1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* e1000_82575
5  * e1000_82576
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/if_ether.h>
12 #include <linux/i2c.h>
13 
14 #include "e1000_mac.h"
15 #include "e1000_82575.h"
16 #include "e1000_i210.h"
17 #include "igb.h"
18 
19 static s32  igb_get_invariants_82575(struct e1000_hw *);
20 static s32  igb_acquire_phy_82575(struct e1000_hw *);
21 static void igb_release_phy_82575(struct e1000_hw *);
22 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
23 static void igb_release_nvm_82575(struct e1000_hw *);
24 static s32  igb_check_for_link_82575(struct e1000_hw *);
25 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
26 static s32  igb_init_hw_82575(struct e1000_hw *);
27 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29 static s32  igb_reset_hw_82575(struct e1000_hw *);
30 static s32  igb_reset_hw_82580(struct e1000_hw *);
31 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
35 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
36 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40 						 u16 *);
41 static s32  igb_get_phy_id_82575(struct e1000_hw *);
42 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43 static bool igb_sgmii_active_82575(struct e1000_hw *);
44 static s32  igb_reset_init_script_82575(struct e1000_hw *);
45 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
46 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52 static const u16 e1000_82580_rxpbs_table[] = {
53 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54 
55 /* Due to a hw errata, if the host tries to  configure the VFTA register
56  * while performing queries from the BMC or DMA, then the VFTA in some
57  * cases won't be written.
58  */
59 
60 /**
61  *  igb_write_vfta_i350 - Write value to VLAN filter table
62  *  @hw: pointer to the HW structure
63  *  @offset: register offset in VLAN filter table
64  *  @value: register value written to VLAN filter table
65  *
66  *  Writes value at the given offset in the register array which stores
67  *  the VLAN filter table.
68  **/
69 static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70 {
71 	struct igb_adapter *adapter = hw->back;
72 	int i;
73 
74 	for (i = 10; i--;)
75 		array_wr32(E1000_VFTA, offset, value);
76 
77 	wrfl();
78 	adapter->shadow_vfta[offset] = value;
79 }
80 
81 /**
82  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83  *  @hw: pointer to the HW structure
84  *
85  *  Called to determine if the I2C pins are being used for I2C or as an
86  *  external MDIO interface since the two options are mutually exclusive.
87  **/
88 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89 {
90 	u32 reg = 0;
91 	bool ext_mdio = false;
92 
93 	switch (hw->mac.type) {
94 	case e1000_82575:
95 	case e1000_82576:
96 		reg = rd32(E1000_MDIC);
97 		ext_mdio = !!(reg & E1000_MDIC_DEST);
98 		break;
99 	case e1000_82580:
100 	case e1000_i350:
101 	case e1000_i354:
102 	case e1000_i210:
103 	case e1000_i211:
104 		reg = rd32(E1000_MDICNFG);
105 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 		break;
107 	default:
108 		break;
109 	}
110 	return ext_mdio;
111 }
112 
113 /**
114  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
115  *  @hw: pointer to the HW structure
116  *
117  *  Poll the M88E1112 interfaces to see which interface achieved link.
118  */
119 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120 {
121 	struct e1000_phy_info *phy = &hw->phy;
122 	s32 ret_val;
123 	u16 data;
124 	u8 port = 0;
125 
126 	/* Check the copper medium. */
127 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128 	if (ret_val)
129 		return ret_val;
130 
131 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132 	if (ret_val)
133 		return ret_val;
134 
135 	if (data & E1000_M88E1112_STATUS_LINK)
136 		port = E1000_MEDIA_PORT_COPPER;
137 
138 	/* Check the other medium. */
139 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140 	if (ret_val)
141 		return ret_val;
142 
143 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144 	if (ret_val)
145 		return ret_val;
146 
147 
148 	if (data & E1000_M88E1112_STATUS_LINK)
149 		port = E1000_MEDIA_PORT_OTHER;
150 
151 	/* Determine if a swap needs to happen. */
152 	if (port && (hw->dev_spec._82575.media_port != port)) {
153 		hw->dev_spec._82575.media_port = port;
154 		hw->dev_spec._82575.media_changed = true;
155 	}
156 
157 	if (port == E1000_MEDIA_PORT_COPPER) {
158 		/* reset page to 0 */
159 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160 		if (ret_val)
161 			return ret_val;
162 		igb_check_for_link_82575(hw);
163 	} else {
164 		igb_check_for_link_82575(hw);
165 		/* reset page to 0 */
166 		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167 		if (ret_val)
168 			return ret_val;
169 	}
170 
171 	return 0;
172 }
173 
174 /**
175  *  igb_init_phy_params_82575 - Init PHY func ptrs.
176  *  @hw: pointer to the HW structure
177  **/
178 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179 {
180 	struct e1000_phy_info *phy = &hw->phy;
181 	s32 ret_val = 0;
182 	u32 ctrl_ext;
183 
184 	if (hw->phy.media_type != e1000_media_type_copper) {
185 		phy->type = e1000_phy_none;
186 		goto out;
187 	}
188 
189 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
190 	phy->reset_delay_us	= 100;
191 
192 	ctrl_ext = rd32(E1000_CTRL_EXT);
193 
194 	if (igb_sgmii_active_82575(hw)) {
195 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196 		ctrl_ext |= E1000_CTRL_I2C_ENA;
197 	} else {
198 		phy->ops.reset = igb_phy_hw_reset;
199 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200 	}
201 
202 	wr32(E1000_CTRL_EXT, ctrl_ext);
203 	igb_reset_mdicnfg_82580(hw);
204 
205 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208 	} else {
209 		switch (hw->mac.type) {
210 		case e1000_82580:
211 		case e1000_i350:
212 		case e1000_i354:
213 		case e1000_i210:
214 		case e1000_i211:
215 			phy->ops.read_reg = igb_read_phy_reg_82580;
216 			phy->ops.write_reg = igb_write_phy_reg_82580;
217 			break;
218 		default:
219 			phy->ops.read_reg = igb_read_phy_reg_igp;
220 			phy->ops.write_reg = igb_write_phy_reg_igp;
221 		}
222 	}
223 
224 	/* set lan id */
225 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
226 			E1000_STATUS_FUNC_SHIFT;
227 
228 	/* Set phy->phy_addr and phy->id. */
229 	ret_val = igb_get_phy_id_82575(hw);
230 	if (ret_val)
231 		return ret_val;
232 
233 	/* Verify phy id and set remaining function pointers */
234 	switch (phy->id) {
235 	case M88E1543_E_PHY_ID:
236 	case M88E1512_E_PHY_ID:
237 	case I347AT4_E_PHY_ID:
238 	case M88E1112_E_PHY_ID:
239 	case M88E1111_I_PHY_ID:
240 		phy->type		= e1000_phy_m88;
241 		phy->ops.check_polarity	= igb_check_polarity_m88;
242 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
243 		if (phy->id != M88E1111_I_PHY_ID)
244 			phy->ops.get_cable_length =
245 					 igb_get_cable_length_m88_gen2;
246 		else
247 			phy->ops.get_cable_length = igb_get_cable_length_m88;
248 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
249 		/* Check if this PHY is configured for media swap. */
250 		if (phy->id == M88E1112_E_PHY_ID) {
251 			u16 data;
252 
253 			ret_val = phy->ops.write_reg(hw,
254 						     E1000_M88E1112_PAGE_ADDR,
255 						     2);
256 			if (ret_val)
257 				goto out;
258 
259 			ret_val = phy->ops.read_reg(hw,
260 						    E1000_M88E1112_MAC_CTRL_1,
261 						    &data);
262 			if (ret_val)
263 				goto out;
264 
265 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
266 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
267 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
268 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
269 				hw->mac.ops.check_for_link =
270 						igb_check_for_link_media_swap;
271 		}
272 		if (phy->id == M88E1512_E_PHY_ID) {
273 			ret_val = igb_initialize_M88E1512_phy(hw);
274 			if (ret_val)
275 				goto out;
276 		}
277 		if (phy->id == M88E1543_E_PHY_ID) {
278 			ret_val = igb_initialize_M88E1543_phy(hw);
279 			if (ret_val)
280 				goto out;
281 		}
282 		break;
283 	case IGP03E1000_E_PHY_ID:
284 		phy->type = e1000_phy_igp_3;
285 		phy->ops.get_phy_info = igb_get_phy_info_igp;
286 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
287 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
288 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
289 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
290 		break;
291 	case I82580_I_PHY_ID:
292 	case I350_I_PHY_ID:
293 		phy->type = e1000_phy_82580;
294 		phy->ops.force_speed_duplex =
295 					 igb_phy_force_speed_duplex_82580;
296 		phy->ops.get_cable_length = igb_get_cable_length_82580;
297 		phy->ops.get_phy_info = igb_get_phy_info_82580;
298 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
299 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
300 		break;
301 	case I210_I_PHY_ID:
302 		phy->type		= e1000_phy_i210;
303 		phy->ops.check_polarity	= igb_check_polarity_m88;
304 		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
305 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
306 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
307 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
308 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
309 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
310 		break;
311 	case BCM54616_E_PHY_ID:
312 		phy->type = e1000_phy_bcm54616;
313 		break;
314 	default:
315 		ret_val = -E1000_ERR_PHY;
316 		goto out;
317 	}
318 
319 out:
320 	return ret_val;
321 }
322 
323 /**
324  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
325  *  @hw: pointer to the HW structure
326  **/
327 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
328 {
329 	struct e1000_nvm_info *nvm = &hw->nvm;
330 	u32 eecd = rd32(E1000_EECD);
331 	u16 size;
332 
333 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
334 		     E1000_EECD_SIZE_EX_SHIFT);
335 
336 	/* Added to a constant, "size" becomes the left-shift value
337 	 * for setting word_size.
338 	 */
339 	size += NVM_WORD_SIZE_BASE_SHIFT;
340 
341 	/* Just in case size is out of range, cap it to the largest
342 	 * EEPROM size supported
343 	 */
344 	if (size > 15)
345 		size = 15;
346 
347 	nvm->word_size = BIT(size);
348 	nvm->opcode_bits = 8;
349 	nvm->delay_usec = 1;
350 
351 	switch (nvm->override) {
352 	case e1000_nvm_override_spi_large:
353 		nvm->page_size = 32;
354 		nvm->address_bits = 16;
355 		break;
356 	case e1000_nvm_override_spi_small:
357 		nvm->page_size = 8;
358 		nvm->address_bits = 8;
359 		break;
360 	default:
361 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
362 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
363 				    16 : 8;
364 		break;
365 	}
366 	if (nvm->word_size == BIT(15))
367 		nvm->page_size = 128;
368 
369 	nvm->type = e1000_nvm_eeprom_spi;
370 
371 	/* NVM Function Pointers */
372 	nvm->ops.acquire = igb_acquire_nvm_82575;
373 	nvm->ops.release = igb_release_nvm_82575;
374 	nvm->ops.write = igb_write_nvm_spi;
375 	nvm->ops.validate = igb_validate_nvm_checksum;
376 	nvm->ops.update = igb_update_nvm_checksum;
377 	if (nvm->word_size < BIT(15))
378 		nvm->ops.read = igb_read_nvm_eerd;
379 	else
380 		nvm->ops.read = igb_read_nvm_spi;
381 
382 	/* override generic family function pointers for specific descendants */
383 	switch (hw->mac.type) {
384 	case e1000_82580:
385 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
386 		nvm->ops.update = igb_update_nvm_checksum_82580;
387 		break;
388 	case e1000_i354:
389 	case e1000_i350:
390 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
391 		nvm->ops.update = igb_update_nvm_checksum_i350;
392 		break;
393 	default:
394 		break;
395 	}
396 
397 	return 0;
398 }
399 
400 /**
401  *  igb_init_mac_params_82575 - Init MAC func ptrs.
