1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 
40 static s32  igb_get_invariants_82575(struct e1000_hw *);
41 static s32  igb_acquire_phy_82575(struct e1000_hw *);
42 static void igb_release_phy_82575(struct e1000_hw *);
43 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
44 static void igb_release_nvm_82575(struct e1000_hw *);
45 static s32  igb_check_for_link_82575(struct e1000_hw *);
46 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
47 static s32  igb_init_hw_82575(struct e1000_hw *);
48 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
49 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
50 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
51 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
52 static s32  igb_reset_hw_82575(struct e1000_hw *);
53 static s32  igb_reset_hw_82580(struct e1000_hw *);
54 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] =
74 	{ 36, 72, 144, 1, 2, 4, 8, 16,
75 	  35, 70, 140 };
76 #define E1000_82580_RXPBS_TABLE_SIZE \
77 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
78 
79 /**
80  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
81  *  @hw: pointer to the HW structure
82  *
83  *  Called to determine if the I2C pins are being used for I2C or as an
84  *  external MDIO interface since the two options are mutually exclusive.
85  **/
86 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
87 {
88 	u32 reg = 0;
89 	bool ext_mdio = false;
90 
91 	switch (hw->mac.type) {
92 	case e1000_82575:
93 	case e1000_82576:
94 		reg = rd32(E1000_MDIC);
95 		ext_mdio = !!(reg & E1000_MDIC_DEST);
96 		break;
97 	case e1000_82580:
98 	case e1000_i350:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
109 {
110 	struct e1000_phy_info *phy = &hw->phy;
111 	struct e1000_nvm_info *nvm = &hw->nvm;
112 	struct e1000_mac_info *mac = &hw->mac;
113 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
114 	u32 eecd;
115 	s32 ret_val;
116 	u16 size;
117 	u32 ctrl_ext = 0;
118 
119 	switch (hw->device_id) {
120 	case E1000_DEV_ID_82575EB_COPPER:
121 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
122 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
123 		mac->type = e1000_82575;
124 		break;
125 	case E1000_DEV_ID_82576:
126 	case E1000_DEV_ID_82576_NS:
127 	case E1000_DEV_ID_82576_NS_SERDES:
128 	case E1000_DEV_ID_82576_FIBER:
129 	case E1000_DEV_ID_82576_SERDES:
130 	case E1000_DEV_ID_82576_QUAD_COPPER:
131 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
132 	case E1000_DEV_ID_82576_SERDES_QUAD:
133 		mac->type = e1000_82576;
134 		break;
135 	case E1000_DEV_ID_82580_COPPER:
136 	case E1000_DEV_ID_82580_FIBER:
137 	case E1000_DEV_ID_82580_QUAD_FIBER:
138 	case E1000_DEV_ID_82580_SERDES:
139 	case E1000_DEV_ID_82580_SGMII:
140 	case E1000_DEV_ID_82580_COPPER_DUAL:
141 	case E1000_DEV_ID_DH89XXCC_SGMII:
142 	case E1000_DEV_ID_DH89XXCC_SERDES:
143 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
144 	case E1000_DEV_ID_DH89XXCC_SFP:
145 		mac->type = e1000_82580;
146 		break;
147 	case E1000_DEV_ID_I350_COPPER:
148 	case E1000_DEV_ID_I350_FIBER:
149 	case E1000_DEV_ID_I350_SERDES:
150 	case E1000_DEV_ID_I350_SGMII:
151 		mac->type = e1000_i350;
152 		break;
153 	default:
154 		return -E1000_ERR_MAC_INIT;
155 		break;
156 	}
157 
158 	/* Set media type */
159 	/*
160 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
161 	 * based on the EEPROM. We cannot rely upon device ID. There
162 	 * is no distinguishable difference between fiber and internal
163 	 * SerDes mode on the 82575. There can be an external PHY attached
164 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
165 	 */
166 	phy->media_type = e1000_media_type_copper;
167 	dev_spec->sgmii_active = false;
168 
169 	ctrl_ext = rd32(E1000_CTRL_EXT);
170 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
171 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
172 		dev_spec->sgmii_active = true;
173 		break;
174 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
175 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
176 		hw->phy.media_type = e1000_media_type_internal_serdes;
177 		break;
178 	default:
179 		break;
180 	}
181 
182 	/* Set mta register count */
183 	mac->mta_reg_count = 128;
184 	/* Set rar entry count */
185 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
186 	if (mac->type == e1000_82576)
187 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
188 	if (mac->type == e1000_82580)
189 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
190 	if (mac->type == e1000_i350)
191 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
192 	/* reset */
193 	if (mac->type >= e1000_82580)
194 		mac->ops.reset_hw = igb_reset_hw_82580;
195 	else
196 		mac->ops.reset_hw = igb_reset_hw_82575;
197 	/* Set if part includes ASF firmware */
198 	mac->asf_firmware_present = true;
199 	/* Set if manageability features are enabled. */
200 	mac->arc_subsystem_valid =
201 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
202 			? true : false;
203 	/* enable EEE on i350 parts */
204 	if (mac->type == e1000_i350)
205 		dev_spec->eee_disable = false;
206 	else
207 		dev_spec->eee_disable = true;
208 	/* physical interface link setup */
209 	mac->ops.setup_physical_interface =
210 		(hw->phy.media_type == e1000_media_type_copper)
211 			? igb_setup_copper_link_82575
212 			: igb_setup_serdes_link_82575;
213 
214 	/* NVM initialization */
215 	eecd = rd32(E1000_EECD);
216 
217 	nvm->opcode_bits        = 8;
218 	nvm->delay_usec         = 1;
219 	switch (nvm->override) {
220 	case e1000_nvm_override_spi_large:
221 		nvm->page_size    = 32;
222 		nvm->address_bits = 16;
223 		break;
224 	case e1000_nvm_override_spi_small:
225 		nvm->page_size    = 8;
226 		nvm->address_bits = 8;
227 		break;
228 	default:
229 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
230 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
231 		break;
232 	}
233 
234 	nvm->type = e1000_nvm_eeprom_spi;
235 
236 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
237 		     E1000_EECD_SIZE_EX_SHIFT);
238 
239 	/*
240 	 * Added to a constant, "size" becomes the left-shift value
241 	 * for setting word_size.
