1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 /* e1000_82575
25  * e1000_82576
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/types.h>
31 #include <linux/if_ether.h>
32 #include <linux/i2c.h>
33 
34 #include "e1000_mac.h"
35 #include "e1000_82575.h"
36 #include "e1000_i210.h"
37 
38 static s32  igb_get_invariants_82575(struct e1000_hw *);
39 static s32  igb_acquire_phy_82575(struct e1000_hw *);
40 static void igb_release_phy_82575(struct e1000_hw *);
41 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
42 static void igb_release_nvm_82575(struct e1000_hw *);
43 static s32  igb_check_for_link_82575(struct e1000_hw *);
44 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
45 static s32  igb_init_hw_82575(struct e1000_hw *);
46 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
47 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
48 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
49 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
50 static s32  igb_reset_hw_82575(struct e1000_hw *);
51 static s32  igb_reset_hw_82580(struct e1000_hw *);
52 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
53 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
54 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
55 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
56 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
57 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
58 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
59 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
60 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
61 						 u16 *);
62 static s32  igb_get_phy_id_82575(struct e1000_hw *);
63 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
64 static bool igb_sgmii_active_82575(struct e1000_hw *);
65 static s32  igb_reset_init_script_82575(struct e1000_hw *);
66 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
67 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
68 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
69 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
70 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
71 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
72 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
73 static const u16 e1000_82580_rxpbs_table[] = {
74 	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
75 
76 /**
77  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
78  *  @hw: pointer to the HW structure
79  *
80  *  Called to determine if the I2C pins are being used for I2C or as an
81  *  external MDIO interface since the two options are mutually exclusive.
82  **/
83 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
84 {
85 	u32 reg = 0;
86 	bool ext_mdio = false;
87 
88 	switch (hw->mac.type) {
89 	case e1000_82575:
90 	case e1000_82576:
91 		reg = rd32(E1000_MDIC);
92 		ext_mdio = !!(reg & E1000_MDIC_DEST);
93 		break;
94 	case e1000_82580:
95 	case e1000_i350:
96 	case e1000_i354:
97 	case e1000_i210:
98 	case e1000_i211:
99 		reg = rd32(E1000_MDICNFG);
100 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
101 		break;
102 	default:
103 		break;
104 	}
105 	return ext_mdio;
106 }
107 
108 /**
109  *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
110  *  @hw: pointer to the HW structure
111  *
112  *  Poll the M88E1112 interfaces to see which interface achieved link.
113  */
114 static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
115 {
116 	struct e1000_phy_info *phy = &hw->phy;
117 	s32 ret_val;
118 	u16 data;
119 	u8 port = 0;
120 
121 	/* Check the copper medium. */
122 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
123 	if (ret_val)
124 		return ret_val;
125 
126 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
127 	if (ret_val)
128 		return ret_val;
129 
130 	if (data & E1000_M88E1112_STATUS_LINK)
131 		port = E1000_MEDIA_PORT_COPPER;
132 
133 	/* Check the other medium. */
134 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
135 	if (ret_val)
136 		return ret_val;
137 
138 	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
139 	if (ret_val)
140 		return ret_val;
141 
142 	/* reset page to 0 */
143 	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
144 	if (ret_val)
145 		return ret_val;
146 
147 	if (data & E1000_M88E1112_STATUS_LINK)
148 		port = E1000_MEDIA_PORT_OTHER;
149 
150 	/* Determine if a swap needs to happen. */
151 	if (port && (hw->dev_spec._82575.media_port != port)) {
152 		hw->dev_spec._82575.media_port = port;
153 		hw->dev_spec._82575.media_changed = true;
154 	} else {
155 		ret_val = igb_check_for_link_82575(hw);
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  *  igb_init_phy_params_82575 - Init PHY func ptrs.
163  *  @hw: pointer to the HW structure
164  **/
165 static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
166 {
167 	struct e1000_phy_info *phy = &hw->phy;
168 	s32 ret_val = 0;
169 	u32 ctrl_ext;
170 
171 	if (hw->phy.media_type != e1000_media_type_copper) {
172 		phy->type = e1000_phy_none;
173 		goto out;
174 	}
175 
176 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
177 	phy->reset_delay_us	= 100;
178 
179 	ctrl_ext = rd32(E1000_CTRL_EXT);
180 
181 	if (igb_sgmii_active_82575(hw)) {
182 		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
183 		ctrl_ext |= E1000_CTRL_I2C_ENA;
184 	} else {
185 		phy->ops.reset = igb_phy_hw_reset;
186 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
187 	}
188 
189 	wr32(E1000_CTRL_EXT, ctrl_ext);
190 	igb_reset_mdicnfg_82580(hw);
191 
192 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
193 		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
194 		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
195 	} else {
196 		switch (hw->mac.type) {
197 		case e1000_82580:
198 		case e1000_i350:
199 		case e1000_i354:
200 			phy->ops.read_reg = igb_read_phy_reg_82580;
201 			phy->ops.write_reg = igb_write_phy_reg_82580;
202 			break;
203 		case e1000_i210:
204 		case e1000_i211:
205 			phy->ops.read_reg = igb_read_phy_reg_gs40g;
206 			phy->ops.write_reg = igb_write_phy_reg_gs40g;
207 			break;
208 		default:
209 			phy->ops.read_reg = igb_read_phy_reg_igp;
210 			phy->ops.write_reg = igb_write_phy_reg_igp;
211 		}
212 	}
213 
214 	/* set lan id */
215 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
216 			E1000_STATUS_FUNC_SHIFT;
217 
218 	/* Set phy->phy_addr and phy->id. */
219 	ret_val = igb_get_phy_id_82575(hw);
220 	if (ret_val)
221 		return ret_val;
222 
223 	/* Verify phy id and set remaining function pointers */
224 	switch (phy->id) {
225 	case M88E1543_E_PHY_ID:
226 	case I347AT4_E_PHY_ID:
227 	case M88E1112_E_PHY_ID:
228 	case M88E1111_I_PHY_ID:
229 		phy->type		= e1000_phy_m88;
230 		phy->ops.check_polarity	= igb_check_polarity_m88;
231 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
232 		if (phy->id != M88E1111_I_PHY_ID)
233 			phy->ops.get_cable_length =
234 					 igb_get_cable_length_m88_gen2;
235 		else
236 			phy->ops.get_cable_length = igb_get_cable_length_m88;
237 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
238 		/* Check if this PHY is confgured for media swap. */
239 		if (phy->id == M88E1112_E_PHY_ID) {
240 			u16 data;
241 
242 			ret_val = phy->ops.write_reg(hw,
243 						     E1000_M88E1112_PAGE_ADDR,
244 						     2);
245 			if (ret_val)
246 				goto out;
247 
248 			ret_val = phy->ops.read_reg(hw,
249 						    E1000_M88E1112_MAC_CTRL_1,
250 						    &data);
251 			if (ret_val)
252 				goto out;
253 
254 			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
255 			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
256 			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
257 			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
258 				hw->mac.ops.check_for_link =
259 						igb_check_for_link_media_swap;
260 		}
261 		break;
262 	case IGP03E1000_E_PHY_ID:
263 		phy->type = e1000_phy_igp_3;
264 		phy->ops.get_phy_info = igb_get_phy_info_igp;
265 		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
266 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
267 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
268 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
269 		break;
270 	case I82580_I_PHY_ID:
271 	case I350_I_PHY_ID:
272 		phy->type = e1000_phy_82580;
273 		phy->ops.force_speed_duplex =
274 					 igb_phy_force_speed_duplex_82580;
275 		phy->ops.get_cable_length = igb_get_cable_length_82580;
276 		phy->ops.get_phy_info = igb_get_phy_info_82580;
277 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
278 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
279 		break;
280 	case I210_I_PHY_ID:
281 		phy->type		= e1000_phy_i210;
282 		phy->ops.check_polarity	= igb_check_polarity_m88;
283 		phy->ops.get_phy_info	= igb_get_phy_info_m88;
284 		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
285 		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
286 		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
287 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
288 		break;
289 	default:
290 		ret_val = -E1000_ERR_PHY;
291 		goto out;
292 	}
293 
294 out:
295 	return ret_val;
296 }
297 
298 /**
299  *  igb_init_nvm_params_82575 - Init NVM func ptrs.
300  *  @hw: pointer to the HW structure
301  **/
302 static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
303 {
304 	struct e1000_nvm_info *nvm = &hw->nvm;
305 	u32 eecd = rd32(E1000_EECD);
306 	u16 size;
307 
308 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
309 		     E1000_EECD_SIZE_EX_SHIFT);
310 
311 	/* Added to a constant, "size" becomes the left-shift value
312 	 * for setting word_size.
313 	 */
314 	size += NVM_WORD_SIZE_BASE_SHIFT;
315 
316 	/* Just in case size is out of range, cap it to the largest
317 	 * EEPROM size supported
318 	 */
319 	if (size > 15)
320 		size = 15;
321 
322 	nvm->word_size = 1 << size;
323 	nvm->opcode_bits = 8;
324 	nvm->delay_usec = 1;
325 
326 	switch (nvm->override) {
327 	case e1000_nvm_override_spi_large:
328 		nvm->page_size = 32;
329 		nvm->address_bits = 16;
330 		break;
331 	case e1000_nvm_override_spi_small:
332 		nvm->page_size = 8;
333 		nvm->address_bits = 8;
334 		break;
335 	default:
336 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
337 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
338 				    16 : 8;
339 		break;
340 	}
341 	if (nvm->word_size == (1 << 15))
342 		nvm->page_size = 128;
343 
344 	nvm->type = e1000_nvm_eeprom_spi;
345 
346 	/* NVM Function Pointers */
347 	nvm->ops.acquire = igb_acquire_nvm_82575;
348 	nvm->ops.release = igb_release_nvm_82575;
349 	nvm->ops.write = igb_write_nvm_spi;
350 	nvm->ops.validate = igb_validate_nvm_checksum;
351 	nvm->ops.update = igb_update_nvm_checksum;
352 	if (nvm->word_size < (1 << 15))
353 		nvm->ops.read = igb_read_nvm_eerd;
354 	else
355 		nvm->ops.read = igb_read_nvm_spi;
356 
357 	/* override generic family function pointers for specific descendants */
358 	switch (hw->mac.type) {
359 	case e1000_82580:
360 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
361 		nvm->ops.update = igb_update_nvm_checksum_82580;
362 		break;
363 	case e1000_i354:
364 	case e1000_i350:
365 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
366 		nvm->ops.update = igb_update_nvm_checksum_i350;
367 		break;
368 	default:
369 		break;
370 	}
371 
372 	return 0;
373 }
374 
375 /**
376  *  igb_init_mac_params_82575 - Init MAC func ptrs.
