xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_82575.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel(R) Gigabit Ethernet Linux driver
3  * Copyright(c) 2007-2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, see <http://www.gnu.org/licenses/>.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Contact Information:
21  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
22  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
23  */
24 
25 /* e1000_82575
26  * e1000_82576
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/types.h>
32 #include <linux/if_ether.h>
33 #include <linux/i2c.h>
34 
35 #include "e1000_mac.h"
36 #include "e1000_82575.h"
37 #include "e1000_i210.h"
38 #include "igb.h"
39 
40 static s32  igb_get_invariants_82575(struct e1000_hw *);
41 static s32  igb_acquire_phy_82575(struct e1000_hw *);
42 static void igb_release_phy_82575(struct e1000_hw *);
43 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
44 static void igb_release_nvm_82575(struct e1000_hw *);
45 static s32  igb_check_for_link_82575(struct e1000_hw *);
46 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
47 static s32  igb_init_hw_82575(struct e1000_hw *);
48 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
49 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /* Due to a hw errata, if the host tries to  configure the VFTA register
77  * while performing queries from the BMC or DMA, then the VFTA in some
78  * cases won't be written.
79  */
80 
81 /**
82  *  igb_write_vfta_i350 - Write value to VLAN filter table
83  *  @hw: pointer to the HW structure
84  *  @offset: register offset in VLAN filter table
85  *  @value: register value written to VLAN filter table
86  *
87  *  Writes value at the given offset in the register array which stores
88  *  the VLAN filter table.
89  **/
90 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
91 {
92 	struct igb_adapter *adapter = hw->back;
93 	int i;
94 
95 	for (i = 10; i--;)
96 		array_wr32(E1000_VFTA, offset, value);
97 
98 	wrfl();
99 	adapter->shadow_vfta[offset] = value;
100 }
101 
102 /**
103  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
104  *  @hw: pointer to the HW structure
105  *
106  *  Called to determine if the I2C pins are being used for I2C or as an
107  *  external MDIO interface since the two options are mutually exclusive.
108  **/
109 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
110 {
111 	u32 reg = 0;
112 	bool ext_mdio = false;
113 
114 	switch (hw->mac.type) {
115 	case e1000_82575:
116 	case e1000_82576:
117 		reg = rd32(E1000_MDIC);
118 		ext_mdio = !!(reg & E1000_MDIC_DEST);
119 		break;
120 	case e1000_82580:
121 	case e1000_i350:
122 	case e1000_i354:
123 	case e1000_i210:
124 	case e1000_i211:
125 		reg = rd32(E1000_MDICNFG);
126 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
127 		break;
128 	default:
129 		break;
130 	}
131 	return ext_mdio;
132 }
133 
134 /**
135  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
136  *  @hw: pointer to the HW structure
137  *
138  *  Poll the M88E1112 interfaces to see which interface achieved link.
139  */
140 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
141 {
142 	struct e1000_phy_info *phy = &hw->phy;
143 	s32 ret_val;
144 	u16 data;
145 	u8 port = 0;
146 
147 	/* Check the copper medium. */
148 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
149 	if (ret_val)
150 		return ret_val;
151 
152 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
153 	if (ret_val)
154 		return ret_val;
155 
156 	if (data & E1000_M88E1112_STATUS_LINK)
157 		port = E1000_MEDIA_PORT_COPPER;
158 
159 	/* Check the other medium. */
160 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
161 	if (ret_val)
162 		return ret_val;
163 
164 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
165 	if (ret_val)
166 		return ret_val;
167 
168 
169 	if (data & E1000_M88E1112_STATUS_LINK)
170 		port = E1000_MEDIA_PORT_OTHER;
171 
172 	/* Determine if a swap needs to happen. */
173 	if (port && (hw->dev_spec._82575.media_port != port)) {
174 		hw->dev_spec._82575.media_port = port;
175 		hw->dev_spec._82575.media_changed = true;
176 	}
177 
178 	if (port == E1000_MEDIA_PORT_COPPER) {
179 		/* reset page to 0 */
180 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
181 		if (ret_val)
182 			return ret_val;
183 		igb_check_for_link_82575(hw);
184 	} else {
185 		igb_check_for_link_82575(hw);
186 		/* reset page to 0 */
187 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
188 		if (ret_val)
189 			return ret_val;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  *  igb_init_phy_params_82575 - Init PHY func ptrs.
197  *  @hw: pointer to the HW structure
198  **/
199 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
200 {
201 	struct e1000_phy_info *phy = &hw->phy;
202 	s32 ret_val = 0;
203 	u32 ctrl_ext;
204 
205 	if (hw->phy.media_type != e1000_media_type_copper) {
206 		phy->type = e1000_phy_none;
207 		goto out;
208 	}
209 
210 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
211 	phy->reset_delay_us	= 100;
212 
213 	ctrl_ext = rd32(E1000_CTRL_EXT);
214 
215 	if (igb_sgmii_active_82575(hw)) {
216 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
217 		ctrl_ext |= E1000_CTRL_I2C_ENA;
218 	} else {
219 		phy->ops.reset = igb_phy_hw_reset;
220 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
221 	}
222 
223 	wr32(E1000_CTRL_EXT, ctrl_ext);
224 	igb_reset_mdicnfg_82580(hw);
225 
226 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
227 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
228 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
229 	} else {
230 		switch (hw->mac.type) {
231 		case e1000_82580:
232 		case e1000_i350:
233 		case e1000_i354:
234 		case e1000_i210:
235 		case e1000_i211:
236 			phy->ops.read_reg = igb_read_phy_reg_82580;
237 			phy->ops.write_reg = igb_write_phy_reg_82580;
238 			break;
239 		default:
240 			phy->ops.read_reg = igb_read_phy_reg_igp;
241 			phy->ops.write_reg = igb_write_phy_reg_igp;
242 		}
243 	}
244 
245 	/* set lan id */
246 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
247 			E1000_STATUS_FUNC_SHIFT;
248 
249 	/* Make sure the PHY is in a good state. Several people have reported
250 	 * firmware leaving the PHY's page select register set to something
251 	 * other than the default of zero, which causes the PHY ID read to
252 	 * access something other than the intended register.
253 	 */
254 	ret_val = hw->phy.ops.reset(hw);
255 	if (ret_val) {
256 		hw_dbg("Error resetting the PHY.\n");
257 		goto out;
258 	}
259 
260 	/* Set phy->phy_addr and phy->id. */
261 	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
262 	ret_val = igb_get_phy_id_82575(hw);
263 	if (ret_val)
264 		return ret_val;
265 
266 	/* Verify phy id and set remaining function pointers */
267 	switch (phy->id) {
268 	case M88E1543_E_PHY_ID:
269 	case M88E1512_E_PHY_ID:
270 	case I347AT4_E_PHY_ID:
271 	case M88E1112_E_PHY_ID:
272 	case M88E1111_I_PHY_ID:
273 		phy->type		= e1000_phy_m88;
274 		phy->ops.check_polarity	= igb_check_polarity_m88;
275 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
276 		if (phy->id != M88E1111_I_PHY_ID)
277 			phy->ops.get_cable_length =
278 					 igb_get_cable_length_m88_gen2;
279 		else
280 			phy->ops.get_cable_length = igb_get_cable_length_m88;
281 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
282 		/* Check if this PHY is configured for media swap. */
283 		if (phy->id == M88E1112_E_PHY_ID) {
284 			u16 data;
285 
286 			ret_val = phy->ops.write_reg(hw,
287 						     E1000_M88E1112_PAGE_ADDR,
288 						     2);
289 			if (ret_val)
290 				goto out;
291 
292 			ret_val = phy->ops.read_reg(hw,
293 						    E1000_M88E1112_MAC_CTRL_1,
294 						    &data);
295 			if (ret_val)
296 				goto out;
297 
298 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
299 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
300 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
301 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
302 				hw->mac.ops.check_for_link =
303 						igb_check_for_link_media_swap;
304 		}
305 		if (phy->id == M88E1512_E_PHY_ID) {
306 			ret_val = igb_initialize_M88E1512_phy(hw);
307 			if (ret_val)
308 				goto out;
309 		}
310 		if (phy->id == M88E1543_E_PHY_ID) {
311 			ret_val = igb_initialize_M88E1543_phy(hw);
312 			if (ret_val)
313 				goto out;
314 		}
315 		break;
316 	case IGP03E1000_E_PHY_ID:
317 		phy->type = e1000_phy_igp_3;
318 		phy->ops.get_phy_info = igb_get_phy_info_igp;
319 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
320 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
321 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
322 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
323 		break;
324 	case I82580_I_PHY_ID:
325 	case I350_I_PHY_ID:
326 		phy->type = e1000_phy_82580;
327 		phy->ops.force_speed_duplex =
328 					 igb_phy_force_speed_duplex_82580;
329 		phy->ops.get_cable_length = igb_get_cable_length_82580;
330 		phy->ops.get_phy_info = igb_get_phy_info_82580;
331 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
332 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
333 		break;
334 	case I210_I_PHY_ID:
335 		phy->type		= e1000_phy_i210;
336 		phy->ops.check_polarity	= igb_check_polarity_m88;
337 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
338 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
339 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
340 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
341 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
342 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
343 		break;
344 	case BCM54616_E_PHY_ID:
345 		phy->type = e1000_phy_bcm54616;
346 		break;
347 	default:
348 		ret_val = -E1000_ERR_PHY;
349 		goto out;
350 	}
351 
352 out:
353 	return ret_val;
354 }
355 
356 /**
357  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
358  *  @hw: pointer to the HW structure
359  **/
360 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
361 {
362 	struct e1000_nvm_info *nvm = &hw->nvm;
363 	u32 eecd = rd32(E1000_EECD);
364 	u16 size;
365 
366 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
367 		     E1000_EECD_SIZE_EX_SHIFT);
368 
369 	/* Added to a constant, "size" becomes the left-shift value
370 	 * for setting word_size.
371 	 */
372 	size += NVM_WORD_SIZE_BASE_SHIFT;
373 
374 	/* Just in case size is out of range, cap it to the largest
375 	 * EEPROM size supported
376 	 */
377 	if (size > 15)
378 		size = 15;
379 
380 	nvm->word_size = BIT(size);
381 	nvm->opcode_bits = 8;
382 	nvm->delay_usec = 1;
383 
384 	switch (nvm->override) {
385 	case e1000_nvm_override_spi_large:
386 		nvm->page_size = 32;
387 		nvm->address_bits = 16;
388 		break;
389 	case e1000_nvm_override_spi_small:
390 		nvm->page_size = 8;
391 		nvm->address_bits = 8;
392 		break;
393 	default:
394 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
395 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
396 				    16 : 8;
397 		break;
398 	}
399 	if (nvm->word_size == BIT(15))
400 		nvm->page_size = 128;
401 
402 	nvm->type = e1000_nvm_eeprom_spi;
403 
404 	/* NVM Function Pointers */
405 	nvm->ops.acquire = igb_acquire_nvm_82575;
406 	nvm->ops.release = igb_release_nvm_82575;
407 	nvm->ops.write = igb_write_nvm_spi;
408 	nvm->ops.validate = igb_validate_nvm_checksum;
409 	nvm->ops.update = igb_update_nvm_checksum;
410 	if (nvm->word_size < BIT(15))
411 		nvm->ops.read = igb_read_nvm_eerd;
412 	else
413 		nvm->ops.read = igb_read_nvm_spi;
414 
415 	/* override generic family function pointers for specific descendants */
416 	switch (hw->mac.type) {
417 	case e1000_82580:
418 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
419 		nvm->ops.update = igb_update_nvm_checksum_82580;
420 		break;
421 	case e1000_i354:
422 	case e1000_i350:
423 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
424 		nvm->ops.update = igb_update_nvm_checksum_i350;
425 		break;
426 	default:
427 		break;
428 	}
429 
430 	return 0;
431 }
432 
433 /**
434  *  igb_init_mac_params_82575 - Init MAC func ptrs.