402  *  @hw: pointer to the HW structure
403  **/
404 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
405 {
406 	struct e1000_mac_info *mac = &hw->mac;
407 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
408 
409 	/* Set mta register count */
410 	mac->mta_reg_count = 128;
411 	/* Set uta register count */
412 	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
413 	/* Set rar entry count */
414 	switch (mac->type) {
415 	case e1000_82576:
416 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
417 		break;
418 	case e1000_82580:
419 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
420 		break;
421 	case e1000_i350:
422 	case e1000_i354:
423 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
424 		break;
425 	default:
426 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
427 		break;
428 	}
429 	/* reset */
430 	if (mac->type >= e1000_82580)
431 		mac->ops.reset_hw = igb_reset_hw_82580;
432 	else
433 		mac->ops.reset_hw = igb_reset_hw_82575;
434 
435 	if (mac->type >= e1000_i210) {
436 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
437 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
438 
439 	} else {
440 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
441 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
442 	}
443 
444 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
445 		mac->ops.write_vfta = igb_write_vfta_i350;
446 	else
447 		mac->ops.write_vfta = igb_write_vfta;
448 
449 	/* Set if part includes ASF firmware */
450 	mac->asf_firmware_present = true;
451 	/* Set if manageability features are enabled. */
452 	mac->arc_subsystem_valid =
453 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
454 			? true : false;
455 	/* enable EEE on i350 parts and later parts */
456 	if (mac->type >= e1000_i350)
457 		dev_spec->eee_disable = false;
458 	else
459 		dev_spec->eee_disable = true;
460 	/* Allow a single clear of the SW semaphore on I210 and newer */
461 	if (mac->type >= e1000_i210)
462 		dev_spec->clear_semaphore_once = true;
463 	/* physical interface link setup */
464 	mac->ops.setup_physical_interface =
465 		(hw->phy.media_type == e1000_media_type_copper)
466 			? igb_setup_copper_link_82575
467 			: igb_setup_serdes_link_82575;
468 
469 	if (mac->type == e1000_82580) {
470 		switch (hw->device_id) {
471 		/* feature not supported on these id's */
472 		case E1000_DEV_ID_DH89XXCC_SGMII:
473 		case E1000_DEV_ID_DH89XXCC_SERDES:
474 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
475 		case E1000_DEV_ID_DH89XXCC_SFP:
476 			break;
477 		default:
478 			hw->dev_spec._82575.mas_capable = true;
479 			break;
480 		}
481 	}
482 	return 0;
483 }
484 
485 /**
486  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
487  *  @hw: pointer to the HW structure
488  *
489  *  The media type is chosen based on SFP module.
490  *  compatibility flags retrieved from SFP ID EEPROM.
491  **/
492 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
493 {
494 	s32 ret_val = E1000_ERR_CONFIG;
495 	u32 ctrl_ext = 0;
496 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
497 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
498 	u8 tranceiver_type = 0;
499 	s32 timeout = 3;
500 
501 	/* Turn I2C interface ON and power on sfp cage */
502 	ctrl_ext = rd32(E1000_CTRL_EXT);
503 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
504 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
505 
506 	wrfl();
507 
508 	/* Read SFP module data */
509 	while (timeout) {
510 		ret_val = igb_read_sfp_data_byte(hw,
511 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
512 			&tranceiver_type);
513 		if (ret_val == 0)
514 			break;
515 		msleep(100);
516 		timeout--;
517 	}
518 	if (ret_val != 0)
519 		goto out;
520 
521 	ret_val = igb_read_sfp_data_byte(hw,
522 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
523 			(u8 *)eth_flags);
524 	if (ret_val != 0)
525 		goto out;
526 
527 	/* Check if there is some SFP module plugged and powered */
528 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
529 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
530 		dev_spec->module_plugged = true;
531 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
532 			hw->phy.media_type = e1000_media_type_internal_serdes;
533 		} else if (eth_flags->e100_base_fx) {
534 			dev_spec->sgmii_active = true;
535 			hw->phy.media_type = e1000_media_type_internal_serdes;
536 		} else if (eth_flags->e1000_base_t) {
537 			dev_spec->sgmii_active = true;
538 			hw->phy.media_type = e1000_media_type_copper;
539 		} else {
540 			hw->phy.media_type = e1000_media_type_unknown;
541 			hw_dbg("PHY module has not been recognized\n");
542 			goto out;
543 		}
544 	} else {
545 		hw->phy.media_type = e1000_media_type_unknown;
546 	}
547 	ret_val = 0;
548 out:
549 	/* Restore I2C interface setting */
550 	wr32(E1000_CTRL_EXT, ctrl_ext);
551 	return ret_val;
552 }
553 
554 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
555 {
556 	struct e1000_mac_info *mac = &hw->mac;
557 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
558 	s32 ret_val;
559 	u32 ctrl_ext = 0;
560 	u32 link_mode = 0;
561 
562 	switch (hw->device_id) {
563 	case E1000_DEV_ID_82575EB_COPPER:
564 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
565 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
566 		mac->type = e1000_82575;
567 		break;
568 	case E1000_DEV_ID_82576:
569 	case E1000_DEV_ID_82576_NS:
570 	case E1000_DEV_ID_82576_NS_SERDES:
571 	case E1000_DEV_ID_82576_FIBER:
572 	case E1000_DEV_ID_82576_SERDES:
573 	case E1000_DEV_ID_82576_QUAD_COPPER:
574 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
575 	case E1000_DEV_ID_82576_SERDES_QUAD:
576 		mac->type = e1000_82576;
577 		break;
578 	case E1000_DEV_ID_82580_COPPER:
579 	case E1000_DEV_ID_82580_FIBER:
580 	case E1000_DEV_ID_82580_QUAD_FIBER:
581 	case E1000_DEV_ID_82580_SERDES:
582 	case E1000_DEV_ID_82580_SGMII:
583 	case E1000_DEV_ID_82580_COPPER_DUAL:
584 	case E1000_DEV_ID_DH89XXCC_SGMII:
585 	case E1000_DEV_ID_DH89XXCC_SERDES:
586 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
587 	case E1000_DEV_ID_DH89XXCC_SFP:
588 		mac->type = e1000_82580;
589 		break;
590 	case E1000_DEV_ID_I350_COPPER:
591 	case E1000_DEV_ID_I350_FIBER:
592 	case E1000_DEV_ID_I350_SERDES:
593 	case E1000_DEV_ID_I350_SGMII:
594 		mac->type = e1000_i350;
595 		break;
596 	case E1000_DEV_ID_I210_COPPER:
597 	case E1000_DEV_ID_I210_FIBER:
598 	case E1000_DEV_ID_I210_SERDES:
599 	case E1000_DEV_ID_I210_SGMII:
600 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
601 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
602 		mac->type = e1000_i210;
603 		break;
604 	case E1000_DEV_ID_I211_COPPER:
605 		mac->type = e1000_i211;
606 		break;
607 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
608 	case E1000_DEV_ID_I354_SGMII:
609 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
610 		mac->type = e1000_i354;
611 		break;
612 	default:
613 		return -E1000_ERR_MAC_INIT;
614 	}
615 
616 	/* Set media type */
617 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
618 	 * based on the EEPROM. We cannot rely upon device ID. There
619 	 * is no distinguishable difference between fiber and internal
620 	 * SerDes mode on the 82575. There can be an external PHY attached
621 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
622 	 */
623 	hw->phy.media_type = e1000_media_type_copper;
624 	dev_spec->sgmii_active = false;
625 	dev_spec->module_plugged = false;
626 
627 	ctrl_ext = rd32(E1000_CTRL_EXT);
628 
629 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
630 	switch (link_mode) {
631 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
632 		hw->phy.media_type = e1000_media_type_internal_serdes;
633 		break;
634 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
635 		/* Get phy control interface type set (MDIO vs. I2C)*/
636 		if (igb_sgmii_uses_mdio_82575(hw)) {
637 			hw->phy.media_type = e1000_media_type_copper;
638 			dev_spec->sgmii_active = true;
639 			break;
640 		}
641 		/* fall through for I2C based SGMII */
642 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
643 		/* read media type from SFP EEPROM */
644 		ret_val = igb_set_sfp_media_type_82575(hw);
645 		if ((ret_val != 0) ||
646 		    (hw->phy.media_type == e1000_media_type_unknown)) {
647 			/* If media type was not identified then return media
648 			 * type defined by the CTRL_EXT settings.
649 			 */
650 			hw->phy.media_type = e1000_media_type_internal_serdes;
651 
652 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
653 				hw->phy.media_type = e1000_media_type_copper;
654 				dev_spec->sgmii_active = true;
655 			}
656 
657 			break;
658 		}
659 
660 		/* do not change link mode for 100BaseFX */
661 		if (dev_spec->eth_flags.e100_base_fx)
662 			break;
663 
664 		/* change current link mode setting */
665 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
666 
667 		if (hw->phy.media_type == e1000_media_type_copper)
668 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
669 		else
670 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
671 
672 		wr32(E1000_CTRL_EXT, ctrl_ext);
673 
674 		break;
675 	default:
676 		break;
677 	}
678 
679 	/* mac initialization and operations */
680 	ret_val = igb_init_mac_params_82575(hw);
681 	if (ret_val)
682 		goto out;
683 
684 	/* NVM initialization */
685 	ret_val = igb_init_nvm_params_82575(hw);
686 	switch (hw->mac.type) {
687 	case e1000_i210:
688 	case e1000_i211:
689 		ret_val = igb_init_nvm_params_i210(hw);
690 		break;
691 	default:
692 		break;
693 	}
694 
695 	if (ret_val)
696 		goto out;
697 
698 	/* if part supports SR-IOV then initialize mailbox parameters */
699 	switch (mac->type) {
700 	case e1000_82576:
701 	case e1000_i350:
702 		igb_init_mbx_params_pf(hw);
703 		break;
704 	default:
705 		break;
706 	}
707 
708 	/* setup PHY parameters */
709 	ret_val = igb_init_phy_params_82575(hw);
710 
711 out:
712 	return ret_val;
713 }
714 
715 /**
716  *  igb_acquire_phy_82575 - Acquire rights to access PHY
717  *  @hw: pointer to the HW structure
718  *
719  *  Acquire access rights to the correct PHY.  This is a
720  *  function pointer entry point called by the api module.
