1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 #include "igb.h"
38 
39 static s32  igb_get_invariants_82575(struct e1000_hw *);
40 static s32  igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32  igb_check_for_link_82575(struct e1000_hw *);
45 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32  igb_init_hw_82575(struct e1000_hw *);
47 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32  igb_reset_hw_82575(struct e1000_hw *);
50 static s32  igb_reset_hw_82580(struct e1000_hw *);
51 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
52 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
53 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
55 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
56 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
59 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 						 u16 *);
61 static s32  igb_get_phy_id_82575(struct e1000_hw *);
62 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63 static bool igb_sgmii_active_82575(struct e1000_hw *);
64 static s32  igb_reset_init_script_82575(struct e1000_hw *);
65 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
66 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
67 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
68 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
69 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
71 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
72 static const u16 e1000_82580_rxpbs_table[] = {
73 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
74 
75 /* Due to a hw errata, if the host tries to  configure the VFTA register
76  * while performing queries from the BMC or DMA, then the VFTA in some
77  * cases won't be written.
78  */
79 
80 /**
81  *  igb_write_vfta_i350 - Write value to VLAN filter table
82  *  @hw: pointer to the HW structure
83  *  @offset: register offset in VLAN filter table
84  *  @value: register value written to VLAN filter table
85  *
86  *  Writes value at the given offset in the register array which stores
87  *  the VLAN filter table.
88  **/
89 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
90 {
91 	struct igb_adapter *adapter = hw->back;
92 	int i;
93 
94 	for (i = 10; i--;)
95 		array_wr32(E1000_VFTA, offset, value);
96 
97 	wrfl();
98 	adapter->shadow_vfta[offset] = value;
99 }
100 
101 /**
102  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
103  *  @hw: pointer to the HW structure
104  *
105  *  Called to determine if the I2C pins are being used for I2C or as an
106  *  external MDIO interface since the two options are mutually exclusive.
107  **/
108 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
109 {
110 	u32 reg = 0;
111 	bool ext_mdio = false;
112 
113 	switch (hw->mac.type) {
114 	case e1000_82575:
115 	case e1000_82576:
116 		reg = rd32(E1000_MDIC);
117 		ext_mdio = !!(reg & E1000_MDIC_DEST);
118 		break;
119 	case e1000_82580:
120 	case e1000_i350:
121 	case e1000_i354:
122 	case e1000_i210:
123 	case e1000_i211:
124 		reg = rd32(E1000_MDICNFG);
125 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
126 		break;
127 	default:
128 		break;
129 	}
130 	return ext_mdio;
131 }
132 
133 /**
134  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
135  *  @hw: pointer to the HW structure
136  *
137  *  Poll the M88E1112 interfaces to see which interface achieved link.
138  */
139 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
140 {
141 	struct e1000_phy_info *phy = &hw->phy;
142 	s32 ret_val;
143 	u16 data;
144 	u8 port = 0;
145 
146 	/* Check the copper medium. */
147 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148 	if (ret_val)
149 		return ret_val;
150 
151 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
152 	if (ret_val)
153 		return ret_val;
154 
155 	if (data & E1000_M88E1112_STATUS_LINK)
156 		port = E1000_MEDIA_PORT_COPPER;
157 
158 	/* Check the other medium. */
159 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
160 	if (ret_val)
161 		return ret_val;
162 
163 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
164 	if (ret_val)
165 		return ret_val;
166 
167 
168 	if (data & E1000_M88E1112_STATUS_LINK)
169 		port = E1000_MEDIA_PORT_OTHER;
170 
171 	/* Determine if a swap needs to happen. */
172 	if (port && (hw->dev_spec._82575.media_port != port)) {
173 		hw->dev_spec._82575.media_port = port;
174 		hw->dev_spec._82575.media_changed = true;
175 	}
176 
177 	if (port == E1000_MEDIA_PORT_COPPER) {
178 		/* reset page to 0 */
179 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
180 		if (ret_val)
181 			return ret_val;
182 		igb_check_for_link_82575(hw);
183 	} else {
184 		igb_check_for_link_82575(hw);
185 		/* reset page to 0 */
186 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
187 		if (ret_val)
188 			return ret_val;
189 	}
190 
191 	return 0;
192 }
193 
194 /**
195  *  igb_init_phy_params_82575 - Init PHY func ptrs.
196  *  @hw: pointer to the HW structure
197  **/
198 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
199 {
200 	struct e1000_phy_info *phy = &hw->phy;
201 	s32 ret_val = 0;
202 	u32 ctrl_ext;
203 
204 	if (hw->phy.media_type != e1000_media_type_copper) {
205 		phy->type = e1000_phy_none;
206 		goto out;
207 	}
208 
209 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
210 	phy->reset_delay_us	= 100;
211 
212 	ctrl_ext = rd32(E1000_CTRL_EXT);
213 
214 	if (igb_sgmii_active_82575(hw)) {
215 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
216 		ctrl_ext |= E1000_CTRL_I2C_ENA;
217 	} else {
218 		phy->ops.reset = igb_phy_hw_reset;
219 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
220 	}
221 
222 	wr32(E1000_CTRL_EXT, ctrl_ext);
223 	igb_reset_mdicnfg_82580(hw);
224 
225 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
226 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
228 	} else {
229 		switch (hw->mac.type) {
230 		case e1000_82580:
231 		case e1000_i350:
232 		case e1000_i354:
233 		case e1000_i210:
234 		case e1000_i211:
235 			phy->ops.read_reg = igb_read_phy_reg_82580;
236 			phy->ops.write_reg = igb_write_phy_reg_82580;
237 			break;
238 		default:
239 			phy->ops.read_reg = igb_read_phy_reg_igp;
240 			phy->ops.write_reg = igb_write_phy_reg_igp;
241 		}
242 	}
243 
244 	/* set lan id */
245 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
246 			E1000_STATUS_FUNC_SHIFT;
247 
248 	/* Set phy->phy_addr and phy->id. */
249 	ret_val = igb_get_phy_id_82575(hw);
250 	if (ret_val)
251 		return ret_val;
252 
253 	/* Verify phy id and set remaining function pointers */
254 	switch (phy->id) {
255 	case M88E1543_E_PHY_ID:
256 	case M88E1512_E_PHY_ID:
257 	case I347AT4_E_PHY_ID:
258 	case M88E1112_E_PHY_ID:
259 	case M88E1111_I_PHY_ID:
260 		phy->type		= e1000_phy_m88;
261 		phy->ops.check_polarity	= igb_check_polarity_m88;
262 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
263 		if (phy->id != M88E1111_I_PHY_ID)
264 			phy->ops.get_cable_length =
265 					 igb_get_cable_length_m88_gen2;
266 		else
267 			phy->ops.get_cable_length = igb_get_cable_length_m88;
268 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
269 		/* Check if this PHY is configured for media swap. */
270 		if (phy->id == M88E1112_E_PHY_ID) {
271 			u16 data;
272 
273 			ret_val = phy->ops.write_reg(hw,
274 						     E1000_M88E1112_PAGE_ADDR,
275 						     2);
276 			if (ret_val)
277 				goto out;
278 
279 			ret_val = phy->ops.read_reg(hw,
280 						    E1000_M88E1112_MAC_CTRL_1,
281 						    &data);
282 			if (ret_val)
283 				goto out;
284 
285 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
286 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
287 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
288 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
289 				hw->mac.ops.check_for_link =
290 						igb_check_for_link_media_swap;
291 		}
292 		if (phy->id == M88E1512_E_PHY_ID) {
293 			ret_val = igb_initialize_M88E1512_phy(hw);
294 			if (ret_val)
295 				goto out;
296 		}
297 		if (phy->id == M88E1543_E_PHY_ID) {
298 			ret_val = igb_initialize_M88E1543_phy(hw);
299 			if (ret_val)
300 				goto out;
301 		}
302 		break;
303 	case IGP03E1000_E_PHY_ID:
304 		phy->type = e1000_phy_igp_3;
305 		phy->ops.get_phy_info = igb_get_phy_info_igp;
306 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
307 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
308 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
309 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
310 		break;
311 	case I82580_I_PHY_ID:
312 	case I350_I_PHY_ID:
313 		phy->type = e1000_phy_82580;
314 		phy->ops.force_speed_duplex =
315 					 igb_phy_force_speed_duplex_82580;
316 		phy->ops.get_cable_length = igb_get_cable_length_82580;
317 		phy->ops.get_phy_info = igb_get_phy_info_82580;
318 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
319 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
320 		break;
321 	case I210_I_PHY_ID:
322 		phy->type		= e1000_phy_i210;
323 		phy->ops.check_polarity	= igb_check_polarity_m88;
324 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
325 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
326 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
327 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
328 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
329 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
330 		break;
331 	default:
332 		ret_val = -E1000_ERR_PHY;
333 		goto out;
334 	}
335 
336 out:
337 	return ret_val;
338 }
339 
340 /**
341  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
342  *  @hw: pointer to the HW structure
343  **/
344 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
345 {
346 	struct e1000_nvm_info *nvm = &hw->nvm;
347 	u32 eecd = rd32(E1000_EECD);
348 	u16 size;
349 
350 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
351 		     E1000_EECD_SIZE_EX_SHIFT);
352 
353 	/* Added to a constant, "size" becomes the left-shift value
354 	 * for setting word_size.
355 	 */
356 	size += NVM_WORD_SIZE_BASE_SHIFT;
357 
358 	/* Just in case size is out of range, cap it to the largest
359 	 * EEPROM size supported
360 	 */
361 	if (size > 15)
362 		size = 15;
363 
364 	nvm->word_size = BIT(size);
365 	nvm->opcode_bits = 8;
366 	nvm->delay_usec = 1;
367 
368 	switch (nvm->override) {
369 	case e1000_nvm_override_spi_large:
370 		nvm->page_size = 32;
371 		nvm->address_bits = 16;
372 		break;
373 	case e1000_nvm_override_spi_small:
374 		nvm->page_size = 8;
375 		nvm->address_bits = 8;
376 		break;
377 	default:
378 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
379 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
380 				    16 : 8;
381 		break;
382 	}
383 	if (nvm->word_size == BIT(15))
384 		nvm->page_size = 128;
385 
386 	nvm->type = e1000_nvm_eeprom_spi;
387 
388 	/* NVM Function Pointers */
389 	nvm->ops.acquire = igb_acquire_nvm_82575;
390 	nvm->ops.release = igb_release_nvm_82575;
391 	nvm->ops.write = igb_write_nvm_spi;
392 	nvm->ops.validate = igb_validate_nvm_checksum;
393 	nvm->ops.update = igb_update_nvm_checksum;
394 	if (nvm->word_size < BIT(15))
395 		nvm->ops.read = igb_read_nvm_eerd;
396 	else
397 		nvm->ops.read = igb_read_nvm_spi;
398 
399 	/* override generic family function pointers for specific descendants */
400 	switch (hw->mac.type) {
401 	case e1000_82580:
402 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
403 		nvm->ops.update = igb_update_nvm_checksum_82580;
404 		break;
405 	case e1000_i354:
406 	case e1000_i350:
407 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
408 		nvm->ops.update = igb_update_nvm_checksum_i350;
409 		break;
410 	default:
411 		break;
412 	}
413 
414 	return 0;
415 }
416 
417 /**
418  *  igb_init_mac_params_82575 - Init MAC func ptrs.