242 	 */
243 	size += NVM_WORD_SIZE_BASE_SHIFT;
244 
245 	/*
246 	 * Check for invalid size
247 	 */
248 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
249 		pr_notice("The NVM size is not valid, defaulting to 32K\n");
250 		size = 15;
251 	}
252 	nvm->word_size = 1 << size;
253 	if (nvm->word_size == (1 << 15))
254 		nvm->page_size = 128;
255 
256 	/* NVM Function Pointers */
257 	nvm->ops.acquire = igb_acquire_nvm_82575;
258 	if (nvm->word_size < (1 << 15))
259 		nvm->ops.read = igb_read_nvm_eerd;
260 	else
261 		nvm->ops.read = igb_read_nvm_spi;
262 
263 	nvm->ops.release = igb_release_nvm_82575;
264 	switch (hw->mac.type) {
265 	case e1000_82580:
266 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
267 		nvm->ops.update = igb_update_nvm_checksum_82580;
268 		break;
269 	case e1000_i350:
270 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
271 		nvm->ops.update = igb_update_nvm_checksum_i350;
272 		break;
273 	default:
274 		nvm->ops.validate = igb_validate_nvm_checksum;
275 		nvm->ops.update = igb_update_nvm_checksum;
276 	}
277 	nvm->ops.write = igb_write_nvm_spi;
278 
279 	/* if part supports SR-IOV then initialize mailbox parameters */
280 	switch (mac->type) {
281 	case e1000_82576:
282 	case e1000_i350:
283 		igb_init_mbx_params_pf(hw);
284 		break;
285 	default:
286 		break;
287 	}
288 
289 	/* setup PHY parameters */
290 	if (phy->media_type != e1000_media_type_copper) {
291 		phy->type = e1000_phy_none;
292 		return 0;
293 	}
294 
295 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
296 	phy->reset_delay_us      = 100;
297 
298 	ctrl_ext = rd32(E1000_CTRL_EXT);
299 
300 	/* PHY function pointers */
301 	if (igb_sgmii_active_82575(hw)) {
302 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
303 		ctrl_ext |= E1000_CTRL_I2C_ENA;
304 	} else {
305 		phy->ops.reset      = igb_phy_hw_reset;
306 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
307 	}
308 
309 	wr32(E1000_CTRL_EXT, ctrl_ext);
310 	igb_reset_mdicnfg_82580(hw);
311 
312 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
313 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
314 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
315 	} else if (hw->mac.type >= e1000_82580) {
316 		phy->ops.read_reg   = igb_read_phy_reg_82580;
317 		phy->ops.write_reg  = igb_write_phy_reg_82580;
318 	} else {
319 		phy->ops.read_reg   = igb_read_phy_reg_igp;
320 		phy->ops.write_reg  = igb_write_phy_reg_igp;
321 	}
322 
323 	/* set lan id */
324 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
325 	               E1000_STATUS_FUNC_SHIFT;
326 
327 	/* Set phy->phy_addr and phy->id. */
328 	ret_val = igb_get_phy_id_82575(hw);
329 	if (ret_val)
330 		return ret_val;
331 
332 	/* Verify phy id and set remaining function pointers */
333 	switch (phy->id) {
334 	case I347AT4_E_PHY_ID:
335 	case M88E1112_E_PHY_ID:
336 	case M88E1111_I_PHY_ID:
337 		phy->type                   = e1000_phy_m88;
338 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
339 
340 		if (phy->id == I347AT4_E_PHY_ID ||
341 		    phy->id == M88E1112_E_PHY_ID)
342 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
343 		else
344 			phy->ops.get_cable_length = igb_get_cable_length_m88;
345 
346 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
347 		break;
348 	case IGP03E1000_E_PHY_ID:
349 		phy->type                   = e1000_phy_igp_3;
350 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
351 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
352 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
353 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
354 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
355 		break;
356 	case I82580_I_PHY_ID:
357 	case I350_I_PHY_ID:
358 		phy->type                   = e1000_phy_82580;
359 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
360 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
361 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
362 		break;
363 	default:
364 		return -E1000_ERR_PHY;
365 	}
366 
367 	return 0;
368 }
369 
370 /**
371  *  igb_acquire_phy_82575 - Acquire rights to access PHY
372  *  @hw: pointer to the HW structure
373  *
374  *  Acquire access rights to the correct PHY.  This is a
375  *  function pointer entry point called by the api module.
376  **/
377 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
378 {
379 	u16 mask = E1000_SWFW_PHY0_SM;
380 
381 	if (hw->bus.func == E1000_FUNC_1)
382 		mask = E1000_SWFW_PHY1_SM;
383 	else if (hw->bus.func == E1000_FUNC_2)
384 		mask = E1000_SWFW_PHY2_SM;
385 	else if (hw->bus.func == E1000_FUNC_3)
386 		mask = E1000_SWFW_PHY3_SM;
387 
388 	return igb_acquire_swfw_sync_82575(hw, mask);
389 }
390 
391 /**
392  *  igb_release_phy_82575 - Release rights to access PHY
393  *  @hw: pointer to the HW structure
394  *
395  *  A wrapper to release access rights to the correct PHY.  This is a
396  *  function pointer entry point called by the api module.
397  **/
398 static void igb_release_phy_82575(struct e1000_hw *hw)
399 {
400 	u16 mask = E1000_SWFW_PHY0_SM;
401 
402 	if (hw->bus.func == E1000_FUNC_1)
403 		mask = E1000_SWFW_PHY1_SM;
404 	else if (hw->bus.func == E1000_FUNC_2)
405 		mask = E1000_SWFW_PHY2_SM;
406 	else if (hw->bus.func == E1000_FUNC_3)
407 		mask = E1000_SWFW_PHY3_SM;
408 
409 	igb_release_swfw_sync_82575(hw, mask);
410 }
411 
412 /**
413  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
414  *  @hw: pointer to the HW structure
415  *  @offset: register offset to be read
416  *  @data: pointer to the read data
417  *
418  *  Reads the PHY register at offset using the serial gigabit media independent
419  *  interface and stores the retrieved information in data.
420  **/
421 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
422 					  u16 *data)
423 {
424 	s32 ret_val = -E1000_ERR_PARAM;
425 
426 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
427 		hw_dbg("PHY Address %u is out of range\n", offset);
428 		goto out;
429 	}
430 
431 	ret_val = hw->phy.ops.acquire(hw);
432 	if (ret_val)
433 		goto out;
434 
435 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
436 
437 	hw->phy.ops.release(hw);
438 
439 out:
440 	return ret_val;
441 }
442 
443 /**
444  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
445  *  @hw: pointer to the HW structure
446  *  @offset: register offset to write to
447  *  @data: data to write at register offset
448  *
449  *  Writes the data to PHY register at the offset using the serial gigabit
450  *  media independent interface.
451  **/
452 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
453 					   u16 data)
454 {
455 	s32 ret_val = -E1000_ERR_PARAM;
456 
457 
458 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
459 		hw_dbg("PHY Address %d is out of range\n", offset);
460 		goto out;
461 	}
462 
463 	ret_val = hw->phy.ops.acquire(hw);
464 	if (ret_val)
465 		goto out;
466 
467 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
468 
469 	hw->phy.ops.release(hw);
470 
471 out:
472 	return ret_val;
473 }
474 
475 /**
476  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
477  *  @hw: pointer to the HW structure
478  *
479  *  Retrieves the PHY address and ID for both PHY's which do and do not use
480  *  sgmi interface.
481  **/
482 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
483 {
484 	struct e1000_phy_info *phy = &hw->phy;
485 	s32  ret_val = 0;
486 	u16 phy_id;
487 	u32 ctrl_ext;
488 	u32 mdic;
489 
490 	/*
491 	 * For SGMII PHYs, we try the list of possible addresses until
492 	 * we find one that works.  For non-SGMII PHYs
493 	 * (e.g. integrated copper PHYs), an address of 1 should
494 	 * work.  The result of this function should mean phy->phy_addr
495 	 * and phy->id are set correctly.
496 	 */
497 	if (!(igb_sgmii_active_82575(hw))) {
498 		phy->addr = 1;
499 		ret_val = igb_get_phy_id(hw);
500 		goto out;
501 	}
502 
503 	if (igb_sgmii_uses_mdio_82575(hw)) {
504 		switch (hw->mac.type) {
505 		case e1000_82575:
506 		case e1000_82576:
507 			mdic = rd32(E1000_MDIC);
508 			mdic &= E1000_MDIC_PHY_MASK;
509 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
510 			break;
511 		case e1000_82580:
512 		case e1000_i350:
513 			mdic = rd32(E1000_MDICNFG);
514 			mdic &= E1000_MDICNFG_PHY_MASK;
515 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
516 			break;
517 		default:
518 			ret_val = -E1000_ERR_PHY;
519 			goto out;
520 			break;
521 		}
522 		ret_val = igb_get_phy_id(hw);
523 		goto out;
524 	}
525 
526 	/* Power on sgmii phy if it is disabled */
527 	ctrl_ext = rd32(E1000_CTRL_EXT);
528 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
529 	wrfl();
530 	msleep(300);
531 
532 	/*
533 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
534 	 * Therefore, we need to test 1-7
535 	 */
536 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
537 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
538 		if (ret_val == 0) {
539 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
540 			       phy_id, phy->addr);
541 			/*
542 			 * At the time of this writing, The M88 part is
543 			 * the only supported SGMII PHY product.