721  **/
722 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
723 {
724 	u16 mask = E1000_SWFW_PHY0_SM;
725 
726 	if (hw->bus.func == E1000_FUNC_1)
727 		mask = E1000_SWFW_PHY1_SM;
728 	else if (hw->bus.func == E1000_FUNC_2)
729 		mask = E1000_SWFW_PHY2_SM;
730 	else if (hw->bus.func == E1000_FUNC_3)
731 		mask = E1000_SWFW_PHY3_SM;
732 
733 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
734 }
735 
736 /**
737  *  igb_release_phy_82575 - Release rights to access PHY
738  *  @hw: pointer to the HW structure
739  *
740  *  A wrapper to release access rights to the correct PHY.  This is a
741  *  function pointer entry point called by the api module.
742  **/
743 static void igb_release_phy_82575(struct e1000_hw *hw)
744 {
745 	u16 mask = E1000_SWFW_PHY0_SM;
746 
747 	if (hw->bus.func == E1000_FUNC_1)
748 		mask = E1000_SWFW_PHY1_SM;
749 	else if (hw->bus.func == E1000_FUNC_2)
750 		mask = E1000_SWFW_PHY2_SM;
751 	else if (hw->bus.func == E1000_FUNC_3)
752 		mask = E1000_SWFW_PHY3_SM;
753 
754 	hw->mac.ops.release_swfw_sync(hw, mask);
755 }
756 
757 /**
758  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
759  *  @hw: pointer to the HW structure
760  *  @offset: register offset to be read
761  *  @data: pointer to the read data
762  *
763  *  Reads the PHY register at offset using the serial gigabit media independent
764  *  interface and stores the retrieved information in data.
765  **/
766 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
767 					  u16 *data)
768 {
769 	s32 ret_val = -E1000_ERR_PARAM;
770 
771 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
772 		hw_dbg("PHY Address %u is out of range\n", offset);
773 		goto out;
774 	}
775 
776 	ret_val = hw->phy.ops.acquire(hw);
777 	if (ret_val)
778 		goto out;
779 
780 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
781 
782 	hw->phy.ops.release(hw);
783 
784 out:
785 	return ret_val;
786 }
787 
788 /**
789  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
790  *  @hw: pointer to the HW structure
791  *  @offset: register offset to write to
792  *  @data: data to write at register offset
793  *
794  *  Writes the data to PHY register at the offset using the serial gigabit
795  *  media independent interface.
796  **/
797 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
798 					   u16 data)
799 {
800 	s32 ret_val = -E1000_ERR_PARAM;
801 
802 
803 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
804 		hw_dbg("PHY Address %d is out of range\n", offset);
805 		goto out;
806 	}
807 
808 	ret_val = hw->phy.ops.acquire(hw);
809 	if (ret_val)
810 		goto out;
811 
812 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
813 
814 	hw->phy.ops.release(hw);
815 
816 out:
817 	return ret_val;
818 }
819 
820 /**
821  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
822  *  @hw: pointer to the HW structure
823  *
824  *  Retrieves the PHY address and ID for both PHY's which do and do not use
825  *  sgmi interface.
826  **/
827 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
828 {
829 	struct e1000_phy_info *phy = &hw->phy;
830 	s32  ret_val = 0;
831 	u16 phy_id;
832 	u32 ctrl_ext;
833 	u32 mdic;
834 
835 	/* Extra read required for some PHY's on i354 */
836 	if (hw->mac.type == e1000_i354)
837 		igb_get_phy_id(hw);
838 
839 	/* For SGMII PHYs, we try the list of possible addresses until
840 	 * we find one that works.  For non-SGMII PHYs
841 	 * (e.g. integrated copper PHYs), an address of 1 should
842 	 * work.  The result of this function should mean phy->phy_addr
843 	 * and phy->id are set correctly.
844 	 */
845 	if (!(igb_sgmii_active_82575(hw))) {
846 		phy->addr = 1;
847 		ret_val = igb_get_phy_id(hw);
848 		goto out;
849 	}
850 
851 	if (igb_sgmii_uses_mdio_82575(hw)) {
852 		switch (hw->mac.type) {
853 		case e1000_82575:
854 		case e1000_82576:
855 			mdic = rd32(E1000_MDIC);
856 			mdic &= E1000_MDIC_PHY_MASK;
857 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
858 			break;
859 		case e1000_82580:
860 		case e1000_i350:
861 		case e1000_i354:
862 		case e1000_i210:
863 		case e1000_i211:
864 			mdic = rd32(E1000_MDICNFG);
865 			mdic &= E1000_MDICNFG_PHY_MASK;
866 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
867 			break;
868 		default:
869 			ret_val = -E1000_ERR_PHY;
870 			goto out;
871 		}
872 		ret_val = igb_get_phy_id(hw);
873 		goto out;
874 	}
875 
876 	/* Power on sgmii phy if it is disabled */
877 	ctrl_ext = rd32(E1000_CTRL_EXT);
878 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
879 	wrfl();
880 	msleep(300);
881 
882 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
883 	 * Therefore, we need to test 1-7
884 	 */
885 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
886 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
887 		if (ret_val == 0) {
888 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
889 			       phy_id, phy->addr);
890 			/* At the time of this writing, The M88 part is
891 			 * the only supported SGMII PHY product.
892 			 */
893 			if (phy_id == M88_VENDOR)
894 				break;
895 		} else {
896 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
897 		}
898 	}
899 
900 	/* A valid PHY type couldn't be found. */
901 	if (phy->addr == 8) {
902 		phy->addr = 0;
903 		ret_val = -E1000_ERR_PHY;
904 		goto out;
905 	} else {
906 		ret_val = igb_get_phy_id(hw);
907 	}
908 
909 	/* restore previous sfp cage power state */
910 	wr32(E1000_CTRL_EXT, ctrl_ext);
911 
912 out:
913 	return ret_val;
914 }
915 
916 /**
917  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
918  *  @hw: pointer to the HW structure
919  *
920  *  Resets the PHY using the serial gigabit media independent interface.
921  **/
922 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
923 {
924 	struct e1000_phy_info *phy = &hw->phy;
925 	s32 ret_val;
926 
927 	/* This isn't a true "hard" reset, but is the only reset
928 	 * available to us at this time.
929 	 */
930 
931 	hw_dbg("Soft resetting SGMII attached PHY...\n");
932 
933 	/* SFP documentation requires the following to configure the SPF module
934 	 * to work on SGMII.  No further documentation is given.
935 	 */
936 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
937 	if (ret_val)
938 		goto out;
939 
940 	ret_val = igb_phy_sw_reset(hw);
941 	if (ret_val)
942 		goto out;
943 
944 	if (phy->id == M88E1512_E_PHY_ID)
945 		ret_val = igb_initialize_M88E1512_phy(hw);
946 	if (phy->id == M88E1543_E_PHY_ID)
947 		ret_val = igb_initialize_M88E1543_phy(hw);
948 out:
949 	return ret_val;
950 }
951 
952 /**
953  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
954  *  @hw: pointer to the HW structure
955  *  @active: true to enable LPLU, false to disable
956  *
957  *  Sets the LPLU D0 state according to the active flag.  When
958  *  activating LPLU this function also disables smart speed
959  *  and vice versa.  LPLU will not be activated unless the
960  *  device autonegotiation advertisement meets standards of
961  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
962  *  This is a function pointer entry point only called by
963  *  PHY setup routines.
964  **/
965 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
966 {
967 	struct e1000_phy_info *phy = &hw->phy;
968 	s32 ret_val;
969 	u16 data;
970 
971 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
972 	if (ret_val)
973 		goto out;
974 
975 	if (active) {
976 		data |= IGP02E1000_PM_D0_LPLU;
977 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
978 						 data);
979 		if (ret_val)
980 			goto out;
981 
982 		/* When LPLU is enabled, we should disable SmartSpeed */
983 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
984 						&data);
985 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
986 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
987 						 data);
988 		if (ret_val)
989 			goto out;
990 	} else {
991 		data &= ~IGP02E1000_PM_D0_LPLU;
992 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
993 						 data);
994 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
995 		 * during Dx states where the power conservation is most
996 		 * important.  During driver activity we should enable
997 		 * SmartSpeed, so performance is maintained.
998 		 */
999 		if (phy->smart_speed == e1000_smart_speed_on) {
1000 			ret_val = phy->ops.read_reg(hw,
1001 					IGP01E1000_PHY_PORT_CONFIG, &data);
1002 			if (ret_val)
1003 				goto out;
1004 
1005 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1006 			ret_val = phy->ops.write_reg(hw,
1007 					IGP01E1000_PHY_PORT_CONFIG, data);
1008 			if (ret_val)
1009 				goto out;
1010 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1011 			ret_val = phy->ops.read_reg(hw,
1012 					IGP01E1000_PHY_PORT_CONFIG, &data);
1013 			if (ret_val)
1014 				goto out;
1015 
1016 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1017 			ret_val = phy->ops.write_reg(hw,
1018 					IGP01E1000_PHY_PORT_CONFIG, data);
1019 			if (ret_val)
1020 				goto out;
1021 		}
1022 	}
1023 
1024 out:
1025 	return ret_val;
1026 }
1027 
1028 /**
1029  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1030  *  @hw: pointer to the HW structure
1031  *  @active: true to enable LPLU, false to disable
1032  *
1033  *  Sets the LPLU D0 state according to the active flag.  When
1034  *  activating LPLU this function also disables smart speed
1035  *  and vice versa.  LPLU will not be activated unless the
1036  *  device autonegotiation advertisement meets standards of
1037  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1038  *  This is a function pointer entry point only called by
1039  *  PHY setup routines.
1040  **/
1041 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1042 {
1043 	struct e1000_phy_info *phy = &hw->phy;
1044 	u16 data;
1045 
1046 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1047 
1048 	if (active) {
1049 		data |= E1000_82580_PM_D0_LPLU;
1050 
1051 		/* When LPLU is enabled, we should disable SmartSpeed */
1052 		data &= ~E1000_82580_PM_SPD;
1053 	} else {
1054 		data &= ~E1000_82580_PM_D0_LPLU;
1055 
1056 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1057 		 * during Dx states where the power conservation is most
1058 		 * important.  During driver activity we should enable
1059 		 * SmartSpeed, so performance is maintained.
1060 		 */
1061 		if (phy->smart_speed == e1000_smart_speed_on)
1062 			data |= E1000_82580_PM_SPD;
1063 		else if (phy->smart_speed == e1000_smart_speed_off)
1064 			data &= ~E1000_82580_PM_SPD; }
1065 
1066 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1067 	return 0;
1068 }
1069 
1070 /**
1071  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1072  *  @hw: pointer to the HW structure
1073  *  @active: boolean used to enable/disable lplu
1074  *
1075  *  Success returns 0, Failure returns 1
1076  *
1077  *  The low power link up (lplu) state is set to the power management level D3
1078  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1079  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1080  *  is used during Dx states where the power conservation is most important.