377  *  @hw: pointer to the HW structure
378  **/
379 static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
380 {
381 	struct e1000_mac_info *mac = &hw->mac;
382 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
383 
384 	/* Set mta register count */
385 	mac->mta_reg_count = 128;
386 	/* Set rar entry count */
387 	switch (mac->type) {
388 	case e1000_82576:
389 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
390 		break;
391 	case e1000_82580:
392 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
393 		break;
394 	case e1000_i350:
395 	case e1000_i354:
396 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
397 		break;
398 	default:
399 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
400 		break;
401 	}
402 	/* reset */
403 	if (mac->type >= e1000_82580)
404 		mac->ops.reset_hw = igb_reset_hw_82580;
405 	else
406 		mac->ops.reset_hw = igb_reset_hw_82575;
407 
408 	if (mac->type >= e1000_i210) {
409 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
410 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
411 
412 	} else {
413 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
414 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
415 	}
416 
417 	/* Set if part includes ASF firmware */
418 	mac->asf_firmware_present = true;
419 	/* Set if manageability features are enabled. */
420 	mac->arc_subsystem_valid =
421 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
422 			? true : false;
423 	/* enable EEE on i350 parts and later parts */
424 	if (mac->type >= e1000_i350)
425 		dev_spec->eee_disable = false;
426 	else
427 		dev_spec->eee_disable = true;
428 	/* Allow a single clear of the SW semaphore on I210 and newer */
429 	if (mac->type >= e1000_i210)
430 		dev_spec->clear_semaphore_once = true;
431 	/* physical interface link setup */
432 	mac->ops.setup_physical_interface =
433 		(hw->phy.media_type == e1000_media_type_copper)
434 			? igb_setup_copper_link_82575
435 			: igb_setup_serdes_link_82575;
436 
437 	if (mac->type == e1000_82580) {
438 		switch (hw->device_id) {
439 		/* feature not supported on these id's */
440 		case E1000_DEV_ID_DH89XXCC_SGMII:
441 		case E1000_DEV_ID_DH89XXCC_SERDES:
442 		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
443 		case E1000_DEV_ID_DH89XXCC_SFP:
444 			break;
445 		default:
446 			hw->dev_spec._82575.mas_capable = true;
447 			break;
448 		}
449 	}
450 	return 0;
451 }
452 
453 /**
454  *  igb_set_sfp_media_type_82575 - derives SFP module media type.
455  *  @hw: pointer to the HW structure
456  *
457  *  The media type is chosen based on SFP module.
458  *  compatibility flags retrieved from SFP ID EEPROM.
459  **/
460 static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
461 {
462 	s32 ret_val = E1000_ERR_CONFIG;
463 	u32 ctrl_ext = 0;
464 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
465 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
466 	u8 tranceiver_type = 0;
467 	s32 timeout = 3;
468 
469 	/* Turn I2C interface ON and power on sfp cage */
470 	ctrl_ext = rd32(E1000_CTRL_EXT);
471 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
472 	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
473 
474 	wrfl();
475 
476 	/* Read SFP module data */
477 	while (timeout) {
478 		ret_val = igb_read_sfp_data_byte(hw,
479 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
480 			&tranceiver_type);
481 		if (ret_val == 0)
482 			break;
483 		msleep(100);
484 		timeout--;
485 	}
486 	if (ret_val != 0)
487 		goto out;
488 
489 	ret_val = igb_read_sfp_data_byte(hw,
490 			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
491 			(u8 *)eth_flags);
492 	if (ret_val != 0)
493 		goto out;
494 
495 	/* Check if there is some SFP module plugged and powered */
496 	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
497 	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
498 		dev_spec->module_plugged = true;
499 		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
500 			hw->phy.media_type = e1000_media_type_internal_serdes;
501 		} else if (eth_flags->e100_base_fx) {
502 			dev_spec->sgmii_active = true;
503 			hw->phy.media_type = e1000_media_type_internal_serdes;
504 		} else if (eth_flags->e1000_base_t) {
505 			dev_spec->sgmii_active = true;
506 			hw->phy.media_type = e1000_media_type_copper;
507 		} else {
508 			hw->phy.media_type = e1000_media_type_unknown;
509 			hw_dbg("PHY module has not been recognized\n");
510 			goto out;
511 		}
512 	} else {
513 		hw->phy.media_type = e1000_media_type_unknown;
514 	}
515 	ret_val = 0;
516 out:
517 	/* Restore I2C interface setting */
518 	wr32(E1000_CTRL_EXT, ctrl_ext);
519 	return ret_val;
520 }
521 
522 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
523 {
524 	struct e1000_mac_info *mac = &hw->mac;
525 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
526 	s32 ret_val;
527 	u32 ctrl_ext = 0;
528 	u32 link_mode = 0;
529 
530 	switch (hw->device_id) {
531 	case E1000_DEV_ID_82575EB_COPPER:
532 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
533 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
534 		mac->type = e1000_82575;
535 		break;
536 	case E1000_DEV_ID_82576:
537 	case E1000_DEV_ID_82576_NS:
538 	case E1000_DEV_ID_82576_NS_SERDES:
539 	case E1000_DEV_ID_82576_FIBER:
540 	case E1000_DEV_ID_82576_SERDES:
541 	case E1000_DEV_ID_82576_QUAD_COPPER:
542 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
543 	case E1000_DEV_ID_82576_SERDES_QUAD:
544 		mac->type = e1000_82576;
545 		break;
546 	case E1000_DEV_ID_82580_COPPER:
547 	case E1000_DEV_ID_82580_FIBER:
548 	case E1000_DEV_ID_82580_QUAD_FIBER:
549 	case E1000_DEV_ID_82580_SERDES:
550 	case E1000_DEV_ID_82580_SGMII:
551 	case E1000_DEV_ID_82580_COPPER_DUAL:
552 	case E1000_DEV_ID_DH89XXCC_SGMII:
553 	case E1000_DEV_ID_DH89XXCC_SERDES:
554 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
555 	case E1000_DEV_ID_DH89XXCC_SFP:
556 		mac->type = e1000_82580;
557 		break;
558 	case E1000_DEV_ID_I350_COPPER:
559 	case E1000_DEV_ID_I350_FIBER:
560 	case E1000_DEV_ID_I350_SERDES:
561 	case E1000_DEV_ID_I350_SGMII:
562 		mac->type = e1000_i350;
563 		break;
564 	case E1000_DEV_ID_I210_COPPER:
565 	case E1000_DEV_ID_I210_FIBER:
566 	case E1000_DEV_ID_I210_SERDES:
567 	case E1000_DEV_ID_I210_SGMII:
568 	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
569 	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
570 		mac->type = e1000_i210;
571 		break;
572 	case E1000_DEV_ID_I211_COPPER:
573 		mac->type = e1000_i211;
574 		break;
575 	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
576 	case E1000_DEV_ID_I354_SGMII:
577 	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
578 		mac->type = e1000_i354;
579 		break;
580 	default:
581 		return -E1000_ERR_MAC_INIT;
582 		break;
583 	}
584 
585 	/* Set media type */
586 	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
587 	 * based on the EEPROM. We cannot rely upon device ID. There
588 	 * is no distinguishable difference between fiber and internal
589 	 * SerDes mode on the 82575. There can be an external PHY attached
590 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
591 	 */
592 	hw->phy.media_type = e1000_media_type_copper;
593 	dev_spec->sgmii_active = false;
594 	dev_spec->module_plugged = false;
595 
596 	ctrl_ext = rd32(E1000_CTRL_EXT);
597 
598 	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
599 	switch (link_mode) {
600 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
601 		hw->phy.media_type = e1000_media_type_internal_serdes;
602 		break;
603 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
604 		/* Get phy control interface type set (MDIO vs. I2C)*/
605 		if (igb_sgmii_uses_mdio_82575(hw)) {
606 			hw->phy.media_type = e1000_media_type_copper;
607 			dev_spec->sgmii_active = true;
608 			break;
609 		}
610 		/* fall through for I2C based SGMII */
611 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
612 		/* read media type from SFP EEPROM */
613 		ret_val = igb_set_sfp_media_type_82575(hw);
614 		if ((ret_val != 0) ||
615 		    (hw->phy.media_type == e1000_media_type_unknown)) {
616 			/* If media type was not identified then return media
617 			 * type defined by the CTRL_EXT settings.
618 			 */
619 			hw->phy.media_type = e1000_media_type_internal_serdes;
620 
621 			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
622 				hw->phy.media_type = e1000_media_type_copper;
623 				dev_spec->sgmii_active = true;
624 			}
625 
626 			break;
627 		}
628 
629 		/* do not change link mode for 100BaseFX */
630 		if (dev_spec->eth_flags.e100_base_fx)
631 			break;
632 
633 		/* change current link mode setting */
634 		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
635 
636 		if (hw->phy.media_type == e1000_media_type_copper)
637 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
638 		else
639 			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
640 
641 		wr32(E1000_CTRL_EXT, ctrl_ext);
642 
643 		break;
644 	default:
645 		break;
646 	}
647 
648 	/* mac initialization and operations */
649 	ret_val = igb_init_mac_params_82575(hw);
650 	if (ret_val)
651 		goto out;
652 
653 	/* NVM initialization */
654 	ret_val = igb_init_nvm_params_82575(hw);
655 	switch (hw->mac.type) {
656 	case e1000_i210:
657 	case e1000_i211:
658 		ret_val = igb_init_nvm_params_i210(hw);
659 		break;
660 	default:
661 		break;
662 	}
663 
664 	if (ret_val)
665 		goto out;
666 
667 	/* if part supports SR-IOV then initialize mailbox parameters */
668 	switch (mac->type) {
669 	case e1000_82576:
670 	case e1000_i350:
671 		igb_init_mbx_params_pf(hw);
672 		break;
673 	default:
674 		break;
675 	}
676 
677 	/* setup PHY parameters */
678 	ret_val = igb_init_phy_params_82575(hw);
679 
680 out:
681 	return ret_val;
682 }
683 
684 /**
685  *  igb_acquire_phy_82575 - Acquire rights to access PHY
686  *  @hw: pointer to the HW structure
687  *
688  *  Acquire access rights to the correct PHY.  This is a
689  *  function pointer entry point called by the api module.
690  **/
691 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
692 {
693 	u16 mask = E1000_SWFW_PHY0_SM;
694 
695 	if (hw->bus.func == E1000_FUNC_1)
696 		mask = E1000_SWFW_PHY1_SM;
697 	else if (hw->bus.func == E1000_FUNC_2)
698 		mask = E1000_SWFW_PHY2_SM;
699 	else if (hw->bus.func == E1000_FUNC_3)
700 		mask = E1000_SWFW_PHY3_SM;
701 
702 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
703 }
704 
705 /**
706  *  igb_release_phy_82575 - Release rights to access PHY
707  *  @hw: pointer to the HW structure
708  *
709  *  A wrapper to release access rights to the correct PHY.  This is a
710  *  function pointer entry point called by the api module.