419  *  @hw: pointer to the HW structure
420  **/
421 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
422 {
423 	struct e1000_mac_info *mac = &hw->mac;
424 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
425 
426 	/* Set mta register count */
427 	mac->mta_reg_count = 128;
428 	/* Set uta register count */
429 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
430 	/* Set rar entry count */
431 	switch (mac->type) {
432 	case e1000_82576:
433 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
434 		break;
435 	case e1000_82580:
436 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
437 		break;
438 	case e1000_i350:
439 	case e1000_i354:
440 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
441 		break;
442 	default:
443 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
444 		break;
445 	}
446 	/* reset */
447 	if (mac->type >= e1000_82580)
448 		mac->ops.reset_hw = igb_reset_hw_82580;
449 	else
450 		mac->ops.reset_hw = igb_reset_hw_82575;
451 
452 	if (mac->type >= e1000_i210) {
453 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
454 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
455 
456 	} else {
457 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
458 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
459 	}
460 
461 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
462 		mac->ops.write_vfta = igb_write_vfta_i350;
463 	else
464 		mac->ops.write_vfta = igb_write_vfta;
465 
466 	/* Set if part includes ASF firmware */
467 	mac->asf_firmware_present = true;
468 	/* Set if manageability features are enabled. */
469 	mac->arc_subsystem_valid =
470 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
471 			? true : false;
472 	/* enable EEE on i350 parts and later parts */
473 	if (mac->type >= e1000_i350)
474 		dev_spec->eee_disable = false;
475 	else
476 		dev_spec->eee_disable = true;
477 	/* Allow a single clear of the SW semaphore on I210 and newer */
478 	if (mac->type >= e1000_i210)
479 		dev_spec->clear_semaphore_once = true;
480 	/* physical interface link setup */
481 	mac->ops.setup_physical_interface =
482 		(hw->phy.media_type == e1000_media_type_copper)
483 			? igb_setup_copper_link_82575
484 			: igb_setup_serdes_link_82575;
485 
486 	if (mac->type == e1000_82580) {
487 		switch (hw->device_id) {
488 		/* feature not supported on these id's */
489 		case E1000_DEV_ID_DH89XXCC_SGMII:
490 		case E1000_DEV_ID_DH89XXCC_SERDES:
491 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
492 		case E1000_DEV_ID_DH89XXCC_SFP:
493 			break;
494 		default:
495 			hw->dev_spec._82575.mas_capable = true;
496 			break;
497 		}
498 	}
499 	return 0;
500 }
501 
502 /**
503  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
504  *  @hw: pointer to the HW structure
505  *
506  *  The media type is chosen based on SFP module.
507  *  compatibility flags retrieved from SFP ID EEPROM.
508  **/
509 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
510 {
511 	s32 ret_val = E1000_ERR_CONFIG;
512 	u32 ctrl_ext = 0;
513 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
514 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
515 	u8 tranceiver_type = 0;
516 	s32 timeout = 3;
517 
518 	/* Turn I2C interface ON and power on sfp cage */
519 	ctrl_ext = rd32(E1000_CTRL_EXT);
520 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
521 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
522 
523 	wrfl();
524 
525 	/* Read SFP module data */
526 	while (timeout) {
527 		ret_val = igb_read_sfp_data_byte(hw,
528 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
529 			&tranceiver_type);
530 		if (ret_val == 0)
531 			break;
532 		msleep(100);
533 		timeout--;
534 	}
535 	if (ret_val != 0)
536 		goto out;
537 
538 	ret_val = igb_read_sfp_data_byte(hw,
539 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
540 			(u8 *)eth_flags);
541 	if (ret_val != 0)
542 		goto out;
543 
544 	/* Check if there is some SFP module plugged and powered */
545 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
546 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
547 		dev_spec->module_plugged = true;
548 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
549 			hw->phy.media_type = e1000_media_type_internal_serdes;
550 		} else if (eth_flags->e100_base_fx) {
551 			dev_spec->sgmii_active = true;
552 			hw->phy.media_type = e1000_media_type_internal_serdes;
553 		} else if (eth_flags->e1000_base_t) {
554 			dev_spec->sgmii_active = true;
555 			hw->phy.media_type = e1000_media_type_copper;
556 		} else {
557 			hw->phy.media_type = e1000_media_type_unknown;
558 			hw_dbg("PHY module has not been recognized\n");
559 			goto out;
560 		}
561 	} else {
562 		hw->phy.media_type = e1000_media_type_unknown;
563 	}
564 	ret_val = 0;
565 out:
566 	/* Restore I2C interface setting */
567 	wr32(E1000_CTRL_EXT, ctrl_ext);
568 	return ret_val;
569 }
570 
571 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
572 {
573 	struct e1000_mac_info *mac = &hw->mac;
574 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
575 	s32 ret_val;
576 	u32 ctrl_ext = 0;
577 	u32 link_mode = 0;
578 
579 	switch (hw->device_id) {
580 	case E1000_DEV_ID_82575EB_COPPER:
581 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
582 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
583 		mac->type = e1000_82575;
584 		break;
585 	case E1000_DEV_ID_82576:
586 	case E1000_DEV_ID_82576_NS:
587 	case E1000_DEV_ID_82576_NS_SERDES:
588 	case E1000_DEV_ID_82576_FIBER:
589 	case E1000_DEV_ID_82576_SERDES:
590 	case E1000_DEV_ID_82576_QUAD_COPPER:
591 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
592 	case E1000_DEV_ID_82576_SERDES_QUAD:
593 		mac->type = e1000_82576;
594 		break;
595 	case E1000_DEV_ID_82580_COPPER:
596 	case E1000_DEV_ID_82580_FIBER:
597 	case E1000_DEV_ID_82580_QUAD_FIBER:
598 	case E1000_DEV_ID_82580_SERDES:
599 	case E1000_DEV_ID_82580_SGMII:
600 	case E1000_DEV_ID_82580_COPPER_DUAL:
601 	case E1000_DEV_ID_DH89XXCC_SGMII:
602 	case E1000_DEV_ID_DH89XXCC_SERDES:
603 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
604 	case E1000_DEV_ID_DH89XXCC_SFP:
605 		mac->type = e1000_82580;
606 		break;
607 	case E1000_DEV_ID_I350_COPPER:
608 	case E1000_DEV_ID_I350_FIBER:
609 	case E1000_DEV_ID_I350_SERDES:
610 	case E1000_DEV_ID_I350_SGMII:
611 		mac->type = e1000_i350;
612 		break;
613 	case E1000_DEV_ID_I210_COPPER:
614 	case E1000_DEV_ID_I210_FIBER:
615 	case E1000_DEV_ID_I210_SERDES:
616 	case E1000_DEV_ID_I210_SGMII:
617 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
618 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
619 		mac->type = e1000_i210;
620 		break;
621 	case E1000_DEV_ID_I211_COPPER:
622 		mac->type = e1000_i211;
623 		break;
624 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
625 	case E1000_DEV_ID_I354_SGMII:
626 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
627 		mac->type = e1000_i354;
628 		break;
629 	default:
630 		return -E1000_ERR_MAC_INIT;
631 	}
632 
633 	/* Set media type */
634 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
635 	 * based on the EEPROM. We cannot rely upon device ID. There
636 	 * is no distinguishable difference between fiber and internal
637 	 * SerDes mode on the 82575. There can be an external PHY attached
638 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
639 	 */
640 	hw->phy.media_type = e1000_media_type_copper;
641 	dev_spec->sgmii_active = false;
642 	dev_spec->module_plugged = false;
643 
644 	ctrl_ext = rd32(E1000_CTRL_EXT);
645 
646 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
647 	switch (link_mode) {
648 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
649 		hw->phy.media_type = e1000_media_type_internal_serdes;
650 		break;
651 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
652 		/* Get phy control interface type set (MDIO vs. I2C)*/
653 		if (igb_sgmii_uses_mdio_82575(hw)) {
654 			hw->phy.media_type = e1000_media_type_copper;
655 			dev_spec->sgmii_active = true;
656 			break;
657 		}
658 		/* fall through for I2C based SGMII */
659 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
660 		/* read media type from SFP EEPROM */
661 		ret_val = igb_set_sfp_media_type_82575(hw);
662 		if ((ret_val != 0) ||
663 		    (hw->phy.media_type == e1000_media_type_unknown)) {
664 			/* If media type was not identified then return media
665 			 * type defined by the CTRL_EXT settings.
666 			 */
667 			hw->phy.media_type = e1000_media_type_internal_serdes;
668 
669 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
670 				hw->phy.media_type = e1000_media_type_copper;
671 				dev_spec->sgmii_active = true;
672 			}
673 
674 			break;
675 		}
676 
677 		/* do not change link mode for 100BaseFX */
678 		if (dev_spec->eth_flags.e100_base_fx)
679 			break;
680 
681 		/* change current link mode setting */
682 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
683 
684 		if (hw->phy.media_type == e1000_media_type_copper)
685 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
686 		else
687 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
688 
689 		wr32(E1000_CTRL_EXT, ctrl_ext);
690 
691 		break;
692 	default:
693 		break;
694 	}
695 
696 	/* mac initialization and operations */
697 	ret_val = igb_init_mac_params_82575(hw);
698 	if (ret_val)
699 		goto out;
700 
701 	/* NVM initialization */
702 	ret_val = igb_init_nvm_params_82575(hw);
703 	switch (hw->mac.type) {
704 	case e1000_i210:
705 	case e1000_i211:
706 		ret_val = igb_init_nvm_params_i210(hw);
707 		break;
708 	default:
709 		break;
710 	}
711 
712 	if (ret_val)
713 		goto out;
714 
715 	/* if part supports SR-IOV then initialize mailbox parameters */
716 	switch (mac->type) {
717 	case e1000_82576:
718 	case e1000_i350:
719 		igb_init_mbx_params_pf(hw);
720 		break;
721 	default:
722 		break;
723 	}
724 
725 	/* setup PHY parameters */
726 	ret_val = igb_init_phy_params_82575(hw);
727 
728 out:
729 	return ret_val;
730 }
731 
732 /**
733  *  igb_acquire_phy_82575 - Acquire rights to access PHY
734  *  @hw: pointer to the HW structure
735  *
736  *  Acquire access rights to the correct PHY.  This is a
737  *  function pointer entry point called by the api module.