1081  *  During driver activity, SmartSpeed should be enabled so performance is
1082  *  maintained.
1083  **/
1084 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1085 {
1086 	struct e1000_phy_info *phy = &hw->phy;
1087 	u16 data;
1088 
1089 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1090 
1091 	if (!active) {
1092 		data &= ~E1000_82580_PM_D3_LPLU;
1093 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1094 		 * during Dx states where the power conservation is most
1095 		 * important.  During driver activity we should enable
1096 		 * SmartSpeed, so performance is maintained.
1097 		 */
1098 		if (phy->smart_speed == e1000_smart_speed_on)
1099 			data |= E1000_82580_PM_SPD;
1100 		else if (phy->smart_speed == e1000_smart_speed_off)
1101 			data &= ~E1000_82580_PM_SPD;
1102 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1103 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1104 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1105 		data |= E1000_82580_PM_D3_LPLU;
1106 		/* When LPLU is enabled, we should disable SmartSpeed */
1107 		data &= ~E1000_82580_PM_SPD;
1108 	}
1109 
1110 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1111 	return 0;
1112 }
1113 
1114 /**
1115  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1116  *  @hw: pointer to the HW structure
1117  *
1118  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1119  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1120  *  Return successful if access grant bit set, else clear the request for
1121  *  EEPROM access and return -E1000_ERR_NVM (-1).
1122  **/
1123 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1124 {
1125 	s32 ret_val;
1126 
1127 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1128 	if (ret_val)
1129 		goto out;
1130 
1131 	ret_val = igb_acquire_nvm(hw);
1132 
1133 	if (ret_val)
1134 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1135 
1136 out:
1137 	return ret_val;
1138 }
1139 
1140 /**
1141  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1142  *  @hw: pointer to the HW structure
1143  *
1144  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1145  *  then release the semaphores acquired.
1146  **/
1147 static void igb_release_nvm_82575(struct e1000_hw *hw)
1148 {
1149 	igb_release_nvm(hw);
1150 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1151 }
1152 
1153 /**
1154  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1155  *  @hw: pointer to the HW structure
1156  *  @mask: specifies which semaphore to acquire
1157  *
1158  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1159  *  will also specify which port we're acquiring the lock for.
1160  **/
1161 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1162 {
1163 	u32 swfw_sync;
1164 	u32 swmask = mask;
1165 	u32 fwmask = mask << 16;
1166 	s32 ret_val = 0;
1167 	s32 i = 0, timeout = 200;
1168 
1169 	while (i < timeout) {
1170 		if (igb_get_hw_semaphore(hw)) {
1171 			ret_val = -E1000_ERR_SWFW_SYNC;
1172 			goto out;
1173 		}
1174 
1175 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1176 		if (!(swfw_sync & (fwmask | swmask)))
1177 			break;
1178 
1179 		/* Firmware currently using resource (fwmask)
1180 		 * or other software thread using resource (swmask)
1181 		 */
1182 		igb_put_hw_semaphore(hw);
1183 		mdelay(5);
1184 		i++;
1185 	}
1186 
1187 	if (i == timeout) {
1188 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1189 		ret_val = -E1000_ERR_SWFW_SYNC;
1190 		goto out;
1191 	}
1192 
1193 	swfw_sync |= swmask;
1194 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1195 
1196 	igb_put_hw_semaphore(hw);
1197 
1198 out:
1199 	return ret_val;
1200 }
1201 
1202 /**
1203  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1204  *  @hw: pointer to the HW structure
1205  *  @mask: specifies which semaphore to acquire
1206  *
1207  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1208  *  will also specify which port we're releasing the lock for.
1209  **/
1210 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1211 {
1212 	u32 swfw_sync;
1213 
1214 	while (igb_get_hw_semaphore(hw) != 0)
1215 		; /* Empty */
1216 
1217 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1218 	swfw_sync &= ~mask;
1219 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1220 
1221 	igb_put_hw_semaphore(hw);
1222 }
1223 
1224 /**
1225  *  igb_get_cfg_done_82575 - Read config done bit
1226  *  @hw: pointer to the HW structure
1227  *
1228  *  Read the management control register for the config done bit for
1229  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1230  *  to read the config done bit, so an error is *ONLY* logged and returns
1231  *  0.  If we were to return with error, EEPROM-less silicon
1232  *  would not be able to be reset or change link.
1233  **/
1234 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1235 {
1236 	s32 timeout = PHY_CFG_TIMEOUT;
1237 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1238 
1239 	if (hw->bus.func == 1)
1240 		mask = E1000_NVM_CFG_DONE_PORT_1;
1241 	else if (hw->bus.func == E1000_FUNC_2)
1242 		mask = E1000_NVM_CFG_DONE_PORT_2;
1243 	else if (hw->bus.func == E1000_FUNC_3)
1244 		mask = E1000_NVM_CFG_DONE_PORT_3;
1245 
1246 	while (timeout) {
1247 		if (rd32(E1000_EEMNGCTL) & mask)
1248 			break;
1249 		usleep_range(1000, 2000);
1250 		timeout--;
1251 	}
1252 	if (!timeout)
1253 		hw_dbg("MNG configuration cycle has not completed.\n");
1254 
1255 	/* If EEPROM is not marked present, init the PHY manually */
1256 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1257 	    (hw->phy.type == e1000_phy_igp_3))
1258 		igb_phy_init_script_igp3(hw);
1259 
1260 	return 0;
1261 }
1262 
1263 /**
1264  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1265  *  @hw: pointer to the HW structure
1266  *  @speed: stores the current speed
1267  *  @duplex: stores the current duplex
1268  *
1269  *  This is a wrapper function, if using the serial gigabit media independent
1270  *  interface, use PCS to retrieve the link speed and duplex information.
1271  *  Otherwise, use the generic function to get the link speed and duplex info.
1272  **/
1273 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1274 					u16 *duplex)
1275 {
1276 	s32 ret_val;
1277 
1278 	if (hw->phy.media_type != e1000_media_type_copper)
1279 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1280 							       duplex);
1281 	else
1282 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1283 								    duplex);
1284 
1285 	return ret_val;
1286 }
1287 
1288 /**
1289  *  igb_check_for_link_82575 - Check for link
1290  *  @hw: pointer to the HW structure
1291  *
1292  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1293  *  use the generic interface for determining link.
1294  **/
1295 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1296 {
1297 	s32 ret_val;
1298 	u16 speed, duplex;
1299 
1300 	if (hw->phy.media_type != e1000_media_type_copper) {
1301 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1302 							     &duplex);
1303 		/* Use this flag to determine if link needs to be checked or
1304 		 * not.  If  we have link clear the flag so that we do not
1305 		 * continue to check for link.
1306 		 */
1307 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1308 
1309 		/* Configure Flow Control now that Auto-Neg has completed.
1310 		 * First, we need to restore the desired flow control
1311 		 * settings because we may have had to re-autoneg with a
1312 		 * different link partner.
1313 		 */
1314 		ret_val = igb_config_fc_after_link_up(hw);
1315 		if (ret_val)
1316 			hw_dbg("Error configuring flow control\n");
1317 	} else {
1318 		ret_val = igb_check_for_copper_link(hw);
1319 	}
1320 
1321 	return ret_val;
1322 }
1323 
1324 /**
1325  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1326  *  @hw: pointer to the HW structure
1327  **/
1328 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1329 {
1330 	u32 reg;
1331 
1332 
1333 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1334 	    !igb_sgmii_active_82575(hw))
1335 		return;
1336 
1337 	/* Enable PCS to turn on link */
1338 	reg = rd32(E1000_PCS_CFG0);
1339 	reg |= E1000_PCS_CFG_PCS_EN;
1340 	wr32(E1000_PCS_CFG0, reg);
1341 
1342 	/* Power up the laser */
1343 	reg = rd32(E1000_CTRL_EXT);
1344 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1345 	wr32(E1000_CTRL_EXT, reg);
1346 
1347 	/* flush the write to verify completion */
1348 	wrfl();
1349 	usleep_range(1000, 2000);
1350 }
1351 
1352 /**
1353  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1354  *  @hw: pointer to the HW structure
1355  *  @speed: stores the current speed
1356  *  @duplex: stores the current duplex
1357  *
1358  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1359  *  duplex, then store the values in the pointers provided.
1360  **/
1361 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1362 						u16 *duplex)
1363 {
1364 	struct e1000_mac_info *mac = &hw->mac;
1365 	u32 pcs, status;
1366 
1367 	/* Set up defaults for the return values of this function */
1368 	mac->serdes_has_link = false;
1369 	*speed = 0;
1370 	*duplex = 0;
1371 
1372 	/* Read the PCS Status register for link state. For non-copper mode,
1373 	 * the status register is not accurate. The PCS status register is
1374 	 * used instead.
1375 	 */
1376 	pcs = rd32(E1000_PCS_LSTAT);
1377 
1378 	/* The link up bit determines when link is up on autoneg. The sync ok
1379 	 * gets set once both sides sync up and agree upon link. Stable link
1380 	 * can be determined by checking for both link up and link sync ok
1381 	 */
1382 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1383 		mac->serdes_has_link = true;
1384 
1385 		/* Detect and store PCS speed */
1386 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1387 			*speed = SPEED_1000;
1388 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1389 			*speed = SPEED_100;
1390 		else
1391 			*speed = SPEED_10;
1392 
1393 		/* Detect and store PCS duplex */
1394 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1395 			*duplex = FULL_DUPLEX;
1396 		else
1397 			*duplex = HALF_DUPLEX;
1398 
1399 	/* Check if it is an I354 2.5Gb backplane connection. */
1400 		if (mac->type == e1000_i354) {
1401 			status = rd32(E1000_STATUS);
1402 			if ((status & E1000_STATUS_2P5_SKU) &&
1403 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1404 				*speed = SPEED_2500;
1405 				*duplex = FULL_DUPLEX;
1406 				hw_dbg("2500 Mbs, ");
1407 				hw_dbg("Full Duplex\n");
1408 			}
1409 		}
1410 
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1418  *  @hw: pointer to the HW structure
1419  *
1420  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1421  *  when management pass thru is not enabled.
1422  **/
1423 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1424 {
1425 	u32 reg;
1426 
1427 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1428 	    igb_sgmii_active_82575(hw))
1429 		return;
1430 
1431 	if (!igb_enable_mng_pass_thru(hw)) {
1432 		/* Disable PCS to turn off link */
1433 		reg = rd32(E1000_PCS_CFG0);
1434 		reg &= ~E1000_PCS_CFG_PCS_EN;
1435 		wr32(E1000_PCS_CFG0, reg);
1436 
1437 		/* shutdown the laser */
1438 		reg = rd32(E1000_CTRL_EXT);
1439 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1440 		wr32(E1000_CTRL_EXT, reg);
1441 
1442 		/* flush the write to verify completion */
1443 		wrfl();
1444 		usleep_range(1000, 2000);
1445 	}
1446 }
1447 
1448 /**
1449  *  igb_reset_hw_82575 - Reset hardware
1450  *  @hw: pointer to the HW structure
1451  *
1452  *  This resets the hardware into a known state.  This is a
1453  *  function pointer entry point called by the api module.
