1 /******************************************************************************* 2 3 Intel(R) Gigabit Ethernet Linux driver 4 Copyright(c) 2007-2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 /* e1000_82575 29 * e1000_82576 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/types.h> 35 #include <linux/if_ether.h> 36 37 #include "e1000_mac.h" 38 #include "e1000_82575.h" 39 #include "e1000_i210.h" 40 41 static s32 igb_get_invariants_82575(struct e1000_hw *); 42 static s32 igb_acquire_phy_82575(struct e1000_hw *); 43 static void igb_release_phy_82575(struct e1000_hw *); 44 static s32 igb_acquire_nvm_82575(struct e1000_hw *); 45 static void igb_release_nvm_82575(struct e1000_hw *); 46 static s32 igb_check_for_link_82575(struct e1000_hw *); 47 static s32 igb_get_cfg_done_82575(struct e1000_hw *); 48 static s32 igb_init_hw_82575(struct e1000_hw *); 49 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); 50 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); 51 static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); 52 static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); 53 static s32 igb_reset_hw_82575(struct e1000_hw *); 54 static s32 igb_reset_hw_82580(struct e1000_hw *); 55 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); 56 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); 57 static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); 58 static s32 igb_setup_copper_link_82575(struct e1000_hw *); 59 static s32 igb_setup_serdes_link_82575(struct e1000_hw *); 60 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); 61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *); 62 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); 63 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, 64 u16 *); 65 static s32 igb_get_phy_id_82575(struct e1000_hw *); 66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); 67 static bool igb_sgmii_active_82575(struct e1000_hw *); 68 static s32 igb_reset_init_script_82575(struct e1000_hw *); 69 static s32 igb_read_mac_addr_82575(struct e1000_hw *); 70 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); 71 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); 72 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); 73 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); 74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); 75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); 76 static const u16 e1000_82580_rxpbs_table[] = 77 { 36, 72, 144, 1, 2, 4, 8, 16, 78 35, 70, 140 }; 79 #define E1000_82580_RXPBS_TABLE_SIZE \ 80 (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) 81 82 /** 83 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO 84 * @hw: pointer to the HW structure 85 * 86 * Called to determine if the I2C pins are being used for I2C or as an 87 * external MDIO interface since the two options are mutually exclusive. 88 **/ 89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) 90 { 91 u32 reg = 0; 92 bool ext_mdio = false; 93 94 switch (hw->mac.type) { 95 case e1000_82575: 96 case e1000_82576: 97 reg = rd32(E1000_MDIC); 98 ext_mdio = !!