746 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1747 			if (ret_val) {
1748 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1749 				return ret_val;
1750 			}
1751 
1752 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1753 				pcs_autoneg = false;
1754 		}
1755 
1756 		/* non-SGMII modes only supports a speed of 1000/Full for the
1757 		 * link so it is best to just force the MAC and let the pcs
1758 		 * link either autoneg or be forced to 1000/Full
1759 		 */
1760 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1761 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1762 
1763 		/* set speed of 1000/Full if speed/duplex is forced */
1764 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1765 		break;
1766 	}
1767 
1768 	wr32(E1000_CTRL, ctrl_reg);
1769 
1770 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1771 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1772 	 * mode that will be compatible with older link partners and switches.
1773 	 * However, both are supported by the hardware and some drivers/tools.
1774 	 */
1775 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1776 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1777 
1778 	if (pcs_autoneg) {
1779 		/* Set PCS register for autoneg */
1780 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1781 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1782 
1783 		/* Disable force flow control for autoneg */
1784 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1785 
1786 		/* Configure flow control advertisement for autoneg */
1787 		anadv_reg = rd32(E1000_PCS_ANADV);
1788 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1789 		switch (hw->fc.requested_mode) {
1790 		case e1000_fc_full:
1791 		case e1000_fc_rx_pause:
1792 			anadv_reg |= E1000_TXCW_ASM_DIR;
1793 			anadv_reg |= E1000_TXCW_PAUSE;
1794 			break;
1795 		case e1000_fc_tx_pause:
1796 			anadv_reg |= E1000_TXCW_ASM_DIR;
1797 			break;
1798 		default:
1799 			break;
1800 		}
1801 		wr32(E1000_PCS_ANADV, anadv_reg);
1802 
1803 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1804 	} else {
1805 		/* Set PCS register for forced link */
1806 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1807 
1808 		/* Force flow control for forced link */
1809 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1810 
1811 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1812 	}
1813 
1814 	wr32(E1000_PCS_LCTL, reg);
1815 
1816 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1817 		igb_force_mac_fc(hw);
1818 
1819 	return ret_val;
1820 }
1821 
1822 /**
1823  *  igb_sgmii_active_82575 - Return sgmii state
1824  *  @hw: pointer to the HW structure
1825  *
1826  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1827  *  which can be enabled for use in the embedded applications.  Simply
1828  *  return the current state of the sgmii interface.
1829  **/
1830 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1831 {
1832 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1833 	return dev_spec->sgmii_active;
1834 }
1835 
1836 /**
1837  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1838  *  @hw: pointer to the HW structure
1839  *
1840  *  Inits recommended HW defaults after a reset when there is no EEPROM
1841  *  detected. This is only for the 82575.
1842  **/
1843 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1844 {
1845 	if (hw->mac.type == e1000_82575) {
1846 		hw_dbg("Running reset init script for 82575\n");
1847 		/* SerDes configuration via SERDESCTRL */
1848 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1849 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1850 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1851 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1852 
1853 		/* CCM configuration via CCMCTL register */
1854 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1855 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1856 
1857 		/* PCIe lanes configuration */
1858 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1859 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1860 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1861 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1862 
1863 		/* PCIe PLL Configuration */
1864 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1865 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1866 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1867 	}
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  *  igb_read_mac_addr_82575 - Read device MAC address
1874  *  @hw: pointer to the HW structure
1875  **/
1876 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1877 {
1878 	s32 ret_val = 0;
1879 
1880 	/* If there's an alternate MAC address place it in RAR0
1881 	 * so that it will override the Si installed default perm
1882 	 * address.
1883 	 */
1884 	ret_val = igb_check_alt_mac_addr(hw);
1885 	if (ret_val)
1886 		goto out;
1887 
1888 	ret_val = igb_read_mac_addr(hw);
1889 
1890 out:
1891 	return ret_val;
1892 }
1893 
1894 /**
1895  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1896  * @hw: pointer to the HW structure
1897  *
1898  * In the case of a PHY power down to save power, or to turn off link during a
1899  * driver unload, or wake on lan is not enabled, remove the link.
1900  **/
1901 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1902 {
1903 	/* If the management interface is not enabled, then power down */
1904 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1905 		igb_power_down_phy_copper(hw);
1906 }
1907 
1908 /**
1909  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1910  *  @hw: pointer to the HW structure
1911  *
1912  *  Clears the hardware counters by reading the counter registers.