1454  **/
1455 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1456 {
1457 	u32 ctrl;
1458 	s32 ret_val;
1459 
1460 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1461 	 * on the last TLP read/write transaction when MAC is reset.
1462 	 */
1463 	ret_val = igb_disable_pcie_master(hw);
1464 	if (ret_val)
1465 		hw_dbg("PCI-E Master disable polling has failed.\n");
1466 
1467 	/* set the completion timeout for interface */
1468 	ret_val = igb_set_pcie_completion_timeout(hw);
1469 	if (ret_val)
1470 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1471 
1472 	hw_dbg("Masking off all interrupts\n");
1473 	wr32(E1000_IMC, 0xffffffff);
1474 
1475 	wr32(E1000_RCTL, 0);
1476 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1477 	wrfl();
1478 
1479 	usleep_range(10000, 20000);
1480 
1481 	ctrl = rd32(E1000_CTRL);
1482 
1483 	hw_dbg("Issuing a global reset to MAC\n");
1484 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1485 
1486 	ret_val = igb_get_auto_rd_done(hw);
1487 	if (ret_val) {
1488 		/* When auto config read does not complete, do not
1489 		 * return with an error. This can happen in situations
1490 		 * where there is no eeprom and prevents getting link.
1491 		 */
1492 		hw_dbg("Auto Read Done did not complete\n");
1493 	}
1494 
1495 	/* If EEPROM is not present, run manual init scripts */
1496 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1497 		igb_reset_init_script_82575(hw);
1498 
1499 	/* Clear any pending interrupt events. */
1500 	wr32(E1000_IMC, 0xffffffff);
1501 	rd32(E1000_ICR);
1502 
1503 	/* Install any alternate MAC address into RAR0 */
1504 	ret_val = igb_check_alt_mac_addr(hw);
1505 
1506 	return ret_val;
1507 }
1508 
1509 /**
1510  *  igb_init_hw_82575 - Initialize hardware
1511  *  @hw: pointer to the HW structure
1512  *
1513  *  This inits the hardware readying it for operation.
1514  **/
1515 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1516 {
1517 	struct e1000_mac_info *mac = &hw->mac;
1518 	s32 ret_val;
1519 	u16 i, rar_count = mac->rar_entry_count;
1520 
1521 	if ((hw->mac.type >= e1000_i210) &&
1522 	    !(igb_get_flash_presence_i210(hw))) {
1523 		ret_val = igb_pll_workaround_i210(hw);
1524 		if (ret_val)
1525 			return ret_val;
1526 	}
1527 
1528 	/* Initialize identification LED */
1529 	ret_val = igb_id_led_init(hw);
1530 	if (ret_val) {
1531 		hw_dbg("Error initializing identification LED\n");
1532 		/* This is not fatal and we should not stop init due to this */
1533 	}
1534 
1535 	/* Disabling VLAN filtering */
1536 	hw_dbg("Initializing the IEEE VLAN\n");
1537 	igb_clear_vfta(hw);
1538 
1539 	/* Setup the receive address */
1540 	igb_init_rx_addrs(hw, rar_count);
1541 
1542 	/* Zero out the Multicast HASH table */
1543 	hw_dbg("Zeroing the MTA\n");
1544 	for (i = 0; i < mac->mta_reg_count; i++)
1545 		array_wr32(E1000_MTA, i, 0);
1546 
1547 	/* Zero out the Unicast HASH table */
1548 	hw_dbg("Zeroing the UTA\n");
1549 	for (i = 0; i < mac->uta_reg_count; i++)
1550 		array_wr32(E1000_UTA, i, 0);
1551 
1552 	/* Setup link and flow control */
1553 	ret_val = igb_setup_link(hw);
1554 
1555 	/* Clear all of the statistics registers (clear on read).  It is
1556 	 * important that we do this after we have tried to establish link
1557 	 * because the symbol error count will increment wildly if there
1558 	 * is no link.
1559 	 */
1560 	igb_clear_hw_cntrs_82575(hw);
1561 	return ret_val;
1562 }
1563 
1564 /**
1565  *  igb_setup_copper_link_82575 - Configure copper link settings
1566  *  @hw: pointer to the HW structure
1567  *
1568  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1569  *  for link, once link is established calls to configure collision distance
1570  *  and flow control are called.
1571  **/
1572 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1573 {
1574 	u32 ctrl;
1575 	s32  ret_val;
1576 	u32 phpm_reg;
1577 
1578 	ctrl = rd32(E1000_CTRL);
1579 	ctrl |= E1000_CTRL_SLU;
1580 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1581 	wr32(E1000_CTRL, ctrl);
1582 
1583 	/* Clear Go Link Disconnect bit on supported devices */
1584 	switch (hw->mac.type) {
1585 	case e1000_82580:
1586 	case e1000_i350:
1587 	case e1000_i210:
1588 	case e1000_i211:
1589 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1590 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1591 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1592 		break;
1593 	default:
1594 		break;
1595 	}
1596 
1597 	ret_val = igb_setup_serdes_link_82575(hw);
1598 	if (ret_val)
1599 		goto out;
1600 
1601 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1602 		/* allow time for SFP cage time to power up phy */
1603 		msleep(300);
1604 
1605 		ret_val = hw->phy.ops.reset(hw);
1606 		if (ret_val) {
1607 			hw_dbg("Error resetting the PHY.\n");
1608 			goto out;
1609 		}
1610 	}
1611 	switch (hw->phy.type) {
1612 	case e1000_phy_i210:
1613 	case e1000_phy_m88:
1614 		switch (hw->phy.id) {
1615 		case I347AT4_E_PHY_ID:
1616 		case M88E1112_E_PHY_ID:
1617 		case M88E1543_E_PHY_ID:
1618 		case M88E1512_E_PHY_ID:
1619 		case I210_I_PHY_ID:
1620 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1621 			break;
1622 		default:
1623 			ret_val = igb_copper_link_setup_m88(hw);
1624 			break;
1625 		}
1626 		break;
1627 	case e1000_phy_igp_3:
1628 		ret_val = igb_copper_link_setup_igp(hw);
1629 		break;
1630 	case e1000_phy_82580:
1631 		ret_val = igb_copper_link_setup_82580(hw);
1632 		break;
1633 	case e1000_phy_bcm54616:
1634 		ret_val = 0;
1635 		break;
1636 	default:
1637 		ret_val = -E1000_ERR_PHY;
1638 		break;
1639 	}
1640 
1641 	if (ret_val)
1642 		goto out;
1643 
1644 	ret_val = igb_setup_copper_link(hw);
1645 out:
1646 	return ret_val;
1647 }
1648 
1649 /**
1650  *  igb_setup_serdes_link_82575 - Setup link for serdes
1651  *  @hw: pointer to the HW structure
1652  *
1653  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1654  *  used on copper connections where the serialized gigabit media independent
1655  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1656  *  for auto-negotiation or forces speed/duplex.
1657  **/
1658 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1659 {
1660 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1661 	bool pcs_autoneg;
1662 	s32 ret_val = 0;
1663 	u16 data;
1664 
1665 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1666 	    !igb_sgmii_active_82575(hw))
1667 		return ret_val;
1668 
1669 
1670 	/* On the 82575, SerDes loopback mode persists until it is
1671 	 * explicitly turned off or a power cycle is performed.  A read to
1672 	 * the register does not indicate its status.  Therefore, we ensure
1673 	 * loopback mode is disabled during initialization.
1674 	 */
1675 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1676 
1677 	/* power on the sfp cage if present and turn on I2C */
1678 	ctrl_ext = rd32(E1000_CTRL_EXT);
1679 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1680 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1681 	wr32(E1000_CTRL_EXT, ctrl_ext);
1682 
1683 	ctrl_reg = rd32(E1000_CTRL);
1684 	ctrl_reg |= E1000_CTRL_SLU;
1685 
1686 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1687 		/* set both sw defined pins */
1688 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1689 
1690 		/* Set switch control to serdes energy detect */
1691 		reg = rd32(E1000_CONNSW);
1692 		reg |= E1000_CONNSW_ENRGSRC;
1693 		wr32(E1000_CONNSW, reg);
1694 	}
1695 
1696 	reg = rd32(E1000_PCS_LCTL);
1697 
1698 	/* default pcs_autoneg to the same setting as mac autoneg */
1699 	pcs_autoneg = hw->mac.autoneg;
1700 
1701 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1702 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1703 		/* sgmii mode lets the phy handle forcing speed/duplex */
1704 		pcs_autoneg = true;
1705 		/* autoneg time out should be disabled for SGMII mode */
1706 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1707 		break;
1708 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1709 		/* disable PCS autoneg and support parallel detect only */
1710 		pcs_autoneg = false;
1711 		/* fall through */
1712 	default:
1713 		if (hw->mac.type == e1000_82575 ||
1714 		    hw->mac.type == e1000_82576) {
1715 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1716 			if (ret_val) {
1717 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1718 				return ret_val;
1719 			}
1720 
1721 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1722 				pcs_autoneg = false;
1723 		}
1724 
1725 		/* non-SGMII modes only supports a speed of 1000/Full for the
1726 		 * link so it is best to just force the MAC and let the pcs
1727 		 * link either autoneg or be forced to 1000/Full
1728 		 */
1729 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1730 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1731 
1732 		/* set speed of 1000/Full if speed/duplex is forced */
1733 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1734 		break;
1735 	}
1736 
1737 	wr32(E1000_CTRL, ctrl_reg);
1738 
1739 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1740 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1741 	 * mode that will be compatible with older link partners and switches.
1742 	 * However, both are supported by the hardware and some drivers/tools.
1743 	 */
1744 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1745 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1746 
1747 	if (pcs_autoneg) {
1748 		/* Set PCS register for autoneg */
1749 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1750 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1751 
1752 		/* Disable force flow control for autoneg */
1753 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1754 
1755 		/* Configure flow control advertisement for autoneg */
1756 		anadv_reg = rd32(E1000_PCS_ANADV);
1757 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1758 		switch (hw->fc.requested_mode) {
1759 		case e1000_fc_full:
1760 		case e1000_fc_rx_pause:
1761 			anadv_reg |= E1000_TXCW_ASM_DIR;
1762 			anadv_reg |= E1000_TXCW_PAUSE;
1763 			break;
1764 		case e1000_fc_tx_pause:
1765 			anadv_reg |= E1000_TXCW_ASM_DIR;
1766 			break;
1767 		default:
1768 			break;
1769 		}
1770 		wr32(E1000_PCS_ANADV, anadv_reg);
1771 
1772 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1773 	} else {
1774 		/* Set PCS register for forced link */
1775 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1776 
1777 		/* Force flow control for forced link */
1778 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1779 
1780 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1781 	}
1782 
1783 	wr32(E1000_PCS_LCTL, reg);
1784 
1785 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1786 		igb_force_mac_fc(hw);
1787 
1788 	return ret_val;
1789 }
1790 
1791 /**
1792  *  igb_sgmii_active_82575 - Return sgmii state
1793  *  @hw: pointer to the HW structure
1794  *
1795  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1796  *  which can be enabled for use in the embedded applications.  Simply
1797  *  return the current state of the sgmii interface.