(reg & E1000_MDIC_DEST); 99 break; 100 case e1000_82580: 101 case e1000_i350: 102 case e1000_i210: 103 case e1000_i211: 104 reg = rd32(E1000_MDICNFG); 105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); 106 break; 107 default: 108 break; 109 } 110 return ext_mdio; 111 } 112 113 static s32 igb_get_invariants_82575(struct e1000_hw *hw) 114 { 115 struct e1000_phy_info *phy = &hw->phy; 116 struct e1000_nvm_info *nvm = &hw->nvm; 117 struct e1000_mac_info *mac = &hw->mac; 118 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; 119 u32 eecd; 120 s32 ret_val; 121 u16 size; 122 u32 ctrl_ext = 0; 123 124 switch (hw->device_id) { 125 case E1000_DEV_ID_82575EB_COPPER: 126 case E1000_DEV_ID_82575EB_FIBER_SERDES: 127 case E1000_DEV_ID_82575GB_QUAD_COPPER: 128 mac->type = e1000_82575; 129 break; 130 case E1000_DEV_ID_82576: 131 case E1000_DEV_ID_82576_NS: 132 case E1000_DEV_ID_82576_NS_SERDES: 133 case E1000_DEV_ID_82576_FIBER: 134 case E1000_DEV_ID_82576_SERDES: 135 case E1000_DEV_ID_82576_QUAD_COPPER: 136 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 137 case E1000_DEV_ID_82576_SERDES_QUAD: 138 mac->type = e1000_82576; 139 break; 140 case E1000_DEV_ID_82580_COPPER: 141 case E1000_DEV_ID_82580_FIBER: 142 case E1000_DEV_ID_82580_QUAD_FIBER: 143 case E1000_DEV_ID_82580_SERDES: 144 case E1000_DEV_ID_82580_SGMII: 145 case E1000_DEV_ID_82580_COPPER_DUAL: 146 case E1000_DEV_ID_DH89XXCC_SGMII: 147 case E1000_DEV_ID_DH89XXCC_SERDES: 148 case E1000_DEV_ID_DH89XXCC_BACKPLANE: 149 case E1000_DEV_ID_DH89XXCC_SFP: 150 mac->type = e1000_82580; 151 break; 152 case E1000_DEV_ID_I350_COPPER: 153 case E1000_DEV_ID_I350_FIBER: 154 case E1000_DEV_ID_I350_SERDES: 155 case E1000_DEV_ID_I350_SGMII: 156 mac->type = e1000_i350; 157 break; 158 case E1000_DEV_ID_I210_COPPER: 159 case E1000_DEV_ID_I210_COPPER_OEM1: 160 case E1000_DEV_ID_I210_COPPER_IT: 161 case E1000_DEV_ID_I210_FIBER: 162 case E1000_DEV_ID_I210_SERDES: 163 case E1000_DEV_ID_I210_SGMII: 164 mac->type = e1000_i210; 165 break; 166 case E1000_DEV_ID_I211_COPPER: 167 mac->type = e1000_i211; 168 break; 169 default: 170 return -E1000_ERR_MAC_INIT; 171 break; 172 } 173 174 /* Set media type */ 175 /* 176 * The 82575 uses bits 22:23 for link mode. The mode can be changed 177 * based on the EEPROM. We cannot rely upon device ID. There 178 * is no distinguishable difference between fiber and internal 179 * SerDes mode on the 82575. There can be an external PHY attached 180 * on the SGMII interface. For this, we'll set sgmii_active to true. 181 */ 182 phy->media_type = e1000_media_type_copper; 183 dev_spec->sgmii_active = false; 184 185 ctrl_ext = rd32(E1000_CTRL_EXT); 186 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 187 case E1000_CTRL_EXT_LINK_MODE_SGMII: 188 dev_spec->sgmii_active = true; 189 break; 190 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 191 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: 192 hw->phy.media_type = e1000_media_type_internal_serdes; 193 break; 194 default: 195 break; 196 } 197 198 /* Set mta register count */ 199 mac->mta_reg_count = 128; 200 /* Set rar entry count */ 201 switch (mac->type) { 202 case e1000_82576: 203 mac->rar_entry_count = E1000_RAR_ENTRIES_82576; 204 break; 205 case e1000_82580: 206 mac->rar_entry_count = E1000_RAR_ENTRIES_82580; 207 break; 208 case e1000_i350: 209 mac->rar_entry_count = E1000_RAR_ENTRIES_I350; 210 break; 211 default: 212 mac->rar_entry_count = E1000_RAR_ENTRIES_82575; 213 break; 214 } 215 /* reset */ 216 if (mac->type >= e1000_82580) 217 mac->ops.reset_hw = igb_reset_hw_82580; 218 else 219 mac->ops.reset_hw = igb_reset_hw_82575; 220 221 if (mac->type >= e1000_i210) { 222 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; 223 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; 224 } else { 225 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; 226 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; 227 } 228 229 /* Set if part includes ASF firmware */ 230 mac->asf_firmware_present = true; 231 /* Set if manageability features are enabled. */ 232 mac->arc_subsystem_valid = 233 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) 234 ? true : false; 235 /* enable EEE on i350 parts and later parts */ 236 if (mac->type >= e1000_i350) 237 dev_spec->eee_disable = false; 238 else 239 dev_spec->eee_disable = true; 240 /* physical interface link setup */ 241 mac->ops.setup_physical_interface = 242 (hw->phy.media_type == e1000_media_type_copper) 243 ? igb_setup_copper_link_82575 244 : igb_setup_serdes_link_82575; 245 246 /* NVM initialization */ 247 eecd = rd32(E1000_EECD); 248 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> 249 E1000_EECD_SIZE_EX_SHIFT); 250 251 /* 252 * Added to a constant, "size" becomes the left-shift value 253 * for setting word_size. 254 */ 255 size += NVM_WORD_SIZE_BASE_SHIFT; 256 257 /* 258 * Check for invalid size 259 */ 260 if ((hw->mac.type == e1000_82576) && (size > 15)) { 261 pr_notice("The NVM size is not valid, defaulting to 32K\n"); 262 size = 15; 263 } 264 265 nvm->word_size = 1 << size; 266 if (hw->mac.type < e1000_i210) { 267 nvm->opcode_bits = 8; 268 nvm->delay_usec = 1; 269 switch (nvm->override) { 270 case e1000_nvm_override_spi_large: 271 nvm->page_size = 32; 272 nvm->address_bits = 16; 273 break; 274 case e1000_nvm_override_spi_small: 275 nvm->page_size = 8; 276 nvm->address_bits = 8; 277 break; 278 default: 279 nvm->page_size = eecd 280 & E1000_EECD_ADDR_BITS ? 32 : 8; 281 nvm->address_bits = eecd 282 & E1000_EECD_ADDR_BITS ? 16 : 8; 283 break; 284 } 285 if (nvm->word_size == (1 << 15)) 286 nvm->page_size = 128; 287 288 nvm->type = e1000_nvm_eeprom_spi; 289 } else 290 nvm->type = e1000_nvm_flash_hw; 291 292 /* NVM Function Pointers */ 293 switch (hw->mac.type) { 294 case e1000_82580: 295 nvm->ops.validate = igb_validate_nvm_checksum_82580; 296 nvm->ops.update = igb_update_nvm_checksum_82580; 297 nvm->ops.acquire = igb_acquire_nvm_82575; 298 nvm->ops.release = igb_release_nvm_82575; 299 if (nvm->word_size < (1 << 15)) 300 nvm->ops.read = igb_read_nvm_eerd; 301 else 302 nvm->ops.read = igb_read_nvm_spi; 303 nvm->ops.write = igb_write_nvm_spi; 304 break; 305 case e1000_i350: 306 nvm->ops.validate = igb_validate_nvm_checksum_i350; 307 nvm->ops.update = igb_update_nvm_checksum_i350; 308 nvm->ops.acquire = igb_acquire_nvm_82575; 309 nvm->ops.release = igb_release_nvm_82575; 310 if (nvm->word_size < (1 << 15)) 311 nvm->ops.read = igb_read_nvm_eerd; 312 else 313 nvm->ops.read = igb_read_nvm_spi; 314 nvm->ops.write = igb_write_nvm_spi; 315 break; 316 case e1000_i210: 317 nvm->ops.validate = igb_validate_nvm_checksum_i210; 318 nvm->ops.update = igb_update_nvm_checksum_i210; 319 nvm->ops.acquire = igb_acquire_nvm_i210; 320 nvm->ops.release = igb_release_nvm_i210; 321 nvm->ops.read = igb_read_nvm_srrd_i210; 322 nvm->ops.valid_led_default = igb_valid_led_default_i210; 323 break; 324 case e1000_i211: 325 nvm->ops.acquire = igb_acquire_nvm_i210; 326 nvm->ops.release = igb_release_nvm_i210; 327 nvm->ops.read = igb_read_nvm_i211; 328 nvm->ops.valid_led_default = igb_valid_led_default_i210; 329 nvm->ops.validate = NULL; 330 nvm->ops.update = NULL; 331 nvm->ops.write = NULL; 332 break; 333 default: 334 nvm->ops.validate = igb_validate_nvm_checksum; 335 nvm->ops.update = igb_update_nvm_checksum; 336 nvm->ops.acquire = igb_acquire_nvm_82575; 337 nvm->ops.release = igb_release_nvm_82575; 338 if (nvm->word_size < (1 << 15)) 339 nvm->ops.read = igb_read_nvm_eerd; 340 else 341 nvm->ops.read = igb_read_nvm_spi; 342 nvm->ops.write = igb_write_nvm_spi; 343 break; 344 } 345 346 /* if part supports SR-IOV then initialize mailbox parameters */ 347 switch (mac->type) { 348 