738  **/
739 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
740 {
741 	u16 mask = E1000_SWFW_PHY0_SM;
742 
743 	if (hw->bus.func == E1000_FUNC_1)
744 		mask = E1000_SWFW_PHY1_SM;
745 	else if (hw->bus.func == E1000_FUNC_2)
746 		mask = E1000_SWFW_PHY2_SM;
747 	else if (hw->bus.func == E1000_FUNC_3)
748 		mask = E1000_SWFW_PHY3_SM;
749 
750 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
751 }
752 
753 /**
754  *  igb_release_phy_82575 - Release rights to access PHY
755  *  @hw: pointer to the HW structure
756  *
757  *  A wrapper to release access rights to the correct PHY.  This is a
758  *  function pointer entry point called by the api module.
759  **/
760 static void igb_release_phy_82575(struct e1000_hw *hw)
761 {
762 	u16 mask = E1000_SWFW_PHY0_SM;
763 
764 	if (hw->bus.func == E1000_FUNC_1)
765 		mask = E1000_SWFW_PHY1_SM;
766 	else if (hw->bus.func == E1000_FUNC_2)
767 		mask = E1000_SWFW_PHY2_SM;
768 	else if (hw->bus.func == E1000_FUNC_3)
769 		mask = E1000_SWFW_PHY3_SM;
770 
771 	hw->mac.ops.release_swfw_sync(hw, mask);
772 }
773 
774 /**
775  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
776  *  @hw: pointer to the HW structure
777  *  @offset: register offset to be read
778  *  @data: pointer to the read data
779  *
780  *  Reads the PHY register at offset using the serial gigabit media independent
781  *  interface and stores the retrieved information in data.
782  **/
783 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
784 					  u16 *data)
785 {
786 	s32 ret_val = -E1000_ERR_PARAM;
787 
788 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
789 		hw_dbg("PHY Address %u is out of range\n", offset);
790 		goto out;
791 	}
792 
793 	ret_val = hw->phy.ops.acquire(hw);
794 	if (ret_val)
795 		goto out;
796 
797 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
798 
799 	hw->phy.ops.release(hw);
800 
801 out:
802 	return ret_val;
803 }
804 
805 /**
806  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
807  *  @hw: pointer to the HW structure
808  *  @offset: register offset to write to
809  *  @data: data to write at register offset
810  *
811  *  Writes the data to PHY register at the offset using the serial gigabit
812  *  media independent interface.
813  **/
814 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
815 					   u16 data)
816 {
817 	s32 ret_val = -E1000_ERR_PARAM;
818 
819 
820 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
821 		hw_dbg("PHY Address %d is out of range\n", offset);
822 		goto out;
823 	}
824 
825 	ret_val = hw->phy.ops.acquire(hw);
826 	if (ret_val)
827 		goto out;
828 
829 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
830 
831 	hw->phy.ops.release(hw);
832 
833 out:
834 	return ret_val;
835 }
836 
837 /**
838  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
839  *  @hw: pointer to the HW structure
840  *
841  *  Retrieves the PHY address and ID for both PHY's which do and do not use
842  *  sgmi interface.
843  **/
844 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
845 {
846 	struct e1000_phy_info *phy = &hw->phy;
847 	s32  ret_val = 0;
848 	u16 phy_id;
849 	u32 ctrl_ext;
850 	u32 mdic;
851 
852 	/* Extra read required for some PHY's on i354 */
853 	if (hw->mac.type == e1000_i354)
854 		igb_get_phy_id(hw);
855 
856 	/* For SGMII PHYs, we try the list of possible addresses until
857 	 * we find one that works.  For non-SGMII PHYs
858 	 * (e.g. integrated copper PHYs), an address of 1 should
859 	 * work.  The result of this function should mean phy->phy_addr
860 	 * and phy->id are set correctly.
861 	 */
862 	if (!(igb_sgmii_active_82575(hw))) {
863 		phy->addr = 1;
864 		ret_val = igb_get_phy_id(hw);
865 		goto out;
866 	}
867 
868 	if (igb_sgmii_uses_mdio_82575(hw)) {
869 		switch (hw->mac.type) {
870 		case e1000_82575:
871 		case e1000_82576:
872 			mdic = rd32(E1000_MDIC);
873 			mdic &= E1000_MDIC_PHY_MASK;
874 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
875 			break;
876 		case e1000_82580:
877 		case e1000_i350:
878 		case e1000_i354:
879 		case e1000_i210:
880 		case e1000_i211:
881 			mdic = rd32(E1000_MDICNFG);
882 			mdic &= E1000_MDICNFG_PHY_MASK;
883 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
884 			break;
885 		default:
886 			ret_val = -E1000_ERR_PHY;
887 			goto out;
888 		}
889 		ret_val = igb_get_phy_id(hw);
890 		goto out;
891 	}
892 
893 	/* Power on sgmii phy if it is disabled */
894 	ctrl_ext = rd32(E1000_CTRL_EXT);
895 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
896 	wrfl();
897 	msleep(300);
898 
899 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
900 	 * Therefore, we need to test 1-7
901 	 */
902 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
903 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
904 		if (ret_val == 0) {
905 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
906 			       phy_id, phy->addr);
907 			/* At the time of this writing, The M88 part is
908 			 * the only supported SGMII PHY product.
909 			 */
910 			if (phy_id == M88_VENDOR)
911 				break;
912 		} else {
913 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
914 		}
915 	}
916 
917 	/* A valid PHY type couldn't be found. */
918 	if (phy->addr == 8) {
919 		phy->addr = 0;
920 		ret_val = -E1000_ERR_PHY;
921 		goto out;
922 	} else {
923 		ret_val = igb_get_phy_id(hw);
924 	}
925 
926 	/* restore previous sfp cage power state */
927 	wr32(E1000_CTRL_EXT, ctrl_ext);
928 
929 out:
930 	return ret_val;
931 }
932 
933 /**
934  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
935  *  @hw: pointer to the HW structure
936  *
937  *  Resets the PHY using the serial gigabit media independent interface.
938  **/
939 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
940 {
941 	struct e1000_phy_info *phy = &hw->phy;
942 	s32 ret_val;
943 
944 	/* This isn't a true "hard" reset, but is the only reset
945 	 * available to us at this time.
946 	 */
947 
948 	hw_dbg("Soft resetting SGMII attached PHY...\n");
949 
950 	/* SFP documentation requires the following to configure the SPF module
951 	 * to work on SGMII.  No further documentation is given.
952 	 */
953 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
954 	if (ret_val)
955 		goto out;
956 
957 	ret_val = igb_phy_sw_reset(hw);
958 	if (ret_val)
959 		goto out;
960 
961 	if (phy->id == M88E1512_E_PHY_ID)
962 		ret_val = igb_initialize_M88E1512_phy(hw);
963 	if (phy->id == M88E1543_E_PHY_ID)
964 		ret_val = igb_initialize_M88E1543_phy(hw);
965 out:
966 	return ret_val;
967 }
968 
969 /**
970  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
971  *  @hw: pointer to the HW structure
972  *  @active: true to enable LPLU, false to disable
973  *
974  *  Sets the LPLU D0 state according to the active flag.  When
975  *  activating LPLU this function also disables smart speed
976  *  and vice versa.  LPLU will not be activated unless the
977  *  device autonegotiation advertisement meets standards of
978  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
979  *  This is a function pointer entry point only called by
980  *  PHY setup routines.
981  **/
982 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
983 {
984 	struct e1000_phy_info *phy = &hw->phy;
985 	s32 ret_val;
986 	u16 data;
987 
988 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
989 	if (ret_val)
990 		goto out;
991 
992 	if (active) {
993 		data |= IGP02E1000_PM_D0_LPLU;
994 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
995 						 data);
996 		if (ret_val)
997 			goto out;
998 
999 		/* When LPLU is enabled, we should disable SmartSpeed */
1000 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1001 						&data);
1002 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1004 						 data);
1005 		if (ret_val)
1006 			goto out;
1007 	} else {
1008 		data &= ~IGP02E1000_PM_D0_LPLU;
1009 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010 						 data);
1011 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1012 		 * during Dx states where the power conservation is most
1013 		 * important.  During driver activity we should enable
1014 		 * SmartSpeed, so performance is maintained.
1015 		 */
1016 		if (phy->smart_speed == e1000_smart_speed_on) {
1017 			ret_val = phy->ops.read_reg(hw,
1018 					IGP01E1000_PHY_PORT_CONFIG, &data);
1019 			if (ret_val)
1020 				goto out;
1021 
1022 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1023 			ret_val = phy->ops.write_reg(hw,
1024 					IGP01E1000_PHY_PORT_CONFIG, data);
1025 			if (ret_val)
1026 				goto out;
1027 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1028 			ret_val = phy->ops.read_reg(hw,
1029 					IGP01E1000_PHY_PORT_CONFIG, &data);
1030 			if (ret_val)
1031 				goto out;
1032 
1033 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1034 			ret_val = phy->ops.write_reg(hw,
1035 					IGP01E1000_PHY_PORT_CONFIG, data);
1036 			if (ret_val)
1037 				goto out;
1038 		}
1039 	}
1040 
1041 out:
1042 	return ret_val;
1043 }
1044 
1045 /**
1046  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047  *  @hw: pointer to the HW structure
1048  *  @active: true to enable LPLU, false to disable
1049  *
1050  *  Sets the LPLU D0 state according to the active flag.  When
1051  *  activating LPLU this function also disables smart speed
1052  *  and vice versa.  LPLU will not be activated unless the
1053  *  device autonegotiation advertisement meets standards of
1054  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1055  *  This is a function pointer entry point only called by
1056  *  PHY setup routines.
1057  **/
1058 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1059 {
1060 	struct e1000_phy_info *phy = &hw->phy;
1061 	u16 data;
1062 
1063 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1064 
1065 	if (active) {
1066 		data |= E1000_82580_PM_D0_LPLU;
1067 
1068 		/* When LPLU is enabled, we should disable SmartSpeed */
1069 		data &= ~E1000_82580_PM_SPD;
1070 	} else {
1071 		data &= ~E1000_82580_PM_D0_LPLU;
1072 
1073 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1074 		 * during Dx states where the power conservation is most
1075 		 * important.  During driver activity we should enable
1076 		 * SmartSpeed, so performance is maintained.
1077 		 */
1078 		if (phy->smart_speed == e1000_smart_speed_on)
1079 			data |= E1000_82580_PM_SPD;
1080 		else if (phy->smart_speed == e1000_smart_speed_off)
1081 			data &= ~E1000_82580_PM_SPD; }
1082 
1083 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1084 	return 0;
1085 }
1086 
1087 /**
1088  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089  *  @hw: pointer to the HW structure
1090  *  @active: boolean used to enable/disable lplu
1091  *
1092  *  Success returns 0, Failure returns 1
1093  *
1094  *  The low power link up (lplu) state is set to the power management level D3
1095  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1096  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1097  *  is used during Dx states where the power conservation is most important.