1798  **/
1799 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1800 {
1801 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1802 	return dev_spec->sgmii_active;
1803 }
1804 
1805 /**
1806  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1807  *  @hw: pointer to the HW structure
1808  *
1809  *  Inits recommended HW defaults after a reset when there is no EEPROM
1810  *  detected. This is only for the 82575.
1811  **/
1812 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1813 {
1814 	if (hw->mac.type == e1000_82575) {
1815 		hw_dbg("Running reset init script for 82575\n");
1816 		/* SerDes configuration via SERDESCTRL */
1817 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1818 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1819 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1820 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1821 
1822 		/* CCM configuration via CCMCTL register */
1823 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1824 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1825 
1826 		/* PCIe lanes configuration */
1827 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1828 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1829 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1830 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1831 
1832 		/* PCIe PLL Configuration */
1833 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1834 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1835 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1836 	}
1837 
1838 	return 0;
1839 }
1840 
1841 /**
1842  *  igb_read_mac_addr_82575 - Read device MAC address
1843  *  @hw: pointer to the HW structure
1844  **/
1845 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1846 {
1847 	s32 ret_val = 0;
1848 
1849 	/* If there's an alternate MAC address place it in RAR0
1850 	 * so that it will override the Si installed default perm
1851 	 * address.
1852 	 */
1853 	ret_val = igb_check_alt_mac_addr(hw);
1854 	if (ret_val)
1855 		goto out;
1856 
1857 	ret_val = igb_read_mac_addr(hw);
1858 
1859 out:
1860 	return ret_val;
1861 }
1862 
1863 /**
1864  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1865  * @hw: pointer to the HW structure
1866  *
1867  * In the case of a PHY power down to save power, or to turn off link during a
1868  * driver unload, or wake on lan is not enabled, remove the link.
1869  **/
1870 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1871 {
1872 	/* If the management interface is not enabled, then power down */
1873 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1874 		igb_power_down_phy_copper(hw);
1875 }
1876 
1877 /**
1878  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1879  *  @hw: pointer to the HW structure
1880  *
1881  *  Clears the hardware counters by reading the counter registers.
1882  **/
1883 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1884 {
1885 	igb_clear_hw_cntrs_base(hw);
1886 
1887 	rd32(E1000_PRC64);
1888 	rd32(E1000_PRC127);
1889 	rd32(E1000_PRC255);
1890 	rd32(E1000_PRC511);
1891 	rd32(E1000_PRC1023);
1892 	rd32(E1000_PRC1522);
1893 	rd32(E1000_PTC64);
1894 	rd32(E1000_PTC127);
1895 	rd32(E1000_PTC255);
1896 	rd32(E1000_PTC511);
1897 	rd32(E1000_PTC1023);
1898 	rd32(E1000_PTC1522);
1899 
1900 	rd32(E1000_ALGNERRC);
1901 	rd32(E1000_RXERRC);
1902 	rd32(E1000_TNCRS);
1903 	rd32(E1000_CEXTERR);
1904 	rd32(E1000_TSCTC);
1905 	rd32(E1000_TSCTFC);
1906 
1907 	rd32(E1000_MGTPRC);
1908 	rd32(E1000_MGTPDC);
1909 	rd32(E1000_MGTPTC);
1910 
1911 	rd32(E1000_IAC);
1912 	rd32(E1000_ICRXOC);
1913 
1914 	rd32(E1000_ICRXPTC);
1915 	rd32(E1000_ICRXATC);
1916 	rd32(E1000_ICTXPTC);
1917 	rd32(E1000_ICTXATC);
1918 	rd32(E1000_ICTXQEC);
1919 	rd32(E1000_ICTXQMTC);
1920 	rd32(E1000_ICRXDMTC);
1921 
1922 	rd32(E1000_CBTMPC);
1923 	rd32(E1000_HTDPMC);
1924 	rd32(E1000_CBRMPC);
1925 	rd32(E1000_RPTHC);
1926 	rd32(E1000_HGPTC);
1927 	rd32(E1000_HTCBDPC);
1928 	rd32(E1000_HGORCL);
1929 	rd32(E1000_HGORCH);
1930 	rd32(E1000_HGOTCL);
1931 	rd32(E1000_HGOTCH);
1932 	rd32(E1000_LENERRS);
1933 
1934 	/* This register should not be read in copper configurations */
1935 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1936 	    igb_sgmii_active_82575(hw))
1937 		rd32(E1000_SCVPC);
1938 }
1939 
1940 /**
1941  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1942  *  @hw: pointer to the HW structure
1943  *
1944  *  After rx enable if manageability is enabled then there is likely some
1945  *  bad data at the start of the fifo and possibly in the DMA fifo. This
1946  *  function clears the fifos and flushes any packets that came in as rx was
1947  *  being enabled.
1948  **/
1949 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1950 {
1951 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1952 	int i, ms_wait;
1953 
1954 	/* disable IPv6 options as per hardware errata */
1955 	rfctl = rd32(E1000_RFCTL);
1956 	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1957 	wr32(E1000_RFCTL, rfctl);
1958 
1959 	if (hw->mac.type != e1000_82575 ||
1960 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1961 		return;
1962 
1963 	/* Disable all RX queues */
1964 	for (i = 0; i < 4; i++) {
1965 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1966 		wr32(E1000_RXDCTL(i),
1967 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1968 	}
1969 	/* Poll all queues to verify they have shut down */
1970 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1971 		usleep_range(1000, 2000);
1972 		rx_enabled = 0;
1973 		for (i = 0; i < 4; i++)
1974 			rx_enabled |= rd32(E1000_RXDCTL(i));
1975 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1976 			break;
1977 	}
1978 
1979 	if (ms_wait == 10)
1980 		hw_dbg("Queue disable timed out after 10ms\n");
1981 
1982 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1983 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1984 	 * any packet that was coming in as RCTL.EN was set is flushed
1985 	 */
1986 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1987 
1988 	rlpml = rd32(E1000_RLPML);
1989 	wr32(E1000_RLPML, 0);
1990 
1991 	rctl = rd32(E1000_RCTL);
1992 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1993 	temp_rctl |= E1000_RCTL_LPE;
1994 
1995 	wr32(E1000_RCTL, temp_rctl);
1996 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1997 	wrfl();
1998 	usleep_range(2000, 3000);
1999 
2000 	/* Enable RX queues that were previously enabled and restore our
2001 	 * previous state
2002 	 */
2003 	for (i = 0; i < 4; i++)
2004 		wr32(E1000_RXDCTL(i), rxdctl[i]);
2005 	wr32(E1000_RCTL, rctl);
2006 	wrfl();
2007 
2008 	wr32(E1000_RLPML, rlpml);
2009 	wr32(E1000_RFCTL, rfctl);
2010 
2011 	/* Flush receive errors generated by workaround */
2012 	rd32(E1000_ROC);
2013 	rd32(E1000_RNBC);
2014 	rd32(E1000_MPC);
2015 }
2016 
2017 /**
2018  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2019  *  @hw: pointer to the HW structure
2020  *
2021  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2022  *  however the hardware default for these parts is 500us to 1ms which is less
2023  *  than the 10ms recommended by the pci-e spec.  To address this we need to
2024  *  increase the value to either 10ms to 200ms for capability version 1 config,
2025  *  or 16ms to 55ms for version 2.
2026  **/
2027 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2028 {
2029 	u32 gcr = rd32(E1000_GCR);
2030 	s32 ret_val = 0;
2031 	u16 pcie_devctl2;
2032 
2033 	/* only take action if timeout value is defaulted to 0 */
2034 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2035 		goto out;
2036 
2037 	/* if capabilities version is type 1 we can write the
2038 	 * timeout of 10ms to 200ms through the GCR register
2039 	 */
2040 	if (!(gcr & E1000_GCR_CAP_VER2)) {
2041 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2042 		goto out;
2043 	}
2044 
2045 	/* for version 2 capabilities we need to write the config space
2046 	 * directly in order to set the completion timeout value for
2047 	 * 16ms to 55ms
2048 	 */
2049 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2050 					&pcie_devctl2);
2051 	if (ret_val)
2052 		goto out;
2053 
2054 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2055 
2056 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2057 					 &pcie_devctl2);
2058 out:
2059 	/* disable completion timeout resend */
2060 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2061 
2062 	wr32(E1000_GCR, gcr);
2063 	return ret_val;
2064 }
2065 
2066 /**
2067  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2068  *  @hw: pointer to the hardware struct
2069  *  @enable: state to enter, either enabled or disabled
2070  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2071  *
2072  *  enables/disables L2 switch anti-spoofing functionality.
2073  **/
2074 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2075 {
2076 	u32 reg_val, reg_offset;
2077 
2078 	switch (hw->mac.type) {
2079 	case e1000_82576:
2080 		reg_offset = E1000_DTXSWC;
2081 		break;
2082 	case e1000_i350:
2083 	case e1000_i354:
2084 		reg_offset = E1000_TXSWC;
2085 		break;
2086 	default:
2087 		return;
2088 	}
2089 
2090 	reg_val = rd32(reg_offset);
2091 	if (enable) {
2092 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2093 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2094 		/* The PF can spoof - it has to in order to
2095 		 * support emulation mode NICs
2096 		 */
2097 		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2098 	} else {
2099 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2100 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2101 	}
2102 	wr32(reg_offset, reg_val);
2103 }
2104 
2105 /**
2106  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2107  *  @hw: pointer to the hardware struct
2108  *  @enable: state to enter, either enabled or disabled
2109  *
2110  *  enables/disables L2 switch loopback functionality.
2111  **/
2112 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2113 {
2114 	u32 dtxswc;
2115 
2116 	switch (hw->mac.type) {
2117 	case e1000_82576:
2118 		dtxswc = rd32(E1000_DTXSWC);
2119 		if (enable)
2120 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2121 		else
2122 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2123 		wr32(E1000_DTXSWC, dtxswc);
2124 		break;
2125 	case e1000_i354:
2126 	case e1000_i350:
2127 		dtxswc = rd32(E1000_TXSWC);
2128 		if (enable)
2129 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2130 		else
2131 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2132 		wr32(E1000_TXSWC, dtxswc);
2133 		break;
2134 	default:
2135 		/* Currently no other hardware supports loopback */
2136 		break;
2137 	}
2138 
2139 }
2140 
2141 /**
2142  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2143  *  @hw: pointer to the hardware struct
2144  *  @enable: state to enter, either enabled or disabled
2145  *
2146  *  enables/disables replication of packets across multiple pools.