435  *  @hw: pointer to the HW structure
436  **/
437 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
438 {
439 	struct e1000_mac_info *mac = &hw->mac;
440 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
441 
442 	/* Set mta register count */
443 	mac->mta_reg_count = 128;
444 	/* Set uta register count */
445 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
446 	/* Set rar entry count */
447 	switch (mac->type) {
448 	case e1000_82576:
449 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
450 		break;
451 	case e1000_82580:
452 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
453 		break;
454 	case e1000_i350:
455 	case e1000_i354:
456 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
457 		break;
458 	default:
459 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
460 		break;
461 	}
462 	/* reset */
463 	if (mac->type >= e1000_82580)
464 		mac->ops.reset_hw = igb_reset_hw_82580;
465 	else
466 		mac->ops.reset_hw = igb_reset_hw_82575;
467 
468 	if (mac->type >= e1000_i210) {
469 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
470 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
471 
472 	} else {
473 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
474 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
475 	}
476 
477 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
478 		mac->ops.write_vfta = igb_write_vfta_i350;
479 	else
480 		mac->ops.write_vfta = igb_write_vfta;
481 
482 	/* Set if part includes ASF firmware */
483 	mac->asf_firmware_present = true;
484 	/* Set if manageability features are enabled. */
485 	mac->arc_subsystem_valid =
486 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
487 			? true : false;
488 	/* enable EEE on i350 parts and later parts */
489 	if (mac->type >= e1000_i350)
490 		dev_spec->eee_disable = false;
491 	else
492 		dev_spec->eee_disable = true;
493 	/* Allow a single clear of the SW semaphore on I210 and newer */
494 	if (mac->type >= e1000_i210)
495 		dev_spec->clear_semaphore_once = true;
496 	/* physical interface link setup */
497 	mac->ops.setup_physical_interface =
498 		(hw->phy.media_type == e1000_media_type_copper)
499 			? igb_setup_copper_link_82575
500 			: igb_setup_serdes_link_82575;
501 
502 	if (mac->type == e1000_82580) {
503 		switch (hw->device_id) {
504 		/* feature not supported on these id's */
505 		case E1000_DEV_ID_DH89XXCC_SGMII:
506 		case E1000_DEV_ID_DH89XXCC_SERDES:
507 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
508 		case E1000_DEV_ID_DH89XXCC_SFP:
509 			break;
510 		default:
511 			hw->dev_spec._82575.mas_capable = true;
512 			break;
513 		}
514 	}
515 	return 0;
516 }
517 
518 /**
519  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
520  *  @hw: pointer to the HW structure
521  *
522  *  The media type is chosen based on SFP module.
523  *  compatibility flags retrieved from SFP ID EEPROM.
524  **/
525 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
526 {
527 	s32 ret_val = E1000_ERR_CONFIG;
528 	u32 ctrl_ext = 0;
529 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
530 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
531 	u8 tranceiver_type = 0;
532 	s32 timeout = 3;
533 
534 	/* Turn I2C interface ON and power on sfp cage */
535 	ctrl_ext = rd32(E1000_CTRL_EXT);
536 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
537 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
538 
539 	wrfl();
540 
541 	/* Read SFP module data */
542 	while (timeout) {
543 		ret_val = igb_read_sfp_data_byte(hw,
544 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
545 			&tranceiver_type);
546 		if (ret_val == 0)
547 			break;
548 		msleep(100);
549 		timeout--;
550 	}
551 	if (ret_val != 0)
552 		goto out;
553 
554 	ret_val = igb_read_sfp_data_byte(hw,
555 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
556 			(u8 *)eth_flags);
557 	if (ret_val != 0)
558 		goto out;
559 
560 	/* Check if there is some SFP module plugged and powered */
561 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
562 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
563 		dev_spec->module_plugged = true;
564 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
565 			hw->phy.media_type = e1000_media_type_internal_serdes;
566 		} else if (eth_flags->e100_base_fx) {
567 			dev_spec->sgmii_active = true;
568 			hw->phy.media_type = e1000_media_type_internal_serdes;
569 		} else if (eth_flags->e1000_base_t) {
570 			dev_spec->sgmii_active = true;
571 			hw->phy.media_type = e1000_media_type_copper;
572 		} else {
573 			hw->phy.media_type = e1000_media_type_unknown;
574 			hw_dbg("PHY module has not been recognized\n");
575 			goto out;
576 		}
577 	} else {
578 		hw->phy.media_type = e1000_media_type_unknown;
579 	}
580 	ret_val = 0;
581 out:
582 	/* Restore I2C interface setting */
583 	wr32(E1000_CTRL_EXT, ctrl_ext);
584 	return ret_val;
585 }
586 
587 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
588 {
589 	struct e1000_mac_info *mac = &hw->mac;
590 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
591 	s32 ret_val;
592 	u32 ctrl_ext = 0;
593 	u32 link_mode = 0;
594 
595 	switch (hw->device_id) {
596 	case E1000_DEV_ID_82575EB_COPPER:
597 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
598 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
599 		mac->type = e1000_82575;
600 		break;
601 	case E1000_DEV_ID_82576:
602 	case E1000_DEV_ID_82576_NS:
603 	case E1000_DEV_ID_82576_NS_SERDES:
604 	case E1000_DEV_ID_82576_FIBER:
605 	case E1000_DEV_ID_82576_SERDES:
606 	case E1000_DEV_ID_82576_QUAD_COPPER:
607 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
608 	case E1000_DEV_ID_82576_SERDES_QUAD:
609 		mac->type = e1000_82576;
610 		break;
611 	case E1000_DEV_ID_82580_COPPER:
612 	case E1000_DEV_ID_82580_FIBER:
613 	case E1000_DEV_ID_82580_QUAD_FIBER:
614 	case E1000_DEV_ID_82580_SERDES:
615 	case E1000_DEV_ID_82580_SGMII:
616 	case E1000_DEV_ID_82580_COPPER_DUAL:
617 	case E1000_DEV_ID_DH89XXCC_SGMII:
618 	case E1000_DEV_ID_DH89XXCC_SERDES:
619 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
620 	case E1000_DEV_ID_DH89XXCC_SFP:
621 		mac->type = e1000_82580;
622 		break;
623 	case E1000_DEV_ID_I350_COPPER:
624 	case E1000_DEV_ID_I350_FIBER:
625 	case E1000_DEV_ID_I350_SERDES:
626 	case E1000_DEV_ID_I350_SGMII:
627 		mac->type = e1000_i350;
628 		break;
629 	case E1000_DEV_ID_I210_COPPER:
630 	case E1000_DEV_ID_I210_FIBER:
631 	case E1000_DEV_ID_I210_SERDES:
632 	case E1000_DEV_ID_I210_SGMII:
633 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
634 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
635 		mac->type = e1000_i210;
636 		break;
637 	case E1000_DEV_ID_I211_COPPER:
638 		mac->type = e1000_i211;
639 		break;
640 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
641 	case E1000_DEV_ID_I354_SGMII:
642 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
643 		mac->type = e1000_i354;
644 		break;
645 	default:
646 		return -E1000_ERR_MAC_INIT;
647 	}
648 
649 	/* Set media type */
650 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
651 	 * based on the EEPROM. We cannot rely upon device ID. There
652 	 * is no distinguishable difference between fiber and internal
653 	 * SerDes mode on the 82575. There can be an external PHY attached
654 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
655 	 */
656 	hw->phy.media_type = e1000_media_type_copper;
657 	dev_spec->sgmii_active = false;
658 	dev_spec->module_plugged = false;
659 
660 	ctrl_ext = rd32(E1000_CTRL_EXT);
661 
662 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
663 	switch (link_mode) {
664 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
665 		hw->phy.media_type = e1000_media_type_internal_serdes;
666 		break;
667 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
668 		/* Get phy control interface type set (MDIO vs. I2C)*/
669 		if (igb_sgmii_uses_mdio_82575(hw)) {
670 			hw->phy.media_type = e1000_media_type_copper;
671 			dev_spec->sgmii_active = true;
672 			break;
673 		}
674 		/* fall through for I2C based SGMII */
675 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
676 		/* read media type from SFP EEPROM */
677 		ret_val = igb_set_sfp_media_type_82575(hw);
678 		if ((ret_val != 0) ||
679 		    (hw->phy.media_type == e1000_media_type_unknown)) {
680 			/* If media type was not identified then return media
681 			 * type defined by the CTRL_EXT settings.
682 			 */
683 			hw->phy.media_type = e1000_media_type_internal_serdes;
684 
685 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
686 				hw->phy.media_type = e1000_media_type_copper;
687 				dev_spec->sgmii_active = true;
688 			}
689 
690 			break;
691 		}
692 
693 		/* do not change link mode for 100BaseFX */
694 		if (dev_spec->eth_flags.e100_base_fx)
695 			break;
696 
697 		/* change current link mode setting */
698 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
699 
700 		if (hw->phy.media_type == e1000_media_type_copper)
701 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
702 		else
703 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
704 
705 		wr32(E1000_CTRL_EXT, ctrl_ext);
706 
707 		break;
708 	default:
709 		break;
710 	}
711 
712 	/* mac initialization and operations */
713 	ret_val = igb_init_mac_params_82575(hw);
714 	if (ret_val)
715 		goto out;
716 
717 	/* NVM initialization */
718 	ret_val = igb_init_nvm_params_82575(hw);
719 	switch (hw->mac.type) {
720 	case e1000_i210:
721 	case e1000_i211:
722 		ret_val = igb_init_nvm_params_i210(hw);
723 		break;
724 	default:
725 		break;
726 	}
727 
728 	if (ret_val)
729 		goto out;
730 
731 	/* if part supports SR-IOV then initialize mailbox parameters */
732 	switch (mac->type) {
733 	case e1000_82576:
734 	case e1000_i350:
735 		igb_init_mbx_params_pf(hw);
736 		break;
737 	default:
738 		break;
739 	}
740 
741 	/* setup PHY parameters */
742 	ret_val = igb_init_phy_params_82575(hw);
743 
744 out:
745 	return ret_val;
746 }
747 
748 /**
749  *  igb_acquire_phy_82575 - Acquire rights to access PHY
750  *  @hw: pointer to the HW structure
751  *
752  *  Acquire access rights to the correct PHY.  This is a
753  *  function pointer entry point called by the api module.