711  **/
712 static void igb_release_phy_82575(struct e1000_hw *hw)
713 {
714 	u16 mask = E1000_SWFW_PHY0_SM;
715 
716 	if (hw->bus.func == E1000_FUNC_1)
717 		mask = E1000_SWFW_PHY1_SM;
718 	else if (hw->bus.func == E1000_FUNC_2)
719 		mask = E1000_SWFW_PHY2_SM;
720 	else if (hw->bus.func == E1000_FUNC_3)
721 		mask = E1000_SWFW_PHY3_SM;
722 
723 	hw->mac.ops.release_swfw_sync(hw, mask);
724 }
725 
726 /**
727  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
728  *  @hw: pointer to the HW structure
729  *  @offset: register offset to be read
730  *  @data: pointer to the read data
731  *
732  *  Reads the PHY register at offset using the serial gigabit media independent
733  *  interface and stores the retrieved information in data.
734  **/
735 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
736 					  u16 *data)
737 {
738 	s32 ret_val = -E1000_ERR_PARAM;
739 
740 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
741 		hw_dbg("PHY Address %u is out of range\n", offset);
742 		goto out;
743 	}
744 
745 	ret_val = hw->phy.ops.acquire(hw);
746 	if (ret_val)
747 		goto out;
748 
749 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
750 
751 	hw->phy.ops.release(hw);
752 
753 out:
754 	return ret_val;
755 }
756 
757 /**
758  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
759  *  @hw: pointer to the HW structure
760  *  @offset: register offset to write to
761  *  @data: data to write at register offset
762  *
763  *  Writes the data to PHY register at the offset using the serial gigabit
764  *  media independent interface.
765  **/
766 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
767 					   u16 data)
768 {
769 	s32 ret_val = -E1000_ERR_PARAM;
770 
771 
772 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
773 		hw_dbg("PHY Address %d is out of range\n", offset);
774 		goto out;
775 	}
776 
777 	ret_val = hw->phy.ops.acquire(hw);
778 	if (ret_val)
779 		goto out;
780 
781 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
782 
783 	hw->phy.ops.release(hw);
784 
785 out:
786 	return ret_val;
787 }
788 
789 /**
790  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
791  *  @hw: pointer to the HW structure
792  *
793  *  Retrieves the PHY address and ID for both PHY's which do and do not use
794  *  sgmi interface.
795  **/
796 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
797 {
798 	struct e1000_phy_info *phy = &hw->phy;
799 	s32  ret_val = 0;
800 	u16 phy_id;
801 	u32 ctrl_ext;
802 	u32 mdic;
803 
804 	/* Extra read required for some PHY's on i354 */
805 	if (hw->mac.type == e1000_i354)
806 		igb_get_phy_id(hw);
807 
808 	/* For SGMII PHYs, we try the list of possible addresses until
809 	 * we find one that works.  For non-SGMII PHYs
810 	 * (e.g. integrated copper PHYs), an address of 1 should
811 	 * work.  The result of this function should mean phy->phy_addr
812 	 * and phy->id are set correctly.
813 	 */
814 	if (!(igb_sgmii_active_82575(hw))) {
815 		phy->addr = 1;
816 		ret_val = igb_get_phy_id(hw);
817 		goto out;
818 	}
819 
820 	if (igb_sgmii_uses_mdio_82575(hw)) {
821 		switch (hw->mac.type) {
822 		case e1000_82575:
823 		case e1000_82576:
824 			mdic = rd32(E1000_MDIC);
825 			mdic &= E1000_MDIC_PHY_MASK;
826 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
827 			break;
828 		case e1000_82580:
829 		case e1000_i350:
830 		case e1000_i354:
831 		case e1000_i210:
832 		case e1000_i211:
833 			mdic = rd32(E1000_MDICNFG);
834 			mdic &= E1000_MDICNFG_PHY_MASK;
835 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
836 			break;
837 		default:
838 			ret_val = -E1000_ERR_PHY;
839 			goto out;
840 			break;
841 		}
842 		ret_val = igb_get_phy_id(hw);
843 		goto out;
844 	}
845 
846 	/* Power on sgmii phy if it is disabled */
847 	ctrl_ext = rd32(E1000_CTRL_EXT);
848 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
849 	wrfl();
850 	msleep(300);
851 
852 	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
853 	 * Therefore, we need to test 1-7
854 	 */
855 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
856 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
857 		if (ret_val == 0) {
858 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
859 			       phy_id, phy->addr);
860 			/* At the time of this writing, The M88 part is
861 			 * the only supported SGMII PHY product.
862 			 */
863 			if (phy_id == M88_VENDOR)
864 				break;
865 		} else {
866 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
867 		}
868 	}
869 
870 	/* A valid PHY type couldn't be found. */
871 	if (phy->addr == 8) {
872 		phy->addr = 0;
873 		ret_val = -E1000_ERR_PHY;
874 		goto out;
875 	} else {
876 		ret_val = igb_get_phy_id(hw);
877 	}
878 
879 	/* restore previous sfp cage power state */
880 	wr32(E1000_CTRL_EXT, ctrl_ext);
881 
882 out:
883 	return ret_val;
884 }
885 
886 /**
887  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
888  *  @hw: pointer to the HW structure
889  *
890  *  Resets the PHY using the serial gigabit media independent interface.
891  **/
892 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
893 {
894 	s32 ret_val;
895 
896 	/* This isn't a true "hard" reset, but is the only reset
897 	 * available to us at this time.
898 	 */
899 
900 	hw_dbg("Soft resetting SGMII attached PHY...\n");
901 
902 	/* SFP documentation requires the following to configure the SPF module
903 	 * to work on SGMII.  No further documentation is given.
904 	 */
905 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
906 	if (ret_val)
907 		goto out;
908 
909 	ret_val = igb_phy_sw_reset(hw);
910 
911 out:
912 	return ret_val;
913 }
914 
915 /**
916  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
917  *  @hw: pointer to the HW structure
918  *  @active: true to enable LPLU, false to disable
919  *
920  *  Sets the LPLU D0 state according to the active flag.  When
921  *  activating LPLU this function also disables smart speed
922  *  and vice versa.  LPLU will not be activated unless the
923  *  device autonegotiation advertisement meets standards of
924  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
925  *  This is a function pointer entry point only called by
926  *  PHY setup routines.
927  **/
928 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
929 {
930 	struct e1000_phy_info *phy = &hw->phy;
931 	s32 ret_val;
932 	u16 data;
933 
934 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
935 	if (ret_val)
936 		goto out;
937 
938 	if (active) {
939 		data |= IGP02E1000_PM_D0_LPLU;
940 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
941 						 data);
942 		if (ret_val)
943 			goto out;
944 
945 		/* When LPLU is enabled, we should disable SmartSpeed */
946 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
947 						&data);
948 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
949 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
950 						 data);
951 		if (ret_val)
952 			goto out;
953 	} else {
954 		data &= ~IGP02E1000_PM_D0_LPLU;
955 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
956 						 data);
957 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
958 		 * during Dx states where the power conservation is most
959 		 * important.  During driver activity we should enable
960 		 * SmartSpeed, so performance is maintained.
961 		 */
962 		if (phy->smart_speed == e1000_smart_speed_on) {
963 			ret_val = phy->ops.read_reg(hw,
964 					IGP01E1000_PHY_PORT_CONFIG, &data);
965 			if (ret_val)
966 				goto out;
967 
968 			data |= IGP01E1000_PSCFR_SMART_SPEED;
969 			ret_val = phy->ops.write_reg(hw,
970 					IGP01E1000_PHY_PORT_CONFIG, data);
971 			if (ret_val)
972 				goto out;
973 		} else if (phy->smart_speed == e1000_smart_speed_off) {
974 			ret_val = phy->ops.read_reg(hw,
975 					IGP01E1000_PHY_PORT_CONFIG, &data);
976 			if (ret_val)
977 				goto out;
978 
979 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980 			ret_val = phy->ops.write_reg(hw,
981 					IGP01E1000_PHY_PORT_CONFIG, data);
982 			if (ret_val)
983 				goto out;
984 		}
985 	}
986 
987 out:
988 	return ret_val;
989 }
990 
991 /**
992  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
993  *  @hw: pointer to the HW structure
994  *  @active: true to enable LPLU, false to disable
995  *
996  *  Sets the LPLU D0 state according to the active flag.  When
997  *  activating LPLU this function also disables smart speed
998  *  and vice versa.  LPLU will not be activated unless the
999  *  device autonegotiation advertisement meets standards of
1000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1001  *  This is a function pointer entry point only called by
1002  *  PHY setup routines.
1003  **/
1004 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1005 {
1006 	struct e1000_phy_info *phy = &hw->phy;
1007 	u16 data;
1008 
1009 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1010 
1011 	if (active) {
1012 		data |= E1000_82580_PM_D0_LPLU;
1013 
1014 		/* When LPLU is enabled, we should disable SmartSpeed */
1015 		data &= ~E1000_82580_PM_SPD;
1016 	} else {
1017 		data &= ~E1000_82580_PM_D0_LPLU;
1018 
1019 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1020 		 * during Dx states where the power conservation is most
1021 		 * important.  During driver activity we should enable
1022 		 * SmartSpeed, so performance is maintained.
1023 		 */
1024 		if (phy->smart_speed == e1000_smart_speed_on)
1025 			data |= E1000_82580_PM_SPD;
1026 		else if (phy->smart_speed == e1000_smart_speed_off)
1027 			data &= ~E1000_82580_PM_SPD; }
1028 
1029 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1030 	return 0;
1031 }
1032 
1033 /**
1034  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1035  *  @hw: pointer to the HW structure
1036  *  @active: boolean used to enable/disable lplu
1037  *
1038  *  Success returns 0, Failure returns 1
1039  *
1040  *  The low power link up (lplu) state is set to the power management level D3
1041  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1042  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1043  *  is used during Dx states where the power conservation is most important.
1044  *  During driver activity, SmartSpeed should be enabled so performance is
1045  *  maintained.
1046  **/
1047 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1048 {
1049 	struct e1000_phy_info *phy = &hw->phy;
1050 	u16 data;
1051 
1052 	data = rd32(E1000_82580_PHY_POWER_MGMT);
1053 
1054 	if (!active) {
1055 		data &= ~E1000_82580_PM_D3_LPLU;
1056 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1057 		 * during Dx states where the power conservation is most
1058 		 * important.  During driver activity we should enable
1059 		 * SmartSpeed, so performance is maintained.