1098  *  During driver activity, SmartSpeed should be enabled so performance is
1099  *  maintained.
1100  **/
1101 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1102 {
1103 	struct e1000_phy_info *phy = &hw->phy;
1104 	u16 data;
1105 
1106 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1107 
1108 	if (!active) {
1109 		data &= ~E1000_82580_PM_D3_LPLU;
1110 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1111 		 * during Dx states where the power conservation is most
1112 		 * important.  During driver activity we should enable
1113 		 * SmartSpeed, so performance is maintained.
1114 		 */
1115 		if (phy->smart_speed == e1000_smart_speed_on)
1116 			data |= E1000_82580_PM_SPD;
1117 		else if (phy->smart_speed == e1000_smart_speed_off)
1118 			data &= ~E1000_82580_PM_SPD;
1119 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1120 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1121 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1122 		data |= E1000_82580_PM_D3_LPLU;
1123 		/* When LPLU is enabled, we should disable SmartSpeed */
1124 		data &= ~E1000_82580_PM_SPD;
1125 	}
1126 
1127 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1128 	return 0;
1129 }
1130 
1131 /**
1132  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1133  *  @hw: pointer to the HW structure
1134  *
1135  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1136  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137  *  Return successful if access grant bit set, else clear the request for
1138  *  EEPROM access and return -E1000_ERR_NVM (-1).
1139  **/
1140 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1141 {
1142 	s32 ret_val;
1143 
1144 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145 	if (ret_val)
1146 		goto out;
1147 
1148 	ret_val = igb_acquire_nvm(hw);
1149 
1150 	if (ret_val)
1151 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1152 
1153 out:
1154 	return ret_val;
1155 }
1156 
1157 /**
1158  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1159  *  @hw: pointer to the HW structure
1160  *
1161  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162  *  then release the semaphores acquired.
1163  **/
1164 static void igb_release_nvm_82575(struct e1000_hw *hw)
1165 {
1166 	igb_release_nvm(hw);
1167 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168 }
1169 
1170 /**
1171  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172  *  @hw: pointer to the HW structure
1173  *  @mask: specifies which semaphore to acquire
1174  *
1175  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1176  *  will also specify which port we're acquiring the lock for.
1177  **/
1178 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179 {
1180 	u32 swfw_sync;
1181 	u32 swmask = mask;
1182 	u32 fwmask = mask << 16;
1183 	s32 ret_val = 0;
1184 	s32 i = 0, timeout = 200;
1185 
1186 	while (i < timeout) {
1187 		if (igb_get_hw_semaphore(hw)) {
1188 			ret_val = -E1000_ERR_SWFW_SYNC;
1189 			goto out;
1190 		}
1191 
1192 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1193 		if (!(swfw_sync & (fwmask | swmask)))
1194 			break;
1195 
1196 		/* Firmware currently using resource (fwmask)
1197 		 * or other software thread using resource (swmask)
1198 		 */
1199 		igb_put_hw_semaphore(hw);
1200 		mdelay(5);
1201 		i++;
1202 	}
1203 
1204 	if (i == timeout) {
1205 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206 		ret_val = -E1000_ERR_SWFW_SYNC;
1207 		goto out;
1208 	}
1209 
1210 	swfw_sync |= swmask;
1211 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1212 
1213 	igb_put_hw_semaphore(hw);
1214 
1215 out:
1216 	return ret_val;
1217 }
1218 
1219 /**
1220  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221  *  @hw: pointer to the HW structure
1222  *  @mask: specifies which semaphore to acquire
1223  *
1224  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1225  *  will also specify which port we're releasing the lock for.
1226  **/
1227 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1228 {
1229 	u32 swfw_sync;
1230 
1231 	while (igb_get_hw_semaphore(hw) != 0)
1232 		; /* Empty */
1233 
1234 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1235 	swfw_sync &= ~mask;
1236 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1237 
1238 	igb_put_hw_semaphore(hw);
1239 }
1240 
1241 /**
1242  *  igb_get_cfg_done_82575 - Read config done bit
1243  *  @hw: pointer to the HW structure
1244  *
1245  *  Read the management control register for the config done bit for
1246  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1247  *  to read the config done bit, so an error is *ONLY* logged and returns
1248  *  0.  If we were to return with error, EEPROM-less silicon
1249  *  would not be able to be reset or change link.
1250  **/
1251 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1252 {
1253 	s32 timeout = PHY_CFG_TIMEOUT;
1254 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1255 
1256 	if (hw->bus.func == 1)
1257 		mask = E1000_NVM_CFG_DONE_PORT_1;
1258 	else if (hw->bus.func == E1000_FUNC_2)
1259 		mask = E1000_NVM_CFG_DONE_PORT_2;
1260 	else if (hw->bus.func == E1000_FUNC_3)
1261 		mask = E1000_NVM_CFG_DONE_PORT_3;
1262 
1263 	while (timeout) {
1264 		if (rd32(E1000_EEMNGCTL) & mask)
1265 			break;
1266 		usleep_range(1000, 2000);
1267 		timeout--;
1268 	}
1269 	if (!timeout)
1270 		hw_dbg("MNG configuration cycle has not completed.\n");
1271 
1272 	/* If EEPROM is not marked present, init the PHY manually */
1273 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1274 	    (hw->phy.type == e1000_phy_igp_3))
1275 		igb_phy_init_script_igp3(hw);
1276 
1277 	return 0;
1278 }
1279 
1280 /**
1281  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1282  *  @hw: pointer to the HW structure
1283  *  @speed: stores the current speed
1284  *  @duplex: stores the current duplex
1285  *
1286  *  This is a wrapper function, if using the serial gigabit media independent
1287  *  interface, use PCS to retrieve the link speed and duplex information.
1288  *  Otherwise, use the generic function to get the link speed and duplex info.
1289  **/
1290 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1291 					u16 *duplex)
1292 {
1293 	s32 ret_val;
1294 
1295 	if (hw->phy.media_type != e1000_media_type_copper)
1296 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1297 							       duplex);
1298 	else
1299 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1300 								    duplex);
1301 
1302 	return ret_val;
1303 }
1304 
1305 /**
1306  *  igb_check_for_link_82575 - Check for link
1307  *  @hw: pointer to the HW structure
1308  *
1309  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1310  *  use the generic interface for determining link.
1311  **/
1312 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1313 {
1314 	s32 ret_val;
1315 	u16 speed, duplex;
1316 
1317 	if (hw->phy.media_type != e1000_media_type_copper) {
1318 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1319 							     &duplex);
1320 		/* Use this flag to determine if link needs to be checked or
1321 		 * not.  If  we have link clear the flag so that we do not
1322 		 * continue to check for link.
1323 		 */
1324 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1325 
1326 		/* Configure Flow Control now that Auto-Neg has completed.
1327 		 * First, we need to restore the desired flow control
1328 		 * settings because we may have had to re-autoneg with a
1329 		 * different link partner.
1330 		 */
1331 		ret_val = igb_config_fc_after_link_up(hw);
1332 		if (ret_val)
1333 			hw_dbg("Error configuring flow control\n");
1334 	} else {
1335 		ret_val = igb_check_for_copper_link(hw);
1336 	}
1337 
1338 	return ret_val;
1339 }
1340 
1341 /**
1342  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343  *  @hw: pointer to the HW structure
1344  **/
1345 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1346 {
1347 	u32 reg;
1348 
1349 
1350 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1351 	    !igb_sgmii_active_82575(hw))
1352 		return;
1353 
1354 	/* Enable PCS to turn on link */
1355 	reg = rd32(E1000_PCS_CFG0);
1356 	reg |= E1000_PCS_CFG_PCS_EN;
1357 	wr32(E1000_PCS_CFG0, reg);
1358 
1359 	/* Power up the laser */
1360 	reg = rd32(E1000_CTRL_EXT);
1361 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1362 	wr32(E1000_CTRL_EXT, reg);
1363 
1364 	/* flush the write to verify completion */
1365 	wrfl();
1366 	usleep_range(1000, 2000);
1367 }
1368 
1369 /**
1370  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371  *  @hw: pointer to the HW structure
1372  *  @speed: stores the current speed
1373  *  @duplex: stores the current duplex
1374  *
1375  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1376  *  duplex, then store the values in the pointers provided.
1377  **/
1378 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1379 						u16 *duplex)
1380 {
1381 	struct e1000_mac_info *mac = &hw->mac;
1382 	u32 pcs, status;
1383 
1384 	/* Set up defaults for the return values of this function */
1385 	mac->serdes_has_link = false;
1386 	*speed = 0;
1387 	*duplex = 0;
1388 
1389 	/* Read the PCS Status register for link state. For non-copper mode,
1390 	 * the status register is not accurate. The PCS status register is
1391 	 * used instead.
1392 	 */
1393 	pcs = rd32(E1000_PCS_LSTAT);
1394 
1395 	/* The link up bit determines when link is up on autoneg. The sync ok
1396 	 * gets set once both sides sync up and agree upon link. Stable link
1397 	 * can be determined by checking for both link up and link sync ok
1398 	 */
1399 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1400 		mac->serdes_has_link = true;
1401 
1402 		/* Detect and store PCS speed */
1403 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1404 			*speed = SPEED_1000;
1405 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1406 			*speed = SPEED_100;
1407 		else
1408 			*speed = SPEED_10;
1409 
1410 		/* Detect and store PCS duplex */
1411 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1412 			*duplex = FULL_DUPLEX;
1413 		else
1414 			*duplex = HALF_DUPLEX;
1415 
1416 	/* Check if it is an I354 2.5Gb backplane connection. */
1417 		if (mac->type == e1000_i354) {
1418 			status = rd32(E1000_STATUS);
1419 			if ((status & E1000_STATUS_2P5_SKU) &&
1420 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1421 				*speed = SPEED_2500;
1422 				*duplex = FULL_DUPLEX;
1423 				hw_dbg("2500 Mbs, ");
1424 				hw_dbg("Full Duplex\n");
1425 			}
1426 		}
1427 
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1435  *  @hw: pointer to the HW structure
1436  *
1437  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1438  *  when management pass thru is not enabled.
1439  **/
1440 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1441 {
1442 	u32 reg;
1443 
1444 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1445 	    igb_sgmii_active_82575(hw))
1446 		return;
1447 
1448 	if (!igb_enable_mng_pass_thru(hw)) {
1449 		/* Disable PCS to turn off link */
1450 		reg = rd32(E1000_PCS_CFG0);
1451 		reg &= ~E1000_PCS_CFG_PCS_EN;
1452 		wr32(E1000_PCS_CFG0, reg);
1453 
1454 		/* shutdown the laser */
1455 		reg = rd32(E1000_CTRL_EXT);
1456 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1457 		wr32(E1000_CTRL_EXT, reg);
1458 
1459 		/* flush the write to verify completion */
1460 		wrfl();
1461 		usleep_range(1000, 2000);
1462 	}
1463 }
1464 
1465 /**
1466  *  igb_reset_hw_82575 - Reset hardware
1467  *  @hw: pointer to the HW structure
1468  *
1469  *  This resets the hardware into a known state.  This is a
1470  *  function pointer entry point called by the api module.