1913  **/
1914 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1915 {
1916 	igb_clear_hw_cntrs_base(hw);
1917 
1918 	rd32(E1000_PRC64);
1919 	rd32(E1000_PRC127);
1920 	rd32(E1000_PRC255);
1921 	rd32(E1000_PRC511);
1922 	rd32(E1000_PRC1023);
1923 	rd32(E1000_PRC1522);
1924 	rd32(E1000_PTC64);
1925 	rd32(E1000_PTC127);
1926 	rd32(E1000_PTC255);
1927 	rd32(E1000_PTC511);
1928 	rd32(E1000_PTC1023);
1929 	rd32(E1000_PTC1522);
1930 
1931 	rd32(E1000_ALGNERRC);
1932 	rd32(E1000_RXERRC);
1933 	rd32(E1000_TNCRS);
1934 	rd32(E1000_CEXTERR);
1935 	rd32(E1000_TSCTC);
1936 	rd32(E1000_TSCTFC);
1937 
1938 	rd32(E1000_MGTPRC);
1939 	rd32(E1000_MGTPDC);
1940 	rd32(E1000_MGTPTC);
1941 
1942 	rd32(E1000_IAC);
1943 	rd32(E1000_ICRXOC);
1944 
1945 	rd32(E1000_ICRXPTC);
1946 	rd32(E1000_ICRXATC);
1947 	rd32(E1000_ICTXPTC);
1948 	rd32(E1000_ICTXATC);
1949 	rd32(E1000_ICTXQEC);
1950 	rd32(E1000_ICTXQMTC);
1951 	rd32(E1000_ICRXDMTC);
1952 
1953 	rd32(E1000_CBTMPC);
1954 	rd32(E1000_HTDPMC);
1955 	rd32(E1000_CBRMPC);
1956 	rd32(E1000_RPTHC);
1957 	rd32(E1000_HGPTC);
1958 	rd32(E1000_HTCBDPC);
1959 	rd32(E1000_HGORCL);
1960 	rd32(E1000_HGORCH);
1961 	rd32(E1000_HGOTCL);
1962 	rd32(E1000_HGOTCH);
1963 	rd32(E1000_LENERRS);
1964 
1965 	/* This register should not be read in copper configurations */
1966 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1967 	    igb_sgmii_active_82575(hw))
1968 		rd32(E1000_SCVPC);
1969 }
1970 
1971 /**
1972  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1973  *  @hw: pointer to the HW structure
1974  *
1975  *  After rx enable if manageability is enabled then there is likely some
1976  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1977  *  function clears the fifos and flushes any packets that came in as rx was
1978  *  being enabled.
1979  **/
1980 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1981 {
1982 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1983 	int i, ms_wait;
1984 
1985 	/* disable IPv6 options as per hardware errata */
1986 	rfctl = rd32(E1000_RFCTL);
1987 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1988 	wr32(E1000_RFCTL, rfctl);
1989 
1990 	if (hw->mac.type != e1000_82575 ||
1991 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1992 		return;
1993 
1994 	/* Disable all RX queues */
1995 	for (i = 0; i < 4; i++) {
1996 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1997 		wr32(E1000_RXDCTL(i),
1998 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1999 	}
2000 	/* Poll all queues to verify they have shut down */
2001 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2002 		usleep_range(1000, 2000);
2003 		rx_enabled = 0;
2004 		for (i = 0; i < 4; i++)
2005 			rx_enabled |= rd32(E1000_RXDCTL(i));
2006 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2007 			break;
2008 	}
2009 
2010 	if (ms_wait == 10)
2011 		hw_dbg("Queue disable timed out after 10ms\n");
2012 
2013 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2014 	 * incoming packets are rejected.  Set enable and wait 2ms so that
2015 	 * any packet that was coming in as RCTL.EN was set is flushed
2016 	 */
2017 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2018 
2019 	rlpml = rd32(E1000_RLPML);
2020 	wr32(E1000_RLPML, 0);
2021 
2022 	rctl = rd32(E1000_RCTL);
2023 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2024 	temp_rctl |= E1000_RCTL_LPE;
2025 
2026 	wr32(E1000_RCTL, temp_rctl);
2027 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2028 	wrfl();
2029 	usleep_range(2000, 3000);
2030 
2031 	/* Enable RX queues that were previously enabled and restore our
2032 	 * previous state
2033 	 */
2034 	for (i = 0; i < 4; i++)
2035 		wr32(E1000_RXDCTL(i), rxdctl[i]);
2036 	wr32(E1000_RCTL, rctl);
2037 	wrfl();
2038 
2039 	wr32(E1000_RLPML, rlpml);
2040 	wr32(E1000_RFCTL, rfctl);
2041 
2042 	/* Flush receive errors generated by workaround */
2043 	rd32(E1000_ROC);
2044 	rd32(E1000_RNBC);
2045 	rd32(E1000_MPC);
2046 }
2047 
2048 /**
2049  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2050  *  @hw: pointer to the HW structure
2051  *
2052  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2053  *  however the hardware default for these parts is 500us to 1ms which is less
2054  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2055  *  increase the value to either 10ms to 200ms for capability version 1 config,
2056  *  or 16ms to 55ms for version 2.