754  **/
755 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
756 {
757 	u16 mask = E1000_SWFW_PHY0_SM;
758 
759 	if (hw->bus.func == E1000_FUNC_1)
760 		mask = E1000_SWFW_PHY1_SM;
761 	else if (hw->bus.func == E1000_FUNC_2)
762 		mask = E1000_SWFW_PHY2_SM;
763 	else if (hw->bus.func == E1000_FUNC_3)
764 		mask = E1000_SWFW_PHY3_SM;
765 
766 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
767 }
768 
769 /**
770  *  igb_release_phy_82575 - Release rights to access PHY
771  *  @hw: pointer to the HW structure
772  *
773  *  A wrapper to release access rights to the correct PHY.  This is a
774  *  function pointer entry point called by the api module.
775  **/
776 static void igb_release_phy_82575(struct e1000_hw *hw)
777 {
778 	u16 mask = E1000_SWFW_PHY0_SM;
779 
780 	if (hw->bus.func == E1000_FUNC_1)
781 		mask = E1000_SWFW_PHY1_SM;
782 	else if (hw->bus.func == E1000_FUNC_2)
783 		mask = E1000_SWFW_PHY2_SM;
784 	else if (hw->bus.func == E1000_FUNC_3)
785 		mask = E1000_SWFW_PHY3_SM;
786 
787 	hw->mac.ops.release_swfw_sync(hw, mask);
788 }
789 
790 /**
791  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
792  *  @hw: pointer to the HW structure
793  *  @offset: register offset to be read
794  *  @data: pointer to the read data
795  *
796  *  Reads the PHY register at offset using the serial gigabit media independent
797  *  interface and stores the retrieved information in data.
798  **/
799 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
800 					  u16 *data)
801 {
802 	s32 ret_val = -E1000_ERR_PARAM;
803 
804 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
805 		hw_dbg("PHY Address %u is out of range\n", offset);
806 		goto out;
807 	}
808 
809 	ret_val = hw->phy.ops.acquire(hw);
810 	if (ret_val)
811 		goto out;
812 
813 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
814 
815 	hw->phy.ops.release(hw);
816 
817 out:
818 	return ret_val;
819 }
820 
821 /**
822  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
823  *  @hw: pointer to the HW structure
824  *  @offset: register offset to write to
825  *  @data: data to write at register offset
826  *
827  *  Writes the data to PHY register at the offset using the serial gigabit
828  *  media independent interface.
829  **/
830 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
831 					   u16 data)
832 {
833 	s32 ret_val = -E1000_ERR_PARAM;
834 
835 
836 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
837 		hw_dbg("PHY Address %d is out of range\n", offset);
838 		goto out;
839 	}
840 
841 	ret_val = hw->phy.ops.acquire(hw);
842 	if (ret_val)
843 		goto out;
844 
845 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
846 
847 	hw->phy.ops.release(hw);
848 
849 out:
850 	return ret_val;
851 }
852 
853 /**
854  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
855  *  @hw: pointer to the HW structure
856  *
857  *  Retrieves the PHY address and ID for both PHY's which do and do not use
858  *  sgmi interface.
859  **/
860 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
861 {
862 	struct e1000_phy_info *phy = &hw->phy;
863 	s32  ret_val = 0;
864 	u16 phy_id;
865 	u32 ctrl_ext;
866 	u32 mdic;
867 
868 	/* Extra read required for some PHY's on i354 */
869 	if (hw->mac.type == e1000_i354)
870 		igb_get_phy_id(hw);
871 
872 	/* For SGMII PHYs, we try the list of possible addresses until
873 	 * we find one that works.  For non-SGMII PHYs
874 	 * (e.g. integrated copper PHYs), an address of 1 should
875 	 * work.  The result of this function should mean phy->phy_addr
876 	 * and phy->id are set correctly.
877 	 */
878 	if (!(igb_sgmii_active_82575(hw))) {
879 		phy->addr = 1;
880 		ret_val = igb_get_phy_id(hw);
881 		goto out;
882 	}
883 
884 	if (igb_sgmii_uses_mdio_82575(hw)) {
885 		switch (hw->mac.type) {
886 		case e1000_82575:
887 		case e1000_82576:
888 			mdic = rd32(E1000_MDIC);
889 			mdic &= E1000_MDIC_PHY_MASK;
890 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
891 			break;
892 		case e1000_82580:
893 		case e1000_i350:
894 		case e1000_i354:
895 		case e1000_i210:
896 		case e1000_i211:
897 			mdic = rd32(E1000_MDICNFG);
898 			mdic &= E1000_MDICNFG_PHY_MASK;
899 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
900 			break;
901 		default:
902 			ret_val = -E1000_ERR_PHY;
903 			goto out;
904 		}
905 		ret_val = igb_get_phy_id(hw);
906 		goto out;
907 	}
908 
909 	/* Power on sgmii phy if it is disabled */
910 	ctrl_ext = rd32(E1000_CTRL_EXT);
911 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
912 	wrfl();
913 	msleep(300);
914 
915 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
916 	 * Therefore, we need to test 1-7
917 	 */
918 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
919 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
920 		if (ret_val == 0) {
921 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
922 			       phy_id, phy->addr);
923 			/* At the time of this writing, The M88 part is
924 			 * the only supported SGMII PHY product.
925 			 */
926 			if (phy_id == M88_VENDOR)
927 				break;
928 		} else {
929 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
930 		}
931 	}
932 
933 	/* A valid PHY type couldn't be found. */
934 	if (phy->addr == 8) {
935 		phy->addr = 0;
936 		ret_val = -E1000_ERR_PHY;
937 		goto out;
938 	} else {
939 		ret_val = igb_get_phy_id(hw);
940 	}
941 
942 	/* restore previous sfp cage power state */
943 	wr32(E1000_CTRL_EXT, ctrl_ext);
944 
945 out:
946 	return ret_val;
947 }
948 
949 /**
950  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
951  *  @hw: pointer to the HW structure
952  *
953  *  Resets the PHY using the serial gigabit media independent interface.
954  **/
955 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
956 {
957 	struct e1000_phy_info *phy = &hw->phy;
958 	s32 ret_val;
959 
960 	/* This isn't a true "hard" reset, but is the only reset
961 	 * available to us at this time.
962 	 */
963 
964 	hw_dbg("Soft resetting SGMII attached PHY...\n");
965 
966 	/* SFP documentation requires the following to configure the SPF module
967 	 * to work on SGMII.  No further documentation is given.
968 	 */
969 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
970 	if (ret_val)
971 		goto out;
972 
973 	ret_val = igb_phy_sw_reset(hw);
974 	if (ret_val)
975 		goto out;
976 
977 	if (phy->id == M88E1512_E_PHY_ID)
978 		ret_val = igb_initialize_M88E1512_phy(hw);
979 	if (phy->id == M88E1543_E_PHY_ID)
980 		ret_val = igb_initialize_M88E1543_phy(hw);
981 out:
982 	return ret_val;
983 }
984 
985 /**
986  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
987  *  @hw: pointer to the HW structure
988  *  @active: true to enable LPLU, false to disable
989  *
990  *  Sets the LPLU D0 state according to the active flag.  When
991  *  activating LPLU this function also disables smart speed
992  *  and vice versa.  LPLU will not be activated unless the
993  *  device autonegotiation advertisement meets standards of
994  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
995  *  This is a function pointer entry point only called by
996  *  PHY setup routines.
997  **/
998 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
999 {
1000 	struct e1000_phy_info *phy = &hw->phy;
1001 	s32 ret_val;
1002 	u16 data;
1003 
1004 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1005 	if (ret_val)
1006 		goto out;
1007 
1008 	if (active) {
1009 		data |= IGP02E1000_PM_D0_LPLU;
1010 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1011 						 data);
1012 		if (ret_val)
1013 			goto out;
1014 
1015 		/* When LPLU is enabled, we should disable SmartSpeed */
1016 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1017 						&data);
1018 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1019 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1020 						 data);
1021 		if (ret_val)
1022 			goto out;
1023 	} else {
1024 		data &= ~IGP02E1000_PM_D0_LPLU;
1025 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1026 						 data);
1027 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1028 		 * during Dx states where the power conservation is most
1029 		 * important.  During driver activity we should enable
1030 		 * SmartSpeed, so performance is maintained.
1031 		 */
1032 		if (phy->smart_speed == e1000_smart_speed_on) {
1033 			ret_val = phy->ops.read_reg(hw,
1034 					IGP01E1000_PHY_PORT_CONFIG, &data);
1035 			if (ret_val)
1036 				goto out;
1037 
1038 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1039 			ret_val = phy->ops.write_reg(hw,
1040 					IGP01E1000_PHY_PORT_CONFIG, data);
1041 			if (ret_val)
1042 				goto out;
1043 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1044 			ret_val = phy->ops.read_reg(hw,
1045 					IGP01E1000_PHY_PORT_CONFIG, &data);
1046 			if (ret_val)
1047 				goto out;
1048 
1049 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1050 			ret_val = phy->ops.write_reg(hw,
1051 					IGP01E1000_PHY_PORT_CONFIG, data);
1052 			if (ret_val)
1053 				goto out;
1054 		}
1055 	}
1056 
1057 out:
1058 	return ret_val;
1059 }
1060 
1061 /**
1062  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1063  *  @hw: pointer to the HW structure
1064  *  @active: true to enable LPLU, false to disable
1065  *
1066  *  Sets the LPLU D0 state according to the active flag.  When
1067  *  activating LPLU this function also disables smart speed
1068  *  and vice versa.  LPLU will not be activated unless the
1069  *  device autonegotiation advertisement meets standards of
1070  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1071  *  This is a function pointer entry point only called by
1072  *  PHY setup routines.
1073  **/
1074 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1075 {
1076 	struct e1000_phy_info *phy = &hw->phy;
1077 	u16 data;
1078 
1079 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1080 
1081 	if (active) {
1082 		data |= E1000_82580_PM_D0_LPLU;
1083 
1084 		/* When LPLU is enabled, we should disable SmartSpeed */
1085 		data &= ~E1000_82580_PM_SPD;
1086 	} else {
1087 		data &= ~E1000_82580_PM_D0_LPLU;
1088 
1089 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090 		 * during Dx states where the power conservation is most
1091 		 * important.  During driver activity we should enable
1092 		 * SmartSpeed, so performance is maintained.