1060 		 */
1061 		if (phy->smart_speed == e1000_smart_speed_on)
1062 			data |= E1000_82580_PM_SPD;
1063 		else if (phy->smart_speed == e1000_smart_speed_off)
1064 			data &= ~E1000_82580_PM_SPD;
1065 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1066 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1067 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1068 		data |= E1000_82580_PM_D3_LPLU;
1069 		/* When LPLU is enabled, we should disable SmartSpeed */
1070 		data &= ~E1000_82580_PM_SPD;
1071 	}
1072 
1073 	wr32(E1000_82580_PHY_POWER_MGMT, data);
1074 	return 0;
1075 }
1076 
1077 /**
1078  *  igb_acquire_nvm_82575 - Request for access to EEPROM
1079  *  @hw: pointer to the HW structure
1080  *
1081  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1082  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1083  *  Return successful if access grant bit set, else clear the request for
1084  *  EEPROM access and return -E1000_ERR_NVM (-1).
1085  **/
1086 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1087 {
1088 	s32 ret_val;
1089 
1090 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1091 	if (ret_val)
1092 		goto out;
1093 
1094 	ret_val = igb_acquire_nvm(hw);
1095 
1096 	if (ret_val)
1097 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1098 
1099 out:
1100 	return ret_val;
1101 }
1102 
1103 /**
1104  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1105  *  @hw: pointer to the HW structure
1106  *
1107  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1108  *  then release the semaphores acquired.
1109  **/
1110 static void igb_release_nvm_82575(struct e1000_hw *hw)
1111 {
1112 	igb_release_nvm(hw);
1113 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1114 }
1115 
1116 /**
1117  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1118  *  @hw: pointer to the HW structure
1119  *  @mask: specifies which semaphore to acquire
1120  *
1121  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1122  *  will also specify which port we're acquiring the lock for.
1123  **/
1124 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1125 {
1126 	u32 swfw_sync;
1127 	u32 swmask = mask;
1128 	u32 fwmask = mask << 16;
1129 	s32 ret_val = 0;
1130 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
1131 
1132 	while (i < timeout) {
1133 		if (igb_get_hw_semaphore(hw)) {
1134 			ret_val = -E1000_ERR_SWFW_SYNC;
1135 			goto out;
1136 		}
1137 
1138 		swfw_sync = rd32(E1000_SW_FW_SYNC);
1139 		if (!(swfw_sync & (fwmask | swmask)))
1140 			break;
1141 
1142 		/* Firmware currently using resource (fwmask)
1143 		 * or other software thread using resource (swmask)
1144 		 */
1145 		igb_put_hw_semaphore(hw);
1146 		mdelay(5);
1147 		i++;
1148 	}
1149 
1150 	if (i == timeout) {
1151 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1152 		ret_val = -E1000_ERR_SWFW_SYNC;
1153 		goto out;
1154 	}
1155 
1156 	swfw_sync |= swmask;
1157 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1158 
1159 	igb_put_hw_semaphore(hw);
1160 
1161 out:
1162 	return ret_val;
1163 }
1164 
1165 /**
1166  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1167  *  @hw: pointer to the HW structure
1168  *  @mask: specifies which semaphore to acquire
1169  *
1170  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1171  *  will also specify which port we're releasing the lock for.
1172  **/
1173 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1174 {
1175 	u32 swfw_sync;
1176 
1177 	while (igb_get_hw_semaphore(hw) != 0)
1178 		; /* Empty */
1179 
1180 	swfw_sync = rd32(E1000_SW_FW_SYNC);
1181 	swfw_sync &= ~mask;
1182 	wr32(E1000_SW_FW_SYNC, swfw_sync);
1183 
1184 	igb_put_hw_semaphore(hw);
1185 }
1186 
1187 /**
1188  *  igb_get_cfg_done_82575 - Read config done bit
1189  *  @hw: pointer to the HW structure
1190  *
1191  *  Read the management control register for the config done bit for
1192  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1193  *  to read the config done bit, so an error is *ONLY* logged and returns
1194  *  0.  If we were to return with error, EEPROM-less silicon
1195  *  would not be able to be reset or change link.
1196  **/
1197 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1198 {
1199 	s32 timeout = PHY_CFG_TIMEOUT;
1200 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1201 
1202 	if (hw->bus.func == 1)
1203 		mask = E1000_NVM_CFG_DONE_PORT_1;
1204 	else if (hw->bus.func == E1000_FUNC_2)
1205 		mask = E1000_NVM_CFG_DONE_PORT_2;
1206 	else if (hw->bus.func == E1000_FUNC_3)
1207 		mask = E1000_NVM_CFG_DONE_PORT_3;
1208 
1209 	while (timeout) {
1210 		if (rd32(E1000_EEMNGCTL) & mask)
1211 			break;
1212 		usleep_range(1000, 2000);
1213 		timeout--;
1214 	}
1215 	if (!timeout)
1216 		hw_dbg("MNG configuration cycle has not completed.\n");
1217 
1218 	/* If EEPROM is not marked present, init the PHY manually */
1219 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1220 	    (hw->phy.type == e1000_phy_igp_3))
1221 		igb_phy_init_script_igp3(hw);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  *  igb_get_link_up_info_82575 - Get link speed/duplex info
1228  *  @hw: pointer to the HW structure
1229  *  @speed: stores the current speed
1230  *  @duplex: stores the current duplex
1231  *
1232  *  This is a wrapper function, if using the serial gigabit media independent
1233  *  interface, use PCS to retrieve the link speed and duplex information.
1234  *  Otherwise, use the generic function to get the link speed and duplex info.
1235  **/
1236 static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1237 					u16 *duplex)
1238 {
1239 	s32 ret_val;
1240 
1241 	if (hw->phy.media_type != e1000_media_type_copper)
1242 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1243 							       duplex);
1244 	else
1245 		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1246 								    duplex);
1247 
1248 	return ret_val;
1249 }
1250 
1251 /**
1252  *  igb_check_for_link_82575 - Check for link
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1256  *  use the generic interface for determining link.
1257  **/
1258 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1259 {
1260 	s32 ret_val;
1261 	u16 speed, duplex;
1262 
1263 	if (hw->phy.media_type != e1000_media_type_copper) {
1264 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1265 							     &duplex);
1266 		/* Use this flag to determine if link needs to be checked or
1267 		 * not.  If  we have link clear the flag so that we do not
1268 		 * continue to check for link.
1269 		 */
1270 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1271 
1272 		/* Configure Flow Control now that Auto-Neg has completed.
1273 		 * First, we need to restore the desired flow control
1274 		 * settings because we may have had to re-autoneg with a
1275 		 * different link partner.
1276 		 */
1277 		ret_val = igb_config_fc_after_link_up(hw);
1278 		if (ret_val)
1279 			hw_dbg("Error configuring flow control\n");
1280 	} else {
1281 		ret_val = igb_check_for_copper_link(hw);
1282 	}
1283 
1284 	return ret_val;
1285 }
1286 
1287 /**
1288  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1289  *  @hw: pointer to the HW structure
1290  **/
1291 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1292 {
1293 	u32 reg;
1294 
1295 
1296 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1297 	    !igb_sgmii_active_82575(hw))
1298 		return;
1299 
1300 	/* Enable PCS to turn on link */
1301 	reg = rd32(E1000_PCS_CFG0);
1302 	reg |= E1000_PCS_CFG_PCS_EN;
1303 	wr32(E1000_PCS_CFG0, reg);
1304 
1305 	/* Power up the laser */
1306 	reg = rd32(E1000_CTRL_EXT);
1307 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1308 	wr32(E1000_CTRL_EXT, reg);
1309 
1310 	/* flush the write to verify completion */
1311 	wrfl();
1312 	usleep_range(1000, 2000);
1313 }
1314 
1315 /**
1316  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1317  *  @hw: pointer to the HW structure
1318  *  @speed: stores the current speed
1319  *  @duplex: stores the current duplex
1320  *
1321  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1322  *  duplex, then store the values in the pointers provided.
1323  **/
1324 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1325 						u16 *duplex)
1326 {
1327 	struct e1000_mac_info *mac = &hw->mac;
1328 	u32 pcs, status;
1329 
1330 	/* Set up defaults for the return values of this function */
1331 	mac->serdes_has_link = false;
1332 	*speed = 0;
1333 	*duplex = 0;
1334 
1335 	/* Read the PCS Status register for link state. For non-copper mode,
1336 	 * the status register is not accurate. The PCS status register is
1337 	 * used instead.
1338 	 */
1339 	pcs = rd32(E1000_PCS_LSTAT);
1340 
1341 	/* The link up bit determines when link is up on autoneg. The sync ok
1342 	 * gets set once both sides sync up and agree upon link. Stable link
1343 	 * can be determined by checking for both link up and link sync ok
1344 	 */
1345 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1346 		mac->serdes_has_link = true;
1347 
1348 		/* Detect and store PCS speed */
1349 		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1350 			*speed = SPEED_1000;
1351 		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1352 			*speed = SPEED_100;
1353 		else
1354 			*speed = SPEED_10;
1355 
1356 		/* Detect and store PCS duplex */
1357 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1358 			*duplex = FULL_DUPLEX;
1359 		else
1360 			*duplex = HALF_DUPLEX;
1361 
1362 	/* Check if it is an I354 2.5Gb backplane connection. */
1363 		if (mac->type == e1000_i354) {
1364 			status = rd32(E1000_STATUS);
1365 			if ((status & E1000_STATUS_2P5_SKU) &&
1366 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1367 				*speed = SPEED_2500;
1368 				*duplex = FULL_DUPLEX;
1369 				hw_dbg("2500 Mbs, ");
1370 				hw_dbg("Full Duplex\n");
1371 			}
1372 		}
1373 
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 /**
1380  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1384  *  when management pass thru is not enabled.
1385  **/
1386 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1387 {
1388 	u32 reg;
1389 
1390 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1391 	    igb_sgmii_active_82575(hw))
1392 		return;
1393 
1394 	if (!igb_enable_mng_pass_thru(hw)) {
1395 		/* Disable PCS to turn off link */
1396 		reg = rd32(E1000_PCS_CFG0);
1397 		reg &= ~E1000_PCS_CFG_PCS_EN;
1398 		wr32(E1000_PCS_CFG0, reg);
1399 
1400 		/* shutdown the laser */
1401 		reg = rd32(E1000_CTRL_EXT);
1402 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1403 		wr32(E1000_CTRL_EXT, reg);
1404 
1405 		/* flush the write to verify completion */
1406 		wrfl();
1407 		usleep_range(1000, 2000);
1408 	}
1409 }
1410 
1411 /**
1412  *  igb_reset_hw_82575 - Reset hardware
1413  *  @hw: pointer to the HW structure
1414  *
1415  *  This resets the hardware into a known state.  This is a
1416  *  function pointer entry point called by the api module.