2147  **/
2148 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2149 {
2150 	u32 vt_ctl = rd32(E1000_VT_CTL);
2151 
2152 	if (enable)
2153 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2154 	else
2155 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2156 
2157 	wr32(E1000_VT_CTL, vt_ctl);
2158 }
2159 
2160 /**
2161  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2162  *  @hw: pointer to the HW structure
2163  *  @offset: register offset to be read
2164  *  @data: pointer to the read data
2165  *
2166  *  Reads the MDI control register in the PHY at offset and stores the
2167  *  information read to data.
2168  **/
2169 s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2170 {
2171 	s32 ret_val;
2172 
2173 	ret_val = hw->phy.ops.acquire(hw);
2174 	if (ret_val)
2175 		goto out;
2176 
2177 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2178 
2179 	hw->phy.ops.release(hw);
2180 
2181 out:
2182 	return ret_val;
2183 }
2184 
2185 /**
2186  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2187  *  @hw: pointer to the HW structure
2188  *  @offset: register offset to write to
2189  *  @data: data to write to register at offset
2190  *
2191  *  Writes data to MDI control register in the PHY at offset.
2192  **/
2193 s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2194 {
2195 	s32 ret_val;
2196 
2197 
2198 	ret_val = hw->phy.ops.acquire(hw);
2199 	if (ret_val)
2200 		goto out;
2201 
2202 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2203 
2204 	hw->phy.ops.release(hw);
2205 
2206 out:
2207 	return ret_val;
2208 }
2209 
2210 /**
2211  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2212  *  @hw: pointer to the HW structure
2213  *
2214  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2215  *  the values found in the EEPROM.  This addresses an issue in which these
2216  *  bits are not restored from EEPROM after reset.
2217  **/
2218 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2219 {
2220 	s32 ret_val = 0;
2221 	u32 mdicnfg;
2222 	u16 nvm_data = 0;
2223 
2224 	if (hw->mac.type != e1000_82580)
2225 		goto out;
2226 	if (!igb_sgmii_active_82575(hw))
2227 		goto out;
2228 
2229 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2230 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2231 				   &nvm_data);
2232 	if (ret_val) {
2233 		hw_dbg("NVM Read Error\n");
2234 		goto out;
2235 	}
2236 
2237 	mdicnfg = rd32(E1000_MDICNFG);
2238 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2239 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2240 	if (nvm_data & NVM_WORD24_COM_MDIO)
2241 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2242 	wr32(E1000_MDICNFG, mdicnfg);
2243 out:
2244 	return ret_val;
2245 }
2246 
2247 /**
2248  *  igb_reset_hw_82580 - Reset hardware
2249  *  @hw: pointer to the HW structure
2250  *
2251  *  This resets function or entire device (all ports, etc.)
2252  *  to a known state.
2253  **/
2254 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2255 {
2256 	s32 ret_val = 0;
2257 	/* BH SW mailbox bit in SW_FW_SYNC */
2258 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2259 	u32 ctrl;
2260 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2261 
2262 	hw->dev_spec._82575.global_device_reset = false;
2263 
2264 	/* due to hw errata, global device reset doesn't always
2265 	 * work on 82580
2266 	 */
2267 	if (hw->mac.type == e1000_82580)
2268 		global_device_reset = false;
2269 
2270 	/* Get current control state. */
2271 	ctrl = rd32(E1000_CTRL);
2272 
2273 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2274 	 * on the last TLP read/write transaction when MAC is reset.
2275 	 */
2276 	ret_val = igb_disable_pcie_master(hw);
2277 	if (ret_val)
2278 		hw_dbg("PCI-E Master disable polling has failed.\n");
2279 
2280 	hw_dbg("Masking off all interrupts\n");
2281 	wr32(E1000_IMC, 0xffffffff);
2282 	wr32(E1000_RCTL, 0);
2283 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2284 	wrfl();
2285 
2286 	usleep_range(10000, 11000);
2287 
2288 	/* Determine whether or not a global dev reset is requested */
2289 	if (global_device_reset &&
2290 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2291 			global_device_reset = false;
2292 
2293 	if (global_device_reset &&
2294 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2295 		ctrl |= E1000_CTRL_DEV_RST;
2296 	else
2297 		ctrl |= E1000_CTRL_RST;
2298 
2299 	wr32(E1000_CTRL, ctrl);
2300 	wrfl();
2301 
2302 	/* Add delay to insure DEV_RST has time to complete */
2303 	if (global_device_reset)
2304 		usleep_range(5000, 6000);
2305 
2306 	ret_val = igb_get_auto_rd_done(hw);
2307 	if (ret_val) {
2308 		/* When auto config read does not complete, do not
2309 		 * return with an error. This can happen in situations
2310 		 * where there is no eeprom and prevents getting link.
2311 		 */
2312 		hw_dbg("Auto Read Done did not complete\n");
2313 	}
2314 
2315 	/* clear global device reset status bit */
2316 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2317 
2318 	/* Clear any pending interrupt events. */
2319 	wr32(E1000_IMC, 0xffffffff);
2320 	rd32(E1000_ICR);
2321 
2322 	ret_val = igb_reset_mdicnfg_82580(hw);
2323 	if (ret_val)
2324 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2325 
2326 	/* Install any alternate MAC address into RAR0 */
2327 	ret_val = igb_check_alt_mac_addr(hw);
2328 
2329 	/* Release semaphore */
2330 	if (global_device_reset)
2331 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2332 
2333 	return ret_val;
2334 }
2335 
2336 /**
2337  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2338  *  @data: data received by reading RXPBS register
2339  *
2340  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2341  *  This function converts the retrieved value into the correct table value
2342  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2343  *  0x0 36  72 144   1   2   4   8  16
2344  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2345  */
2346 u16 igb_rxpbs_adjust_82580(u32 data)
2347 {
2348 	u16 ret_val = 0;
2349 
2350 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2351 		ret_val = e1000_82580_rxpbs_table[data];
2352 
2353 	return ret_val;
2354 }
2355 
2356 /**
2357  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2358  *  checksum
2359  *  @hw: pointer to the HW structure
2360  *  @offset: offset in words of the checksum protected region
2361  *
2362  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2363  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2364  **/
2365 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2366 						 u16 offset)
2367 {
2368 	s32 ret_val = 0;
2369 	u16 checksum = 0;
2370 	u16 i, nvm_data;
2371 
2372 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2373 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2374 		if (ret_val) {
2375 			hw_dbg("NVM Read Error\n");
2376 			goto out;
2377 		}
2378 		checksum += nvm_data;
2379 	}
2380 
2381 	if (checksum != (u16) NVM_SUM) {
2382 		hw_dbg("NVM Checksum Invalid\n");
2383 		ret_val = -E1000_ERR_NVM;
2384 		goto out;
2385 	}
2386 
2387 out:
2388 	return ret_val;
2389 }
2390 
2391 /**
2392  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2393  *  checksum
2394  *  @hw: pointer to the HW structure
2395  *  @offset: offset in words of the checksum protected region
2396  *
2397  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2398  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2399  *  value to the EEPROM.
2400  **/
2401 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2402 {
2403 	s32 ret_val;
2404 	u16 checksum = 0;
2405 	u16 i, nvm_data;
2406 
2407 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2408 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2409 		if (ret_val) {
2410 			hw_dbg("NVM Read Error while updating checksum.\n");
2411 			goto out;
2412 		}
2413 		checksum += nvm_data;
2414 	}
2415 	checksum = (u16) NVM_SUM - checksum;
2416 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2417 				&checksum);
2418 	if (ret_val)
2419 		hw_dbg("NVM Write Error while updating checksum.\n");
2420 
2421 out:
2422 	return ret_val;
2423 }
2424 
2425 /**
2426  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2427  *  @hw: pointer to the HW structure
2428  *
2429  *  Calculates the EEPROM section checksum by reading/adding each word of
2430  *  the EEPROM and then verifies that the sum of the EEPROM is
2431  *  equal to 0xBABA.
2432  **/
2433 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2434 {
2435 	s32 ret_val = 0;
2436 	u16 eeprom_regions_count = 1;
2437 	u16 j, nvm_data;
2438 	u16 nvm_offset;
2439 
2440 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2441 	if (ret_val) {
2442 		hw_dbg("NVM Read Error\n");
2443 		goto out;
2444 	}
2445 
2446 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2447 		/* if checksums compatibility bit is set validate checksums
2448 		 * for all 4 ports.
2449 		 */
2450 		eeprom_regions_count = 4;
2451 	}
2452 
2453 	for (j = 0; j < eeprom_regions_count; j++) {
2454 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2455 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2456 								nvm_offset);
2457 		if (ret_val != 0)
2458 			goto out;
2459 	}
2460 
2461 out:
2462 	return ret_val;
2463 }
2464 
2465 /**
2466  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2467  *  @hw: pointer to the HW structure
2468  *
2469  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2470  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2471  *  checksum and writes the value to the EEPROM.
2472  **/
2473 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2474 {
2475 	s32 ret_val;
2476 	u16 j, nvm_data;
2477 	u16 nvm_offset;
2478 
2479 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2480 	if (ret_val) {
2481 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2482 		goto out;
2483 	}
2484 
2485 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2486 		/* set compatibility bit to validate checksums appropriately */
2487 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2488 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2489 					&nvm_data);
2490 		if (ret_val) {
2491 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2492 			goto out;
2493 		}
2494 	}
2495 
2496 	for (j = 0; j < 4; j++) {
2497 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2498 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2499 		if (ret_val)
2500 			goto out;
2501 	}
2502 
2503 out:
2504 	return ret_val;
2505 }
2506 
2507 /**
2508  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2509  *  @hw: pointer to the HW structure
2510  *
2511  *  Calculates the EEPROM section checksum by reading/adding each word of
2512  *  the EEPROM and then verifies that the sum of the EEPROM is
2513  *  equal to 0xBABA.
2514  **/
2515 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2516 {
2517 	s32 ret_val = 0;
2518 	u16 j;
2519 	u16 nvm_offset;
2520 
2521 	for (j = 0; j < 4; j++) {
2522 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2523 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2524 								nvm_offset);
2525 		if (ret_val != 0)
2526 			goto out;
2527 	}
2528 
2529 out:
2530 	return ret_val;
2531 }
2532 
2533 /**
2534  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2535  *  @hw: pointer to the HW structure
2536  *
2537  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2538  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2539  *  checksum and writes the value to the EEPROM.