1093 		 */
1094 		if (phy->smart_speed == e1000_smart_speed_on)
1095 			data |= E1000_82580_PM_SPD;
1096 		else if (phy->smart_speed == e1000_smart_speed_off)
1097 			data &= ~E1000_82580_PM_SPD; }
1098 
1099 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1100 	return 0;
1101 }
1102 
1103 /**
1104  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1105  *  @hw: pointer to the HW structure
1106  *  @active: boolean used to enable/disable lplu
1107  *
1108  *  Success returns 0, Failure returns 1
1109  *
1110  *  The low power link up (lplu) state is set to the power management level D3
1111  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1112  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1113  *  is used during Dx states where the power conservation is most important.
1114  *  During driver activity, SmartSpeed should be enabled so performance is
1115  *  maintained.
1116  **/
1117 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1118 {
1119 	struct e1000_phy_info *phy = &hw->phy;
1120 	u16 data;
1121 
1122 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1123 
1124 	if (!active) {
1125 		data &= ~E1000_82580_PM_D3_LPLU;
1126 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1127 		 * during Dx states where the power conservation is most
1128 		 * important.  During driver activity we should enable
1129 		 * SmartSpeed, so performance is maintained.
1130 		 */
1131 		if (phy->smart_speed == e1000_smart_speed_on)
1132 			data |= E1000_82580_PM_SPD;
1133 		else if (phy->smart_speed == e1000_smart_speed_off)
1134 			data &= ~E1000_82580_PM_SPD;
1135 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1136 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1137 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1138 		data |= E1000_82580_PM_D3_LPLU;
1139 		/* When LPLU is enabled, we should disable SmartSpeed */
1140 		data &= ~E1000_82580_PM_SPD;
1141 	}
1142 
1143 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1144 	return 0;
1145 }
1146 
1147 /**
1148  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1149  *  @hw: pointer to the HW structure
1150  *
1151  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1152  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1153  *  Return successful if access grant bit set, else clear the request for
1154  *  EEPROM access and return -E1000_ERR_NVM (-1).
1155  **/
1156 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1157 {
1158 	s32 ret_val;
1159 
1160 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1161 	if (ret_val)
1162 		goto out;
1163 
1164 	ret_val = igb_acquire_nvm(hw);
1165 
1166 	if (ret_val)
1167 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168 
1169 out:
1170 	return ret_val;
1171 }
1172 
1173 /**
1174  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1175  *  @hw: pointer to the HW structure
1176  *
1177  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1178  *  then release the semaphores acquired.
1179  **/
1180 static void igb_release_nvm_82575(struct e1000_hw *hw)
1181 {
1182 	igb_release_nvm(hw);
1183 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1184 }
1185 
1186 /**
1187  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1188  *  @hw: pointer to the HW structure
1189  *  @mask: specifies which semaphore to acquire
1190  *
1191  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1192  *  will also specify which port we're acquiring the lock for.
1193  **/
1194 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1195 {
1196 	u32 swfw_sync;
1197 	u32 swmask = mask;
1198 	u32 fwmask = mask << 16;
1199 	s32 ret_val = 0;
1200 	s32 i = 0, timeout = 200;
1201 
1202 	while (i < timeout) {
1203 		if (igb_get_hw_semaphore(hw)) {
1204 			ret_val = -E1000_ERR_SWFW_SYNC;
1205 			goto out;
1206 		}
1207 
1208 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1209 		if (!(swfw_sync & (fwmask | swmask)))
1210 			break;
1211 
1212 		/* Firmware currently using resource (fwmask)
1213 		 * or other software thread using resource (swmask)
1214 		 */
1215 		igb_put_hw_semaphore(hw);
1216 		mdelay(5);
1217 		i++;
1218 	}
1219 
1220 	if (i == timeout) {
1221 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1222 		ret_val = -E1000_ERR_SWFW_SYNC;
1223 		goto out;
1224 	}
1225 
1226 	swfw_sync |= swmask;
1227 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1228 
1229 	igb_put_hw_semaphore(hw);
1230 
1231 out:
1232 	return ret_val;
1233 }
1234 
1235 /**
1236  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1237  *  @hw: pointer to the HW structure
1238  *  @mask: specifies which semaphore to acquire
1239  *
1240  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1241  *  will also specify which port we're releasing the lock for.
1242  **/
1243 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1244 {
1245 	u32 swfw_sync;
1246 
1247 	while (igb_get_hw_semaphore(hw) != 0)
1248 		; /* Empty */
1249 
1250 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1251 	swfw_sync &= ~mask;
1252 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1253 
1254 	igb_put_hw_semaphore(hw);
1255 }
1256 
1257 /**
1258  *  igb_get_cfg_done_82575 - Read config done bit
1259  *  @hw: pointer to the HW structure
1260  *
1261  *  Read the management control register for the config done bit for
1262  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1263  *  to read the config done bit, so an error is *ONLY* logged and returns
1264  *  0.  If we were to return with error, EEPROM-less silicon
1265  *  would not be able to be reset or change link.
1266  **/
1267 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1268 {
1269 	s32 timeout = PHY_CFG_TIMEOUT;
1270 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1271 
1272 	if (hw->bus.func == 1)
1273 		mask = E1000_NVM_CFG_DONE_PORT_1;
1274 	else if (hw->bus.func == E1000_FUNC_2)
1275 		mask = E1000_NVM_CFG_DONE_PORT_2;
1276 	else if (hw->bus.func == E1000_FUNC_3)
1277 		mask = E1000_NVM_CFG_DONE_PORT_3;
1278 
1279 	while (timeout) {
1280 		if (rd32(E1000_EEMNGCTL) & mask)
1281 			break;
1282 		usleep_range(1000, 2000);
1283 		timeout--;
1284 	}
1285 	if (!timeout)
1286 		hw_dbg("MNG configuration cycle has not completed.\n");
1287 
1288 	/* If EEPROM is not marked present, init the PHY manually */
1289 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1290 	    (hw->phy.type == e1000_phy_igp_3))
1291 		igb_phy_init_script_igp3(hw);
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1298  *  @hw: pointer to the HW structure
1299  *  @speed: stores the current speed
1300  *  @duplex: stores the current duplex
1301  *
1302  *  This is a wrapper function, if using the serial gigabit media independent
1303  *  interface, use PCS to retrieve the link speed and duplex information.
1304  *  Otherwise, use the generic function to get the link speed and duplex info.
1305  **/
1306 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1307 					u16 *duplex)
1308 {
1309 	s32 ret_val;
1310 
1311 	if (hw->phy.media_type != e1000_media_type_copper)
1312 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1313 							       duplex);
1314 	else
1315 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1316 								    duplex);
1317 
1318 	return ret_val;
1319 }
1320 
1321 /**
1322  *  igb_check_for_link_82575 - Check for link
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1326  *  use the generic interface for determining link.
1327  **/
1328 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1329 {
1330 	s32 ret_val;
1331 	u16 speed, duplex;
1332 
1333 	if (hw->phy.media_type != e1000_media_type_copper) {
1334 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1335 							     &duplex);
1336 		/* Use this flag to determine if link needs to be checked or
1337 		 * not.  If  we have link clear the flag so that we do not
1338 		 * continue to check for link.
1339 		 */
1340 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1341 
1342 		/* Configure Flow Control now that Auto-Neg has completed.
1343 		 * First, we need to restore the desired flow control
1344 		 * settings because we may have had to re-autoneg with a
1345 		 * different link partner.
1346 		 */
1347 		ret_val = igb_config_fc_after_link_up(hw);
1348 		if (ret_val)
1349 			hw_dbg("Error configuring flow control\n");
1350 	} else {
1351 		ret_val = igb_check_for_copper_link(hw);
1352 	}
1353 
1354 	return ret_val;
1355 }
1356 
1357 /**
1358  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1359  *  @hw: pointer to the HW structure
1360  **/
1361 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1362 {
1363 	u32 reg;
1364 
1365 
1366 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1367 	    !igb_sgmii_active_82575(hw))
1368 		return;
1369 
1370 	/* Enable PCS to turn on link */
1371 	reg = rd32(E1000_PCS_CFG0);
1372 	reg |= E1000_PCS_CFG_PCS_EN;
1373 	wr32(E1000_PCS_CFG0, reg);
1374 
1375 	/* Power up the laser */
1376 	reg = rd32(E1000_CTRL_EXT);
1377 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1378 	wr32(E1000_CTRL_EXT, reg);
1379 
1380 	/* flush the write to verify completion */
1381 	wrfl();
1382 	usleep_range(1000, 2000);
1383 }
1384 
1385 /**
1386  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1387  *  @hw: pointer to the HW structure
1388  *  @speed: stores the current speed
1389  *  @duplex: stores the current duplex
1390  *
1391  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1392  *  duplex, then store the values in the pointers provided.
1393  **/
1394 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1395 						u16 *duplex)
1396 {
1397 	struct e1000_mac_info *mac = &hw->mac;
1398 	u32 pcs, status;
1399 
1400 	/* Set up defaults for the return values of this function */
1401 	mac->serdes_has_link = false;
1402 	*speed = 0;
1403 	*duplex = 0;
1404 
1405 	/* Read the PCS Status register for link state. For non-copper mode,
1406 	 * the status register is not accurate. The PCS status register is
1407 	 * used instead.
1408 	 */
1409 	pcs = rd32(E1000_PCS_LSTAT);
1410 
1411 	/* The link up bit determines when link is up on autoneg. The sync ok
1412 	 * gets set once both sides sync up and agree upon link. Stable link
1413 	 * can be determined by checking for both link up and link sync ok
1414 	 */
1415 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1416 		mac->serdes_has_link = true;
1417 
1418 		/* Detect and store PCS speed */
1419 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1420 			*speed = SPEED_1000;
1421 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1422 			*speed = SPEED_100;
1423 		else
1424 			*speed = SPEED_10;
1425 
1426 		/* Detect and store PCS duplex */
1427 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1428 			*duplex = FULL_DUPLEX;
1429 		else
1430 			*duplex = HALF_DUPLEX;
1431 
1432 	/* Check if it is an I354 2.5Gb backplane connection. */
1433 		if (mac->type == e1000_i354) {
1434 			status = rd32(E1000_STATUS);
1435 			if ((status & E1000_STATUS_2P5_SKU) &&
1436 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1437 				*speed = SPEED_2500;
1438 				*duplex = FULL_DUPLEX;
1439 				hw_dbg("2500 Mbs, ");
1440 				hw_dbg("Full Duplex\n");
1441 			}
1442 		}
1443 
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1454  *  when management pass thru is not enabled.
1455  **/
1456 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1457 {
1458 	u32 reg;
1459 
1460 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1461 	    igb_sgmii_active_82575(hw))
1462 		return;
1463 
1464 	if (!igb_enable_mng_pass_thru(hw)) {
1465 		/* Disable PCS to turn off link */
1466 		reg = rd32(E1000_PCS_CFG0);
1467 		reg &= ~E1000_PCS_CFG_PCS_EN;
1468 		wr32(E1000_PCS_CFG0, reg);
1469 
1470 		/* shutdown the laser */
1471 		reg = rd32(E1000_CTRL_EXT);
1472 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1473 		wr32(E1000_CTRL_EXT, reg);
1474 
1475 		/* flush the write to verify completion */
1476 		wrfl();
1477 		usleep_range(1000, 2000);
1478 	}
1479 }
1480 
1481 /**
1482  *  igb_reset_hw_82575 - Reset hardware
1483  *  @hw: pointer to the HW structure
1484  *
1485  *  This resets the hardware into a known state.  This is a
1486  *  function pointer entry point called by the api module.