1417  **/
1418 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1419 {
1420 	u32 ctrl;
1421 	s32 ret_val;
1422 
1423 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1424 	 * on the last TLP read/write transaction when MAC is reset.
1425 	 */
1426 	ret_val = igb_disable_pcie_master(hw);
1427 	if (ret_val)
1428 		hw_dbg("PCI-E Master disable polling has failed.\n");
1429 
1430 	/* set the completion timeout for interface */
1431 	ret_val = igb_set_pcie_completion_timeout(hw);
1432 	if (ret_val)
1433 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1434 
1435 	hw_dbg("Masking off all interrupts\n");
1436 	wr32(E1000_IMC, 0xffffffff);
1437 
1438 	wr32(E1000_RCTL, 0);
1439 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1440 	wrfl();
1441 
1442 	usleep_range(10000, 20000);
1443 
1444 	ctrl = rd32(E1000_CTRL);
1445 
1446 	hw_dbg("Issuing a global reset to MAC\n");
1447 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1448 
1449 	ret_val = igb_get_auto_rd_done(hw);
1450 	if (ret_val) {
1451 		/* When auto config read does not complete, do not
1452 		 * return with an error. This can happen in situations
1453 		 * where there is no eeprom and prevents getting link.
1454 		 */
1455 		hw_dbg("Auto Read Done did not complete\n");
1456 	}
1457 
1458 	/* If EEPROM is not present, run manual init scripts */
1459 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1460 		igb_reset_init_script_82575(hw);
1461 
1462 	/* Clear any pending interrupt events. */
1463 	wr32(E1000_IMC, 0xffffffff);
1464 	rd32(E1000_ICR);
1465 
1466 	/* Install any alternate MAC address into RAR0 */
1467 	ret_val = igb_check_alt_mac_addr(hw);
1468 
1469 	return ret_val;
1470 }
1471 
1472 /**
1473  *  igb_init_hw_82575 - Initialize hardware
1474  *  @hw: pointer to the HW structure
1475  *
1476  *  This inits the hardware readying it for operation.
1477  **/
1478 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1479 {
1480 	struct e1000_mac_info *mac = &hw->mac;
1481 	s32 ret_val;
1482 	u16 i, rar_count = mac->rar_entry_count;
1483 
1484 	/* Initialize identification LED */
1485 	ret_val = igb_id_led_init(hw);
1486 	if (ret_val) {
1487 		hw_dbg("Error initializing identification LED\n");
1488 		/* This is not fatal and we should not stop init due to this */
1489 	}
1490 
1491 	/* Disabling VLAN filtering */
1492 	hw_dbg("Initializing the IEEE VLAN\n");
1493 	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
1494 		igb_clear_vfta_i350(hw);
1495 	else
1496 		igb_clear_vfta(hw);
1497 
1498 	/* Setup the receive address */
1499 	igb_init_rx_addrs(hw, rar_count);
1500 
1501 	/* Zero out the Multicast HASH table */
1502 	hw_dbg("Zeroing the MTA\n");
1503 	for (i = 0; i < mac->mta_reg_count; i++)
1504 		array_wr32(E1000_MTA, i, 0);
1505 
1506 	/* Zero out the Unicast HASH table */
1507 	hw_dbg("Zeroing the UTA\n");
1508 	for (i = 0; i < mac->uta_reg_count; i++)
1509 		array_wr32(E1000_UTA, i, 0);
1510 
1511 	/* Setup link and flow control */
1512 	ret_val = igb_setup_link(hw);
1513 
1514 	/* Clear all of the statistics registers (clear on read).  It is
1515 	 * important that we do this after we have tried to establish link
1516 	 * because the symbol error count will increment wildly if there
1517 	 * is no link.
1518 	 */
1519 	igb_clear_hw_cntrs_82575(hw);
1520 	return ret_val;
1521 }
1522 
1523 /**
1524  *  igb_setup_copper_link_82575 - Configure copper link settings
1525  *  @hw: pointer to the HW structure
1526  *
1527  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1528  *  for link, once link is established calls to configure collision distance
1529  *  and flow control are called.
1530  **/
1531 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1532 {
1533 	u32 ctrl;
1534 	s32  ret_val;
1535 	u32 phpm_reg;
1536 
1537 	ctrl = rd32(E1000_CTRL);
1538 	ctrl |= E1000_CTRL_SLU;
1539 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1540 	wr32(E1000_CTRL, ctrl);
1541 
1542 	/* Clear Go Link Disconnect bit on supported devices */
1543 	switch (hw->mac.type) {
1544 	case e1000_82580:
1545 	case e1000_i350:
1546 	case e1000_i210:
1547 	case e1000_i211:
1548 		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1549 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1550 		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1551 		break;
1552 	default:
1553 		break;
1554 	}
1555 
1556 	ret_val = igb_setup_serdes_link_82575(hw);
1557 	if (ret_val)
1558 		goto out;
1559 
1560 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1561 		/* allow time for SFP cage time to power up phy */
1562 		msleep(300);
1563 
1564 		ret_val = hw->phy.ops.reset(hw);
1565 		if (ret_val) {
1566 			hw_dbg("Error resetting the PHY.\n");
1567 			goto out;
1568 		}
1569 	}
1570 	switch (hw->phy.type) {
1571 	case e1000_phy_i210:
1572 	case e1000_phy_m88:
1573 		switch (hw->phy.id) {
1574 		case I347AT4_E_PHY_ID:
1575 		case M88E1112_E_PHY_ID:
1576 		case M88E1543_E_PHY_ID:
1577 		case I210_I_PHY_ID:
1578 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1579 			break;
1580 		default:
1581 			ret_val = igb_copper_link_setup_m88(hw);
1582 			break;
1583 		}
1584 		break;
1585 	case e1000_phy_igp_3:
1586 		ret_val = igb_copper_link_setup_igp(hw);
1587 		break;
1588 	case e1000_phy_82580:
1589 		ret_val = igb_copper_link_setup_82580(hw);
1590 		break;
1591 	default:
1592 		ret_val = -E1000_ERR_PHY;
1593 		break;
1594 	}
1595 
1596 	if (ret_val)
1597 		goto out;
1598 
1599 	ret_val = igb_setup_copper_link(hw);
1600 out:
1601 	return ret_val;
1602 }
1603 
1604 /**
1605  *  igb_setup_serdes_link_82575 - Setup link for serdes
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1609  *  used on copper connections where the serialized gigabit media independent
1610  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1611  *  for auto-negotiation or forces speed/duplex.
1612  **/
1613 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1614 {
1615 	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1616 	bool pcs_autoneg;
1617 	s32 ret_val = 0;
1618 	u16 data;
1619 
1620 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1621 	    !igb_sgmii_active_82575(hw))
1622 		return ret_val;
1623 
1624 
1625 	/* On the 82575, SerDes loopback mode persists until it is
1626 	 * explicitly turned off or a power cycle is performed.  A read to
1627 	 * the register does not indicate its status.  Therefore, we ensure
1628 	 * loopback mode is disabled during initialization.
1629 	 */
1630 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1631 
1632 	/* power on the sfp cage if present and turn on I2C */
1633 	ctrl_ext = rd32(E1000_CTRL_EXT);
1634 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1635 	ctrl_ext |= E1000_CTRL_I2C_ENA;
1636 	wr32(E1000_CTRL_EXT, ctrl_ext);
1637 
1638 	ctrl_reg = rd32(E1000_CTRL);
1639 	ctrl_reg |= E1000_CTRL_SLU;
1640 
1641 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1642 		/* set both sw defined pins */
1643 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1644 
1645 		/* Set switch control to serdes energy detect */
1646 		reg = rd32(E1000_CONNSW);
1647 		reg |= E1000_CONNSW_ENRGSRC;
1648 		wr32(E1000_CONNSW, reg);
1649 	}
1650 
1651 	reg = rd32(E1000_PCS_LCTL);
1652 
1653 	/* default pcs_autoneg to the same setting as mac autoneg */
1654 	pcs_autoneg = hw->mac.autoneg;
1655 
1656 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1657 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1658 		/* sgmii mode lets the phy handle forcing speed/duplex */
1659 		pcs_autoneg = true;
1660 		/* autoneg time out should be disabled for SGMII mode */
1661 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1662 		break;
1663 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1664 		/* disable PCS autoneg and support parallel detect only */
1665 		pcs_autoneg = false;
1666 	default:
1667 		if (hw->mac.type == e1000_82575 ||
1668 		    hw->mac.type == e1000_82576) {
1669 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1670 			if (ret_val) {
1671 				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1672 				return ret_val;
1673 			}
1674 
1675 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1676 				pcs_autoneg = false;
1677 		}
1678 
1679 		/* non-SGMII modes only supports a speed of 1000/Full for the
1680 		 * link so it is best to just force the MAC and let the pcs
1681 		 * link either autoneg or be forced to 1000/Full
1682 		 */
1683 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1684 				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1685 
1686 		/* set speed of 1000/Full if speed/duplex is forced */
1687 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1688 		break;
1689 	}
1690 
1691 	wr32(E1000_CTRL, ctrl_reg);
1692 
1693 	/* New SerDes mode allows for forcing speed or autonegotiating speed
1694 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1695 	 * mode that will be compatible with older link partners and switches.
1696 	 * However, both are supported by the hardware and some drivers/tools.
1697 	 */
1698 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1699 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1700 
1701 	if (pcs_autoneg) {
1702 		/* Set PCS register for autoneg */
1703 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1704 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1705 
1706 		/* Disable force flow control for autoneg */
1707 		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1708 
1709 		/* Configure flow control advertisement for autoneg */
1710 		anadv_reg = rd32(E1000_PCS_ANADV);
1711 		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1712 		switch (hw->fc.requested_mode) {
1713 		case e1000_fc_full:
1714 		case e1000_fc_rx_pause:
1715 			anadv_reg |= E1000_TXCW_ASM_DIR;
1716 			anadv_reg |= E1000_TXCW_PAUSE;
1717 			break;
1718 		case e1000_fc_tx_pause:
1719 			anadv_reg |= E1000_TXCW_ASM_DIR;
1720 			break;
1721 		default:
1722 			break;
1723 		}
1724 		wr32(E1000_PCS_ANADV, anadv_reg);
1725 
1726 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1727 	} else {
1728 		/* Set PCS register for forced link */
1729 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1730 
1731 		/* Force flow control for forced link */
1732 		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1733 
1734 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1735 	}
1736 
1737 	wr32(E1000_PCS_LCTL, reg);
1738 
1739 	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1740 		igb_force_mac_fc(hw);
1741 
1742 	return ret_val;
1743 }
1744 
1745 /**
1746  *  igb_sgmii_active_82575 - Return sgmii state
1747  *  @hw: pointer to the HW structure
1748  *
1749  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1750  *  which can be enabled for use in the embedded applications.  Simply
1751  *  return the current state of the sgmii interface.