2057  **/
2058 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2059 {
2060 	u32 gcr = rd32(E1000_GCR);
2061 	s32 ret_val = 0;
2062 	u16 pcie_devctl2;
2063 
2064 	/* only take action if timeout value is defaulted to 0 */
2065 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2066 		goto out;
2067 
2068 	/* if capabilities version is type 1 we can write the
2069 	 * timeout of 10ms to 200ms through the GCR register
2070 	 */
2071 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2072 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2073 		goto out;
2074 	}
2075 
2076 	/* for version 2 capabilities we need to write the config space
2077 	 * directly in order to set the completion timeout value for
2078 	 * 16ms to 55ms
2079 	 */
2080 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2081 					&pcie_devctl2);
2082 	if (ret_val)
2083 		goto out;
2084 
2085 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2086 
2087 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2088 					 &pcie_devctl2);
2089 out:
2090 	/* disable completion timeout resend */
2091 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2092 
2093 	wr32(E1000_GCR, gcr);
2094 	return ret_val;
2095 }
2096 
2097 /**
2098  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2099  *  @hw: pointer to the hardware struct
2100  *  @enable: state to enter, either enabled or disabled
2101  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2102  *
2103  *  enables/disables L2 switch anti-spoofing functionality.
2104  **/
2105 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2106 {
2107 	u32 reg_val, reg_offset;
2108 
2109 	switch (hw->mac.type) {
2110 	case e1000_82576:
2111 		reg_offset = E1000_DTXSWC;
2112 		break;
2113 	case e1000_i350:
2114 	case e1000_i354:
2115 		reg_offset = E1000_TXSWC;
2116 		break;
2117 	default:
2118 		return;
2119 	}
2120 
2121 	reg_val = rd32(reg_offset);
2122 	if (enable) {
2123 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2124 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2125 		/* The PF can spoof - it has to in order to
2126 		 * support emulation mode NICs
2127 		 */
2128 		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2129 	} else {
2130 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2131 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2132 	}
2133 	wr32(reg_offset, reg_val);
2134 }
2135 
2136 /**
2137  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2138  *  @hw: pointer to the hardware struct
2139  *  @enable: state to enter, either enabled or disabled
2140  *
2141  *  enables/disables L2 switch loopback functionality.
2142  **/
2143 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2144 {
2145 	u32 dtxswc;
2146 
2147 	switch (hw->mac.type) {
2148 	case e1000_82576:
2149 		dtxswc = rd32(E1000_DTXSWC);
2150 		if (enable)
2151 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2152 		else
2153 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2154 		wr32(E1000_DTXSWC, dtxswc);
2155 		break;
2156 	case e1000_i354:
2157 	case e1000_i350:
2158 		dtxswc = rd32(E1000_TXSWC);
2159 		if (enable)
2160 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2161 		else
2162 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2163 		wr32(E1000_TXSWC, dtxswc);
2164 		break;
2165 	default:
2166 		/* Currently no other hardware supports loopback */
2167 		break;
2168 	}
2169 
2170 }
2171 
2172 /**
2173  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2174  *  @hw: pointer to the hardware struct
2175  *  @enable: state to enter, either enabled or disabled
2176  *
2177  *  enables/disables replication of packets across multiple pools.
2178  **/
2179 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2180 {
2181 	u32 vt_ctl = rd32(E1000_VT_CTL);
2182 
2183 	if (enable)
2184 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2185 	else
2186 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2187 
2188 	wr32(E1000_VT_CTL, vt_ctl);
2189 }
2190 
2191 /**
2192  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2193  *  @hw: pointer to the HW structure
2194  *  @offset: register offset to be read
2195  *  @data: pointer to the read data
2196  *
2197  *  Reads the MDI control register in the PHY at offset and stores the
2198  *  information read to data.