1487  **/
1488 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1489 {
1490 	u32 ctrl;
1491 	s32 ret_val;
1492 
1493 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1494 	 * on the last TLP read/write transaction when MAC is reset.
1495 	 */
1496 	ret_val = igb_disable_pcie_master(hw);
1497 	if (ret_val)
1498 		hw_dbg("PCI-E Master disable polling has failed.\n");
1499 
1500 	/* set the completion timeout for interface */
1501 	ret_val = igb_set_pcie_completion_timeout(hw);
1502 	if (ret_val)
1503 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1504 
1505 	hw_dbg("Masking off all interrupts\n");
1506 	wr32(E1000_IMC, 0xffffffff);
1507 
1508 	wr32(E1000_RCTL, 0);
1509 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1510 	wrfl();
1511 
1512 	usleep_range(10000, 20000);
1513 
1514 	ctrl = rd32(E1000_CTRL);
1515 
1516 	hw_dbg("Issuing a global reset to MAC\n");
1517 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1518 
1519 	ret_val = igb_get_auto_rd_done(hw);
1520 	if (ret_val) {
1521 		/* When auto config read does not complete, do not
1522 		 * return with an error. This can happen in situations
1523 		 * where there is no eeprom and prevents getting link.
1524 		 */
1525 		hw_dbg("Auto Read Done did not complete\n");
1526 	}
1527 
1528 	/* If EEPROM is not present, run manual init scripts */
1529 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1530 		igb_reset_init_script_82575(hw);
1531 
1532 	/* Clear any pending interrupt events. */
1533 	wr32(E1000_IMC, 0xffffffff);
1534 	rd32(E1000_ICR);
1535 
1536 	/* Install any alternate MAC address into RAR0 */
1537 	ret_val = igb_check_alt_mac_addr(hw);
1538 
1539 	return ret_val;
1540 }
1541 
1542 /**
1543  *  igb_init_hw_82575 - Initialize hardware
1544  *  @hw: pointer to the HW structure
1545  *
1546  *  This inits the hardware readying it for operation.
1547  **/
1548 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1549 {
1550 	struct e1000_mac_info *mac = &hw->mac;
1551 	s32 ret_val;
1552 	u16 i, rar_count = mac->rar_entry_count;
1553 
1554 	if ((hw->mac.type >= e1000_i210) &&
1555 	    !(igb_get_flash_presence_i210(hw))) {
1556 		ret_val = igb_pll_workaround_i210(hw);
1557 		if (ret_val)
1558 			return ret_val;
1559 	}
1560 
1561 	/* Initialize identification LED */
1562 	ret_val = igb_id_led_init(hw);
1563 	if (ret_val) {
1564 		hw_dbg("Error initializing identification LED\n");
1565 		/* This is not fatal and we should not stop init due to this */
1566 	}
1567 
1568 	/* Disabling VLAN filtering */
1569 	hw_dbg("Initializing the IEEE VLAN\n");
1570 	igb_clear_vfta(hw);
1571 
1572 	/* Setup the receive address */
1573 	igb_init_rx_addrs(hw, rar_count);
1574 
1575 	/* Zero out the Multicast HASH table */
1576 	hw_dbg("Zeroing the MTA\n");
1577 	for (i = 0; i < mac->mta_reg_count; i++)
1578 		array_wr32(E1000_MTA, i, 0);
1579 
1580 	/* Zero out the Unicast HASH table */
1581 	hw_dbg("Zeroing the UTA\n");
1582 	for (i = 0; i < mac->uta_reg_count; i++)
1583 		array_wr32(E1000_UTA, i, 0);
1584 
1585 	/* Setup link and flow control */
1586 	ret_val = igb_setup_link(hw);
1587 
1588 	/* Clear all of the statistics registers (clear on read).  It is
1589 	 * important that we do this after we have tried to establish link
1590 	 * because the symbol error count will increment wildly if there
1591 	 * is no link.
1592 	 */
1593 	igb_clear_hw_cntrs_82575(hw);
1594 	return ret_val;
1595 }
1596 
1597 /**
1598  *  igb_setup_copper_link_82575 - Configure copper link settings
1599  *  @hw: pointer to the HW structure
1600  *
1601  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1602  *  for link, once link is established calls to configure collision distance
1603  *  and flow control are called.
1604  **/
1605 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1606 {
1607 	u32 ctrl;
1608 	s32  ret_val;
1609 	u32 phpm_reg;
1610 
1611 	ctrl = rd32(E1000_CTRL);
1612 	ctrl |= E1000_CTRL_SLU;
1613 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1614 	wr32(E1000_CTRL, ctrl);
1615 
1616 	/* Clear Go Link Disconnect bit on supported devices */
1617 	switch (hw->mac.type) {
1618 	case e1000_82580:
1619 	case e1000_i350:
1620 	case e1000_i210:
1621 	case e1000_i211:
1622 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1623 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1624 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1625 		break;
1626 	default:
1627 		break;
1628 	}
1629 
1630 	ret_val = igb_setup_serdes_link_82575(hw);
1631 	if (ret_val)
1632 		goto out;
1633 
1634 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1635 		/* allow time for SFP cage time to power up phy */
1636 		msleep(300);
1637 
1638 		ret_val = hw->phy.ops.reset(hw);
1639 		if (ret_val) {
1640 			hw_dbg("Error resetting the PHY.\n");
1641 			goto out;
1642 		}
1643 	}
1644 	switch (hw->phy.type) {
1645 	case e1000_phy_i210:
1646 	case e1000_phy_m88:
1647 		switch (hw->phy.id) {
1648 		case I347AT4_E_PHY_ID:
1649 		case M88E1112_E_PHY_ID:
1650 		case M88E1543_E_PHY_ID:
1651 		case M88E1512_E_PHY_ID:
1652 		case I210_I_PHY_ID:
1653 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1654 			break;
1655 		default:
1656 			ret_val = igb_copper_link_setup_m88(hw);
1657 			break;
1658 		}
1659 		break;
1660 	case e1000_phy_igp_3:
1661 		ret_val = igb_copper_link_setup_igp(hw);
1662 		break;
1663 	case e1000_phy_82580:
1664 		ret_val = igb_copper_link_setup_82580(hw);
1665 		break;
1666 	case e1000_phy_bcm54616:
1667 		ret_val = 0;
1668 		break;
1669 	default:
1670 		ret_val = -E1000_ERR_PHY;
1671 		break;
1672 	}
1673 
1674 	if (ret_val)
1675 		goto out;
1676 
1677 	ret_val = igb_setup_copper_link(hw);
1678 out:
1679 	return ret_val;
1680 }
1681 
1682 /**
1683  *  igb_setup_serdes_link_82575 - Setup link for serdes
1684  *  @hw: pointer to the HW structure
1685  *
1686  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1687  *  used on copper connections where the serialized gigabit media independent
1688  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1689  *  for auto-negotiation or forces speed/duplex.
1690  **/
1691 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1692 {
1693 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1694 	bool pcs_autoneg;
1695 	s32 ret_val = 0;
1696 	u16 data;
1697 
1698 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1699 	    !igb_sgmii_active_82575(hw))
1700 		return ret_val;
1701 
1702 
1703 	/* On the 82575, SerDes loopback mode persists until it is
1704 	 * explicitly turned off or a power cycle is performed.  A read to
1705 	 * the register does not indicate its status.  Therefore, we ensure
1706 	 * loopback mode is disabled during initialization.
1707 	 */
1708 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1709 
1710 	/* power on the sfp cage if present and turn on I2C */
1711 	ctrl_ext = rd32(E1000_CTRL_EXT);
1712 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1713 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1714 	wr32(E1000_CTRL_EXT, ctrl_ext);
1715 
1716 	ctrl_reg = rd32(E1000_CTRL);
1717 	ctrl_reg |= E1000_CTRL_SLU;
1718 
1719 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1720 		/* set both sw defined pins */
1721 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1722 
1723 		/* Set switch control to serdes energy detect */
1724 		reg = rd32(E1000_CONNSW);
1725 		reg |= E1000_CONNSW_ENRGSRC;
1726 		wr32(E1000_CONNSW, reg);
1727 	}
1728 
1729 	reg = rd32(E1000_PCS_LCTL);
1730 
1731 	/* default pcs_autoneg to the same setting as mac autoneg */
1732 	pcs_autoneg = hw->mac.autoneg;
1733 
1734 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1735 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1736 		/* sgmii mode lets the phy handle forcing speed/duplex */
1737 		pcs_autoneg = true;
1738 		/* autoneg time out should be disabled for SGMII mode */
1739 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1740 		break;
1741 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1742 		/* disable PCS autoneg and support parallel detect only */
1743 		pcs_autoneg = false;
1744 	default:
1745 		if (hw->mac.type == e1000_82575 ||
1746 		    hw->mac.type == e1000_82576) {
1747 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1748 			if (ret_val) {
1749 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1750 				return ret_val;
1751 			}
1752 
1753 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1754 				pcs_autoneg = false;
1755 		}
1756 
1757 		/* non-SGMII modes only supports a speed of 1000/Full for the
1758 		 * link so it is best to just force the MAC and let the pcs
1759 		 * link either autoneg or be forced to 1000/Full
1760 		 */
1761 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1762 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1763 
1764 		/* set speed of 1000/Full if speed/duplex is forced */
1765 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1766 		break;
1767 	}
1768 
1769 	wr32(E1000_CTRL, ctrl_reg);
1770 
1771 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1772 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1773 	 * mode that will be compatible with older link partners and switches.
1774 	 * However, both are supported by the hardware and some drivers/tools.
1775 	 */
1776 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1777 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1778 
1779 	if (pcs_autoneg) {
1780 		/* Set PCS register for autoneg */
1781 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1782 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1783 
1784 		/* Disable force flow control for autoneg */
1785 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1786 
1787 		/* Configure flow control advertisement for autoneg */
1788 		anadv_reg = rd32(E1000_PCS_ANADV);
1789 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1790 		switch (hw->fc.requested_mode) {
1791 		case e1000_fc_full:
1792 		case e1000_fc_rx_pause:
1793 			anadv_reg |= E1000_TXCW_ASM_DIR;
1794 			anadv_reg |= E1000_TXCW_PAUSE;
1795 			break;
1796 		case e1000_fc_tx_pause:
1797 			anadv_reg |= E1000_TXCW_ASM_DIR;
1798 			break;
1799 		default:
1800 			break;
1801 		}
1802 		wr32(E1000_PCS_ANADV, anadv_reg);
1803 
1804 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1805 	} else {
1806 		/* Set PCS register for forced link */
1807 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1808 
1809 		/* Force flow control for forced link */
1810 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1811 
1812 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1813 	}
1814 
1815 	wr32(E1000_PCS_LCTL, reg);
1816 
1817 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1818 		igb_force_mac_fc(hw);
1819 
1820 	return ret_val;
1821 }
1822 
1823 /**
1824  *  igb_sgmii_active_82575 - Return sgmii state
1825  *  @hw: pointer to the HW structure
1826  *
1827  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1828  *  which can be enabled for use in the embedded applications.  Simply
1829  *  return the current state of the sgmii interface.