case e1000_82576: 349 case e1000_i350: 350 igb_init_mbx_params_pf(hw); 351 break; 352 default: 353 break; 354 } 355 356 /* setup PHY parameters */ 357 if (phy->media_type != e1000_media_type_copper) { 358 phy->type = e1000_phy_none; 359 return 0; 360 } 361 362 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 363 phy->reset_delay_us = 100; 364 365 ctrl_ext = rd32(E1000_CTRL_EXT); 366 367 /* PHY function pointers */ 368 if (igb_sgmii_active_82575(hw)) { 369 phy->ops.reset = igb_phy_hw_reset_sgmii_82575; 370 ctrl_ext |= E1000_CTRL_I2C_ENA; 371 } else { 372 phy->ops.reset = igb_phy_hw_reset; 373 ctrl_ext &= ~E1000_CTRL_I2C_ENA; 374 } 375 376 wr32(E1000_CTRL_EXT, ctrl_ext); 377 igb_reset_mdicnfg_82580(hw); 378 379 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { 380 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; 381 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; 382 } else if ((hw->mac.type == e1000_82580) 383 || (hw->mac.type == e1000_i350)) { 384 phy->ops.read_reg = igb_read_phy_reg_82580; 385 phy->ops.write_reg = igb_write_phy_reg_82580; 386 } else if (hw->phy.type >= e1000_phy_i210) { 387 phy->ops.read_reg = igb_read_phy_reg_gs40g; 388 phy->ops.write_reg = igb_write_phy_reg_gs40g; 389 } else { 390 phy->ops.read_reg = igb_read_phy_reg_igp; 391 phy->ops.write_reg = igb_write_phy_reg_igp; 392 } 393 394 /* set lan id */ 395 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> 396 E1000_STATUS_FUNC_SHIFT; 397 398 /* Set phy->phy_addr and phy->id. */ 399 ret_val = igb_get_phy_id_82575(hw); 400 if (ret_val) 401 return ret_val; 402 403 /* Verify phy id and set remaining function pointers */ 404 switch (phy->id) { 405 case I347AT4_E_PHY_ID: 406 case M88E1112_E_PHY_ID: 407 case M88E1111_I_PHY_ID: 408 phy->type = e1000_phy_m88; 409 phy->ops.get_phy_info = igb_get_phy_info_m88; 410 411 if (phy->id == I347AT4_E_PHY_ID || 412 phy->id == M88E1112_E_PHY_ID) 413 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; 414 else 415 phy->ops.get_cable_length = igb_get_cable_length_m88; 416 417 if (phy->id == I210_I_PHY_ID) { 418 phy->ops.get_cable_length = 419 igb_get_cable_length_m88_gen2; 420 phy->ops.set_d0_lplu_state = 421 igb_set_d0_lplu_state_82580; 422 phy->ops.set_d3_lplu_state = 423 igb_set_d3_lplu_state_82580; 424 } 425 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 426 break; 427 case IGP03E1000_E_PHY_ID: 428 phy->type = e1000_phy_igp_3; 429 phy->ops.get_phy_info = igb_get_phy_info_igp; 430 phy->ops.get_cable_length = igb_get_cable_length_igp_2; 431 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; 432 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; 433 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; 434 break; 435 case I82580_I_PHY_ID: 436 case I350_I_PHY_ID: 437 phy->type = e1000_phy_82580; 438 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; 439 phy->ops.get_cable_length = igb_get_cable_length_82580; 440 phy->ops.get_phy_info = igb_get_phy_info_82580; 441 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 442 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 443 break; 444 case I210_I_PHY_ID: 445 phy->type = e1000_phy_i210; 446 phy->ops.get_phy_info = igb_get_phy_info_m88; 447 phy->ops.check_polarity = igb_check_polarity_m88; 448 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; 449 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; 450 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; 451 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; 452 break; 453 default: 454 return -E1000_ERR_PHY; 455 } 456 457 return 0; 458 } 459 460 /** 461 * igb_acquire_phy_82575 - Acquire rights to access PHY 462 * @hw: pointer to the HW structure 463 * 464 * Acquire access rights to the correct PHY. This is a 465 * function pointer entry point called by the api module. 