1752  **/
1753 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1754 {
1755 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1756 	return dev_spec->sgmii_active;
1757 }
1758 
1759 /**
1760  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1761  *  @hw: pointer to the HW structure
1762  *
1763  *  Inits recommended HW defaults after a reset when there is no EEPROM
1764  *  detected. This is only for the 82575.
1765  **/
1766 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1767 {
1768 	if (hw->mac.type == e1000_82575) {
1769 		hw_dbg("Running reset init script for 82575\n");
1770 		/* SerDes configuration via SERDESCTRL */
1771 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1772 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1773 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1774 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1775 
1776 		/* CCM configuration via CCMCTL register */
1777 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1778 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1779 
1780 		/* PCIe lanes configuration */
1781 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1782 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1783 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1784 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1785 
1786 		/* PCIe PLL Configuration */
1787 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1788 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1789 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  *  igb_read_mac_addr_82575 - Read device MAC address
1797  *  @hw: pointer to the HW structure
1798  **/
1799 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1800 {
1801 	s32 ret_val = 0;
1802 
1803 	/* If there's an alternate MAC address place it in RAR0
1804 	 * so that it will override the Si installed default perm
1805 	 * address.
1806 	 */
1807 	ret_val = igb_check_alt_mac_addr(hw);
1808 	if (ret_val)
1809 		goto out;
1810 
1811 	ret_val = igb_read_mac_addr(hw);
1812 
1813 out:
1814 	return ret_val;
1815 }
1816 
1817 /**
1818  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1819  * @hw: pointer to the HW structure
1820  *
1821  * In the case of a PHY power down to save power, or to turn off link during a
1822  * driver unload, or wake on lan is not enabled, remove the link.
1823  **/
1824 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1825 {
1826 	/* If the management interface is not enabled, then power down */
1827 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1828 		igb_power_down_phy_copper(hw);
1829 }
1830 
1831 /**
1832  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1833  *  @hw: pointer to the HW structure
1834  *
1835  *  Clears the hardware counters by reading the counter registers.
1836  **/
1837 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1838 {
1839 	igb_clear_hw_cntrs_base(hw);
1840 
1841 	rd32(E1000_PRC64);
1842 	rd32(E1000_PRC127);
1843 	rd32(E1000_PRC255);
1844 	rd32(E1000_PRC511);
1845 	rd32(E1000_PRC1023);
1846 	rd32(E1000_PRC1522);
1847 	rd32(E1000_PTC64);
1848 	rd32(E1000_PTC127);
1849 	rd32(E1000_PTC255);
1850 	rd32(E1000_PTC511);
1851 	rd32(E1000_PTC1023);
1852 	rd32(E1000_PTC1522);
1853 
1854 	rd32(E1000_ALGNERRC);
1855 	rd32(E1000_RXERRC);
1856 	rd32(E1000_TNCRS);
1857 	rd32(E1000_CEXTERR);
1858 	rd32(E1000_TSCTC);
1859 	rd32(E1000_TSCTFC);
1860 
1861 	rd32(E1000_MGTPRC);
1862 	rd32(E1000_MGTPDC);
1863 	rd32(E1000_MGTPTC);
1864 
1865 	rd32(E1000_IAC);
1866 	rd32(E1000_ICRXOC);
1867 
1868 	rd32(E1000_ICRXPTC);
1869 	rd32(E1000_ICRXATC);
1870 	rd32(E1000_ICTXPTC);
1871 	rd32(E1000_ICTXATC);
1872 	rd32(E1000_ICTXQEC);
1873 	rd32(E1000_ICTXQMTC);
1874 	rd32(E1000_ICRXDMTC);
1875 
1876 	rd32(E1000_CBTMPC);
1877 	rd32(E1000_HTDPMC);
1878 	rd32(E1000_CBRMPC);
1879 	rd32(E1000_RPTHC);
1880 	rd32(E1000_HGPTC);
1881 	rd32(E1000_HTCBDPC);
1882 	rd32(E1000_HGORCL);
1883 	rd32(E1000_HGORCH);
1884 	rd32(E1000_HGOTCL);
1885 	rd32(E1000_HGOTCH);
1886 	rd32(E1000_LENERRS);
1887 
1888 	/* This register should not be read in copper configurations */
1889 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1890 	    igb_sgmii_active_82575(hw))
1891 		rd32(E1000_SCVPC);
1892 }
1893 
1894 /**
1895  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1896  *  @hw: pointer to the HW structure
1897  *
1898  *  After rx enable if managability is enabled then there is likely some
1899  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1900  *  function clears the fifos and flushes any packets that came in as rx was
1901  *  being enabled.
1902  **/
1903 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1904 {
1905 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1906 	int i, ms_wait;
1907 
1908 	if (hw->mac.type != e1000_82575 ||
1909 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1910 		return;
1911 
1912 	/* Disable all RX queues */
1913 	for (i = 0; i < 4; i++) {
1914 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1915 		wr32(E1000_RXDCTL(i),
1916 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1917 	}
1918 	/* Poll all queues to verify they have shut down */
1919 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1920 		usleep_range(1000, 2000);
1921 		rx_enabled = 0;
1922 		for (i = 0; i < 4; i++)
1923 			rx_enabled |= rd32(E1000_RXDCTL(i));
1924 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1925 			break;
1926 	}
1927 
1928 	if (ms_wait == 10)
1929 		hw_dbg("Queue disable timed out after 10ms\n");
1930 
1931 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1932 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1933 	 * any packet that was coming in as RCTL.EN was set is flushed
1934 	 */
1935 	rfctl = rd32(E1000_RFCTL);
1936 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1937 
1938 	rlpml = rd32(E1000_RLPML);
1939 	wr32(E1000_RLPML, 0);
1940 
1941 	rctl = rd32(E1000_RCTL);
1942 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1943 	temp_rctl |= E1000_RCTL_LPE;
1944 
1945 	wr32(E1000_RCTL, temp_rctl);
1946 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1947 	wrfl();
1948 	usleep_range(2000, 3000);
1949 
1950 	/* Enable RX queues that were previously enabled and restore our
1951 	 * previous state
1952 	 */
1953 	for (i = 0; i < 4; i++)
1954 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1955 	wr32(E1000_RCTL, rctl);
1956 	wrfl();
1957 
1958 	wr32(E1000_RLPML, rlpml);
1959 	wr32(E1000_RFCTL, rfctl);
1960 
1961 	/* Flush receive errors generated by workaround */
1962 	rd32(E1000_ROC);
1963 	rd32(E1000_RNBC);
1964 	rd32(E1000_MPC);
1965 }
1966 
1967 /**
1968  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1969  *  @hw: pointer to the HW structure
1970  *
1971  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1972  *  however the hardware default for these parts is 500us to 1ms which is less
1973  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1974  *  increase the value to either 10ms to 200ms for capability version 1 config,
1975  *  or 16ms to 55ms for version 2.
1976  **/
1977 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1978 {
1979 	u32 gcr = rd32(E1000_GCR);
1980 	s32 ret_val = 0;
1981 	u16 pcie_devctl2;
1982 
1983 	/* only take action if timeout value is defaulted to 0 */
1984 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1985 		goto out;
1986 
1987 	/* if capabilities version is type 1 we can write the
1988 	 * timeout of 10ms to 200ms through the GCR register
1989 	 */
1990 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1991 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1992 		goto out;
1993 	}
1994 
1995 	/* for version 2 capabilities we need to write the config space
1996 	 * directly in order to set the completion timeout value for
1997 	 * 16ms to 55ms
1998 	 */
1999 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2000 					&pcie_devctl2);
2001 	if (ret_val)
2002 		goto out;
2003 
2004 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2005 
2006 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2007 					 &pcie_devctl2);
2008 out:
2009 	/* disable completion timeout resend */
2010 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2011 
2012 	wr32(E1000_GCR, gcr);
2013 	return ret_val;
2014 }
2015 
2016 /**
2017  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2018  *  @hw: pointer to the hardware struct
2019  *  @enable: state to enter, either enabled or disabled
2020  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2021  *
2022  *  enables/disables L2 switch anti-spoofing functionality.
2023  **/
2024 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2025 {
2026 	u32 reg_val, reg_offset;
2027 
2028 	switch (hw->mac.type) {
2029 	case e1000_82576:
2030 		reg_offset = E1000_DTXSWC;
2031 		break;
2032 	case e1000_i350:
2033 	case e1000_i354:
2034 		reg_offset = E1000_TXSWC;
2035 		break;
2036 	default:
2037 		return;
2038 	}
2039 
2040 	reg_val = rd32(reg_offset);
2041 	if (enable) {
2042 		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2043 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2044 		/* The PF can spoof - it has to in order to
2045 		 * support emulation mode NICs
2046 		 */
2047 		reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
2048 	} else {
2049 		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2050 			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2051 	}
2052 	wr32(reg_offset, reg_val);
2053 }
2054 
2055 /**
2056  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2057  *  @hw: pointer to the hardware struct
2058  *  @enable: state to enter, either enabled or disabled
2059  *
2060  *  enables/disables L2 switch loopback functionality.
2061  **/
2062 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2063 {
2064 	u32 dtxswc;
2065 
2066 	switch (hw->mac.type) {
2067 	case e1000_82576:
2068 		dtxswc = rd32(E1000_DTXSWC);
2069 		if (enable)
2070 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2071 		else
2072 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2073 		wr32(E1000_DTXSWC, dtxswc);
2074 		break;
2075 	case e1000_i354:
2076 	case e1000_i350:
2077 		dtxswc = rd32(E1000_TXSWC);
2078 		if (enable)
2079 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2080 		else
2081 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2082 		wr32(E1000_TXSWC, dtxswc);
2083 		break;
2084 	default:
2085 		/* Currently no other hardware supports loopback */
2086 		break;
2087 	}
2088 
2089 }
2090 
2091 /**
2092  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2093  *  @hw: pointer to the hardware struct
2094  *  @enable: state to enter, either enabled or disabled
2095  *
2096  *  enables/disables replication of packets across multiple pools.
2097  **/
2098 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2099 {
2100 	u32 vt_ctl = rd32(E1000_VT_CTL);
2101 
2102 	if (enable)
2103 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2104 	else
2105 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2106 
2107 	wr32(E1000_VT_CTL, vt_ctl);
2108 }
2109 
2110 /**
2111  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2112  *  @hw: pointer to the HW structure
2113  *  @offset: register offset to be read
2114  *  @data: pointer to the read data
2115  *
2116  *  Reads the MDI control register in the PHY at offset and stores the
2117  *  information read to data.