1830  **/
1831 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1832 {
1833 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1834 	return dev_spec->sgmii_active;
1835 }
1836 
1837 /**
1838  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1839  *  @hw: pointer to the HW structure
1840  *
1841  *  Inits recommended HW defaults after a reset when there is no EEPROM
1842  *  detected. This is only for the 82575.
1843  **/
1844 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1845 {
1846 	if (hw->mac.type == e1000_82575) {
1847 		hw_dbg("Running reset init script for 82575\n");
1848 		/* SerDes configuration via SERDESCTRL */
1849 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1850 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1851 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1852 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1853 
1854 		/* CCM configuration via CCMCTL register */
1855 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1856 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1857 
1858 		/* PCIe lanes configuration */
1859 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1860 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1861 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1862 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1863 
1864 		/* PCIe PLL Configuration */
1865 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1866 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1867 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 /**
1874  *  igb_read_mac_addr_82575 - Read device MAC address
1875  *  @hw: pointer to the HW structure
1876  **/
1877 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1878 {
1879 	s32 ret_val = 0;
1880 
1881 	/* If there's an alternate MAC address place it in RAR0
1882 	 * so that it will override the Si installed default perm
1883 	 * address.
1884 	 */
1885 	ret_val = igb_check_alt_mac_addr(hw);
1886 	if (ret_val)
1887 		goto out;
1888 
1889 	ret_val = igb_read_mac_addr(hw);
1890 
1891 out:
1892 	return ret_val;
1893 }
1894 
1895 /**
1896  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1897  * @hw: pointer to the HW structure
1898  *
1899  * In the case of a PHY power down to save power, or to turn off link during a
1900  * driver unload, or wake on lan is not enabled, remove the link.
1901  **/
1902 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1903 {
1904 	/* If the management interface is not enabled, then power down */
1905 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1906 		igb_power_down_phy_copper(hw);
1907 }
1908 
1909 /**
1910  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1911  *  @hw: pointer to the HW structure
1912  *
1913  *  Clears the hardware counters by reading the counter registers.
1914  **/
1915 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1916 {
1917 	igb_clear_hw_cntrs_base(hw);
1918 
1919 	rd32(E1000_PRC64);
1920 	rd32(E1000_PRC127);
1921 	rd32(E1000_PRC255);
1922 	rd32(E1000_PRC511);
1923 	rd32(E1000_PRC1023);
1924 	rd32(E1000_PRC1522);
1925 	rd32(E1000_PTC64);
1926 	rd32(E1000_PTC127);
1927 	rd32(E1000_PTC255);
1928 	rd32(E1000_PTC511);
1929 	rd32(E1000_PTC1023);
1930 	rd32(E1000_PTC1522);
1931 
1932 	rd32(E1000_ALGNERRC);
1933 	rd32(E1000_RXERRC);
1934 	rd32(E1000_TNCRS);
1935 	rd32(E1000_CEXTERR);
1936 	rd32(E1000_TSCTC);
1937 	rd32(E1000_TSCTFC);
1938 
1939 	rd32(E1000_MGTPRC);
1940 	rd32(E1000_MGTPDC);
1941 	rd32(E1000_MGTPTC);
1942 
1943 	rd32(E1000_IAC);
1944 	rd32(E1000_ICRXOC);
1945 
1946 	rd32(E1000_ICRXPTC);
1947 	rd32(E1000_ICRXATC);
1948 	rd32(E1000_ICTXPTC);
1949 	rd32(E1000_ICTXATC);
1950 	rd32(E1000_ICTXQEC);
1951 	rd32(E1000_ICTXQMTC);
1952 	rd32(E1000_ICRXDMTC);
1953 
1954 	rd32(E1000_CBTMPC);
1955 	rd32(E1000_HTDPMC);
1956 	rd32(E1000_CBRMPC);
1957 	rd32(E1000_RPTHC);
1958 	rd32(E1000_HGPTC);
1959 	rd32(E1000_HTCBDPC);
1960 	rd32(E1000_HGORCL);
1961 	rd32(E1000_HGORCH);
1962 	rd32(E1000_HGOTCL);
1963 	rd32(E1000_HGOTCH);
1964 	rd32(E1000_LENERRS);
1965 
1966 	/* This register should not be read in copper configurations */
1967 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1968 	    igb_sgmii_active_82575(hw))
1969 		rd32(E1000_SCVPC);
1970 }
1971 
1972 /**
1973  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1974  *  @hw: pointer to the HW structure
1975  *
1976  *  After rx enable if manageability is enabled then there is likely some
1977  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1978  *  function clears the fifos and flushes any packets that came in as rx was
1979  *  being enabled.
1980  **/
1981 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1982 {
1983 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1984 	int i, ms_wait;
1985 
1986 	/* disable IPv6 options as per hardware errata */
1987 	rfctl = rd32(E1000_RFCTL);
1988 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1989 	wr32(E1000_RFCTL, rfctl);
1990 
1991 	if (hw->mac.type != e1000_82575 ||
1992 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1993 		return;
1994 
1995 	/* Disable all RX queues */
1996 	for (i = 0; i < 4; i++) {
1997 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1998 		wr32(E1000_RXDCTL(i),
1999 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
2000 	}
2001 	/* Poll all queues to verify they have shut down */
2002 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2003 		usleep_range(1000, 2000);
2004 		rx_enabled = 0;
2005 		for (i = 0; i < 4; i++)
2006 			rx_enabled |= rd32(E1000_RXDCTL(i));
2007 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2008 			break;
2009 	}
2010 
2011 	if (ms_wait == 10)
2012 		hw_dbg("Queue disable timed out after 10ms\n");
2013 
2014 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2015 	 * incoming packets are rejected.  Set enable and wait 2ms so that
2016 	 * any packet that was coming in as RCTL.EN was set is flushed
2017 	 */
2018 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2019 
2020 	rlpml = rd32(E1000_RLPML);
2021 	wr32(E1000_RLPML, 0);
2022 
2023 	rctl = rd32(E1000_RCTL);
2024 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2025 	temp_rctl |= E1000_RCTL_LPE;
2026 
2027 	wr32(E1000_RCTL, temp_rctl);
2028 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2029 	wrfl();
2030 	usleep_range(2000, 3000);
2031 
2032 	/* Enable RX queues that were previously enabled and restore our
2033 	 * previous state
2034 	 */
2035 	for (i = 0; i < 4; i++)
2036 		wr32(E1000_RXDCTL(i), rxdctl[i]);
2037 	wr32(E1000_RCTL, rctl);
2038 	wrfl();
2039 
2040 	wr32(E1000_RLPML, rlpml);
2041 	wr32(E1000_RFCTL, rfctl);
2042 
2043 	/* Flush receive errors generated by workaround */
2044 	rd32(E1000_ROC);
2045 	rd32(E1000_RNBC);
2046 	rd32(E1000_MPC);
2047 }
2048 
2049 /**
2050  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2051  *  @hw: pointer to the HW structure
2052  *
2053  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2054  *  however the hardware default for these parts is 500us to 1ms which is less
2055  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2056  *  increase the value to either 10ms to 200ms for capability version 1 config,
2057  *  or 16ms to 55ms for version 2.
2058  **/
2059 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2060 {
2061 	u32 gcr = rd32(E1000_GCR);
2062 	s32 ret_val = 0;
2063 	u16 pcie_devctl2;
2064 
2065 	/* only take action if timeout value is defaulted to 0 */
2066 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2067 		goto out;
2068 
2069 	/* if capabilities version is type 1 we can write the
2070 	 * timeout of 10ms to 200ms through the GCR register
2071 	 */
2072 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2073 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2074 		goto out;
2075 	}
2076 
2077 	/* for version 2 capabilities we need to write the config space
2078 	 * directly in order to set the completion timeout value for
2079 	 * 16ms to 55ms
2080 	 */
2081 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2082 					&pcie_devctl2);
2083 	if (ret_val)
2084 		goto out;
2085 
2086 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2087 
2088 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2089 					 &pcie_devctl2);
2090 out:
2091 	/* disable completion timeout resend */
2092 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2093 
2094 	wr32(E1000_GCR, gcr);
2095 	return ret_val;
2096 }
2097 
2098 /**
2099  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2100  *  @hw: pointer to the hardware struct
2101  *  @enable: state to enter, either enabled or disabled
2102  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2103  *
2104  *  enables/disables L2 switch anti-spoofing functionality.
2105  **/
2106 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2107 {
2108 	u32 reg_val, reg_offset;
2109 
2110 	switch (hw->mac.type) {
2111 	case e1000_82576:
2112 		reg_offset = E1000_DTXSWC;
2113 		break;
2114 	case e1000_i350:
2115 	case e1000_i354:
2116 		reg_offset = E1000_TXSWC;
2117 		break;
2118 	default:
2119 		return;
2120 	}
2121 
2122 	reg_val = rd32(reg_offset);
2123 	if (enable) {
2124 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2125 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2126 		/* The PF can spoof - it has to in order to
2127 		 * support emulation mode NICs
2128 		 */
2129 		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2130 	} else {
2131 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2132 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2133 	}
2134 	wr32(reg_offset, reg_val);
2135 }
2136 
2137 /**
2138  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2139  *  @hw: pointer to the hardware struct
2140  *  @enable: state to enter, either enabled or disabled
2141  *
2142  *  enables/disables L2 switch loopback functionality.
2143  **/
2144 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2145 {
2146 	u32 dtxswc;
2147 
2148 	switch (hw->mac.type) {
2149 	case e1000_82576:
2150 		dtxswc = rd32(E1000_DTXSWC);
2151 		if (enable)
2152 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2153 		else
2154 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2155 		wr32(E1000_DTXSWC, dtxswc);
2156 		break;
2157 	case e1000_i354:
2158 	case e1000_i350:
2159 		dtxswc = rd32(E1000_TXSWC);
2160 		if (enable)
2161 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2162 		else
2163 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2164 		wr32(E1000_TXSWC, dtxswc);
2165 		break;
2166 	default:
2167 		/* Currently no other hardware supports loopback */
2168 		break;
2169 	}
2170 
2171 }
2172 
2173 /**
2174  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2175  *  @hw: pointer to the hardware struct
2176  *  @enable: state to enter, either enabled or disabled
2177  *
2178  *  enables/disables replication of packets across multiple pools.