466 **/ 467 static s32 igb_acquire_phy_82575(struct e1000_hw *hw) 468 { 469 u16 mask = E1000_SWFW_PHY0_SM; 470 471 if (hw->bus.func == E1000_FUNC_1) 472 mask = E1000_SWFW_PHY1_SM; 473 else if (hw->bus.func == E1000_FUNC_2) 474 mask = E1000_SWFW_PHY2_SM; 475 else if (hw->bus.func == E1000_FUNC_3) 476 mask = E1000_SWFW_PHY3_SM; 477 478 return hw->mac.ops.acquire_swfw_sync(hw, mask); 479 } 480 481 /** 482 * igb_release_phy_82575 - Release rights to access PHY 483 * @hw: pointer to the HW structure 484 * 485 * A wrapper to release access rights to the correct PHY. This is a 486 * function pointer entry point called by the api module. 487 **/ 488 static void igb_release_phy_82575(struct e1000_hw *hw) 489 { 490 u16 mask = E1000_SWFW_PHY0_SM; 491 492 if (hw->bus.func == E1000_FUNC_1) 493 mask = E1000_SWFW_PHY1_SM; 494 else if (hw->bus.func == E1000_FUNC_2) 495 mask = E1000_SWFW_PHY2_SM; 496 else if (hw->bus.func == E1000_FUNC_3) 497 mask = E1000_SWFW_PHY3_SM; 498 499 hw->mac.ops.release_swfw_sync(hw, mask); 500 } 501 502 /** 503 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii 504 * @hw: pointer to the HW structure 505 * @offset: register offset to be read 506 * @data: pointer to the read data 507 * 508 * Reads the PHY register at offset using the serial gigabit media independent 509 * interface and stores the retrieved information in data. 510 **/ 511 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 512 u16 *data) 513 { 514 s32 ret_val = -E1000_ERR_PARAM; 515 516 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 517 hw_dbg("PHY Address %u is out of range\n", offset); 518 goto out; 519 } 520 521 ret_val = hw->phy.ops.acquire(hw); 522 if (ret_val) 523 goto out; 524 525 ret_val = igb_read_phy_reg_i2c(hw, offset, data); 526 527 hw->phy.ops.release(hw); 528 529 out: 530 return ret_val; 531 } 532 533 /** 534 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii 535 * @hw: pointer to the HW structure 536 * @offset: register offset to write to 537 * @data: data to write at register offset 538 * 539 * Writes the data to PHY register at the offset using the serial gigabit 540 * media independent interface. 541 **/ 542 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, 543 u16 data) 544 { 545 s32 ret_val = -E1000_ERR_PARAM; 546 547 548 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { 549 hw_dbg("PHY Address %d is out of range\n", offset); 550 goto out; 551 } 552 553 ret_val = hw->phy.ops.acquire(hw); 554 if (ret_val) 555 goto out; 556 557 ret_val = igb_write_phy_reg_i2c(hw, offset, data); 558 559 hw->phy.ops.release(hw); 560 561 out: 562 return ret_val; 563 } 564 565 /** 566 * igb_get_phy_id_82575 - Retrieve PHY addr and id 567 * @hw: pointer to the HW structure 568 * 569 * Retrieves the PHY address and ID for both PHY's which do and do not use 570 * sgmi interface. 571 **/ 572 static s32 igb_get_phy_id_82575(struct e1000_hw *hw) 573 { 574 struct e1000_phy_info *phy = &hw->phy; 575 s32 ret_val = 0; 576 u16 phy_id; 577 u32 ctrl_ext; 578 u32 mdic; 579 580 /* 581 * For SGMII PHYs, we try the list of possible addresses until 582 * we find one that works. For non-SGMII PHYs 583 * (e.g. integrated copper PHYs), an address of 1 should 584 * work. The result of this function should mean phy->phy_addr 585 * and phy->id are set correctly. 586 */ 587 if (!