544 			 */
545 			if (phy_id == M88_VENDOR)
546 				break;
547 		} else {
548 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
549 		}
550 	}
551 
552 	/* A valid PHY type couldn't be found. */
553 	if (phy->addr == 8) {
554 		phy->addr = 0;
555 		ret_val = -E1000_ERR_PHY;
556 		goto out;
557 	} else {
558 		ret_val = igb_get_phy_id(hw);
559 	}
560 
561 	/* restore previous sfp cage power state */
562 	wr32(E1000_CTRL_EXT, ctrl_ext);
563 
564 out:
565 	return ret_val;
566 }
567 
568 /**
569  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
570  *  @hw: pointer to the HW structure
571  *
572  *  Resets the PHY using the serial gigabit media independent interface.
573  **/
574 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
575 {
576 	s32 ret_val;
577 
578 	/*
579 	 * This isn't a true "hard" reset, but is the only reset
580 	 * available to us at this time.
581 	 */
582 
583 	hw_dbg("Soft resetting SGMII attached PHY...\n");
584 
585 	/*
586 	 * SFP documentation requires the following to configure the SPF module
587 	 * to work on SGMII.  No further documentation is given.
588 	 */
589 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
590 	if (ret_val)
591 		goto out;
592 
593 	ret_val = igb_phy_sw_reset(hw);
594 
595 out:
596 	return ret_val;
597 }
598 
599 /**
600  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
601  *  @hw: pointer to the HW structure
602  *  @active: true to enable LPLU, false to disable
603  *
604  *  Sets the LPLU D0 state according to the active flag.  When
605  *  activating LPLU this function also disables smart speed
606  *  and vice versa.  LPLU will not be activated unless the
607  *  device autonegotiation advertisement meets standards of
608  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
609  *  This is a function pointer entry point only called by
610  *  PHY setup routines.
611  **/
612 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
613 {
614 	struct e1000_phy_info *phy = &hw->phy;
615 	s32 ret_val;
616 	u16 data;
617 
618 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
619 	if (ret_val)
620 		goto out;
621 
622 	if (active) {
623 		data |= IGP02E1000_PM_D0_LPLU;
624 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
625 						 data);
626 		if (ret_val)
627 			goto out;
628 
629 		/* When LPLU is enabled, we should disable SmartSpeed */
630 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
631 						&data);
632 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
633 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
634 						 data);
635 		if (ret_val)
636 			goto out;
637 	} else {
638 		data &= ~IGP02E1000_PM_D0_LPLU;
639 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
640 						 data);
641 		/*
642 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
643 		 * during Dx states where the power conservation is most
644 		 * important.  During driver activity we should enable
645 		 * SmartSpeed, so performance is maintained.
646 		 */
647 		if (phy->smart_speed == e1000_smart_speed_on) {
648 			ret_val = phy->ops.read_reg(hw,
649 					IGP01E1000_PHY_PORT_CONFIG, &data);
650 			if (ret_val)
651 				goto out;
652 
653 			data |= IGP01E1000_PSCFR_SMART_SPEED;
654 			ret_val = phy->ops.write_reg(hw,
655 					IGP01E1000_PHY_PORT_CONFIG, data);
656 			if (ret_val)
657 				goto out;
658 		} else if (phy->smart_speed == e1000_smart_speed_off) {
659 			ret_val = phy->ops.read_reg(hw,
660 					IGP01E1000_PHY_PORT_CONFIG, &data);
661 			if (ret_val)
662 				goto out;
663 
664 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
665 			ret_val = phy->ops.write_reg(hw,
666 					IGP01E1000_PHY_PORT_CONFIG, data);
667 			if (ret_val)
668 				goto out;
669 		}
670 	}
671 
672 out:
673 	return ret_val;
674 }
675 
676 /**
677  *  igb_acquire_nvm_82575 - Request for access to EEPROM
678  *  @hw: pointer to the HW structure
679  *
680  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
681  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
682  *  Return successful if access grant bit set, else clear the request for
683  *  EEPROM access and return -E1000_ERR_NVM (-1).
684  **/
685 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
686 {
687 	s32 ret_val;
688 
689 	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
690 	if (ret_val)
691 		goto out;
692 
693 	ret_val = igb_acquire_nvm(hw);
694 
695 	if (ret_val)
696 		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
697 
698 out:
699 	return ret_val;
700 }
701 
702 /**
703  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
704  *  @hw: pointer to the HW structure
705  *
706  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
707  *  then release the semaphores acquired.
708  **/
709 static void igb_release_nvm_82575(struct e1000_hw *hw)
710 {
711 	igb_release_nvm(hw);
712 	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
713 }
714 
715 /**
716  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
717  *  @hw: pointer to the HW structure
718  *  @mask: specifies which semaphore to acquire
719  *
720  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
721  *  will also specify which port we're acquiring the lock for.
722  **/
723 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
724 {
725 	u32 swfw_sync;
726 	u32 swmask = mask;
727 	u32 fwmask = mask << 16;
728 	s32 ret_val = 0;
729 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
730 
731 	while (i < timeout) {
732 		if (igb_get_hw_semaphore(hw)) {
733 			ret_val = -E1000_ERR_SWFW_SYNC;
734 			goto out;
735 		}
736 
737 		swfw_sync = rd32(E1000_SW_FW_SYNC);
738 		if (!(swfw_sync & (fwmask | swmask)))
739 			break;
740 
741 		/*
742 		 * Firmware currently using resource (fwmask)
743 		 * or other software thread using resource (swmask)
744 		 */
745 		igb_put_hw_semaphore(hw);
746 		mdelay(5);
747 		i++;
748 	}
749 
750 	if (i == timeout) {
751 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
752 		ret_val = -E1000_ERR_SWFW_SYNC;
753 		goto out;
754 	}
755 
756 	swfw_sync |= swmask;
757 	wr32(E1000_SW_FW_SYNC, swfw_sync);
758 
759 	igb_put_hw_semaphore(hw);
760 
761 out:
762 	return ret_val;
763 }
764 
765 /**
766  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
767  *  @hw: pointer to the HW structure
768  *  @mask: specifies which semaphore to acquire
769  *
770  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
771  *  will also specify which port we're releasing the lock for.
772  **/
773 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
774 {
775 	u32 swfw_sync;
776 
777 	while (igb_get_hw_semaphore(hw) != 0);
778 	/* Empty */
779 
780 	swfw_sync = rd32(E1000_SW_FW_SYNC);
781 	swfw_sync &= ~mask;
782 	wr32(E1000_SW_FW_SYNC, swfw_sync);
783 
784 	igb_put_hw_semaphore(hw);
785 }
786 
787 /**
788  *  igb_get_cfg_done_82575 - Read config done bit
789  *  @hw: pointer to the HW structure
790  *
791  *  Read the management control register for the config done bit for
792  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
793  *  to read the config done bit, so an error is *ONLY* logged and returns
794  *  0.  If we were to return with error, EEPROM-less silicon
795  *  would not be able to be reset or change link.