2199  **/
2200 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2201 {
2202 	s32 ret_val;
2203 
2204 	ret_val = hw->phy.ops.acquire(hw);
2205 	if (ret_val)
2206 		goto out;
2207 
2208 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2209 
2210 	hw->phy.ops.release(hw);
2211 
2212 out:
2213 	return ret_val;
2214 }
2215 
2216 /**
2217  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2218  *  @hw: pointer to the HW structure
2219  *  @offset: register offset to write to
2220  *  @data: data to write to register at offset
2221  *
2222  *  Writes data to MDI control register in the PHY at offset.
2223  **/
2224 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2225 {
2226 	s32 ret_val;
2227 
2228 
2229 	ret_val = hw->phy.ops.acquire(hw);
2230 	if (ret_val)
2231 		goto out;
2232 
2233 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2234 
2235 	hw->phy.ops.release(hw);
2236 
2237 out:
2238 	return ret_val;
2239 }
2240 
2241 /**
2242  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2243  *  @hw: pointer to the HW structure
2244  *
2245  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2246  *  the values found in the EEPROM.  This addresses an issue in which these
2247  *  bits are not restored from EEPROM after reset.
2248  **/
2249 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2250 {
2251 	s32 ret_val = 0;
2252 	u32 mdicnfg;
2253 	u16 nvm_data = 0;
2254 
2255 	if (hw->mac.type != e1000_82580)
2256 		goto out;
2257 	if (!igb_sgmii_active_82575(hw))
2258 		goto out;
2259 
2260 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2261 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2262 				   &nvm_data);
2263 	if (ret_val) {
2264 		hw_dbg("NVM Read Error\n");
2265 		goto out;
2266 	}
2267 
2268 	mdicnfg = rd32(E1000_MDICNFG);
2269 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2270 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2271 	if (nvm_data & NVM_WORD24_COM_MDIO)
2272 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2273 	wr32(E1000_MDICNFG, mdicnfg);
2274 out:
2275 	return ret_val;
2276 }
2277 
2278 /**
2279  *  igb_reset_hw_82580 - Reset hardware
2280  *  @hw: pointer to the HW structure
2281  *
2282  *  This resets function or entire device (all ports, etc.)
2283  *  to a known state.
2284  **/
2285 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2286 {
2287 	s32 ret_val = 0;
2288 	/* BH SW mailbox bit in SW_FW_SYNC */
2289 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2290 	u32 ctrl;
2291 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2292 
2293 	hw->dev_spec._82575.global_device_reset = false;
2294 
2295 	/* due to hw errata, global device reset doesn't always
2296 	 * work on 82580
2297 	 */
2298 	if (hw->mac.type == e1000_82580)
2299 		global_device_reset = false;
2300 
2301 	/* Get current control state. */
2302 	ctrl = rd32(E1000_CTRL);
2303 
2304 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2305 	 * on the last TLP read/write transaction when MAC is reset.
2306 	 */
2307 	ret_val = igb_disable_pcie_master(hw);
2308 	if (ret_val)
2309 		hw_dbg("PCI-E Master disable polling has failed.\n");
2310 
2311 	hw_dbg("Masking off all interrupts\n");
2312 	wr32(E1000_IMC, 0xffffffff);
2313 	wr32(E1000_RCTL, 0);
2314 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2315 	wrfl();
2316 
2317 	usleep_range(10000, 11000);
2318 
2319 	/* Determine whether or not a global dev reset is requested */
2320 	if (global_device_reset &&
2321 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2322 			global_device_reset = false;
2323 
2324 	if (global_device_reset &&
2325 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2326 		ctrl |= E1000_CTRL_DEV_RST;
2327 	else
2328 		ctrl |= E1000_CTRL_RST;
2329 
2330 	wr32(E1000_CTRL, ctrl);
2331 	wrfl();
2332 
2333 	/* Add delay to insure DEV_RST has time to complete */
2334 	if (global_device_reset)
2335 		usleep_range(5000, 6000);
2336 
2337 	ret_val = igb_get_auto_rd_done(hw);
2338 	if (ret_val) {
2339 		/* When auto config read does not complete, do not
2340 		 * return with an error. This can happen in situations
2341 		 * where there is no eeprom and prevents getting link.