(igb_sgmii_active_82575(hw))) { 588 phy->addr = 1; 589 ret_val = igb_get_phy_id(hw); 590 goto out; 591 } 592 593 if (igb_sgmii_uses_mdio_82575(hw)) { 594 switch (hw->mac.type) { 595 case e1000_82575: 596 case e1000_82576: 597 mdic = rd32(E1000_MDIC); 598 mdic &= E1000_MDIC_PHY_MASK; 599 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; 600 break; 601 case e1000_82580: 602 case e1000_i350: 603 case e1000_i210: 604 case e1000_i211: 605 mdic = rd32(E1000_MDICNFG); 606 mdic &= E1000_MDICNFG_PHY_MASK; 607 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; 608 break; 609 default: 610 ret_val = -E1000_ERR_PHY; 611 goto out; 612 break; 613 } 614 ret_val = igb_get_phy_id(hw); 615 goto out; 616 } 617 618 /* Power on sgmii phy if it is disabled */ 619 ctrl_ext = rd32(E1000_CTRL_EXT); 620 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); 621 wrfl(); 622 msleep(300); 623 624 /* 625 * The address field in the I2CCMD register is 3 bits and 0 is invalid. 626 * Therefore, we need to test 1-7 627 */ 628 for (phy->addr = 1; phy->addr < 8; phy->addr++) { 629 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); 630 if (ret_val == 0) { 631 hw_dbg("Vendor ID 0x%08X read at address %u\n", 632 phy_id, phy->addr); 633 /* 634 * At the time of this writing, The M88 part is 635 * the only supported SGMII PHY product. 636 */ 637 if (phy_id == M88_VENDOR) 638 break; 639 } else { 640 hw_dbg("PHY address %u was unreadable\n", phy->addr); 641 } 642 } 643 644 /* A valid PHY type couldn't be found. */ 645 if (phy->addr == 8) { 646 phy->addr = 0; 647 ret_val = -E1000_ERR_PHY; 648 goto out; 649 } else { 650 ret_val = igb_get_phy_id(hw); 651 } 652 653 /* restore previous sfp cage power state */ 654 wr32(E1000_CTRL_EXT, ctrl_ext); 655 656 out: 657 return ret_val; 658 } 659 660 /** 661 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset 662 * @hw: pointer to the HW structure 663 * 664 * Resets the PHY using the serial gigabit media independent interface. 665 **/ 666 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) 667 { 668 s32 ret_val; 669 670 /* 671 * This isn't a true "hard" reset, but is the only reset 672 * available to us at this time. 673 */ 674 675 hw_dbg("Soft resetting SGMII attached PHY...\n"); 676 677 /* 678 * SFP documentation requires the following to configure the SPF module 679 * to work on SGMII. No further documentation is given. 680 */ 681 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); 682 if (ret_val) 683 goto out; 684 685 ret_val = igb_phy_sw_reset(hw); 686 687 out: 688 return ret_val; 689 } 690 691 /** 692 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state 693 * @hw: pointer to the HW structure 694 * @active: true to enable LPLU, false to disable 695 * 696 * Sets the LPLU D0 state according to the active flag. When 697 * activating LPLU this function also disables smart speed 698 * and vice versa. LPLU will not be activated unless the 699 * device autonegotiation advertisement meets standards of 700 * either 10 or 10/100 or 10/100/1000 at all duplexes. 701 * This is a function pointer entry point only called by 702 * PHY setup routines. 703 **/ 704 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) 705 { 706 struct e1000_phy_info *phy = &hw->phy; 707 s32 ret_val; 708 u16 data; 709 710 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); 711 if (ret_val) 712 goto out; 713 714 if (active) { 715 data |= IGP02E1000_PM_D0_LPLU; 716 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 717 data); 718 if (ret_val) 719 goto out; 720 721 /* When LPLU is enabled, we should disable SmartSpeed */ 722 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 723 &data); 724 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 725 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, 726 data); 727 if (ret_val) 728 goto out; 729 } else { 730 data &= ~IGP02E1000_PM_D0_LPLU; 731 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, 732 data); 733 /* 734 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 735 * during Dx states where the power conservation is most 736 * important. During driver activity we should enable 737 * SmartSpeed, so performance is maintained. 