1471  **/
1472 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1473 {
1474 	u32 ctrl;
1475 	s32 ret_val;
1476 
1477 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1478 	 * on the last TLP read/write transaction when MAC is reset.
1479 	 */
1480 	ret_val = igb_disable_pcie_master(hw);
1481 	if (ret_val)
1482 		hw_dbg("PCI-E Master disable polling has failed.\n");
1483 
1484 	/* set the completion timeout for interface */
1485 	ret_val = igb_set_pcie_completion_timeout(hw);
1486 	if (ret_val)
1487 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1488 
1489 	hw_dbg("Masking off all interrupts\n");
1490 	wr32(E1000_IMC, 0xffffffff);
1491 
1492 	wr32(E1000_RCTL, 0);
1493 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1494 	wrfl();
1495 
1496 	usleep_range(10000, 20000);
1497 
1498 	ctrl = rd32(E1000_CTRL);
1499 
1500 	hw_dbg("Issuing a global reset to MAC\n");
1501 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1502 
1503 	ret_val = igb_get_auto_rd_done(hw);
1504 	if (ret_val) {
1505 		/* When auto config read does not complete, do not
1506 		 * return with an error. This can happen in situations
1507 		 * where there is no eeprom and prevents getting link.
1508 		 */
1509 		hw_dbg("Auto Read Done did not complete\n");
1510 	}
1511 
1512 	/* If EEPROM is not present, run manual init scripts */
1513 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1514 		igb_reset_init_script_82575(hw);
1515 
1516 	/* Clear any pending interrupt events. */
1517 	wr32(E1000_IMC, 0xffffffff);
1518 	rd32(E1000_ICR);
1519 
1520 	/* Install any alternate MAC address into RAR0 */
1521 	ret_val = igb_check_alt_mac_addr(hw);
1522 
1523 	return ret_val;
1524 }
1525 
1526 /**
1527  *  igb_init_hw_82575 - Initialize hardware
1528  *  @hw: pointer to the HW structure
1529  *
1530  *  This inits the hardware readying it for operation.
1531  **/
1532 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1533 {
1534 	struct e1000_mac_info *mac = &hw->mac;
1535 	s32 ret_val;
1536 	u16 i, rar_count = mac->rar_entry_count;
1537 
1538 	if ((hw->mac.type >= e1000_i210) &&
1539 	    !(igb_get_flash_presence_i210(hw))) {
1540 		ret_val = igb_pll_workaround_i210(hw);
1541 		if (ret_val)
1542 			return ret_val;
1543 	}
1544 
1545 	/* Initialize identification LED */
1546 	ret_val = igb_id_led_init(hw);
1547 	if (ret_val) {
1548 		hw_dbg("Error initializing identification LED\n");
1549 		/* This is not fatal and we should not stop init due to this */
1550 	}
1551 
1552 	/* Disabling VLAN filtering */
1553 	hw_dbg("Initializing the IEEE VLAN\n");
1554 	igb_clear_vfta(hw);
1555 
1556 	/* Setup the receive address */
1557 	igb_init_rx_addrs(hw, rar_count);
1558 
1559 	/* Zero out the Multicast HASH table */
1560 	hw_dbg("Zeroing the MTA\n");
1561 	for (i = 0; i < mac->mta_reg_count; i++)
1562 		array_wr32(E1000_MTA, i, 0);
1563 
1564 	/* Zero out the Unicast HASH table */
1565 	hw_dbg("Zeroing the UTA\n");
1566 	for (i = 0; i < mac->uta_reg_count; i++)
1567 		array_wr32(E1000_UTA, i, 0);
1568 
1569 	/* Setup link and flow control */
1570 	ret_val = igb_setup_link(hw);
1571 
1572 	/* Clear all of the statistics registers (clear on read).  It is
1573 	 * important that we do this after we have tried to establish link
1574 	 * because the symbol error count will increment wildly if there
1575 	 * is no link.
1576 	 */
1577 	igb_clear_hw_cntrs_82575(hw);
1578 	return ret_val;
1579 }
1580 
1581 /**
1582  *  igb_setup_copper_link_82575 - Configure copper link settings
1583  *  @hw: pointer to the HW structure
1584  *
1585  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1586  *  for link, once link is established calls to configure collision distance
1587  *  and flow control are called.
1588  **/
1589 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1590 {
1591 	u32 ctrl;
1592 	s32  ret_val;
1593 	u32 phpm_reg;
1594 
1595 	ctrl = rd32(E1000_CTRL);
1596 	ctrl |= E1000_CTRL_SLU;
1597 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1598 	wr32(E1000_CTRL, ctrl);
1599 
1600 	/* Clear Go Link Disconnect bit on supported devices */
1601 	switch (hw->mac.type) {
1602 	case e1000_82580:
1603 	case e1000_i350:
1604 	case e1000_i210:
1605 	case e1000_i211:
1606 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1607 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1608 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1609 		break;
1610 	default:
1611 		break;
1612 	}
1613 
1614 	ret_val = igb_setup_serdes_link_82575(hw);
1615 	if (ret_val)
1616 		goto out;
1617 
1618 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1619 		/* allow time for SFP cage time to power up phy */
1620 		msleep(300);
1621 
1622 		ret_val = hw->phy.ops.reset(hw);
1623 		if (ret_val) {
1624 			hw_dbg("Error resetting the PHY.\n");
1625 			goto out;
1626 		}
1627 	}
1628 	switch (hw->phy.type) {
1629 	case e1000_phy_i210:
1630 	case e1000_phy_m88:
1631 		switch (hw->phy.id) {
1632 		case I347AT4_E_PHY_ID:
1633 		case M88E1112_E_PHY_ID:
1634 		case M88E1543_E_PHY_ID:
1635 		case M88E1512_E_PHY_ID:
1636 		case I210_I_PHY_ID:
1637 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1638 			break;
1639 		default:
1640 			ret_val = igb_copper_link_setup_m88(hw);
1641 			break;
1642 		}
1643 		break;
1644 	case e1000_phy_igp_3:
1645 		ret_val = igb_copper_link_setup_igp(hw);
1646 		break;
1647 	case e1000_phy_82580:
1648 		ret_val = igb_copper_link_setup_82580(hw);
1649 		break;
1650 	default:
1651 		ret_val = -E1000_ERR_PHY;
1652 		break;
1653 	}
1654 
1655 	if (ret_val)
1656 		goto out;
1657 
1658 	ret_val = igb_setup_copper_link(hw);
1659 out:
1660 	return ret_val;
1661 }
1662 
1663 /**
1664  *  igb_setup_serdes_link_82575 - Setup link for serdes
1665  *  @hw: pointer to the HW structure
1666  *
1667  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1668  *  used on copper connections where the serialized gigabit media independent
1669  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1670  *  for auto-negotiation or forces speed/duplex.
1671  **/
1672 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1673 {
1674 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1675 	bool pcs_autoneg;
1676 	s32 ret_val = 0;
1677 	u16 data;
1678 
1679 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1680 	    !igb_sgmii_active_82575(hw))
1681 		return ret_val;
1682 
1683 
1684 	/* On the 82575, SerDes loopback mode persists until it is
1685 	 * explicitly turned off or a power cycle is performed.  A read to
1686 	 * the register does not indicate its status.  Therefore, we ensure
1687 	 * loopback mode is disabled during initialization.
1688 	 */
1689 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1690 
1691 	/* power on the sfp cage if present and turn on I2C */
1692 	ctrl_ext = rd32(E1000_CTRL_EXT);
1693 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1694 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1695 	wr32(E1000_CTRL_EXT, ctrl_ext);
1696 
1697 	ctrl_reg = rd32(E1000_CTRL);
1698 	ctrl_reg |= E1000_CTRL_SLU;
1699 
1700 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1701 		/* set both sw defined pins */
1702 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1703 
1704 		/* Set switch control to serdes energy detect */
1705 		reg = rd32(E1000_CONNSW);
1706 		reg |= E1000_CONNSW_ENRGSRC;
1707 		wr32(E1000_CONNSW, reg);
1708 	}
1709 
1710 	reg = rd32(E1000_PCS_LCTL);
1711 
1712 	/* default pcs_autoneg to the same setting as mac autoneg */
1713 	pcs_autoneg = hw->mac.autoneg;
1714 
1715 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1716 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1717 		/* sgmii mode lets the phy handle forcing speed/duplex */
1718 		pcs_autoneg = true;
1719 		/* autoneg time out should be disabled for SGMII mode */
1720 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1721 		break;
1722 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1723 		/* disable PCS autoneg and support parallel detect only */
1724 		pcs_autoneg = false;
1725 	default:
1726 		if (hw->mac.type == e1000_82575 ||
1727 		    hw->mac.type == e1000_82576) {
1728 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1729 			if (ret_val) {
1730 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1731 				return ret_val;
1732 			}
1733 
1734 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1735 				pcs_autoneg = false;
1736 		}
1737 
1738 		/* non-SGMII modes only supports a speed of 1000/Full for the
1739 		 * link so it is best to just force the MAC and let the pcs
1740 		 * link either autoneg or be forced to 1000/Full
1741 		 */
1742 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1743 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1744 
1745 		/* set speed of 1000/Full if speed/duplex is forced */
1746 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1747 		break;
1748 	}
1749 
1750 	wr32(E1000_CTRL, ctrl_reg);
1751 
1752 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1753 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1754 	 * mode that will be compatible with older link partners and switches.
1755 	 * However, both are supported by the hardware and some drivers/tools.
1756 	 */
1757 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1758 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1759 
1760 	if (pcs_autoneg) {
1761 		/* Set PCS register for autoneg */
1762 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1763 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1764 
1765 		/* Disable force flow control for autoneg */
1766 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1767 
1768 		/* Configure flow control advertisement for autoneg */
1769 		anadv_reg = rd32(E1000_PCS_ANADV);
1770 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1771 		switch (hw->fc.requested_mode) {
1772 		case e1000_fc_full:
1773 		case e1000_fc_rx_pause:
1774 			anadv_reg |= E1000_TXCW_ASM_DIR;
1775 			anadv_reg |= E1000_TXCW_PAUSE;
1776 			break;
1777 		case e1000_fc_tx_pause:
1778 			anadv_reg |= E1000_TXCW_ASM_DIR;
1779 			break;
1780 		default:
1781 			break;
1782 		}
1783 		wr32(E1000_PCS_ANADV, anadv_reg);
1784 
1785 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1786 	} else {
1787 		/* Set PCS register for forced link */
1788 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1789 
1790 		/* Force flow control for forced link */
1791 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1792 
1793 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1794 	}
1795 
1796 	wr32(E1000_PCS_LCTL, reg);
1797 
1798 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1799 		igb_force_mac_fc(hw);
1800 
1801 	return ret_val;
1802 }
1803 
1804 /**
1805  *  igb_sgmii_active_82575 - Return sgmii state
1806  *  @hw: pointer to the HW structure
1807  *
1808  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1809  *  which can be enabled for use in the embedded applications.  Simply
1810  *  return the current state of the sgmii interface.