2118  **/
2119 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2120 {
2121 	s32 ret_val;
2122 
2123 	ret_val = hw->phy.ops.acquire(hw);
2124 	if (ret_val)
2125 		goto out;
2126 
2127 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2128 
2129 	hw->phy.ops.release(hw);
2130 
2131 out:
2132 	return ret_val;
2133 }
2134 
2135 /**
2136  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2137  *  @hw: pointer to the HW structure
2138  *  @offset: register offset to write to
2139  *  @data: data to write to register at offset
2140  *
2141  *  Writes data to MDI control register in the PHY at offset.
2142  **/
2143 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2144 {
2145 	s32 ret_val;
2146 
2147 
2148 	ret_val = hw->phy.ops.acquire(hw);
2149 	if (ret_val)
2150 		goto out;
2151 
2152 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2153 
2154 	hw->phy.ops.release(hw);
2155 
2156 out:
2157 	return ret_val;
2158 }
2159 
2160 /**
2161  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2162  *  @hw: pointer to the HW structure
2163  *
2164  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2165  *  the values found in the EEPROM.  This addresses an issue in which these
2166  *  bits are not restored from EEPROM after reset.
2167  **/
2168 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2169 {
2170 	s32 ret_val = 0;
2171 	u32 mdicnfg;
2172 	u16 nvm_data = 0;
2173 
2174 	if (hw->mac.type != e1000_82580)
2175 		goto out;
2176 	if (!igb_sgmii_active_82575(hw))
2177 		goto out;
2178 
2179 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2180 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2181 				   &nvm_data);
2182 	if (ret_val) {
2183 		hw_dbg("NVM Read Error\n");
2184 		goto out;
2185 	}
2186 
2187 	mdicnfg = rd32(E1000_MDICNFG);
2188 	if (nvm_data & NVM_WORD24_EXT_MDIO)
2189 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2190 	if (nvm_data & NVM_WORD24_COM_MDIO)
2191 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2192 	wr32(E1000_MDICNFG, mdicnfg);
2193 out:
2194 	return ret_val;
2195 }
2196 
2197 /**
2198  *  igb_reset_hw_82580 - Reset hardware
2199  *  @hw: pointer to the HW structure
2200  *
2201  *  This resets function or entire device (all ports, etc.)
2202  *  to a known state.
2203  **/
2204 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2205 {
2206 	s32 ret_val = 0;
2207 	/* BH SW mailbox bit in SW_FW_SYNC */
2208 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2209 	u32 ctrl;
2210 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2211 
2212 	hw->dev_spec._82575.global_device_reset = false;
2213 
2214 	/* due to hw errata, global device reset doesn't always
2215 	 * work on 82580
2216 	 */
2217 	if (hw->mac.type == e1000_82580)
2218 		global_device_reset = false;
2219 
2220 	/* Get current control state. */
2221 	ctrl = rd32(E1000_CTRL);
2222 
2223 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2224 	 * on the last TLP read/write transaction when MAC is reset.
2225 	 */
2226 	ret_val = igb_disable_pcie_master(hw);
2227 	if (ret_val)
2228 		hw_dbg("PCI-E Master disable polling has failed.\n");
2229 
2230 	hw_dbg("Masking off all interrupts\n");
2231 	wr32(E1000_IMC, 0xffffffff);
2232 	wr32(E1000_RCTL, 0);
2233 	wr32(E1000_TCTL, E1000_TCTL_PSP);
2234 	wrfl();
2235 
2236 	usleep_range(10000, 11000);
2237 
2238 	/* Determine whether or not a global dev reset is requested */
2239 	if (global_device_reset &&
2240 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2241 			global_device_reset = false;
2242 
2243 	if (global_device_reset &&
2244 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2245 		ctrl |= E1000_CTRL_DEV_RST;
2246 	else
2247 		ctrl |= E1000_CTRL_RST;
2248 
2249 	wr32(E1000_CTRL, ctrl);
2250 	wrfl();
2251 
2252 	/* Add delay to insure DEV_RST has time to complete */
2253 	if (global_device_reset)
2254 		usleep_range(5000, 6000);
2255 
2256 	ret_val = igb_get_auto_rd_done(hw);
2257 	if (ret_val) {
2258 		/* When auto config read does not complete, do not
2259 		 * return with an error. This can happen in situations
2260 		 * where there is no eeprom and prevents getting link.
2261 		 */
2262 		hw_dbg("Auto Read Done did not complete\n");
2263 	}
2264 
2265 	/* clear global device reset status bit */
2266 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2267 
2268 	/* Clear any pending interrupt events. */
2269 	wr32(E1000_IMC, 0xffffffff);
2270 	rd32(E1000_ICR);
2271 
2272 	ret_val = igb_reset_mdicnfg_82580(hw);
2273 	if (ret_val)
2274 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2275 
2276 	/* Install any alternate MAC address into RAR0 */
2277 	ret_val = igb_check_alt_mac_addr(hw);
2278 
2279 	/* Release semaphore */
2280 	if (global_device_reset)
2281 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2282 
2283 	return ret_val;
2284 }
2285 
2286 /**
2287  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2288  *  @data: data received by reading RXPBS register
2289  *
2290  *  The 82580 uses a table based approach for packet buffer allocation sizes.
2291  *  This function converts the retrieved value into the correct table value
2292  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2293  *  0x0 36  72 144   1   2   4   8  16
2294  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2295  */
2296 u16 igb_rxpbs_adjust_82580(u32 data)
2297 {
2298 	u16 ret_val = 0;
2299 
2300 	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2301 		ret_val = e1000_82580_rxpbs_table[data];
2302 
2303 	return ret_val;
2304 }
2305 
2306 /**
2307  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2308  *  checksum
2309  *  @hw: pointer to the HW structure
2310  *  @offset: offset in words of the checksum protected region
2311  *
2312  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2313  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2314  **/
2315 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2316 						 u16 offset)
2317 {
2318 	s32 ret_val = 0;
2319 	u16 checksum = 0;
2320 	u16 i, nvm_data;
2321 
2322 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2323 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2324 		if (ret_val) {
2325 			hw_dbg("NVM Read Error\n");
2326 			goto out;
2327 		}
2328 		checksum += nvm_data;
2329 	}
2330 
2331 	if (checksum != (u16) NVM_SUM) {
2332 		hw_dbg("NVM Checksum Invalid\n");
2333 		ret_val = -E1000_ERR_NVM;
2334 		goto out;
2335 	}
2336 
2337 out:
2338 	return ret_val;
2339 }
2340 
2341 /**
2342  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2343  *  checksum
2344  *  @hw: pointer to the HW structure
2345  *  @offset: offset in words of the checksum protected region
2346  *
2347  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2348  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2349  *  value to the EEPROM.
2350  **/
2351 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2352 {
2353 	s32 ret_val;
2354 	u16 checksum = 0;
2355 	u16 i, nvm_data;
2356 
2357 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2358 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2359 		if (ret_val) {
2360 			hw_dbg("NVM Read Error while updating checksum.\n");
2361 			goto out;
2362 		}
2363 		checksum += nvm_data;
2364 	}
2365 	checksum = (u16) NVM_SUM - checksum;
2366 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2367 				&checksum);
2368 	if (ret_val)
2369 		hw_dbg("NVM Write Error while updating checksum.\n");
2370 
2371 out:
2372 	return ret_val;
2373 }
2374 
2375 /**
2376  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2377  *  @hw: pointer to the HW structure
2378  *
2379  *  Calculates the EEPROM section checksum by reading/adding each word of
2380  *  the EEPROM and then verifies that the sum of the EEPROM is
2381  *  equal to 0xBABA.
2382  **/
2383 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2384 {
2385 	s32 ret_val = 0;
2386 	u16 eeprom_regions_count = 1;
2387 	u16 j, nvm_data;
2388 	u16 nvm_offset;
2389 
2390 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2391 	if (ret_val) {
2392 		hw_dbg("NVM Read Error\n");
2393 		goto out;
2394 	}
2395 
2396 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2397 		/* if checksums compatibility bit is set validate checksums
2398 		 * for all 4 ports.
2399 		 */
2400 		eeprom_regions_count = 4;
2401 	}
2402 
2403 	for (j = 0; j < eeprom_regions_count; j++) {
2404 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2405 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2406 								nvm_offset);
2407 		if (ret_val != 0)
2408 			goto out;
2409 	}
2410 
2411 out:
2412 	return ret_val;
2413 }
2414 
2415 /**
2416  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2417  *  @hw: pointer to the HW structure
2418  *
2419  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2420  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2421  *  checksum and writes the value to the EEPROM.
2422  **/
2423 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2424 {
2425 	s32 ret_val;
2426 	u16 j, nvm_data;
2427 	u16 nvm_offset;
2428 
2429 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2430 	if (ret_val) {
2431 		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2432 		goto out;
2433 	}
2434 
2435 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2436 		/* set compatibility bit to validate checksums appropriately */
2437 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2438 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2439 					&nvm_data);
2440 		if (ret_val) {
2441 			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2442 			goto out;
2443 		}
2444 	}
2445 
2446 	for (j = 0; j < 4; j++) {
2447 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2448 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2449 		if (ret_val)
2450 			goto out;
2451 	}
2452 
2453 out:
2454 	return ret_val;
2455 }
2456 
2457 /**
2458  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2459  *  @hw: pointer to the HW structure
2460  *
2461  *  Calculates the EEPROM section checksum by reading/adding each word of
2462  *  the EEPROM and then verifies that the sum of the EEPROM is
2463  *  equal to 0xBABA.
2464  **/
2465 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2466 {
2467 	s32 ret_val = 0;
2468 	u16 j;
2469 	u16 nvm_offset;
2470 
2471 	for (j = 0; j < 4; j++) {
2472 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2473 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2474 								nvm_offset);
2475 		if (ret_val != 0)
2476 			goto out;
2477 	}
2478 
2479 out:
2480 	return ret_val;
2481 }
2482 
2483 /**
2484  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2485  *  @hw: pointer to the HW structure
2486  *
2487  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2488  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2489  *  checksum and writes the value to the EEPROM.
2490  **/
2491 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2492 {
2493 	s32 ret_val = 0;
2494 	u16 j;
2495 	u16 nvm_offset;
2496 
2497 	for (j = 0; j < 4; j++) {
2498 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2499 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2500 		if (ret_val != 0)
2501 			goto out;
2502 	}
2503 
2504 out:
2505 	return ret_val;
2506 }
2507 
2508 /**
2509  *  __igb_access_emi_reg - Read/write EMI register
2510  *  @hw: pointer to the HW structure
2511  *  @addr: EMI address to program
2512  *  @data: pointer to value to read/write from/to the EMI address
2513  *  @read: boolean flag to indicate read or write
2514  **/
2515 static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2516 				  u16 *data, bool read)
2517 {
2518 	s32 ret_val = 0;
2519 
2520 	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2521 	if (ret_val)
2522 		return ret_val;
2523 
2524 	if (read)
2525 		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2526 	else
2527 		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2528 
2529 	return ret_val;
2530 }
2531 
2532 /**
2533  *  igb_read_emi_reg - Read Extended Management Interface register
2534  *  @hw: pointer to the HW structure
2535  *  @addr: EMI address to program
2536  *  @data: value to be read from the EMI address
2537  **/
2538 s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2539 {
2540 	return __igb_access_emi_reg(hw, addr, data, true);
2541 }
2542 
2543 /**
2544  *  igb_set_eee_i350 - Enable/disable EEE support
2545  *  @hw: pointer to the HW structure
2546  *
2547  *  Enable/disable EEE based on setting in dev_spec structure.