2342 		 */
2343 		hw_dbg("Auto Read Done did not complete\n");
2344 	}
2345 
2346 	/* clear global device reset status bit */
2347 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2348 
2349 	/* Clear any pending interrupt events. */
2350 	wr32(E1000_IMC, 0xffffffff);
2351 	rd32(E1000_ICR);
2352 
2353 	ret_val = igb_reset_mdicnfg_82580(hw);
2354 	if (ret_val)
2355 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2356 
2357 	/* Install any alternate MAC address into RAR0 */
2358 	ret_val = igb_check_alt_mac_addr(hw);
2359 
2360 	/* Release semaphore */
2361 	if (global_device_reset)
2362 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2363 
2364 	return ret_val;
2365 }
2366 
2367 /**
2368  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2369  *  @data: data received by reading RXPBS register
2370  *
2371  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2372  *  This function converts the retrieved value into the correct table value
2373  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2374  *  0x0 36  72 144   1   2   4   8  16
2375  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2376  */
2377 u16 igb_rxpbs_adjust_82580(u32 data)
2378 {
2379 	u16 ret_val = 0;
2380 
2381 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2382 		ret_val = e1000_82580_rxpbs_table[data];
2383 
2384 	return ret_val;
2385 }
2386 
2387 /**
2388  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2389  *  checksum
2390  *  @hw: pointer to the HW structure
2391  *  @offset: offset in words of the checksum protected region
2392  *
2393  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2394  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2395  **/
2396 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2397 						 u16 offset)
2398 {
2399 	s32 ret_val = 0;
2400 	u16 checksum = 0;
2401 	u16 i, nvm_data;
2402 
2403 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2404 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2405 		if (ret_val) {
2406 			hw_dbg("NVM Read Error\n");
2407 			goto out;
2408 		}
2409 		checksum += nvm_data;
2410 	}
2411 
2412 	if (checksum != (u16) NVM_SUM) {
2413 		hw_dbg("NVM Checksum Invalid\n");
2414 		ret_val = -E1000_ERR_NVM;
2415 		goto out;
2416 	}
2417 
2418 out:
2419 	return ret_val;
2420 }
2421 
2422 /**
2423  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2424  *  checksum
2425  *  @hw: pointer to the HW structure
2426  *  @offset: offset in words of the checksum protected region
2427  *
2428  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2429  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2430  *  value to the EEPROM.
2431  **/
2432 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2433 {
2434 	s32 ret_val;
2435 	u16 checksum = 0;
2436 	u16 i, nvm_data;
2437 
2438 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2439 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2440 		if (ret_val) {
2441 			hw_dbg("NVM Read Error while updating checksum.\n");
2442 			goto out;
2443 		}
2444 		checksum += nvm_data;
2445 	}
2446 	checksum = (u16) NVM_SUM - checksum;
2447 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2448 				&checksum);
2449 	if (ret_val)
2450 		hw_dbg("NVM Write Error while updating checksum.\n");
2451 
2452 out:
2453 	return ret_val;
2454 }
2455 
2456 /**
2457  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2458  *  @hw: pointer to the HW structure
2459  *
2460  *  Calculates the EEPROM section checksum by reading/adding each word of
2461  *  the EEPROM and then verifies that the sum of the EEPROM is
2462  *  equal to 0xBABA.
2463  **/
2464 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2465 {
2466 	s32 ret_val = 0;
2467 	u16 eeprom_regions_count = 1;
2468 	u16 j, nvm_data;
2469 	u16 nvm_offset;
2470 
2471 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2472 	if (ret_val) {
2473 		hw_dbg("NVM Read Error\n");
2474 		goto out;
2475 	}
2476 
2477 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2478 		/* if checksums compatibility bit is set validate checksums
2479 		 * for all 4 ports.
2480 		 */
2481 		eeprom_regions_count = 4;
2482 	}
2483 
2484 	for (j = 0; j < eeprom_regions_count; j++) {
2485 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2486 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2487 								nvm_offset);
2488 		if (ret_val != 0)
2489 			goto out;
2490 	}
2491 
2492 out:
2493 	return ret_val;
2494 }
2495 
2496 /**
2497  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2498  *  @hw: pointer to the HW structure
2499  *
2500  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2501  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2502  *  checksum and writes the value to the EEPROM.