1811  **/
1812 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1813 {
1814 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1815 	return dev_spec->sgmii_active;
1816 }
1817 
1818 /**
1819  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1820  *  @hw: pointer to the HW structure
1821  *
1822  *  Inits recommended HW defaults after a reset when there is no EEPROM
1823  *  detected. This is only for the 82575.
1824  **/
1825 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1826 {
1827 	if (hw->mac.type == e1000_82575) {
1828 		hw_dbg("Running reset init script for 82575\n");
1829 		/* SerDes configuration via SERDESCTRL */
1830 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1831 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1832 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1833 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1834 
1835 		/* CCM configuration via CCMCTL register */
1836 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1837 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1838 
1839 		/* PCIe lanes configuration */
1840 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1841 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1842 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1843 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1844 
1845 		/* PCIe PLL Configuration */
1846 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1847 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1848 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1849 	}
1850 
1851 	return 0;
1852 }
1853 
1854 /**
1855  *  igb_read_mac_addr_82575 - Read device MAC address
1856  *  @hw: pointer to the HW structure
1857  **/
1858 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1859 {
1860 	s32 ret_val = 0;
1861 
1862 	/* If there's an alternate MAC address place it in RAR0
1863 	 * so that it will override the Si installed default perm
1864 	 * address.
1865 	 */
1866 	ret_val = igb_check_alt_mac_addr(hw);
1867 	if (ret_val)
1868 		goto out;
1869 
1870 	ret_val = igb_read_mac_addr(hw);
1871 
1872 out:
1873 	return ret_val;
1874 }
1875 
1876 /**
1877  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878  * @hw: pointer to the HW structure
1879  *
1880  * In the case of a PHY power down to save power, or to turn off link during a
1881  * driver unload, or wake on lan is not enabled, remove the link.
1882  **/
1883 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1884 {
1885 	/* If the management interface is not enabled, then power down */
1886 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1887 		igb_power_down_phy_copper(hw);
1888 }
1889 
1890 /**
1891  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892  *  @hw: pointer to the HW structure
1893  *
1894  *  Clears the hardware counters by reading the counter registers.
1895  **/
1896 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1897 {
1898 	igb_clear_hw_cntrs_base(hw);
1899 
1900 	rd32(E1000_PRC64);
1901 	rd32(E1000_PRC127);
1902 	rd32(E1000_PRC255);
1903 	rd32(E1000_PRC511);
1904 	rd32(E1000_PRC1023);
1905 	rd32(E1000_PRC1522);
1906 	rd32(E1000_PTC64);
1907 	rd32(E1000_PTC127);
1908 	rd32(E1000_PTC255);
1909 	rd32(E1000_PTC511);
1910 	rd32(E1000_PTC1023);
1911 	rd32(E1000_PTC1522);
1912 
1913 	rd32(E1000_ALGNERRC);
1914 	rd32(E1000_RXERRC);
1915 	rd32(E1000_TNCRS);
1916 	rd32(E1000_CEXTERR);
1917 	rd32(E1000_TSCTC);
1918 	rd32(E1000_TSCTFC);
1919 
1920 	rd32(E1000_MGTPRC);
1921 	rd32(E1000_MGTPDC);
1922 	rd32(E1000_MGTPTC);
1923 
1924 	rd32(E1000_IAC);
1925 	rd32(E1000_ICRXOC);
1926 
1927 	rd32(E1000_ICRXPTC);
1928 	rd32(E1000_ICRXATC);
1929 	rd32(E1000_ICTXPTC);
1930 	rd32(E1000_ICTXATC);
1931 	rd32(E1000_ICTXQEC);
1932 	rd32(E1000_ICTXQMTC);
1933 	rd32(E1000_ICRXDMTC);
1934 
1935 	rd32(E1000_CBTMPC);
1936 	rd32(E1000_HTDPMC);
1937 	rd32(E1000_CBRMPC);
1938 	rd32(E1000_RPTHC);
1939 	rd32(E1000_HGPTC);
1940 	rd32(E1000_HTCBDPC);
1941 	rd32(E1000_HGORCL);
1942 	rd32(E1000_HGORCH);
1943 	rd32(E1000_HGOTCL);
1944 	rd32(E1000_HGOTCH);
1945 	rd32(E1000_LENERRS);
1946 
1947 	/* This register should not be read in copper configurations */
1948 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1949 	    igb_sgmii_active_82575(hw))
1950 		rd32(E1000_SCVPC);
1951 }
1952 
1953 /**
1954  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955  *  @hw: pointer to the HW structure
1956  *
1957  *  After rx enable if manageability is enabled then there is likely some
1958  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1959  *  function clears the fifos and flushes any packets that came in as rx was
1960  *  being enabled.
1961  **/
1962 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1963 {
1964 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1965 	int i, ms_wait;
1966 
1967 	/* disable IPv6 options as per hardware errata */
1968 	rfctl = rd32(E1000_RFCTL);
1969 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1970 	wr32(E1000_RFCTL, rfctl);
1971 
1972 	if (hw->mac.type != e1000_82575 ||
1973 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1974 		return;
1975 
1976 	/* Disable all RX queues */
1977 	for (i = 0; i < 4; i++) {
1978 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1979 		wr32(E1000_RXDCTL(i),
1980 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1981 	}
1982 	/* Poll all queues to verify they have shut down */
1983 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1984 		usleep_range(1000, 2000);
1985 		rx_enabled = 0;
1986 		for (i = 0; i < 4; i++)
1987 			rx_enabled |= rd32(E1000_RXDCTL(i));
1988 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1989 			break;
1990 	}
1991 
1992 	if (ms_wait == 10)
1993 		hw_dbg("Queue disable timed out after 10ms\n");
1994 
1995 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1997 	 * any packet that was coming in as RCTL.EN was set is flushed
1998 	 */
1999 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2000 
2001 	rlpml = rd32(E1000_RLPML);
2002 	wr32(E1000_RLPML, 0);
2003 
2004 	rctl = rd32(E1000_RCTL);
2005 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2006 	temp_rctl |= E1000_RCTL_LPE;
2007 
2008 	wr32(E1000_RCTL, temp_rctl);
2009 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2010 	wrfl();
2011 	usleep_range(2000, 3000);
2012 
2013 	/* Enable RX queues that were previously enabled and restore our
2014 	 * previous state
2015 	 */
2016 	for (i = 0; i < 4; i++)
2017 		wr32(E1000_RXDCTL(i), rxdctl[i]);
2018 	wr32(E1000_RCTL, rctl);
2019 	wrfl();
2020 
2021 	wr32(E1000_RLPML, rlpml);
2022 	wr32(E1000_RFCTL, rfctl);
2023 
2024 	/* Flush receive errors generated by workaround */
2025 	rd32(E1000_ROC);
2026 	rd32(E1000_RNBC);
2027 	rd32(E1000_MPC);
2028 }
2029 
2030 /**
2031  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2032  *  @hw: pointer to the HW structure
2033  *
2034  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035  *  however the hardware default for these parts is 500us to 1ms which is less
2036  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2037  *  increase the value to either 10ms to 200ms for capability version 1 config,
2038  *  or 16ms to 55ms for version 2.
2039  **/
2040 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2041 {
2042 	u32 gcr = rd32(E1000_GCR);
2043 	s32 ret_val = 0;
2044 	u16 pcie_devctl2;
2045 
2046 	/* only take action if timeout value is defaulted to 0 */
2047 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2048 		goto out;
2049 
2050 	/* if capabilities version is type 1 we can write the
2051 	 * timeout of 10ms to 200ms through the GCR register
2052 	 */
2053 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2054 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2055 		goto out;
2056 	}
2057 
2058 	/* for version 2 capabilities we need to write the config space
2059 	 * directly in order to set the completion timeout value for
2060 	 * 16ms to 55ms
2061 	 */
2062 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2063 					&pcie_devctl2);
2064 	if (ret_val)
2065 		goto out;
2066 
2067 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2068 
2069 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2070 					 &pcie_devctl2);
2071 out:
2072 	/* disable completion timeout resend */
2073 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2074 
2075 	wr32(E1000_GCR, gcr);
2076 	return ret_val;
2077 }
2078 
2079 /**
2080  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081  *  @hw: pointer to the hardware struct
2082  *  @enable: state to enter, either enabled or disabled
2083  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2084  *
2085  *  enables/disables L2 switch anti-spoofing functionality.
2086  **/
2087 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2088 {
2089 	u32 reg_val, reg_offset;
2090 
2091 	switch (hw->mac.type) {
2092 	case e1000_82576:
2093 		reg_offset = E1000_DTXSWC;
2094 		break;
2095 	case e1000_i350:
2096 	case e1000_i354:
2097 		reg_offset = E1000_TXSWC;
2098 		break;
2099 	default:
2100 		return;
2101 	}
2102 
2103 	reg_val = rd32(reg_offset);
2104 	if (enable) {
2105 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2106 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2107 		/* The PF can spoof - it has to in order to
2108 		 * support emulation mode NICs
2109 		 */
2110 		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2111 	} else {
2112 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2113 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2114 	}
2115 	wr32(reg_offset, reg_val);
2116 }
2117 
2118 /**
2119  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120  *  @hw: pointer to the hardware struct
2121  *  @enable: state to enter, either enabled or disabled
2122  *
2123  *  enables/disables L2 switch loopback functionality.
2124  **/
2125 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2126 {
2127 	u32 dtxswc;
2128 
2129 	switch (hw->mac.type) {
2130 	case e1000_82576:
2131 		dtxswc = rd32(E1000_DTXSWC);
2132 		if (enable)
2133 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2134 		else
2135 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2136 		wr32(E1000_DTXSWC, dtxswc);
2137 		break;
2138 	case e1000_i354:
2139 	case e1000_i350:
2140 		dtxswc = rd32(E1000_TXSWC);
2141 		if (enable)
2142 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2143 		else
2144 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2145 		wr32(E1000_TXSWC, dtxswc);
2146 		break;
2147 	default:
2148 		/* Currently no other hardware supports loopback */
2149 		break;
2150 	}
2151 
2152 }
2153 
2154 /**
2155  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156  *  @hw: pointer to the hardware struct
2157  *  @enable: state to enter, either enabled or disabled
2158  *
2159  *  enables/disables replication of packets across multiple pools.