796  **/
797 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
798 {
799 	s32 timeout = PHY_CFG_TIMEOUT;
800 	s32 ret_val = 0;
801 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
802 
803 	if (hw->bus.func == 1)
804 		mask = E1000_NVM_CFG_DONE_PORT_1;
805 	else if (hw->bus.func == E1000_FUNC_2)
806 		mask = E1000_NVM_CFG_DONE_PORT_2;
807 	else if (hw->bus.func == E1000_FUNC_3)
808 		mask = E1000_NVM_CFG_DONE_PORT_3;
809 
810 	while (timeout) {
811 		if (rd32(E1000_EEMNGCTL) & mask)
812 			break;
813 		msleep(1);
814 		timeout--;
815 	}
816 	if (!timeout)
817 		hw_dbg("MNG configuration cycle has not completed.\n");
818 
819 	/* If EEPROM is not marked present, init the PHY manually */
820 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
821 	    (hw->phy.type == e1000_phy_igp_3))
822 		igb_phy_init_script_igp3(hw);
823 
824 	return ret_val;
825 }
826 
827 /**
828  *  igb_check_for_link_82575 - Check for link
829  *  @hw: pointer to the HW structure
830  *
831  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
832  *  use the generic interface for determining link.
833  **/
834 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
835 {
836 	s32 ret_val;
837 	u16 speed, duplex;
838 
839 	if (hw->phy.media_type != e1000_media_type_copper) {
840 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
841 		                                             &duplex);
842 		/*
843 		 * Use this flag to determine if link needs to be checked or
844 		 * not.  If  we have link clear the flag so that we do not
845 		 * continue to check for link.
846 		 */
847 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
848 	} else {
849 		ret_val = igb_check_for_copper_link(hw);
850 	}
851 
852 	return ret_val;
853 }
854 
855 /**
856  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
857  *  @hw: pointer to the HW structure
858  **/
859 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
860 {
861 	u32 reg;
862 
863 
864 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
865 	    !igb_sgmii_active_82575(hw))
866 		return;
867 
868 	/* Enable PCS to turn on link */
869 	reg = rd32(E1000_PCS_CFG0);
870 	reg |= E1000_PCS_CFG_PCS_EN;
871 	wr32(E1000_PCS_CFG0, reg);
872 
873 	/* Power up the laser */
874 	reg = rd32(E1000_CTRL_EXT);
875 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
876 	wr32(E1000_CTRL_EXT, reg);
877 
878 	/* flush the write to verify completion */
879 	wrfl();
880 	msleep(1);
881 }
882 
883 /**
884  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
885  *  @hw: pointer to the HW structure
886  *  @speed: stores the current speed
887  *  @duplex: stores the current duplex
888  *
889  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
890  *  duplex, then store the values in the pointers provided.
891  **/
892 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
893 						u16 *duplex)
894 {
895 	struct e1000_mac_info *mac = &hw->mac;
896 	u32 pcs;
897 
898 	/* Set up defaults for the return values of this function */
899 	mac->serdes_has_link = false;
900 	*speed = 0;
901 	*duplex = 0;
902 
903 	/*
904 	 * Read the PCS Status register for link state. For non-copper mode,
905 	 * the status register is not accurate. The PCS status register is
906 	 * used instead.
907 	 */
908 	pcs = rd32(E1000_PCS_LSTAT);
909 
910 	/*
911 	 * The link up bit determines when link is up on autoneg. The sync ok
912 	 * gets set once both sides sync up and agree upon link. Stable link
913 	 * can be determined by checking for both link up and link sync ok
914 	 */
915 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
916 		mac->serdes_has_link = true;
917 
918 		/* Detect and store PCS speed */
919 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
920 			*speed = SPEED_1000;
921 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
922 			*speed = SPEED_100;
923 		} else {
924 			*speed = SPEED_10;
925 		}
926 
927 		/* Detect and store PCS duplex */
928 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
929 			*duplex = FULL_DUPLEX;
930 		} else {
931 			*duplex = HALF_DUPLEX;
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 /**
939  *  igb_shutdown_serdes_link_82575 - Remove link during power down
940  *  @hw: pointer to the HW structure
941  *
942  *  In the case of fiber serdes, shut down optics and PCS on driver unload
943  *  when management pass thru is not enabled.
944  **/
945 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
946 {
947 	u32 reg;
948 
949 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
950 	    igb_sgmii_active_82575(hw))
951 		return;
952 
953 	if (!igb_enable_mng_pass_thru(hw)) {
954 		/* Disable PCS to turn off link */
955 		reg = rd32(E1000_PCS_CFG0);
956 		reg &= ~E1000_PCS_CFG_PCS_EN;
957 		wr32(E1000_PCS_CFG0, reg);
958 
959 		/* shutdown the laser */
960 		reg = rd32(E1000_CTRL_EXT);
961 		reg |= E1000_CTRL_EXT_SDP3_DATA;
962 		wr32(E1000_CTRL_EXT, reg);
963 
964 		/* flush the write to verify completion */
965 		wrfl();
966 		msleep(1);
967 	}
968 }
969 
970 /**
971  *  igb_reset_hw_82575 - Reset hardware
972  *  @hw: pointer to the HW structure
973  *
974  *  This resets the hardware into a known state.  This is a
975  *  function pointer entry point called by the api module.
976  **/
977 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
978 {
979 	u32 ctrl, icr;
980 	s32 ret_val;
981 
982 	/*
983 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
984 	 * on the last TLP read/write transaction when MAC is reset.
985 	 */
986 	ret_val = igb_disable_pcie_master(hw);
987 	if (ret_val)
988 		hw_dbg("PCI-E Master disable polling has failed.\n");
989 
990 	/* set the completion timeout for interface */
991 	ret_val = igb_set_pcie_completion_timeout(hw);
992 	if (ret_val) {
993 		hw_dbg("PCI-E Set completion timeout has failed.\n");
994 	}
995 
996 	hw_dbg("Masking off all interrupts\n");
997 	wr32(E1000_IMC, 0xffffffff);
998 
999 	wr32(E1000_RCTL, 0);
1000 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1001 	wrfl();
1002 
1003 	msleep(10);
1004 
1005 	ctrl = rd32(E1000_CTRL);
1006 
1007 	hw_dbg("Issuing a global reset to MAC\n");
1008 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1009 
1010 	ret_val = igb_get_auto_rd_done(hw);
1011 	if (ret_val) {
1012 		/*
1013 		 * When auto config read does not complete, do not
1014 		 * return with an error. This can happen in situations
1015 		 * where there is no eeprom and prevents getting link.
1016 		 */
1017 		hw_dbg("Auto Read Done did not complete\n");
1018 	}
1019 
1020 	/* If EEPROM is not present, run manual init scripts */
1021 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1022 		igb_reset_init_script_82575(hw);
1023 
1024 	/* Clear any pending interrupt events. */
1025 	wr32(E1000_IMC, 0xffffffff);
1026 	icr = rd32(E1000_ICR);
1027 
1028 	/* Install any alternate MAC address into RAR0 */
1029 	ret_val = igb_check_alt_mac_addr(hw);
1030 
1031 	return ret_val;
1032 }
1033 
1034 /**
1035  *  igb_init_hw_82575 - Initialize hardware
1036  *  @hw: pointer to the HW structure
1037  *
1038  *  This inits the hardware readying it for operation.