2179  **/
2180 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2181 {
2182 	u32 vt_ctl = rd32(E1000_VT_CTL);
2183 
2184 	if (enable)
2185 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2186 	else
2187 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2188 
2189 	wr32(E1000_VT_CTL, vt_ctl);
2190 }
2191 
2192 /**
2193  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2194  *  @hw: pointer to the HW structure
2195  *  @offset: register offset to be read
2196  *  @data: pointer to the read data
2197  *
2198  *  Reads the MDI control register in the PHY at offset and stores the
2199  *  information read to data.
2200  **/
2201 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2202 {
2203 	s32 ret_val;
2204 
2205 	ret_val = hw->phy.ops.acquire(hw);
2206 	if (ret_val)
2207 		goto out;
2208 
2209 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2210 
2211 	hw->phy.ops.release(hw);
2212 
2213 out:
2214 	return ret_val;
2215 }
2216 
2217 /**
2218  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2219  *  @hw: pointer to the HW structure
2220  *  @offset: register offset to write to
2221  *  @data: data to write to register at offset
2222  *
2223  *  Writes data to MDI control register in the PHY at offset.
2224  **/
2225 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2226 {
2227 	s32 ret_val;
2228 
2229 
2230 	ret_val = hw->phy.ops.acquire(hw);
2231 	if (ret_val)
2232 		goto out;
2233 
2234 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2235 
2236 	hw->phy.ops.release(hw);
2237 
2238 out:
2239 	return ret_val;
2240 }
2241 
2242 /**
2243  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2244  *  @hw: pointer to the HW structure
2245  *
2246  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2247  *  the values found in the EEPROM.  This addresses an issue in which these
2248  *  bits are not restored from EEPROM after reset.
2249  **/
2250 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2251 {
2252 	s32 ret_val = 0;
2253 	u32 mdicnfg;
2254 	u16 nvm_data = 0;
2255 
2256 	if (hw->mac.type != e1000_82580)
2257 		goto out;
2258 	if (!igb_sgmii_active_82575(hw))
2259 		goto out;
2260 
2261 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2262 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2263 				   &nvm_data);
2264 	if (ret_val) {
2265 		hw_dbg("NVM Read Error\n");
2266 		goto out;
2267 	}
2268 
2269 	mdicnfg = rd32(E1000_MDICNFG);
2270 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2271 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2272 	if (nvm_data & NVM_WORD24_COM_MDIO)
2273 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2274 	wr32(E1000_MDICNFG, mdicnfg);
2275 out:
2276 	return ret_val;
2277 }
2278 
2279 /**
2280  *  igb_reset_hw_82580 - Reset hardware
2281  *  @hw: pointer to the HW structure
2282  *
2283  *  This resets function or entire device (all ports, etc.)
2284  *  to a known state.
2285  **/
2286 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2287 {
2288 	s32 ret_val = 0;
2289 	/* BH SW mailbox bit in SW_FW_SYNC */
2290 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2291 	u32 ctrl;
2292 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2293 
2294 	hw->dev_spec._82575.global_device_reset = false;
2295 
2296 	/* due to hw errata, global device reset doesn't always
2297 	 * work on 82580
2298 	 */
2299 	if (hw->mac.type == e1000_82580)
2300 		global_device_reset = false;
2301 
2302 	/* Get current control state. */
2303 	ctrl = rd32(E1000_CTRL);
2304 
2305 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2306 	 * on the last TLP read/write transaction when MAC is reset.
2307 	 */
2308 	ret_val = igb_disable_pcie_master(hw);
2309 	if (ret_val)
2310 		hw_dbg("PCI-E Master disable polling has failed.\n");
2311 
2312 	hw_dbg("Masking off all interrupts\n");
2313 	wr32(E1000_IMC, 0xffffffff);
2314 	wr32(E1000_RCTL, 0);
2315 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2316 	wrfl();
2317 
2318 	usleep_range(10000, 11000);
2319 
2320 	/* Determine whether or not a global dev reset is requested */
2321 	if (global_device_reset &&
2322 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2323 			global_device_reset = false;
2324 
2325 	if (global_device_reset &&
2326 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2327 		ctrl |= E1000_CTRL_DEV_RST;
2328 	else
2329 		ctrl |= E1000_CTRL_RST;
2330 
2331 	wr32(E1000_CTRL, ctrl);
2332 	wrfl();
2333 
2334 	/* Add delay to insure DEV_RST has time to complete */
2335 	if (global_device_reset)
2336 		usleep_range(5000, 6000);
2337 
2338 	ret_val = igb_get_auto_rd_done(hw);
2339 	if (ret_val) {
2340 		/* When auto config read does not complete, do not
2341 		 * return with an error. This can happen in situations
2342 		 * where there is no eeprom and prevents getting link.
2343 		 */
2344 		hw_dbg("Auto Read Done did not complete\n");
2345 	}
2346 
2347 	/* clear global device reset status bit */
2348 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2349 
2350 	/* Clear any pending interrupt events. */
2351 	wr32(E1000_IMC, 0xffffffff);
2352 	rd32(E1000_ICR);
2353 
2354 	ret_val = igb_reset_mdicnfg_82580(hw);
2355 	if (ret_val)
2356 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2357 
2358 	/* Install any alternate MAC address into RAR0 */
2359 	ret_val = igb_check_alt_mac_addr(hw);
2360 
2361 	/* Release semaphore */
2362 	if (global_device_reset)
2363 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2364 
2365 	return ret_val;
2366 }
2367 
2368 /**
2369  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2370  *  @data: data received by reading RXPBS register
2371  *
2372  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2373  *  This function converts the retrieved value into the correct table value
2374  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2375  *  0x0 36  72 144   1   2   4   8  16
2376  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2377  */
2378 u16 igb_rxpbs_adjust_82580(u32 data)
2379 {
2380 	u16 ret_val = 0;
2381 
2382 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2383 		ret_val = e1000_82580_rxpbs_table[data];
2384 
2385 	return ret_val;
2386 }
2387 
2388 /**
2389  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2390  *  checksum
2391  *  @hw: pointer to the HW structure
2392  *  @offset: offset in words of the checksum protected region
2393  *
2394  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2395  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2396  **/
2397 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2398 						 u16 offset)
2399 {
2400 	s32 ret_val = 0;
2401 	u16 checksum = 0;
2402 	u16 i, nvm_data;
2403 
2404 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2405 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2406 		if (ret_val) {
2407 			hw_dbg("NVM Read Error\n");
2408 			goto out;
2409 		}
2410 		checksum += nvm_data;
2411 	}
2412 
2413 	if (checksum != (u16) NVM_SUM) {
2414 		hw_dbg("NVM Checksum Invalid\n");
2415 		ret_val = -E1000_ERR_NVM;
2416 		goto out;
2417 	}
2418 
2419 out:
2420 	return ret_val;
2421 }
2422 
2423 /**
2424  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2425  *  checksum
2426  *  @hw: pointer to the HW structure
2427  *  @offset: offset in words of the checksum protected region
2428  *
2429  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2430  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2431  *  value to the EEPROM.
2432  **/
2433 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2434 {
2435 	s32 ret_val;
2436 	u16 checksum = 0;
2437 	u16 i, nvm_data;
2438 
2439 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2440 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2441 		if (ret_val) {
2442 			hw_dbg("NVM Read Error while updating checksum.\n");
2443 			goto out;
2444 		}
2445 		checksum += nvm_data;
2446 	}
2447 	checksum = (u16) NVM_SUM - checksum;
2448 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2449 				&checksum);
2450 	if (ret_val)
2451 		hw_dbg("NVM Write Error while updating checksum.\n");
2452 
2453 out:
2454 	return ret_val;
2455 }
2456 
2457 /**
2458  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2459  *  @hw: pointer to the HW structure
2460  *
2461  *  Calculates the EEPROM section checksum by reading/adding each word of
2462  *  the EEPROM and then verifies that the sum of the EEPROM is
2463  *  equal to 0xBABA.
2464  **/
2465 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2466 {
2467 	s32 ret_val = 0;
2468 	u16 eeprom_regions_count = 1;
2469 	u16 j, nvm_data;
2470 	u16 nvm_offset;
2471 
2472 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2473 	if (ret_val) {
2474 		hw_dbg("NVM Read Error\n");
2475 		goto out;
2476 	}
2477 
2478 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2479 		/* if checksums compatibility bit is set validate checksums
2480 		 * for all 4 ports.
2481 		 */
2482 		eeprom_regions_count = 4;
2483 	}
2484 
2485 	for (j = 0; j < eeprom_regions_count; j++) {
2486 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2487 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2488 								nvm_offset);
2489 		if (ret_val != 0)
2490 			goto out;
2491 	}
2492 
2493 out:
2494 	return ret_val;
2495 }
2496 
2497 /**
2498  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2499  *  @hw: pointer to the HW structure
2500  *
2501  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2502  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2503  *  checksum and writes the value to the EEPROM.
2504  **/
2505 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2506 {
2507 	s32 ret_val;
2508 	u16 j, nvm_data;
2509 	u16 nvm_offset;
2510 
2511 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2512 	if (ret_val) {
2513 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2514 		goto out;
2515 	}
2516 
2517 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2518 		/* set compatibility bit to validate checksums appropriately */
2519 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2520 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2521 					&nvm_data);
2522 		if (ret_val) {
2523 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2524 			goto out;
2525 		}
2526 	}
2527 
2528 	for (j = 0; j < 4; j++) {
2529 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2530 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2531 		if (ret_val)
2532 			goto out;
2533 	}
2534 
2535 out:
2536 	return ret_val;
2537 }
2538 
2539 /**
2540  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2541  *  @hw: pointer to the HW structure
2542  *
2543  *  Calculates the EEPROM section checksum by reading/adding each word of
2544  *  the EEPROM and then verifies that the sum of the EEPROM is
2545  *  equal to 0xBABA.
2546  **/
2547 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2548 {
2549 	s32 ret_val = 0;
2550 	u16 j;
2551 	u16 nvm_offset;
2552 
2553 	for (j = 0; j < 4; j++) {
2554 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2555 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2556 								nvm_offset);
2557 		if (ret_val != 0)
2558 			goto out;
2559 	}
2560 
2561 out:
2562 	return ret_val;
2563 }
2564 
2565 /**
2566  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2567  *  @hw: pointer to the HW structure
2568  *
2569  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2570  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2571  *  checksum and writes the value to the EEPROM.