2160  **/
2161 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2162 {
2163 	u32 vt_ctl = rd32(E1000_VT_CTL);
2164 
2165 	if (enable)
2166 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2167 	else
2168 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2169 
2170 	wr32(E1000_VT_CTL, vt_ctl);
2171 }
2172 
2173 /**
2174  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2175  *  @hw: pointer to the HW structure
2176  *  @offset: register offset to be read
2177  *  @data: pointer to the read data
2178  *
2179  *  Reads the MDI control register in the PHY at offset and stores the
2180  *  information read to data.
2181  **/
2182 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2183 {
2184 	s32 ret_val;
2185 
2186 	ret_val = hw->phy.ops.acquire(hw);
2187 	if (ret_val)
2188 		goto out;
2189 
2190 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2191 
2192 	hw->phy.ops.release(hw);
2193 
2194 out:
2195 	return ret_val;
2196 }
2197 
2198 /**
2199  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2200  *  @hw: pointer to the HW structure
2201  *  @offset: register offset to write to
2202  *  @data: data to write to register at offset
2203  *
2204  *  Writes data to MDI control register in the PHY at offset.
2205  **/
2206 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2207 {
2208 	s32 ret_val;
2209 
2210 
2211 	ret_val = hw->phy.ops.acquire(hw);
2212 	if (ret_val)
2213 		goto out;
2214 
2215 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2216 
2217 	hw->phy.ops.release(hw);
2218 
2219 out:
2220 	return ret_val;
2221 }
2222 
2223 /**
2224  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225  *  @hw: pointer to the HW structure
2226  *
2227  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228  *  the values found in the EEPROM.  This addresses an issue in which these
2229  *  bits are not restored from EEPROM after reset.
2230  **/
2231 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2232 {
2233 	s32 ret_val = 0;
2234 	u32 mdicnfg;
2235 	u16 nvm_data = 0;
2236 
2237 	if (hw->mac.type != e1000_82580)
2238 		goto out;
2239 	if (!igb_sgmii_active_82575(hw))
2240 		goto out;
2241 
2242 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2244 				   &nvm_data);
2245 	if (ret_val) {
2246 		hw_dbg("NVM Read Error\n");
2247 		goto out;
2248 	}
2249 
2250 	mdicnfg = rd32(E1000_MDICNFG);
2251 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2252 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2253 	if (nvm_data & NVM_WORD24_COM_MDIO)
2254 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2255 	wr32(E1000_MDICNFG, mdicnfg);
2256 out:
2257 	return ret_val;
2258 }
2259 
2260 /**
2261  *  igb_reset_hw_82580 - Reset hardware
2262  *  @hw: pointer to the HW structure
2263  *
2264  *  This resets function or entire device (all ports, etc.)
2265  *  to a known state.
2266  **/
2267 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2268 {
2269 	s32 ret_val = 0;
2270 	/* BH SW mailbox bit in SW_FW_SYNC */
2271 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2272 	u32 ctrl;
2273 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2274 
2275 	hw->dev_spec._82575.global_device_reset = false;
2276 
2277 	/* due to hw errata, global device reset doesn't always
2278 	 * work on 82580
2279 	 */
2280 	if (hw->mac.type == e1000_82580)
2281 		global_device_reset = false;
2282 
2283 	/* Get current control state. */
2284 	ctrl = rd32(E1000_CTRL);
2285 
2286 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2287 	 * on the last TLP read/write transaction when MAC is reset.
2288 	 */
2289 	ret_val = igb_disable_pcie_master(hw);
2290 	if (ret_val)
2291 		hw_dbg("PCI-E Master disable polling has failed.\n");
2292 
2293 	hw_dbg("Masking off all interrupts\n");
2294 	wr32(E1000_IMC, 0xffffffff);
2295 	wr32(E1000_RCTL, 0);
2296 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2297 	wrfl();
2298 
2299 	usleep_range(10000, 11000);
2300 
2301 	/* Determine whether or not a global dev reset is requested */
2302 	if (global_device_reset &&
2303 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2304 			global_device_reset = false;
2305 
2306 	if (global_device_reset &&
2307 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2308 		ctrl |= E1000_CTRL_DEV_RST;
2309 	else
2310 		ctrl |= E1000_CTRL_RST;
2311 
2312 	wr32(E1000_CTRL, ctrl);
2313 	wrfl();
2314 
2315 	/* Add delay to insure DEV_RST has time to complete */
2316 	if (global_device_reset)
2317 		usleep_range(5000, 6000);
2318 
2319 	ret_val = igb_get_auto_rd_done(hw);
2320 	if (ret_val) {
2321 		/* When auto config read does not complete, do not
2322 		 * return with an error. This can happen in situations
2323 		 * where there is no eeprom and prevents getting link.
2324 		 */
2325 		hw_dbg("Auto Read Done did not complete\n");
2326 	}
2327 
2328 	/* clear global device reset status bit */
2329 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2330 
2331 	/* Clear any pending interrupt events. */
2332 	wr32(E1000_IMC, 0xffffffff);
2333 	rd32(E1000_ICR);
2334 
2335 	ret_val = igb_reset_mdicnfg_82580(hw);
2336 	if (ret_val)
2337 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2338 
2339 	/* Install any alternate MAC address into RAR0 */
2340 	ret_val = igb_check_alt_mac_addr(hw);
2341 
2342 	/* Release semaphore */
2343 	if (global_device_reset)
2344 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2345 
2346 	return ret_val;
2347 }
2348 
2349 /**
2350  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351  *  @data: data received by reading RXPBS register
2352  *
2353  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2354  *  This function converts the retrieved value into the correct table value
2355  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356  *  0x0 36  72 144   1   2   4   8  16
2357  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2358  */
2359 u16 igb_rxpbs_adjust_82580(u32 data)
2360 {
2361 	u16 ret_val = 0;
2362 
2363 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2364 		ret_val = e1000_82580_rxpbs_table[data];
2365 
2366 	return ret_val;
2367 }
2368 
2369 /**
2370  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2371  *  checksum
2372  *  @hw: pointer to the HW structure
2373  *  @offset: offset in words of the checksum protected region
2374  *
2375  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2377  **/
2378 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2379 						 u16 offset)
2380 {
2381 	s32 ret_val = 0;
2382 	u16 checksum = 0;
2383 	u16 i, nvm_data;
2384 
2385 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2386 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2387 		if (ret_val) {
2388 			hw_dbg("NVM Read Error\n");
2389 			goto out;
2390 		}
2391 		checksum += nvm_data;
2392 	}
2393 
2394 	if (checksum != (u16) NVM_SUM) {
2395 		hw_dbg("NVM Checksum Invalid\n");
2396 		ret_val = -E1000_ERR_NVM;
2397 		goto out;
2398 	}
2399 
2400 out:
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2406  *  checksum
2407  *  @hw: pointer to the HW structure
2408  *  @offset: offset in words of the checksum protected region
2409  *
2410  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2412  *  value to the EEPROM.
2413  **/
2414 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2415 {
2416 	s32 ret_val;
2417 	u16 checksum = 0;
2418 	u16 i, nvm_data;
2419 
2420 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2421 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2422 		if (ret_val) {
2423 			hw_dbg("NVM Read Error while updating checksum.\n");
2424 			goto out;
2425 		}
2426 		checksum += nvm_data;
2427 	}
2428 	checksum = (u16) NVM_SUM - checksum;
2429 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2430 				&checksum);
2431 	if (ret_val)
2432 		hw_dbg("NVM Write Error while updating checksum.\n");
2433 
2434 out:
2435 	return ret_val;
2436 }
2437 
2438 /**
2439  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440  *  @hw: pointer to the HW structure
2441  *
2442  *  Calculates the EEPROM section checksum by reading/adding each word of
2443  *  the EEPROM and then verifies that the sum of the EEPROM is
2444  *  equal to 0xBABA.
2445  **/
2446 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2447 {
2448 	s32 ret_val = 0;
2449 	u16 eeprom_regions_count = 1;
2450 	u16 j, nvm_data;
2451 	u16 nvm_offset;
2452 
2453 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2454 	if (ret_val) {
2455 		hw_dbg("NVM Read Error\n");
2456 		goto out;
2457 	}
2458 
2459 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2460 		/* if checksums compatibility bit is set validate checksums
2461 		 * for all 4 ports.
2462 		 */
2463 		eeprom_regions_count = 4;
2464 	}
2465 
2466 	for (j = 0; j < eeprom_regions_count; j++) {
2467 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2468 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2469 								nvm_offset);
2470 		if (ret_val != 0)
2471 			goto out;
2472 	}
2473 
2474 out:
2475 	return ret_val;
2476 }
2477 
2478 /**
2479  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480  *  @hw: pointer to the HW structure
2481  *
2482  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2483  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2484  *  checksum and writes the value to the EEPROM.
2485  **/
2486 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2487 {
2488 	s32 ret_val;
2489 	u16 j, nvm_data;
2490 	u16 nvm_offset;
2491 
2492 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2493 	if (ret_val) {
2494 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2495 		goto out;
2496 	}
2497 
2498 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2499 		/* set compatibility bit to validate checksums appropriately */
2500 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2501 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2502 					&nvm_data);
2503 		if (ret_val) {
2504 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2505 			goto out;
2506 		}
2507 	}
2508 
2509 	for (j = 0; j < 4; j++) {
2510 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2511 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2512 		if (ret_val)
2513 			goto out;
2514 	}
2515 
2516 out:
2517 	return ret_val;
2518 }
2519 
2520 /**
2521  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522  *  @hw: pointer to the HW structure
2523  *
2524  *  Calculates the EEPROM section checksum by reading/adding each word of
2525  *  the EEPROM and then verifies that the sum of the EEPROM is
2526  *  equal to 0xBABA.
2527  **/
2528 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2529 {
2530 	s32 ret_val = 0;
2531 	u16 j;
2532 	u16 nvm_offset;
2533 
2534 	for (j = 0; j < 4; j++) {
2535 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2536 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2537 								nvm_offset);
2538 		if (ret_val != 0)
2539 			goto out;
2540 	}
2541 
2542 out:
2543 	return ret_val;
2544 }
2545 
2546 /**
2547  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548  *  @hw: pointer to the HW structure
2549  *
2550  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2551  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2552  *  checksum and writes the value to the EEPROM.
2553  **/
2554 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2555 {
2556 	s32 ret_val = 0;
2557 	u16 j;
2558 	u16 nvm_offset;
2559 
2560 	for (j = 0; j < 4; j++) {
2561 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2563 		if (ret_val != 0)
2564 			goto out;
2565 	}
2566 
2567 out:
2568 	return ret_val;
2569 }
2570 
2571 /**
2572  *  __igb_access_emi_reg - Read/write EMI register
2573  *  @hw: pointer to the HW structure
2574  *  @addr: EMI address to program
2575  *  @data: pointer to value to read/write from/to the EMI address
2576  *  @read: boolean flag to indicate read or write
2577  **/
2578 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2579 				  u16 *data, bool read)
2580 {
2581 	s32 ret_val = 0;
2582 
2583 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2584 	if (ret_val)
2585 		return ret_val;
2586 
2587 	if (read)
2588 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2589 	else
2590 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2591 
2592 	return ret_val;
2593 }
2594 
2595 /**
2596  *  igb_read_emi_reg - Read Extended Management Interface register
2597  *  @hw: pointer to the HW structure
2598  *  @addr: EMI address to program
2599  *  @data: value to be read from the EMI address
2600  **/
2601 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2602 {
2603 	return __igb_access_emi_reg(hw, addr, data, true);
2604 }
2605 
2606 /**
2607  *  igb_set_eee_i350 - Enable/disable EEE support
2608  *  @hw: pointer to the HW structure
2609  *  @adv1G: boolean flag enabling 1G EEE advertisement
2610  *  @adv100m: boolean flag enabling 100M EEE advertisement
2611  *
2612  *  Enable/disable EEE based on setting in dev_spec structure.