1039  **/
1040 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1041 {
1042 	struct e1000_mac_info *mac = &hw->mac;
1043 	s32 ret_val;
1044 	u16 i, rar_count = mac->rar_entry_count;
1045 
1046 	/* Initialize identification LED */
1047 	ret_val = igb_id_led_init(hw);
1048 	if (ret_val) {
1049 		hw_dbg("Error initializing identification LED\n");
1050 		/* This is not fatal and we should not stop init due to this */
1051 	}
1052 
1053 	/* Disabling VLAN filtering */
1054 	hw_dbg("Initializing the IEEE VLAN\n");
1055 	if (hw->mac.type == e1000_i350)
1056 		igb_clear_vfta_i350(hw);
1057 	else
1058 		igb_clear_vfta(hw);
1059 
1060 	/* Setup the receive address */
1061 	igb_init_rx_addrs(hw, rar_count);
1062 
1063 	/* Zero out the Multicast HASH table */
1064 	hw_dbg("Zeroing the MTA\n");
1065 	for (i = 0; i < mac->mta_reg_count; i++)
1066 		array_wr32(E1000_MTA, i, 0);
1067 
1068 	/* Zero out the Unicast HASH table */
1069 	hw_dbg("Zeroing the UTA\n");
1070 	for (i = 0; i < mac->uta_reg_count; i++)
1071 		array_wr32(E1000_UTA, i, 0);
1072 
1073 	/* Setup link and flow control */
1074 	ret_val = igb_setup_link(hw);
1075 
1076 	/*
1077 	 * Clear all of the statistics registers (clear on read).  It is
1078 	 * important that we do this after we have tried to establish link
1079 	 * because the symbol error count will increment wildly if there
1080 	 * is no link.
1081 	 */
1082 	igb_clear_hw_cntrs_82575(hw);
1083 
1084 	return ret_val;
1085 }
1086 
1087 /**
1088  *  igb_setup_copper_link_82575 - Configure copper link settings
1089  *  @hw: pointer to the HW structure
1090  *
1091  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1092  *  for link, once link is established calls to configure collision distance
1093  *  and flow control are called.
1094  **/
1095 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096 {
1097 	u32 ctrl;
1098 	s32  ret_val;
1099 
1100 	ctrl = rd32(E1000_CTRL);
1101 	ctrl |= E1000_CTRL_SLU;
1102 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103 	wr32(E1000_CTRL, ctrl);
1104 
1105 	ret_val = igb_setup_serdes_link_82575(hw);
1106 	if (ret_val)
1107 		goto out;
1108 
1109 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1110 		/* allow time for SFP cage time to power up phy */
1111 		msleep(300);
1112 
1113 		ret_val = hw->phy.ops.reset(hw);
1114 		if (ret_val) {
1115 			hw_dbg("Error resetting the PHY.\n");
1116 			goto out;
1117 		}
1118 	}
1119 	switch (hw->phy.type) {
1120 	case e1000_phy_m88:
1121 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1122 		    hw->phy.id == M88E1112_E_PHY_ID)
1123 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1124 		else
1125 			ret_val = igb_copper_link_setup_m88(hw);
1126 		break;
1127 	case e1000_phy_igp_3:
1128 		ret_val = igb_copper_link_setup_igp(hw);
1129 		break;
1130 	case e1000_phy_82580:
1131 		ret_val = igb_copper_link_setup_82580(hw);
1132 		break;
1133 	default:
1134 		ret_val = -E1000_ERR_PHY;
1135 		break;
1136 	}
1137 
1138 	if (ret_val)
1139 		goto out;
1140 
1141 	ret_val = igb_setup_copper_link(hw);
1142 out:
1143 	return ret_val;
1144 }
1145 
1146 /**
1147  *  igb_setup_serdes_link_82575 - Setup link for serdes
1148  *  @hw: pointer to the HW structure
1149  *
1150  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1151  *  used on copper connections where the serialized gigabit media independent
1152  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1153  *  for auto-negotiation or forces speed/duplex.
1154  **/
1155 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1156 {
1157 	u32 ctrl_ext, ctrl_reg, reg;
1158 	bool pcs_autoneg;
1159 	s32 ret_val = E1000_SUCCESS;
1160 	u16 data;
1161 
1162 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163 	    !igb_sgmii_active_82575(hw))
1164 		return ret_val;
1165 
1166 
1167 	/*
1168 	 * On the 82575, SerDes loopback mode persists until it is
1169 	 * explicitly turned off or a power cycle is performed.  A read to
1170 	 * the register does not indicate its status.  Therefore, we ensure
1171 	 * loopback mode is disabled during initialization.
1172 	 */
1173 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174 
1175 	/* power on the sfp cage if present */
1176 	ctrl_ext = rd32(E1000_CTRL_EXT);
1177 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178 	wr32(E1000_CTRL_EXT, ctrl_ext);
1179 
1180 	ctrl_reg = rd32(E1000_CTRL);
1181 	ctrl_reg |= E1000_CTRL_SLU;
1182 
1183 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184 		/* set both sw defined pins */
1185 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186 
1187 		/* Set switch control to serdes energy detect */
1188 		reg = rd32(E1000_CONNSW);
1189 		reg |= E1000_CONNSW_ENRGSRC;
1190 		wr32(E1000_CONNSW, reg);
1191 	}
1192 
1193 	reg = rd32(E1000_PCS_LCTL);
1194 
1195 	/* default pcs_autoneg to the same setting as mac autoneg */
1196 	pcs_autoneg = hw->mac.autoneg;
1197 
1198 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200 		/* sgmii mode lets the phy handle forcing speed/duplex */
1201 		pcs_autoneg = true;
1202 		/* autoneg time out should be disabled for SGMII mode */
1203 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1204 		break;
1205 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206 		/* disable PCS autoneg and support parallel detect only */
1207 		pcs_autoneg = false;
1208 	default:
1209 		if (hw->mac.type == e1000_82575 ||
1210 		    hw->mac.type == e1000_82576) {
1211 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212 			if (ret_val) {
1213 				printk(KERN_DEBUG "NVM Read Error\n\n");
1214 				return ret_val;
1215 			}
1216 
1217 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218 				pcs_autoneg = false;
1219 		}
1220 
1221 		/*
1222 		 * non-SGMII modes only supports a speed of 1000/Full for the
1223 		 * link so it is best to just force the MAC and let the pcs
1224 		 * link either autoneg or be forced to 1000/Full
1225 		 */
1226 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1228 
1229 		/* set speed of 1000/Full if speed/duplex is forced */
1230 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231 		break;
1232 	}
1233 
1234 	wr32(E1000_CTRL, ctrl_reg);
1235 
1236 	/*
1237 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1238 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1239 	 * mode that will be compatible with older link partners and switches.
1240 	 * However, both are supported by the hardware and some drivers/tools.
1241 	 */
1242 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1244 
1245 	/*
1246 	 * We force flow control to prevent the CTRL register values from being
1247 	 * overwritten by the autonegotiated flow control values
1248 	 */
1249 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250 
1251 	if (pcs_autoneg) {
1252 		/* Set PCS register for autoneg */
1253 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1254 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1255 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1256 	} else {
1257 		/* Set PCS register for forced link */
1258 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1259 
1260 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1261 	}
1262 
1263 	wr32(E1000_PCS_LCTL, reg);
1264 
1265 	if (!igb_sgmii_active_82575(hw))
1266 		igb_force_mac_fc(hw);
1267 
1268 	return ret_val;
1269 }
1270 
1271 /**
1272  *  igb_sgmii_active_82575 - Return sgmii state
1273  *  @hw: pointer to the HW structure
1274  *
1275  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1276  *  which can be enabled for use in the embedded applications.  Simply
1277  *  return the current state of the sgmii interface.
1278  **/
1279 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280 {
1281 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1282 	return dev_spec->sgmii_active;
1283 }
1284 
1285 /**
1286  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1287  *  @hw: pointer to the HW structure
1288  *
1289  *  Inits recommended HW defaults after a reset when there is no EEPROM
1290  *  detected. This is only for the 82575.