2503  **/
2504 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2505 {
2506 	s32 ret_val;
2507 	u16 j, nvm_data;
2508 	u16 nvm_offset;
2509 
2510 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2511 	if (ret_val) {
2512 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2513 		goto out;
2514 	}
2515 
2516 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2517 		/* set compatibility bit to validate checksums appropriately */
2518 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2519 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2520 					&nvm_data);
2521 		if (ret_val) {
2522 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2523 			goto out;
2524 		}
2525 	}
2526 
2527 	for (j = 0; j < 4; j++) {
2528 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2529 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2530 		if (ret_val)
2531 			goto out;
2532 	}
2533 
2534 out:
2535 	return ret_val;
2536 }
2537 
2538 /**
2539  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2540  *  @hw: pointer to the HW structure
2541  *
2542  *  Calculates the EEPROM section checksum by reading/adding each word of
2543  *  the EEPROM and then verifies that the sum of the EEPROM is
2544  *  equal to 0xBABA.
2545  **/
2546 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2547 {
2548 	s32 ret_val = 0;
2549 	u16 j;
2550 	u16 nvm_offset;
2551 
2552 	for (j = 0; j < 4; j++) {
2553 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2554 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2555 								nvm_offset);
2556 		if (ret_val != 0)
2557 			goto out;
2558 	}
2559 
2560 out:
2561 	return ret_val;
2562 }
2563 
2564 /**
2565  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2566  *  @hw: pointer to the HW structure
2567  *
2568  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2569  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2570  *  checksum and writes the value to the EEPROM.
2571  **/
2572 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2573 {
2574 	s32 ret_val = 0;
2575 	u16 j;
2576 	u16 nvm_offset;
2577 
2578 	for (j = 0; j < 4; j++) {
2579 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2580 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2581 		if (ret_val != 0)
2582 			goto out;
2583 	}
2584 
2585 out:
2586 	return ret_val;
2587 }
2588 
2589 /**
2590  *  __igb_access_emi_reg - Read/write EMI register
2591  *  @hw: pointer to the HW structure
2592  *  @addr: EMI address to program
2593  *  @data: pointer to value to read/write from/to the EMI address
2594  *  @read: boolean flag to indicate read or write
2595  **/
2596 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2597 				  u16 *data, bool read)
2598 {
2599 	s32 ret_val = 0;
2600 
2601 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2602 	if (ret_val)
2603 		return ret_val;
2604 
2605 	if (read)
2606 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2607 	else
2608 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2609 
2610 	return ret_val;
2611 }
2612 
2613 /**
2614  *  igb_read_emi_reg - Read Extended Management Interface register
2615  *  @hw: pointer to the HW structure
2616  *  @addr: EMI address to program
2617  *  @data: value to be read from the EMI address
2618  **/
2619 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2620 {
2621 	return __igb_access_emi_reg(hw, addr, data, true);
2622 }
2623 
2624 /**
2625  *  igb_set_eee_i350 - Enable/disable EEE support
2626  *  @hw: pointer to the HW structure
2627  *  @adv1G: boolean flag enabling 1G EEE advertisement
2628  *  @adv100m: boolean flag enabling 100M EEE advertisement
2629  *
2630  *  Enable/disable EEE based on setting in dev_spec structure.
2631  *
2632  **/
2633 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2634 {
2635 	u32 ipcnfg, eeer;
2636 
2637 	if ((hw->mac.type < e1000_i350) ||
2638 	    (hw->phy.media_type != e1000_media_type_copper))
2639 		goto out;
2640 	ipcnfg = rd32(E1000_IPCNFG);
2641 	eeer = rd32(E1000_EEER);
2642 
2643 	/* enable or disable per user setting */
2644 	if (!(hw->dev_spec._82575.eee_disable)) {
2645 		u32 eee_su = rd32(E1000_EEE_SU);
2646 
2647 		if (adv100M)
2648 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2649 		else
2650 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2651 
2652 		if (adv1G)
2653 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2654 		else
2655 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2656 
2657 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2658 			E1000_EEER_LPI_FC);
2659 
2660 		/* This bit should not be set in normal operation. */
2661 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2662 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2663 
2664 	} else {