2548  *
2549  **/
2550 s32 igb_set_eee_i350(struct e1000_hw *hw)
2551 {
2552 	u32 ipcnfg, eeer;
2553 
2554 	if ((hw->mac.type < e1000_i350) ||
2555 	    (hw->phy.media_type != e1000_media_type_copper))
2556 		goto out;
2557 	ipcnfg = rd32(E1000_IPCNFG);
2558 	eeer = rd32(E1000_EEER);
2559 
2560 	/* enable or disable per user setting */
2561 	if (!(hw->dev_spec._82575.eee_disable)) {
2562 		u32 eee_su = rd32(E1000_EEE_SU);
2563 
2564 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
2565 		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2566 			E1000_EEER_LPI_FC);
2567 
2568 		/* This bit should not be set in normal operation. */
2569 		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2570 			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2571 
2572 	} else {
2573 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2574 			E1000_IPCNFG_EEE_100M_AN);
2575 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2576 			E1000_EEER_RX_LPI_EN |
2577 			E1000_EEER_LPI_FC);
2578 	}
2579 	wr32(E1000_IPCNFG, ipcnfg);
2580 	wr32(E1000_EEER, eeer);
2581 	rd32(E1000_IPCNFG);
2582 	rd32(E1000_EEER);
2583 out:
2584 
2585 	return 0;
2586 }
2587 
2588 /**
2589  *  igb_set_eee_i354 - Enable/disable EEE support
2590  *  @hw: pointer to the HW structure
2591  *
2592  *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2593  *
2594  **/
2595 s32 igb_set_eee_i354(struct e1000_hw *hw)
2596 {
2597 	struct e1000_phy_info *phy = &hw->phy;
2598 	s32 ret_val = 0;
2599 	u16 phy_data;
2600 
2601 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2602 	    (phy->id != M88E1543_E_PHY_ID))
2603 		goto out;
2604 
2605 	if (!hw->dev_spec._82575.eee_disable) {
2606 		/* Switch to PHY page 18. */
2607 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2608 		if (ret_val)
2609 			goto out;
2610 
2611 		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2612 					    &phy_data);
2613 		if (ret_val)
2614 			goto out;
2615 
2616 		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2617 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2618 					     phy_data);
2619 		if (ret_val)
2620 			goto out;
2621 
2622 		/* Return the PHY to page 0. */
2623 		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2624 		if (ret_val)
2625 			goto out;
2626 
2627 		/* Turn on EEE advertisement. */
2628 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2629 					     E1000_EEE_ADV_DEV_I354,
2630 					     &phy_data);
2631 		if (ret_val)
2632 			goto out;
2633 
2634 		phy_data |= E1000_EEE_ADV_100_SUPPORTED |
2635 			    E1000_EEE_ADV_1000_SUPPORTED;
2636 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2637 						E1000_EEE_ADV_DEV_I354,
2638 						phy_data);
2639 	} else {
2640 		/* Turn off EEE advertisement. */
2641 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2642 					     E1000_EEE_ADV_DEV_I354,
2643 					     &phy_data);
2644 		if (ret_val)
2645 			goto out;
2646 
2647 		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2648 			      E1000_EEE_ADV_1000_SUPPORTED);
2649 		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2650 					      E1000_EEE_ADV_DEV_I354,
2651 					      phy_data);
2652 	}
2653 
2654 out:
2655 	return ret_val;
2656 }
2657 
2658 /**
2659  *  igb_get_eee_status_i354 - Get EEE status
2660  *  @hw: pointer to the HW structure
2661  *  @status: EEE status
2662  *
2663  *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2664  *  been received.
2665  **/
2666 s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2667 {
2668 	struct e1000_phy_info *phy = &hw->phy;
2669 	s32 ret_val = 0;
2670 	u16 phy_data;
2671 
2672 	/* Check if EEE is supported on this device. */
2673 	if ((hw->phy.media_type != e1000_media_type_copper) ||
2674 	    (phy->id != M88E1543_E_PHY_ID))
2675 		goto out;
2676 
2677 	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2678 				     E1000_PCS_STATUS_DEV_I354,
2679 				     &phy_data);
2680 	if (ret_val)
2681 		goto out;
2682 
2683 	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2684 			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2685 
2686 out:
2687 	return ret_val;
2688 }
2689 
2690 static const u8 e1000_emc_temp_data[4] = {
2691 	E1000_EMC_INTERNAL_DATA,
2692 	E1000_EMC_DIODE1_DATA,
2693 	E1000_EMC_DIODE2_DATA,
2694 	E1000_EMC_DIODE3_DATA
2695 };
2696 static const u8 e1000_emc_therm_limit[4] = {
2697 	E1000_EMC_INTERNAL_THERM_LIMIT,
2698 	E1000_EMC_DIODE1_THERM_LIMIT,
2699 	E1000_EMC_DIODE2_THERM_LIMIT,
2700 	E1000_EMC_DIODE3_THERM_LIMIT
2701 };
2702 
2703 #ifdef CONFIG_IGB_HWMON
2704 /**
2705  *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2706  *  @hw: pointer to hardware structure
2707  *
2708  *  Updates the temperatures in mac.thermal_sensor_data
2709  **/
2710 static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2711 {
2712 	u16 ets_offset;
2713 	u16 ets_cfg;
2714 	u16 ets_sensor;
2715 	u8  num_sensors;
2716 	u8  sensor_index;
2717 	u8  sensor_location;
2718 	u8  i;
2719 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2720 
2721 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2722 		return E1000_NOT_IMPLEMENTED;
2723 
2724 	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2725 
2726 	/* Return the internal sensor only if ETS is unsupported */
2727 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2728 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2729 		return 0;
2730 
2731 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2732 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2733 	    != NVM_ETS_TYPE_EMC)
2734 		return E1000_NOT_IMPLEMENTED;
2735 
2736 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2737 	if (num_sensors > E1000_MAX_SENSORS)
2738 		num_sensors = E1000_MAX_SENSORS;
2739 
2740 	for (i = 1; i < num_sensors; i++) {
2741 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2742 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2743 				NVM_ETS_DATA_INDEX_SHIFT);
2744 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2745 				   NVM_ETS_DATA_LOC_SHIFT);
2746 
2747 		if (sensor_location != 0)
2748 			hw->phy.ops.read_i2c_byte(hw,
2749 					e1000_emc_temp_data[sensor_index],
2750 					E1000_I2C_THERMAL_SENSOR_ADDR,
2751 					&data->sensor[i].temp);
2752 	}
2753 	return 0;
2754 }
2755 
2756 /**
2757  *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2758  *  @hw: pointer to hardware structure
2759  *
2760  *  Sets the thermal sensor thresholds according to the NVM map
2761  *  and save off the threshold and location values into mac.thermal_sensor_data
2762  **/
2763 static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2764 {
2765 	u16 ets_offset;
2766 	u16 ets_cfg;
2767 	u16 ets_sensor;
2768 	u8  low_thresh_delta;
2769 	u8  num_sensors;
2770 	u8  sensor_index;
2771 	u8  sensor_location;
2772 	u8  therm_limit;
2773 	u8  i;
2774 	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2775 
2776 	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2777 		return E1000_NOT_IMPLEMENTED;
2778 
2779 	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2780 
2781 	data->sensor[0].location = 0x1;
2782 	data->sensor[0].caution_thresh =
2783 		(rd32(E1000_THHIGHTC) & 0xFF);
2784 	data->sensor[0].max_op_thresh =
2785 		(rd32(E1000_THLOWTC) & 0xFF);
2786 
2787 	/* Return the internal sensor only if ETS is unsupported */
2788 	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2789 	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2790 		return 0;
2791 
2792 	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2793 	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2794 	    != NVM_ETS_TYPE_EMC)
2795 		return E1000_NOT_IMPLEMENTED;
2796 
2797 	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2798 			    NVM_ETS_LTHRES_DELTA_SHIFT);
2799 	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2800 
2801 	for (i = 1; i <= num_sensors; i++) {
2802 		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2803 		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2804 				NVM_ETS_DATA_INDEX_SHIFT);
2805 		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2806 				   NVM_ETS_DATA_LOC_SHIFT);
2807 		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2808 
2809 		hw->phy.ops.write_i2c_byte(hw,
2810 			e1000_emc_therm_limit[sensor_index],
2811 			E1000_I2C_THERMAL_SENSOR_ADDR,
2812 			therm_limit);
2813 
2814 		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2815 			data->sensor[i].location = sensor_location;
2816 			data->sensor[i].caution_thresh = therm_limit;
2817 			data->sensor[i].max_op_thresh = therm_limit -
2818 							low_thresh_delta;
2819 		}
2820 	}
2821 	return 0;
2822 }
2823 
2824 #endif
2825 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2826 	.init_hw              = igb_init_hw_82575,
2827 	.check_for_link       = igb_check_for_link_82575,
2828 	.rar_set              = igb_rar_set,
2829 	.read_mac_addr        = igb_read_mac_addr_82575,
2830 	.get_speed_and_duplex = igb_get_link_up_info_82575,
2831 #ifdef CONFIG_IGB_HWMON
2832 	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2833 	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2834 #endif
2835 };
2836 
2837 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2838 	.acquire              = igb_acquire_phy_82575,
2839 	.get_cfg_done         = igb_get_cfg_done_82575,
2840 	.release              = igb_release_phy_82575,
2841 	.write_i2c_byte       = igb_write_i2c_byte,
2842 	.read_i2c_byte        = igb_read_i2c_byte,
2843 };
2844 
2845 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2846 	.acquire              = igb_acquire_nvm_82575,
2847 	.read                 = igb_read_nvm_eerd,
2848 	.release              = igb_release_nvm_82575,
2849 	.write                = igb_write_nvm_spi,
2850 };
2851 
2852 const struct e1000_info e1000_82575_info = {
2853 	.get_invariants = igb_get_invariants_82575,
2854 	.mac_ops = &e1000_mac_ops_82575,
2855 	.phy_ops = &e1000_phy_ops_82575,
2856 	.nvm_ops = &e1000_nvm_ops_82575,
2857 };
2858 
2859