1291  **/
1292 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293 {
1294 	if (hw->mac.type == e1000_82575) {
1295 		hw_dbg("Running reset init script for 82575\n");
1296 		/* SerDes configuration via SERDESCTRL */
1297 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301 
1302 		/* CCM configuration via CCMCTL register */
1303 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305 
1306 		/* PCIe lanes configuration */
1307 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311 
1312 		/* PCIe PLL Configuration */
1313 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  *  igb_read_mac_addr_82575 - Read device MAC address
1323  *  @hw: pointer to the HW structure
1324  **/
1325 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326 {
1327 	s32 ret_val = 0;
1328 
1329 	/*
1330 	 * If there's an alternate MAC address place it in RAR0
1331 	 * so that it will override the Si installed default perm
1332 	 * address.
1333 	 */
1334 	ret_val = igb_check_alt_mac_addr(hw);
1335 	if (ret_val)
1336 		goto out;
1337 
1338 	ret_val = igb_read_mac_addr(hw);
1339 
1340 out:
1341 	return ret_val;
1342 }
1343 
1344 /**
1345  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346  * @hw: pointer to the HW structure
1347  *
1348  * In the case of a PHY power down to save power, or to turn off link during a
1349  * driver unload, or wake on lan is not enabled, remove the link.
1350  **/
1351 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352 {
1353 	/* If the management interface is not enabled, then power down */
1354 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355 		igb_power_down_phy_copper(hw);
1356 }
1357 
1358 /**
1359  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360  *  @hw: pointer to the HW structure
1361  *
1362  *  Clears the hardware counters by reading the counter registers.
1363  **/
1364 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365 {
1366 	igb_clear_hw_cntrs_base(hw);
1367 
1368 	rd32(E1000_PRC64);
1369 	rd32(E1000_PRC127);
1370 	rd32(E1000_PRC255);
1371 	rd32(E1000_PRC511);
1372 	rd32(E1000_PRC1023);
1373 	rd32(E1000_PRC1522);
1374 	rd32(E1000_PTC64);
1375 	rd32(E1000_PTC127);
1376 	rd32(E1000_PTC255);
1377 	rd32(E1000_PTC511);
1378 	rd32(E1000_PTC1023);
1379 	rd32(E1000_PTC1522);
1380 
1381 	rd32(E1000_ALGNERRC);
1382 	rd32(E1000_RXERRC);
1383 	rd32(E1000_TNCRS);
1384 	rd32(E1000_CEXTERR);
1385 	rd32(E1000_TSCTC);
1386 	rd32(E1000_TSCTFC);
1387 
1388 	rd32(E1000_MGTPRC);
1389 	rd32(E1000_MGTPDC);
1390 	rd32(E1000_MGTPTC);
1391 
1392 	rd32(E1000_IAC);
1393 	rd32(E1000_ICRXOC);
1394 
1395 	rd32(E1000_ICRXPTC);
1396 	rd32(E1000_ICRXATC);
1397 	rd32(E1000_ICTXPTC);
1398 	rd32(E1000_ICTXATC);
1399 	rd32(E1000_ICTXQEC);
1400 	rd32(E1000_ICTXQMTC);
1401 	rd32(E1000_ICRXDMTC);
1402 
1403 	rd32(E1000_CBTMPC);
1404 	rd32(E1000_HTDPMC);
1405 	rd32(E1000_CBRMPC);
1406 	rd32(E1000_RPTHC);
1407 	rd32(E1000_HGPTC);
1408 	rd32(E1000_HTCBDPC);
1409 	rd32(E1000_HGORCL);
1410 	rd32(E1000_HGORCH);
1411 	rd32(E1000_HGOTCL);
1412 	rd32(E1000_HGOTCH);
1413 	rd32(E1000_LENERRS);
1414 
1415 	/* This register should not be read in copper configurations */
1416 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417 	    igb_sgmii_active_82575(hw))
1418 		rd32(E1000_SCVPC);
1419 }
1420 
1421 /**
1422  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423  *  @hw: pointer to the HW structure
1424  *
1425  *  After rx enable if managability is enabled then there is likely some
1426  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1427  *  function clears the fifos and flushes any packets that came in as rx was
1428  *  being enabled.
1429  **/
1430 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431 {
1432 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433 	int i, ms_wait;
1434 
1435 	if (hw->mac.type != e1000_82575 ||
1436 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437 		return;
1438 
1439 	/* Disable all RX queues */
1440 	for (i = 0; i < 4; i++) {
1441 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1442 		wr32(E1000_RXDCTL(i),
1443 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444 	}
1445 	/* Poll all queues to verify they have shut down */
1446 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447 		msleep(1);
1448 		rx_enabled = 0;
1449 		for (i = 0; i < 4; i++)
1450 			rx_enabled |= rd32(E1000_RXDCTL(i));
1451 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452 			break;
1453 	}
1454 
1455 	if (ms_wait == 10)
1456 		hw_dbg("Queue disable timed out after 10ms\n");
1457 
1458 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1460 	 * any packet that was coming in as RCTL.EN was set is flushed
1461 	 */
1462 	rfctl = rd32(E1000_RFCTL);
1463 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464 
1465 	rlpml = rd32(E1000_RLPML);
1466 	wr32(E1000_RLPML, 0);
1467 
1468 	rctl = rd32(E1000_RCTL);
1469 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470 	temp_rctl |= E1000_RCTL_LPE;
1471 
1472 	wr32(E1000_RCTL, temp_rctl);
1473 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474 	wrfl();
1475 	msleep(2);
1476 
1477 	/* Enable RX queues that were previously enabled and restore our
1478 	 * previous state
1479 	 */
1480 	for (i = 0; i < 4; i++)
1481 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1482 	wr32(E1000_RCTL, rctl);
1483 	wrfl();
1484 
1485 	wr32(E1000_RLPML, rlpml);
1486 	wr32(E1000_RFCTL, rfctl);
1487 
1488 	/* Flush receive errors generated by workaround */
1489 	rd32(E1000_ROC);
1490 	rd32(E1000_RNBC);
1491 	rd32(E1000_MPC);
1492 }
1493 
1494 /**
1495  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499  *  however the hardware default for these parts is 500us to 1ms which is less
1500  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1501  *  increase the value to either 10ms to 200ms for capability version 1 config,
1502  *  or 16ms to 55ms for version 2.
1503  **/
1504 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505 {
1506 	u32 gcr = rd32(E1000_GCR);
1507 	s32 ret_val = 0;
1508 	u16 pcie_devctl2;
1509 
1510 	/* only take action if timeout value is defaulted to 0 */
1511 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512 		goto out;
1513 
1514 	/*
1515 	 * if capababilities version is type 1 we can write the
1516 	 * timeout of 10ms to 200ms through the GCR register
1517 	 */
1518 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1519 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520 		goto out;
1521 	}
1522 
1523 	/*
1524 	 * for version 2 capabilities we need to write the config space
1525 	 * directly in order to set the completion timeout value for
1526 	 * 16ms to 55ms
1527 	 */
1528 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529 	                                &pcie_devctl2);
1530 	if (ret_val)
1531 		goto out;
1532 
1533 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534 
1535 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536 	                                 &pcie_devctl2);
1537 out:
1538 	/* disable completion timeout resend */
1539 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540 
1541 	wr32(E1000_GCR, gcr);
1542 	return ret_val;
1543 }
1544 
1545 /**
1546  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547  *  @hw: pointer to the hardware struct
1548  *  @enable: state to enter, either enabled or disabled
1549  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1550  *
1551  *  enables/disables L2 switch anti-spoofing functionality.