2665 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2666 			E1000_IPCNFG_EEE_100M_AN);
2667 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2668 			E1000_EEER_RX_LPI_EN |
2669 			E1000_EEER_LPI_FC);
2670 	}
2671 	wr32(E1000_IPCNFG, ipcnfg);
2672 	wr32(E1000_EEER, eeer);
2673 	rd32(E1000_IPCNFG);
2674 	rd32(E1000_EEER);
2675 out:
2676 
2677 	return 0;
2678 }
2679 
2680 /**
2681  *  igb_set_eee_i354 - Enable/disable EEE support
2682  *  @hw: pointer to the HW structure
2683  *  @adv1G: boolean flag enabling 1G EEE advertisement
2684  *  @adv100m: boolean flag enabling 100M EEE advertisement
2685  *
2686  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2687  *
2688  **/
2689 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2690 {
2691 	struct e1000_phy_info *phy = &hw->phy;
2692 	s32 ret_val = 0;
2693 	u16 phy_data;
2694 
2695 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2696 	    ((phy->id != M88E1543_E_PHY_ID) &&
2697 	     (phy->id != M88E1512_E_PHY_ID)))
2698 		goto out;
2699 
2700 	if (!hw->dev_spec._82575.eee_disable) {
2701 		/* Switch to PHY page 18. */
2702 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2703 		if (ret_val)
2704 			goto out;
2705 
2706 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2707 					    &phy_data);
2708 		if (ret_val)
2709 			goto out;
2710 
2711 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2712 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2713 					     phy_data);
2714 		if (ret_val)
2715 			goto out;
2716 
2717 		/* Return the PHY to page 0. */
2718 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2719 		if (ret_val)
2720 			goto out;
2721 
2722 		/* Turn on EEE advertisement. */
2723 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2724 					     E1000_EEE_ADV_DEV_I354,
2725 					     &phy_data);
2726 		if (ret_val)
2727 			goto out;
2728 
2729 		if (adv100M)
2730 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2731 		else
2732 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2733 
2734 		if (adv1G)
2735 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2736 		else
2737 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2738 
2739 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2740 						E1000_EEE_ADV_DEV_I354,
2741 						phy_data);
2742 	} else {
2743 		/* Turn off EEE advertisement. */
2744 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2745 					     E1000_EEE_ADV_DEV_I354,
2746 					     &phy_data);
2747 		if (ret_val)
2748 			goto out;
2749 
2750 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2751 			      E1000_EEE_ADV_1000_SUPPORTED);
2752 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2753 					      E1000_EEE_ADV_DEV_I354,
2754 					      phy_data);
2755 	}
2756 
2757 out:
2758 	return ret_val;
2759 }
2760 
2761 /**
2762  *  igb_get_eee_status_i354 - Get EEE status
2763  *  @hw: pointer to the HW structure
2764  *  @status: EEE status
2765  *
2766  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2767  *  been received.
2768  **/
2769 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2770 {
2771 	struct e1000_phy_info *phy = &hw->phy;
2772 	s32 ret_val = 0;
2773 	u16 phy_data;
2774 
2775 	/* Check if EEE is supported on this device. */
2776 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2777 	    ((phy->id != M88E1543_E_PHY_ID) &&
2778 	     (phy->id != M88E1512_E_PHY_ID)))
2779 		goto out;
2780 
2781 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2782 				     E1000_PCS_STATUS_DEV_I354,
2783 				     &phy_data);
2784 	if (ret_val)
2785 		goto out;
2786 
2787 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2788 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2789 
2790 out:
2791 	return ret_val;
2792 }
2793 
2794 static const u8 e1000_emc_temp_data[4] = {
2795 	E1000_EMC_INTERNAL_DATA,
2796 	E1000_EMC_DIODE1_DATA,
2797 	E1000_EMC_DIODE2_DATA,
2798 	E1000_EMC_DIODE3_DATA
2799 };
2800 static const u8 e1000_emc_therm_limit[4] = {
2801 	E1000_EMC_INTERNAL_THERM_LIMIT,
2802 	E1000_EMC_DIODE1_THERM_LIMIT,
2803 	E1000_EMC_DIODE2_THERM_LIMIT,
2804 	E1000_EMC_DIODE3_THERM_LIMIT
2805 };
2806 
2807 #ifdef CONFIG_IGB_HWMON
2808 /**
2809  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2810  *  @hw: pointer to hardware structure
2811  *
2812  *  Updates the temperatures in mac.thermal_sensor_data
2813  **/
2814 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2815 {
2816 	u16 ets_offset;
2817 	u16 ets_cfg;
2818 	u16 ets_sensor;
2819 	u8  num_sensors;
2820 	u8  sensor_index;
2821 	u8  sensor_location;
2822 	u8  i;
2823 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2824 
2825 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2826 		return E1000_NOT_IMPLEMENTED;
2827 
2828 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2829 