738 */ 739 if (phy->smart_speed == e1000_smart_speed_on) { 740 ret_val = phy->ops.read_reg(hw, 741 IGP01E1000_PHY_PORT_CONFIG, &data); 742 if (ret_val) 743 goto out; 744 745 data |= IGP01E1000_PSCFR_SMART_SPEED; 746 ret_val = phy->ops.write_reg(hw, 747 IGP01E1000_PHY_PORT_CONFIG, data); 748 if (ret_val) 749 goto out; 750 } else if (phy->smart_speed == e1000_smart_speed_off) { 751 ret_val = phy->ops.read_reg(hw, 752 IGP01E1000_PHY_PORT_CONFIG, &data); 753 if (ret_val) 754 goto out; 755 756 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 757 ret_val = phy->ops.write_reg(hw, 758 IGP01E1000_PHY_PORT_CONFIG, data); 759 if (ret_val) 760 goto out; 761 } 762 } 763 764 out: 765 return ret_val; 766 } 767 768 /** 769 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state 770 * @hw: pointer to the HW structure 771 * @active: true to enable LPLU, false to disable 772 * 773 * Sets the LPLU D0 state according to the active flag. When 774 * activating LPLU this function also disables smart speed 775 * and vice versa. LPLU will not be activated unless the 776 * device autonegotiation advertisement meets standards of 777 * either 10 or 10/100 or 10/100/1000 at all duplexes. 778 * This is a function pointer entry point only called by 779 * PHY setup routines. 780 **/ 781 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) 782 { 783 struct e1000_phy_info *phy = &hw->phy; 784 s32 ret_val = 0; 785 u16 data; 786 787 data = rd32(E1000_82580_PHY_POWER_MGMT); 788 789 if (active) { 790 data |= E1000_82580_PM_D0_LPLU; 791 792 /* When LPLU is enabled, we should disable SmartSpeed */ 793 data &= ~E1000_82580_PM_SPD; 794 } else { 795 data &= ~E1000_82580_PM_D0_LPLU; 796 797 /* 798 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 799 * during Dx states where the power conservation is most 800 * important. During driver activity we should enable 801 * SmartSpeed, so performance is maintained. 802 */ 803 if (phy->smart_speed == e1000_smart_speed_on) 804 data |= E1000_82580_PM_SPD; 805 else if (phy->smart_speed == e1000_smart_speed_off) 806 data &= ~E1000_82580_PM_SPD; } 807 808 wr32(E1000_82580_PHY_POWER_MGMT, data); 809 return ret_val; 810 } 811 812 /** 813 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 814 * @hw: pointer to the HW structure 815 * @active: boolean used to enable/disable lplu 816 * 817 * Success returns 0, Failure returns 1 818 * 819 * The low power link up (lplu) state is set to the power management level D3 820 * and SmartSpeed is disabled when active is true, else clear lplu for D3 821 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU 822 * is used during Dx states where the power conservation is most important. 823 * During driver activity, SmartSpeed should be enabled so performance is 824 * maintained. 825 **/ 826 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) 827 { 828 struct e1000_phy_info *phy = &hw->phy; 829 s32 ret_val = 0; 830 u16 data; 831 832 data = rd32(E1000_82580_PHY_POWER_MGMT); 833 834 if (!active) { 835 data &= ~E1000_82580_PM_D3_LPLU; 836 /* 837 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 838 * during Dx states where the power conservation is most 839 * important. During driver activity we should enable 840 * SmartSpeed, so performance is maintained. 