1552  **/
1553 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554 {
1555 	u32 dtxswc;
1556 
1557 	switch (hw->mac.type) {
1558 	case e1000_82576:
1559 	case e1000_i350:
1560 		dtxswc = rd32(E1000_DTXSWC);
1561 		if (enable) {
1562 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1564 			/* The PF can spoof - it has to in order to
1565 			 * support emulation mode NICs */
1566 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567 		} else {
1568 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1570 		}
1571 		wr32(E1000_DTXSWC, dtxswc);
1572 		break;
1573 	default:
1574 		break;
1575 	}
1576 }
1577 
1578 /**
1579  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580  *  @hw: pointer to the hardware struct
1581  *  @enable: state to enter, either enabled or disabled
1582  *
1583  *  enables/disables L2 switch loopback functionality.
1584  **/
1585 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586 {
1587 	u32 dtxswc;
1588 
1589 	switch (hw->mac.type) {
1590 	case e1000_82576:
1591 		dtxswc = rd32(E1000_DTXSWC);
1592 		if (enable)
1593 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1594 		else
1595 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1596 		wr32(E1000_DTXSWC, dtxswc);
1597 		break;
1598 	case e1000_i350:
1599 		dtxswc = rd32(E1000_TXSWC);
1600 		if (enable)
1601 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1602 		else
1603 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1604 		wr32(E1000_TXSWC, dtxswc);
1605 		break;
1606 	default:
1607 		/* Currently no other hardware supports loopback */
1608 		break;
1609 	}
1610 
1611 
1612 }
1613 
1614 /**
1615  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1616  *  @hw: pointer to the hardware struct
1617  *  @enable: state to enter, either enabled or disabled
1618  *
1619  *  enables/disables replication of packets across multiple pools.
1620  **/
1621 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1622 {
1623 	u32 vt_ctl = rd32(E1000_VT_CTL);
1624 
1625 	if (enable)
1626 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1627 	else
1628 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1629 
1630 	wr32(E1000_VT_CTL, vt_ctl);
1631 }
1632 
1633 /**
1634  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1635  *  @hw: pointer to the HW structure
1636  *  @offset: register offset to be read
1637  *  @data: pointer to the read data
1638  *
1639  *  Reads the MDI control register in the PHY at offset and stores the
1640  *  information read to data.
1641  **/
1642 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1643 {
1644 	s32 ret_val;
1645 
1646 
1647 	ret_val = hw->phy.ops.acquire(hw);
1648 	if (ret_val)
1649 		goto out;
1650 
1651 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1652 
1653 	hw->phy.ops.release(hw);
1654 
1655 out:
1656 	return ret_val;
1657 }
1658 
1659 /**
1660  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1661  *  @hw: pointer to the HW structure
1662  *  @offset: register offset to write to
1663  *  @data: data to write to register at offset
1664  *
1665  *  Writes data to MDI control register in the PHY at offset.
1666  **/
1667 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1668 {
1669 	s32 ret_val;
1670 
1671 
1672 	ret_val = hw->phy.ops.acquire(hw);
1673 	if (ret_val)
1674 		goto out;
1675 
1676 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1677 
1678 	hw->phy.ops.release(hw);
1679 
1680 out:
1681 	return ret_val;
1682 }
1683 
1684 /**
1685  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1689  *  the values found in the EEPROM.  This addresses an issue in which these
1690  *  bits are not restored from EEPROM after reset.
1691  **/
1692 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1693 {
1694 	s32 ret_val = 0;
1695 	u32 mdicnfg;
1696 	u16 nvm_data = 0;
1697 
1698 	if (hw->mac.type != e1000_82580)
1699 		goto out;
1700 	if (!igb_sgmii_active_82575(hw))
1701 		goto out;
1702 
1703 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1704 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1705 				   &nvm_data);
1706 	if (ret_val) {
1707 		hw_dbg("NVM Read Error\n");
1708 		goto out;
1709 	}
1710 
1711 	mdicnfg = rd32(E1000_MDICNFG);
1712 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1713 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1714 	if (nvm_data & NVM_WORD24_COM_MDIO)
1715 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1716 	wr32(E1000_MDICNFG, mdicnfg);
1717 out:
1718 	return ret_val;
1719 }
1720 
1721 /**
1722  *  igb_reset_hw_82580 - Reset hardware
1723  *  @hw: pointer to the HW structure
1724  *
1725  *  This resets function or entire device (all ports, etc.)
1726  *  to a known state.
1727  **/
1728 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1729 {
1730 	s32 ret_val = 0;
1731 	/* BH SW mailbox bit in SW_FW_SYNC */
1732 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1733 	u32 ctrl, icr;
1734 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1735 
1736 
1737 	hw->dev_spec._82575.global_device_reset = false;
1738 
1739 	/* Get current control state. */
1740 	ctrl = rd32(E1000_CTRL);
1741 
1742 	/*
1743 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1744 	 * on the last TLP read/write transaction when MAC is reset.
1745 	 */
1746 	ret_val = igb_disable_pcie_master(hw);
1747 	if (ret_val)
1748 		hw_dbg("PCI-E Master disable polling has failed.\n");
1749 
1750 	hw_dbg("Masking off all interrupts\n");
1751 	wr32(E1000_IMC, 0xffffffff);
1752 	wr32(E1000_RCTL, 0);
1753 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1754 	wrfl();
1755 
1756 	msleep(10);
1757 
1758 	/* Determine whether or not a global dev reset is requested */
1759 	if (global_device_reset &&
1760 		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1761 			global_device_reset = false;
1762 
1763 	if (global_device_reset &&
1764 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1765 		ctrl |= E1000_CTRL_DEV_RST;
1766 	else
1767 		ctrl |= E1000_CTRL_RST;
1768 
1769 	wr32(E1000_CTRL, ctrl);
1770 	wrfl();
1771 
1772 	/* Add delay to insure DEV_RST has time to complete */
1773 	if (global_device_reset)
1774 		msleep(5);
1775 
1776 	ret_val = igb_get_auto_rd_done(hw);
1777 	if (ret_val) {
1778 		/*
1779 		 * When auto config read does not complete, do not
1780 		 * return with an error. This can happen in situations
1781 		 * where there is no eeprom and prevents getting link.
1782 		 */
1783 		hw_dbg("Auto Read Done did not complete\n");
1784 	}
1785 
1786 	/* If EEPROM is not present, run manual init scripts */
1787 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1788 		igb_reset_init_script_82575(hw);
1789 
1790 	/* clear global device reset status bit */
1791 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1792 
1793 	/* Clear any pending interrupt events. */
1794 	wr32(E1000_IMC, 0xffffffff);
1795 	icr = rd32(E1000_ICR);
1796 
1797 	ret_val = igb_reset_mdicnfg_82580(hw);
1798 	if (ret_val)
1799 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1800 
1801 	/* Install any alternate MAC address into RAR0 */
1802 	ret_val = igb_check_alt_mac_addr(hw);
1803 
1804 	/* Release semaphore */
1805 	if (global_device_reset)
1806 		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1807 
1808 	return ret_val;
1809 }
1810 
1811 /**
1812  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1813  *  @data: data received by reading RXPBS register
1814  *
1815  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1816  *  This function converts the retrieved value into the correct table value
1817  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1818  *  0x0 36  72 144   1   2   4   8  16
1819  *  0x8 35  70 140 rsv rsv rsv rsv rsv
1820  */
1821 u16 igb_rxpbs_adjust_82580(u32 data)
1822 {
1823 	u16 ret_val = 0;
1824 
1825 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1826 		ret_val = e1000_82580_rxpbs_table[data];
1827 
1828 	return ret_val;
1829 }
1830 
1831 /**
1832  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1833  *  checksum
1834  *  @hw: pointer to the HW structure
1835  *  @offset: offset in words of the checksum protected region
1836  *
1837  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1838  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1839  **/
1840 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
1841 						 u16 offset)
1842 {
1843 	s32 ret_val = 0;
1844 	u16 checksum = 0;
1845 	u16 i, nvm_data;
1846 
1847 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1848 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1849 		if (ret_val) {
1850 			hw_dbg("NVM Read Error\n");
1851 			goto out;
1852 		}
1853 		checksum += nvm_data;
1854 	}
1855 
1856 	if (checksum != (u16) NVM_SUM) {
1857 		hw_dbg("NVM Checksum Invalid\n");
1858 		ret_val = -E1000_ERR_NVM;
1859 		goto out;
1860 	}
1861 
1862 out:
1863 	return ret_val;
1864 }
1865 
1866 /**
1867  *  igb_update_nvm_checksum_with_offset - Update EEPROM
1868  *  checksum
1869  *  @hw: pointer to the HW structure
1870  *  @offset: offset in words of the checksum protected region
1871  *
1872  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1873  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1874  *  value to the EEPROM.