2572  **/
2573 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2574 {
2575 	s32 ret_val = 0;
2576 	u16 j;
2577 	u16 nvm_offset;
2578 
2579 	for (j = 0; j < 4; j++) {
2580 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2581 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2582 		if (ret_val != 0)
2583 			goto out;
2584 	}
2585 
2586 out:
2587 	return ret_val;
2588 }
2589 
2590 /**
2591  *  __igb_access_emi_reg - Read/write EMI register
2592  *  @hw: pointer to the HW structure
2593  *  @addr: EMI address to program
2594  *  @data: pointer to value to read/write from/to the EMI address
2595  *  @read: boolean flag to indicate read or write
2596  **/
2597 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2598 				  u16 *data, bool read)
2599 {
2600 	s32 ret_val = 0;
2601 
2602 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2603 	if (ret_val)
2604 		return ret_val;
2605 
2606 	if (read)
2607 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2608 	else
2609 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2610 
2611 	return ret_val;
2612 }
2613 
2614 /**
2615  *  igb_read_emi_reg - Read Extended Management Interface register
2616  *  @hw: pointer to the HW structure
2617  *  @addr: EMI address to program
2618  *  @data: value to be read from the EMI address
2619  **/
2620 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2621 {
2622 	return __igb_access_emi_reg(hw, addr, data, true);
2623 }
2624 
2625 /**
2626  *  igb_set_eee_i350 - Enable/disable EEE support
2627  *  @hw: pointer to the HW structure
2628  *  @adv1G: boolean flag enabling 1G EEE advertisement
2629  *  @adv100m: boolean flag enabling 100M EEE advertisement
2630  *
2631  *  Enable/disable EEE based on setting in dev_spec structure.
2632  *
2633  **/
2634 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2635 {
2636 	u32 ipcnfg, eeer;
2637 
2638 	if ((hw->mac.type < e1000_i350) ||
2639 	    (hw->phy.media_type != e1000_media_type_copper))
2640 		goto out;
2641 	ipcnfg = rd32(E1000_IPCNFG);
2642 	eeer = rd32(E1000_EEER);
2643 
2644 	/* enable or disable per user setting */
2645 	if (!(hw->dev_spec._82575.eee_disable)) {
2646 		u32 eee_su = rd32(E1000_EEE_SU);
2647 
2648 		if (adv100M)
2649 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2650 		else
2651 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2652 
2653 		if (adv1G)
2654 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2655 		else
2656 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2657 
2658 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2659 			E1000_EEER_LPI_FC);
2660 
2661 		/* This bit should not be set in normal operation. */
2662 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2663 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2664 
2665 	} else {
2666 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2667 			E1000_IPCNFG_EEE_100M_AN);
2668 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2669 			E1000_EEER_RX_LPI_EN |
2670 			E1000_EEER_LPI_FC);
2671 	}
2672 	wr32(E1000_IPCNFG, ipcnfg);
2673 	wr32(E1000_EEER, eeer);
2674 	rd32(E1000_IPCNFG);
2675 	rd32(E1000_EEER);
2676 out:
2677 
2678 	return 0;
2679 }
2680 
2681 /**
2682  *  igb_set_eee_i354 - Enable/disable EEE support
2683  *  @hw: pointer to the HW structure
2684  *  @adv1G: boolean flag enabling 1G EEE advertisement
2685  *  @adv100m: boolean flag enabling 100M EEE advertisement
2686  *
2687  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2688  *
2689  **/
2690 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2691 {
2692 	struct e1000_phy_info *phy = &hw->phy;
2693 	s32 ret_val = 0;
2694 	u16 phy_data;
2695 
2696 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2697 	    ((phy->id != M88E1543_E_PHY_ID) &&
2698 	     (phy->id != M88E1512_E_PHY_ID)))
2699 		goto out;
2700 
2701 	if (!hw->dev_spec._82575.eee_disable) {
2702 		/* Switch to PHY page 18. */
2703 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2704 		if (ret_val)
2705 			goto out;
2706 
2707 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2708 					    &phy_data);
2709 		if (ret_val)
2710 			goto out;
2711 
2712 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2713 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2714 					     phy_data);
2715 		if (ret_val)
2716 			goto out;
2717 
2718 		/* Return the PHY to page 0. */
2719 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2720 		if (ret_val)
2721 			goto out;
2722 
2723 		/* Turn on EEE advertisement. */
2724 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2725 					     E1000_EEE_ADV_DEV_I354,
2726 					     &phy_data);
2727 		if (ret_val)
2728 			goto out;
2729 
2730 		if (adv100M)
2731 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2732 		else
2733 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2734 
2735 		if (adv1G)
2736 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2737 		else
2738 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2739 
2740 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2741 						E1000_EEE_ADV_DEV_I354,
2742 						phy_data);
2743 	} else {
2744 		/* Turn off EEE advertisement. */
2745 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2746 					     E1000_EEE_ADV_DEV_I354,
2747 					     &phy_data);
2748 		if (ret_val)
2749 			goto out;
2750 
2751 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2752 			      E1000_EEE_ADV_1000_SUPPORTED);
2753 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2754 					      E1000_EEE_ADV_DEV_I354,
2755 					      phy_data);
2756 	}
2757 
2758 out:
2759 	return ret_val;
2760 }
2761 
2762 /**
2763  *  igb_get_eee_status_i354 - Get EEE status
2764  *  @hw: pointer to the HW structure
2765  *  @status: EEE status
2766  *
2767  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2768  *  been received.
2769  **/
2770 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2771 {
2772 	struct e1000_phy_info *phy = &hw->phy;
2773 	s32 ret_val = 0;
2774 	u16 phy_data;
2775 
2776 	/* Check if EEE is supported on this device. */
2777 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2778 	    ((phy->id != M88E1543_E_PHY_ID) &&
2779 	     (phy->id != M88E1512_E_PHY_ID)))
2780 		goto out;
2781 
2782 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2783 				     E1000_PCS_STATUS_DEV_I354,
2784 				     &phy_data);
2785 	if (ret_val)
2786 		goto out;
2787 
2788 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2789 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2790 
2791 out:
2792 	return ret_val;
2793 }
2794 
2795 static const u8 e1000_emc_temp_data[4] = {
2796 	E1000_EMC_INTERNAL_DATA,
2797 	E1000_EMC_DIODE1_DATA,
2798 	E1000_EMC_DIODE2_DATA,
2799 	E1000_EMC_DIODE3_DATA
2800 };
2801 static const u8 e1000_emc_therm_limit[4] = {
2802 	E1000_EMC_INTERNAL_THERM_LIMIT,
2803 	E1000_EMC_DIODE1_THERM_LIMIT,
2804 	E1000_EMC_DIODE2_THERM_LIMIT,
2805 	E1000_EMC_DIODE3_THERM_LIMIT
2806 };
2807 
2808 #ifdef CONFIG_IGB_HWMON
2809 /**
2810  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2811  *  @hw: pointer to hardware structure
2812  *
2813  *  Updates the temperatures in mac.thermal_sensor_data
2814  **/
2815 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2816 {
2817 	u16 ets_offset;
2818 	u16 ets_cfg;
2819 	u16 ets_sensor;
2820 	u8  num_sensors;
2821 	u8  sensor_index;
2822 	u8  sensor_location;
2823 	u8  i;
2824 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2825 
2826 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2827 		return E1000_NOT_IMPLEMENTED;
2828 
2829 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2830 
2831 	/* Return the internal sensor only if ETS is unsupported */
2832 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2833 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2834 		return 0;
2835 
2836 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2837 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2838 	    != NVM_ETS_TYPE_EMC)
2839 		return E1000_NOT_IMPLEMENTED;
2840 
2841 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2842 	if (num_sensors > E1000_MAX_SENSORS)
2843 		num_sensors = E1000_MAX_SENSORS;
2844 
2845 	for (i = 1; i < num_sensors; i++) {
2846 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2847 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2848 				NVM_ETS_DATA_INDEX_SHIFT);
2849 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2850 				   NVM_ETS_DATA_LOC_SHIFT);
2851 
2852 		if (sensor_location != 0)
2853 			hw->phy.ops.read_i2c_byte(hw,
2854 					e1000_emc_temp_data[sensor_index],
2855 					E1000_I2C_THERMAL_SENSOR_ADDR,
2856 					&data->sensor[i].temp);
2857 	}
2858 	return 0;
2859 }
2860 
2861 /**
2862  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2863  *  @hw: pointer to hardware structure
2864  *
2865  *  Sets the thermal sensor thresholds according to the NVM map
2866  *  and save off the threshold and location values into mac.thermal_sensor_data
2867  **/
2868 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2869 {
2870 	u16 ets_offset;
2871 	u16 ets_cfg;
2872 	u16 ets_sensor;
2873 	u8  low_thresh_delta;
2874 	u8  num_sensors;
2875 	u8  sensor_index;
2876 	u8  sensor_location;
2877 	u8  therm_limit;
2878 	u8  i;
2879 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2880 
2881 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2882 		return E1000_NOT_IMPLEMENTED;
2883 
2884 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2885 
2886 	data->sensor[0].location = 0x1;
2887 	data->sensor[0].caution_thresh =
2888 		(rd32(E1000_THHIGHTC) & 0xFF);
2889 	data->sensor[0].max_op_thresh =
2890 		(rd32(E1000_THLOWTC) & 0xFF);
2891 
2892 	/* Return the internal sensor only if ETS is unsupported */
2893 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2894 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2895 		return 0;
2896 
2897 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2898 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2899 	    != NVM_ETS_TYPE_EMC)
2900 		return E1000_NOT_IMPLEMENTED;
2901 
2902 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2903 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2904 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2905 
2906 	for (i = 1; i <= num_sensors; i++) {
2907 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2908 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2909 				NVM_ETS_DATA_INDEX_SHIFT);
2910 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2911 				   NVM_ETS_DATA_LOC_SHIFT);
2912 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2913 
2914 		hw->phy.ops.write_i2c_byte(hw,
2915 			e1000_emc_therm_limit[sensor_index],
2916 			E1000_I2C_THERMAL_SENSOR_ADDR,
2917 			therm_limit);
2918 
2919 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2920 			data->sensor[i].location = sensor_location;
2921 			data->sensor[i].caution_thresh = therm_limit;
2922 			data->sensor[i].max_op_thresh = therm_limit -
2923 							low_thresh_delta;
2924 		}
2925 	}
2926 	return 0;
2927 }
2928 
2929 #endif
2930 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2931 	.init_hw              = igb_init_hw_82575,
2932 	.check_for_link       = igb_check_for_link_82575,
2933 	.rar_set              = igb_rar_set,
2934 	.read_mac_addr        = igb_read_mac_addr_82575,
2935 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2936 #ifdef CONFIG_IGB_HWMON
2937 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2938 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2939 #endif
2940 };
2941 
2942 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2943 	.acquire              = igb_acquire_phy_82575,
2944 	.get_cfg_done         = igb_get_cfg_done_82575,
2945 	.release              = igb_release_phy_82575,
2946 	.write_i2c_byte       = igb_write_i2c_byte,
2947 	.read_i2c_byte        = igb_read_i2c_byte,
2948 };
2949 
2950 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2951 	.acquire              = igb_acquire_nvm_82575,
2952 	.read                 = igb_read_nvm_eerd,
2953 	.release              = igb_release_nvm_82575,
2954 	.write                = igb_write_nvm_spi,
2955 };
2956 
2957 const struct e1000_info e1000_82575_info = {
2958 	.get_invariants = igb_get_invariants_82575,
2959 	.mac_ops = &e1000_mac_ops_82575,
2960 	.phy_ops = &e1000_phy_ops_82575,
2961 	.nvm_ops = &e1000_nvm_ops_82575,
2962 };
2963 
2964