2540  **/
2541 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2542 {
2543 	s32 ret_val = 0;
2544 	u16 j;
2545 	u16 nvm_offset;
2546 
2547 	for (j = 0; j < 4; j++) {
2548 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2549 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2550 		if (ret_val != 0)
2551 			goto out;
2552 	}
2553 
2554 out:
2555 	return ret_val;
2556 }
2557 
2558 /**
2559  *  __igb_access_emi_reg - Read/write EMI register
2560  *  @hw: pointer to the HW structure
2561  *  @addr: EMI address to program
2562  *  @data: pointer to value to read/write from/to the EMI address
2563  *  @read: boolean flag to indicate read or write
2564  **/
2565 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2566 				  u16 *data, bool read)
2567 {
2568 	s32 ret_val = 0;
2569 
2570 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2571 	if (ret_val)
2572 		return ret_val;
2573 
2574 	if (read)
2575 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2576 	else
2577 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2578 
2579 	return ret_val;
2580 }
2581 
2582 /**
2583  *  igb_read_emi_reg - Read Extended Management Interface register
2584  *  @hw: pointer to the HW structure
2585  *  @addr: EMI address to program
2586  *  @data: value to be read from the EMI address
2587  **/
2588 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2589 {
2590 	return __igb_access_emi_reg(hw, addr, data, true);
2591 }
2592 
2593 /**
2594  *  igb_set_eee_i350 - Enable/disable EEE support
2595  *  @hw: pointer to the HW structure
2596  *  @adv1G: boolean flag enabling 1G EEE advertisement
2597  *  @adv100m: boolean flag enabling 100M EEE advertisement
2598  *
2599  *  Enable/disable EEE based on setting in dev_spec structure.
2600  *
2601  **/
2602 s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2603 {
2604 	u32 ipcnfg, eeer;
2605 
2606 	if ((hw->mac.type < e1000_i350) ||
2607 	    (hw->phy.media_type != e1000_media_type_copper))
2608 		goto out;
2609 	ipcnfg = rd32(E1000_IPCNFG);
2610 	eeer = rd32(E1000_EEER);
2611 
2612 	/* enable or disable per user setting */
2613 	if (!(hw->dev_spec._82575.eee_disable)) {
2614 		u32 eee_su = rd32(E1000_EEE_SU);
2615 
2616 		if (adv100M)
2617 			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2618 		else
2619 			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2620 
2621 		if (adv1G)
2622 			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2623 		else
2624 			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2625 
2626 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2627 			E1000_EEER_LPI_FC);
2628 
2629 		/* This bit should not be set in normal operation. */
2630 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2631 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2632 
2633 	} else {
2634 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2635 			E1000_IPCNFG_EEE_100M_AN);
2636 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2637 			E1000_EEER_RX_LPI_EN |
2638 			E1000_EEER_LPI_FC);
2639 	}
2640 	wr32(E1000_IPCNFG, ipcnfg);
2641 	wr32(E1000_EEER, eeer);
2642 	rd32(E1000_IPCNFG);
2643 	rd32(E1000_EEER);
2644 out:
2645 
2646 	return 0;
2647 }
2648 
2649 /**
2650  *  igb_set_eee_i354 - Enable/disable EEE support
2651  *  @hw: pointer to the HW structure
2652  *  @adv1G: boolean flag enabling 1G EEE advertisement
2653  *  @adv100m: boolean flag enabling 100M EEE advertisement
2654  *
2655  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2656  *
2657  **/
2658 s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2659 {
2660 	struct e1000_phy_info *phy = &hw->phy;
2661 	s32 ret_val = 0;
2662 	u16 phy_data;
2663 
2664 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2665 	    ((phy->id != M88E1543_E_PHY_ID) &&
2666 	     (phy->id != M88E1512_E_PHY_ID)))
2667 		goto out;
2668 
2669 	if (!hw->dev_spec._82575.eee_disable) {
2670 		/* Switch to PHY page 18. */
2671 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2672 		if (ret_val)
2673 			goto out;
2674 
2675 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676 					    &phy_data);
2677 		if (ret_val)
2678 			goto out;
2679 
2680 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2681 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2682 					     phy_data);
2683 		if (ret_val)
2684 			goto out;
2685 
2686 		/* Return the PHY to page 0. */
2687 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2688 		if (ret_val)
2689 			goto out;
2690 
2691 		/* Turn on EEE advertisement. */
2692 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2693 					     E1000_EEE_ADV_DEV_I354,
2694 					     &phy_data);
2695 		if (ret_val)
2696 			goto out;
2697 
2698 		if (adv100M)
2699 			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2700 		else
2701 			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2702 
2703 		if (adv1G)
2704 			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2705 		else
2706 			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2707 
2708 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2709 						E1000_EEE_ADV_DEV_I354,
2710 						phy_data);
2711 	} else {
2712 		/* Turn off EEE advertisement. */
2713 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2714 					     E1000_EEE_ADV_DEV_I354,
2715 					     &phy_data);
2716 		if (ret_val)
2717 			goto out;
2718 
2719 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2720 			      E1000_EEE_ADV_1000_SUPPORTED);
2721 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722 					      E1000_EEE_ADV_DEV_I354,
2723 					      phy_data);
2724 	}
2725 
2726 out:
2727 	return ret_val;
2728 }
2729 
2730 /**
2731  *  igb_get_eee_status_i354 - Get EEE status
2732  *  @hw: pointer to the HW structure
2733  *  @status: EEE status
2734  *
2735  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2736  *  been received.
2737  **/
2738 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2739 {
2740 	struct e1000_phy_info *phy = &hw->phy;
2741 	s32 ret_val = 0;
2742 	u16 phy_data;
2743 
2744 	/* Check if EEE is supported on this device. */
2745 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2746 	    ((phy->id != M88E1543_E_PHY_ID) &&
2747 	     (phy->id != M88E1512_E_PHY_ID)))
2748 		goto out;
2749 
2750 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2751 				     E1000_PCS_STATUS_DEV_I354,
2752 				     &phy_data);
2753 	if (ret_val)
2754 		goto out;
2755 
2756 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2757 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2758 
2759 out:
2760 	return ret_val;
2761 }
2762 
2763 static const u8 e1000_emc_temp_data[4] = {
2764 	E1000_EMC_INTERNAL_DATA,
2765 	E1000_EMC_DIODE1_DATA,
2766 	E1000_EMC_DIODE2_DATA,
2767 	E1000_EMC_DIODE3_DATA
2768 };
2769 static const u8 e1000_emc_therm_limit[4] = {
2770 	E1000_EMC_INTERNAL_THERM_LIMIT,
2771 	E1000_EMC_DIODE1_THERM_LIMIT,
2772 	E1000_EMC_DIODE2_THERM_LIMIT,
2773 	E1000_EMC_DIODE3_THERM_LIMIT
2774 };
2775 
2776 #ifdef CONFIG_IGB_HWMON
2777 /**
2778  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2779  *  @hw: pointer to hardware structure
2780  *
2781  *  Updates the temperatures in mac.thermal_sensor_data
2782  **/
2783 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2784 {
2785 	u16 ets_offset;
2786 	u16 ets_cfg;
2787 	u16 ets_sensor;
2788 	u8  num_sensors;
2789 	u8  sensor_index;
2790 	u8  sensor_location;
2791 	u8  i;
2792 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2793 
2794 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2795 		return E1000_NOT_IMPLEMENTED;
2796 
2797 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2798 
2799 	/* Return the internal sensor only if ETS is unsupported */
2800 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2801 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2802 		return 0;
2803 
2804 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2805 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2806 	    != NVM_ETS_TYPE_EMC)
2807 		return E1000_NOT_IMPLEMENTED;
2808 
2809 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2810 	if (num_sensors > E1000_MAX_SENSORS)
2811 		num_sensors = E1000_MAX_SENSORS;
2812 
2813 	for (i = 1; i < num_sensors; i++) {
2814 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2815 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2816 				NVM_ETS_DATA_INDEX_SHIFT);
2817 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2818 				   NVM_ETS_DATA_LOC_SHIFT);
2819 
2820 		if (sensor_location != 0)
2821 			hw->phy.ops.read_i2c_byte(hw,
2822 					e1000_emc_temp_data[sensor_index],
2823 					E1000_I2C_THERMAL_SENSOR_ADDR,
2824 					&data->sensor[i].temp);
2825 	}
2826 	return 0;
2827 }
2828 
2829 /**
2830  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2831  *  @hw: pointer to hardware structure
2832  *
2833  *  Sets the thermal sensor thresholds according to the NVM map
2834  *  and save off the threshold and location values into mac.thermal_sensor_data
2835  **/
2836 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2837 {
2838 	u16 ets_offset;
2839 	u16 ets_cfg;
2840 	u16 ets_sensor;
2841 	u8  low_thresh_delta;
2842 	u8  num_sensors;
2843 	u8  sensor_index;
2844 	u8  sensor_location;
2845 	u8  therm_limit;
2846 	u8  i;
2847 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2848 
2849 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2850 		return E1000_NOT_IMPLEMENTED;
2851 
2852 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2853 
2854 	data->sensor[0].location = 0x1;
2855 	data->sensor[0].caution_thresh =
2856 		(rd32(E1000_THHIGHTC) & 0xFF);
2857 	data->sensor[0].max_op_thresh =
2858 		(rd32(E1000_THLOWTC) & 0xFF);
2859 
2860 	/* Return the internal sensor only if ETS is unsupported */
2861 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2862 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2863 		return 0;
2864 
2865 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2866 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2867 	    != NVM_ETS_TYPE_EMC)
2868 		return E1000_NOT_IMPLEMENTED;
2869 
2870 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2871 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2872 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2873 
2874 	for (i = 1; i <= num_sensors; i++) {
2875 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2876 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2877 				NVM_ETS_DATA_INDEX_SHIFT);
2878 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2879 				   NVM_ETS_DATA_LOC_SHIFT);
2880 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2881 
2882 		hw->phy.ops.write_i2c_byte(hw,
2883 			e1000_emc_therm_limit[sensor_index],
2884 			E1000_I2C_THERMAL_SENSOR_ADDR,
2885 			therm_limit);
2886 
2887 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2888 			data->sensor[i].location = sensor_location;
2889 			data->sensor[i].caution_thresh = therm_limit;
2890 			data->sensor[i].max_op_thresh = therm_limit -
2891 							low_thresh_delta;
2892 		}
2893 	}
2894 	return 0;
2895 }
2896 
2897 #endif
2898 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2899 	.init_hw              = igb_init_hw_82575,
2900 	.check_for_link       = igb_check_for_link_82575,
2901 	.rar_set              = igb_rar_set,
2902 	.read_mac_addr        = igb_read_mac_addr_82575,
2903 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2904 #ifdef CONFIG_IGB_HWMON
2905 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2906 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2907 #endif
2908 };
2909 
2910 static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2911 	.acquire              = igb_acquire_phy_82575,
2912 	.get_cfg_done         = igb_get_cfg_done_82575,
2913 	.release              = igb_release_phy_82575,
2914 	.write_i2c_byte       = igb_write_i2c_byte,
2915 	.read_i2c_byte        = igb_read_i2c_byte,
2916 };
2917 
2918 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2919 	.acquire              = igb_acquire_nvm_82575,
2920 	.read                 = igb_read_nvm_eerd,
2921 	.release              = igb_release_nvm_82575,
2922 	.write                = igb_write_nvm_spi,
2923 };
2924 
2925 const struct e1000_info e1000_82575_info = {
2926 	.get_invariants = igb_get_invariants_82575,
2927 	.mac_ops = &e1000_mac_ops_82575,
2928 	.phy_ops = &e1000_phy_ops_82575,
2929 	.nvm_ops = &e1000_nvm_ops_82575,
2930 };
2931 
2932