1875  **/
1876 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1877 {
1878 	s32 ret_val;
1879 	u16 checksum = 0;
1880 	u16 i, nvm_data;
1881 
1882 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1883 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1884 		if (ret_val) {
1885 			hw_dbg("NVM Read Error while updating checksum.\n");
1886 			goto out;
1887 		}
1888 		checksum += nvm_data;
1889 	}
1890 	checksum = (u16) NVM_SUM - checksum;
1891 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1892 				&checksum);
1893 	if (ret_val)
1894 		hw_dbg("NVM Write Error while updating checksum.\n");
1895 
1896 out:
1897 	return ret_val;
1898 }
1899 
1900 /**
1901  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1902  *  @hw: pointer to the HW structure
1903  *
1904  *  Calculates the EEPROM section checksum by reading/adding each word of
1905  *  the EEPROM and then verifies that the sum of the EEPROM is
1906  *  equal to 0xBABA.
1907  **/
1908 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1909 {
1910 	s32 ret_val = 0;
1911 	u16 eeprom_regions_count = 1;
1912 	u16 j, nvm_data;
1913 	u16 nvm_offset;
1914 
1915 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1916 	if (ret_val) {
1917 		hw_dbg("NVM Read Error\n");
1918 		goto out;
1919 	}
1920 
1921 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1922 		/* if checksums compatibility bit is set validate checksums
1923 		 * for all 4 ports. */
1924 		eeprom_regions_count = 4;
1925 	}
1926 
1927 	for (j = 0; j < eeprom_regions_count; j++) {
1928 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1929 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1930 								nvm_offset);
1931 		if (ret_val != 0)
1932 			goto out;
1933 	}
1934 
1935 out:
1936 	return ret_val;
1937 }
1938 
1939 /**
1940  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1941  *  @hw: pointer to the HW structure
1942  *
1943  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1944  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1945  *  checksum and writes the value to the EEPROM.
1946  **/
1947 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1948 {
1949 	s32 ret_val;
1950 	u16 j, nvm_data;
1951 	u16 nvm_offset;
1952 
1953 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1954 	if (ret_val) {
1955 		hw_dbg("NVM Read Error while updating checksum"
1956 			" compatibility bit.\n");
1957 		goto out;
1958 	}
1959 
1960 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1961 		/* set compatibility bit to validate checksums appropriately */
1962 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1963 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1964 					&nvm_data);
1965 		if (ret_val) {
1966 			hw_dbg("NVM Write Error while updating checksum"
1967 				" compatibility bit.\n");
1968 			goto out;
1969 		}
1970 	}
1971 
1972 	for (j = 0; j < 4; j++) {
1973 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1974 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1975 		if (ret_val)
1976 			goto out;
1977 	}
1978 
1979 out:
1980 	return ret_val;
1981 }
1982 
1983 /**
1984  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1985  *  @hw: pointer to the HW structure
1986  *
1987  *  Calculates the EEPROM section checksum by reading/adding each word of
1988  *  the EEPROM and then verifies that the sum of the EEPROM is
1989  *  equal to 0xBABA.
1990  **/
1991 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1992 {
1993 	s32 ret_val = 0;
1994 	u16 j;
1995 	u16 nvm_offset;
1996 
1997 	for (j = 0; j < 4; j++) {
1998 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1999 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2000 								nvm_offset);
2001 		if (ret_val != 0)
2002 			goto out;
2003 	}
2004 
2005 out:
2006 	return ret_val;
2007 }
2008 
2009 /**
2010  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2011  *  @hw: pointer to the HW structure
2012  *
2013  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2014  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2015  *  checksum and writes the value to the EEPROM.
2016  **/
2017 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2018 {
2019 	s32 ret_val = 0;
2020 	u16 j;
2021 	u16 nvm_offset;
2022 
2023 	for (j = 0; j < 4; j++) {
2024 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2025 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2026 		if (ret_val != 0)
2027 			goto out;
2028 	}
2029 
2030 out:
2031 	return ret_val;
2032 }
2033 
2034 /**
2035  *  igb_set_eee_i350 - Enable/disable EEE support
2036  *  @hw: pointer to the HW structure
2037  *
2038  *  Enable/disable EEE based on setting in dev_spec structure.
2039  *
2040  **/
2041 s32 igb_set_eee_i350(struct e1000_hw *hw)
2042 {
2043 	s32 ret_val = 0;
2044 	u32 ipcnfg, eeer, ctrl_ext;
2045 
2046 	ctrl_ext = rd32(E1000_CTRL_EXT);
2047 	if ((hw->mac.type != e1000_i350) ||
2048 	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2049 		goto out;
2050 	ipcnfg = rd32(E1000_IPCNFG);
2051 	eeer = rd32(E1000_EEER);
2052 
2053 	/* enable or disable per user setting */
2054 	if (!(hw->dev_spec._82575.eee_disable)) {
2055 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2056 			E1000_IPCNFG_EEE_100M_AN);
2057 		eeer |= (E1000_EEER_TX_LPI_EN |
2058 			E1000_EEER_RX_LPI_EN |
2059 			E1000_EEER_LPI_FC);
2060 
2061 	} else {
2062 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2063 			E1000_IPCNFG_EEE_100M_AN);
2064 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2065 			E1000_EEER_RX_LPI_EN |
2066 			E1000_EEER_LPI_FC);
2067 	}
2068 	wr32(E1000_IPCNFG, ipcnfg);
2069 	wr32(E1000_EEER, eeer);
2070 out:
2071 
2072 	return ret_val;
2073 }
2074 
2075 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2076 	.init_hw              = igb_init_hw_82575,
2077 	.check_for_link       = igb_check_for_link_82575,
2078 	.rar_set              = igb_rar_set,
2079 	.read_mac_addr        = igb_read_mac_addr_82575,
2080 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2081 };
2082 
2083 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2084 	.acquire              = igb_acquire_phy_82575,
2085 	.get_cfg_done         = igb_get_cfg_done_82575,
2086 	.release              = igb_release_phy_82575,
2087 };
2088 
2089 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2090 	.acquire              = igb_acquire_nvm_82575,
2091 	.read                 = igb_read_nvm_eerd,
2092 	.release              = igb_release_nvm_82575,
2093 	.write                = igb_write_nvm_spi,
2094 };
2095 
2096 const struct e1000_info e1000_82575_info = {
2097 	.get_invariants = igb_get_invariants_82575,
2098 	.mac_ops = &e1000_mac_ops_82575,
2099 	.phy_ops = &e1000_phy_ops_82575,
2100 	.nvm_ops = &e1000_nvm_ops_82575,
2101 };
2102 
2103