2830 	/* Return the internal sensor only if ETS is unsupported */
2831 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2832 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2833 		return 0;
2834 
2835 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2836 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2837 	    != NVM_ETS_TYPE_EMC)
2838 		return E1000_NOT_IMPLEMENTED;
2839 
2840 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2841 	if (num_sensors > E1000_MAX_SENSORS)
2842 		num_sensors = E1000_MAX_SENSORS;
2843 
2844 	for (i = 1; i < num_sensors; i++) {
2845 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2846 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2847 				NVM_ETS_DATA_INDEX_SHIFT);
2848 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2849 				   NVM_ETS_DATA_LOC_SHIFT);
2850 
2851 		if (sensor_location != 0)
2852 			hw->phy.ops.read_i2c_byte(hw,
2853 					e1000_emc_temp_data[sensor_index],
2854 					E1000_I2C_THERMAL_SENSOR_ADDR,
2855 					&data->sensor[i].temp);
2856 	}
2857 	return 0;
2858 }
2859 
2860 /**
2861  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2862  *  @hw: pointer to hardware structure
2863  *
2864  *  Sets the thermal sensor thresholds according to the NVM map
2865  *  and save off the threshold and location values into mac.thermal_sensor_data
2866  **/
2867 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2868 {
2869 	u16 ets_offset;
2870 	u16 ets_cfg;
2871 	u16 ets_sensor;
2872 	u8  low_thresh_delta;
2873 	u8  num_sensors;
2874 	u8  sensor_index;
2875 	u8  sensor_location;
2876 	u8  therm_limit;
2877 	u8  i;
2878 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2879 
2880 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2881 		return E1000_NOT_IMPLEMENTED;
2882 
2883 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2884 
2885 	data->sensor[0].location = 0x1;
2886 	data->sensor[0].caution_thresh =
2887 		(rd32(E1000_THHIGHTC) & 0xFF);
2888 	data->sensor[0].max_op_thresh =
2889 		(rd32(E1000_THLOWTC) & 0xFF);
2890 
2891 	/* Return the internal sensor only if ETS is unsupported */
2892 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2893 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2894 		return 0;
2895 
2896 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2897 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2898 	    != NVM_ETS_TYPE_EMC)
2899 		return E1000_NOT_IMPLEMENTED;
2900 
2901 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2902 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2903 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2904 
2905 	for (i = 1; i <= num_sensors; i++) {
2906 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2907 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2908 				NVM_ETS_DATA_INDEX_SHIFT);
2909 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2910 				   NVM_ETS_DATA_LOC_SHIFT);
2911 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2912 
2913 		hw->phy.ops.write_i2c_byte(hw,
2914 			e1000_emc_therm_limit[sensor_index],
2915 			E1000_I2C_THERMAL_SENSOR_ADDR,
2916 			therm_limit);
2917 
2918 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2919 			data->sensor[i].location = sensor_location;
2920 			data->sensor[i].caution_thresh = therm_limit;
2921 			data->sensor[i].max_op_thresh = therm_limit -
2922 							low_thresh_delta;
2923 		}
2924 	}
2925 	return 0;
2926 }
2927 
2928 #endif
2929 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2930 	.init_hw              = igb_init_hw_82575,
2931 	.check_for_link       = igb_check_for_link_82575,
2932 	.rar_set              = igb_rar_set,
2933 	.read_mac_addr        = igb_read_mac_addr_82575,
2934 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2935 #ifdef CONFIG_IGB_HWMON
2936 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2937 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2938 #endif
2939 };
2940 
2941 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2942 	.acquire              = igb_acquire_phy_82575,
2943 	.get_cfg_done         = igb_get_cfg_done_82575,
2944 	.release              = igb_release_phy_82575,
2945 	.write_i2c_byte       = igb_write_i2c_byte,
2946 	.read_i2c_byte        = igb_read_i2c_byte,
2947 };
2948 
2949 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2950 	.acquire              = igb_acquire_nvm_82575,
2951 	.read                 = igb_read_nvm_eerd,
2952 	.release              = igb_release_nvm_82575,
2953 	.write                = igb_write_nvm_spi,
2954 };
2955 
2956 const struct e1000_info e1000_82575_info = {
2957 	.get_invariants = igb_get_invariants_82575,
2958 	.mac_ops = &e1000_mac_ops_82575,
2959 	.phy_ops = &e1000_phy_ops_82575,
2960 	.nvm_ops = &e1000_nvm_ops_82575,
2961 };
2962 
2963