2613  *
2614  **/
2615 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2616 {
2617 	u32 ipcnfg, eeer;
2618 
2619 	if ((hw->mac.type < e1000_i350) ||
2620 	    (hw->phy.media_type != e1000_media_type_copper))
2621 		goto out;
2622 	ipcnfg = rd32(E1000_IPCNFG);
2623 	eeer = rd32(E1000_EEER);
2624 
2625 	/* enable or disable per user setting */
2626 	if (!(hw->dev_spec._82575.eee_disable)) {
2627 		u32 eee_su = rd32(E1000_EEE_SU);
2628 
2629 		if (adv100M)
2630 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2631 		else
2632 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2633 
2634 		if (adv1G)
2635 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2636 		else
2637 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2638 
2639 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2640 			E1000_EEER_LPI_FC);
2641 
2642 		/* This bit should not be set in normal operation. */
2643 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2644 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2645 
2646 	} else {
2647 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2648 			E1000_IPCNFG_EEE_100M_AN);
2649 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2650 			E1000_EEER_RX_LPI_EN |
2651 			E1000_EEER_LPI_FC);
2652 	}
2653 	wr32(E1000_IPCNFG, ipcnfg);
2654 	wr32(E1000_EEER, eeer);
2655 	rd32(E1000_IPCNFG);
2656 	rd32(E1000_EEER);
2657 out:
2658 
2659 	return 0;
2660 }
2661 
2662 /**
2663  *  igb_set_eee_i354 - Enable/disable EEE support
2664  *  @hw: pointer to the HW structure
2665  *  @adv1G: boolean flag enabling 1G EEE advertisement
2666  *  @adv100m: boolean flag enabling 100M EEE advertisement
2667  *
2668  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2669  *
2670  **/
2671 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2672 {
2673 	struct e1000_phy_info *phy = &hw->phy;
2674 	s32 ret_val = 0;
2675 	u16 phy_data;
2676 
2677 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2678 	    ((phy->id != M88E1543_E_PHY_ID) &&
2679 	     (phy->id != M88E1512_E_PHY_ID)))
2680 		goto out;
2681 
2682 	if (!hw->dev_spec._82575.eee_disable) {
2683 		/* Switch to PHY page 18. */
2684 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2685 		if (ret_val)
2686 			goto out;
2687 
2688 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2689 					    &phy_data);
2690 		if (ret_val)
2691 			goto out;
2692 
2693 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2694 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2695 					     phy_data);
2696 		if (ret_val)
2697 			goto out;
2698 
2699 		/* Return the PHY to page 0. */
2700 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2701 		if (ret_val)
2702 			goto out;
2703 
2704 		/* Turn on EEE advertisement. */
2705 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2706 					     E1000_EEE_ADV_DEV_I354,
2707 					     &phy_data);
2708 		if (ret_val)
2709 			goto out;
2710 
2711 		if (adv100M)
2712 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2713 		else
2714 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2715 
2716 		if (adv1G)
2717 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2718 		else
2719 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2720 
2721 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722 						E1000_EEE_ADV_DEV_I354,
2723 						phy_data);
2724 	} else {
2725 		/* Turn off EEE advertisement. */
2726 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2727 					     E1000_EEE_ADV_DEV_I354,
2728 					     &phy_data);
2729 		if (ret_val)
2730 			goto out;
2731 
2732 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2733 			      E1000_EEE_ADV_1000_SUPPORTED);
2734 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2735 					      E1000_EEE_ADV_DEV_I354,
2736 					      phy_data);
2737 	}
2738 
2739 out:
2740 	return ret_val;
2741 }
2742 
2743 /**
2744  *  igb_get_eee_status_i354 - Get EEE status
2745  *  @hw: pointer to the HW structure
2746  *  @status: EEE status
2747  *
2748  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2749  *  been received.
2750  **/
2751 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2752 {
2753 	struct e1000_phy_info *phy = &hw->phy;
2754 	s32 ret_val = 0;
2755 	u16 phy_data;
2756 
2757 	/* Check if EEE is supported on this device. */
2758 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2759 	    ((phy->id != M88E1543_E_PHY_ID) &&
2760 	     (phy->id != M88E1512_E_PHY_ID)))
2761 		goto out;
2762 
2763 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2764 				     E1000_PCS_STATUS_DEV_I354,
2765 				     &phy_data);
2766 	if (ret_val)
2767 		goto out;
2768 
2769 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2770 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2771 
2772 out:
2773 	return ret_val;
2774 }
2775 
2776 static const u8 e1000_emc_temp_data[4] = {
2777 	E1000_EMC_INTERNAL_DATA,
2778 	E1000_EMC_DIODE1_DATA,
2779 	E1000_EMC_DIODE2_DATA,
2780 	E1000_EMC_DIODE3_DATA
2781 };
2782 static const u8 e1000_emc_therm_limit[4] = {
2783 	E1000_EMC_INTERNAL_THERM_LIMIT,
2784 	E1000_EMC_DIODE1_THERM_LIMIT,
2785 	E1000_EMC_DIODE2_THERM_LIMIT,
2786 	E1000_EMC_DIODE3_THERM_LIMIT
2787 };
2788 
2789 #ifdef CONFIG_IGB_HWMON
2790 /**
2791  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792  *  @hw: pointer to hardware structure
2793  *
2794  *  Updates the temperatures in mac.thermal_sensor_data
2795  **/
2796 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2797 {
2798 	u16 ets_offset;
2799 	u16 ets_cfg;
2800 	u16 ets_sensor;
2801 	u8  num_sensors;
2802 	u8  sensor_index;
2803 	u8  sensor_location;
2804 	u8  i;
2805 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2806 
2807 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2808 		return E1000_NOT_IMPLEMENTED;
2809 
2810 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2811 
2812 	/* Return the internal sensor only if ETS is unsupported */
2813 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2814 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2815 		return 0;
2816 
2817 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2818 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2819 	    != NVM_ETS_TYPE_EMC)
2820 		return E1000_NOT_IMPLEMENTED;
2821 
2822 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2823 	if (num_sensors > E1000_MAX_SENSORS)
2824 		num_sensors = E1000_MAX_SENSORS;
2825 
2826 	for (i = 1; i < num_sensors; i++) {
2827 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2828 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2829 				NVM_ETS_DATA_INDEX_SHIFT);
2830 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2831 				   NVM_ETS_DATA_LOC_SHIFT);
2832 
2833 		if (sensor_location != 0)
2834 			hw->phy.ops.read_i2c_byte(hw,
2835 					e1000_emc_temp_data[sensor_index],
2836 					E1000_I2C_THERMAL_SENSOR_ADDR,
2837 					&data->sensor[i].temp);
2838 	}
2839 	return 0;
2840 }
2841 
2842 /**
2843  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844  *  @hw: pointer to hardware structure
2845  *
2846  *  Sets the thermal sensor thresholds according to the NVM map
2847  *  and save off the threshold and location values into mac.thermal_sensor_data
2848  **/
2849 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2850 {
2851 	u16 ets_offset;
2852 	u16 ets_cfg;
2853 	u16 ets_sensor;
2854 	u8  low_thresh_delta;
2855 	u8  num_sensors;
2856 	u8  sensor_index;
2857 	u8  sensor_location;
2858 	u8  therm_limit;
2859 	u8  i;
2860 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2861 
2862 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2863 		return E1000_NOT_IMPLEMENTED;
2864 
2865 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2866 
2867 	data->sensor[0].location = 0x1;
2868 	data->sensor[0].caution_thresh =
2869 		(rd32(E1000_THHIGHTC) & 0xFF);
2870 	data->sensor[0].max_op_thresh =
2871 		(rd32(E1000_THLOWTC) & 0xFF);
2872 
2873 	/* Return the internal sensor only if ETS is unsupported */
2874 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2875 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2876 		return 0;
2877 
2878 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2879 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2880 	    != NVM_ETS_TYPE_EMC)
2881 		return E1000_NOT_IMPLEMENTED;
2882 
2883 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2884 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2885 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2886 
2887 	for (i = 1; i <= num_sensors; i++) {
2888 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2889 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2890 				NVM_ETS_DATA_INDEX_SHIFT);
2891 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2892 				   NVM_ETS_DATA_LOC_SHIFT);
2893 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2894 
2895 		hw->phy.ops.write_i2c_byte(hw,
2896 			e1000_emc_therm_limit[sensor_index],
2897 			E1000_I2C_THERMAL_SENSOR_ADDR,
2898 			therm_limit);
2899 
2900 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2901 			data->sensor[i].location = sensor_location;
2902 			data->sensor[i].caution_thresh = therm_limit;
2903 			data->sensor[i].max_op_thresh = therm_limit -
2904 							low_thresh_delta;
2905 		}
2906 	}
2907 	return 0;
2908 }
2909 
2910 #endif
2911 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2912 	.init_hw              = igb_init_hw_82575,
2913 	.check_for_link       = igb_check_for_link_82575,
2914 	.rar_set              = igb_rar_set,
2915 	.read_mac_addr        = igb_read_mac_addr_82575,
2916 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2917 #ifdef CONFIG_IGB_HWMON
2918 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2919 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2920 #endif
2921 };
2922 
2923 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2924 	.acquire              = igb_acquire_phy_82575,
2925 	.get_cfg_done         = igb_get_cfg_done_82575,
2926 	.release              = igb_release_phy_82575,
2927 	.write_i2c_byte       = igb_write_i2c_byte,
2928 	.read_i2c_byte        = igb_read_i2c_byte,
2929 };
2930 
2931 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2932 	.acquire              = igb_acquire_nvm_82575,
2933 	.read                 = igb_read_nvm_eerd,
2934 	.release              = igb_release_nvm_82575,
2935 	.write                = igb_write_nvm_spi,
2936 };
2937 
2938 const struct e1000_info e1000_82575_info = {
2939 	.get_invariants = igb_get_invariants_82575,
2940 	.mac_ops = &e1000_mac_ops_82575,
2941 	.phy_ops = &e1000_phy_ops_82575,
2942 	.nvm_ops = &e1000_nvm_ops_82575,
2943 };
2944 
2945