841 */ 842 if (phy->smart_speed == e1000_smart_speed_on) 843 data |= E1000_82580_PM_SPD; 844 else if (phy->smart_speed == e1000_smart_speed_off) 845 data &= ~E1000_82580_PM_SPD; 846 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 847 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 848 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 849 data |= E1000_82580_PM_D3_LPLU; 850 /* When LPLU is enabled, we should disable SmartSpeed */ 851 data &= ~E1000_82580_PM_SPD; 852 } 853 854 wr32(E1000_82580_PHY_POWER_MGMT, data); 855 return ret_val; 856 } 857 858 /** 859 * igb_acquire_nvm_82575 - Request for access to EEPROM 860 * @hw: pointer to the HW structure 861 * 862 * Acquire the necessary semaphores for exclusive access to the EEPROM. 863 * Set the EEPROM access request bit and wait for EEPROM access grant bit. 864 * Return successful if access grant bit set, else clear the request for 865 * EEPROM access and return -E1000_ERR_NVM (-1). 866 **/ 867 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) 868 { 869 s32 ret_val; 870 871 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); 872 if (ret_val) 873 goto out; 874 875 ret_val = igb_acquire_nvm(hw); 876 877 if (ret_val) 878 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 879 880 out: 881 return ret_val; 882 } 883 884 /** 885 * igb_release_nvm_82575 - Release exclusive access to EEPROM 886 * @hw: pointer to the HW structure 887 * 888 * Stop any current commands to the EEPROM and clear the EEPROM request bit, 889 * then release the semaphores acquired. 890 **/ 891 static void igb_release_nvm_82575(struct e1000_hw *hw) 892 { 893 igb_release_nvm(hw); 894 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); 895 } 896 897 /** 898 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore 899 * @hw: pointer to the HW structure 900 * @mask: specifies which semaphore to acquire 901 * 902 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask 903 * will also specify which port we're acquiring the lock for. 904 **/ 905 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 906 { 907 u32 swfw_sync; 908 u32 swmask = mask; 909 u32 fwmask = mask << 16; 910 s32 ret_val = 0; 911 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ 912 913 while (i < timeout) { 914 if (igb_get_hw_semaphore(hw)) { 915 ret_val = -E1000_ERR_SWFW_SYNC; 916 goto out; 917 } 918 919 swfw_sync = rd32(E1000_SW_FW_SYNC); 920 if (!(swfw_sync & (fwmask | swmask))) 921 break; 922 923 /* 924 * Firmware currently using resource (fwmask) 925 * or other software thread using resource (swmask) 926 */ 927 igb_put_hw_semaphore(hw); 928 mdelay(5); 929 i++; 930 } 931 932 if (i == timeout) { 933 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); 934 ret_val = -E1000_ERR_SWFW_SYNC; 935 goto out; 936 } 937 938 swfw_sync |= swmask; 939 wr32(E1000_SW_FW_SYNC, swfw_sync); 940 941 igb_put_hw_semaphore(hw); 942 943 out: 944 return ret_val; 945 } 946 947 /** 948 * igb_release_swfw_sync_82575 - Release SW/FW semaphore 949 * @hw: pointer to the HW structure 950 * @mask: specifies which semaphore to acquire 951 * 952 * Release the SW/FW semaphore used to access the PHY or NVM. The mask 953 * will also specify which port we're releasing the lock for. 954 **/ 955 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) 956 { 957 u32 swfw_sync; 958 959 while (igb_get_hw_semaphore(hw) != 0); 960 /* Empty */ 961 962 swfw_sync = rd32(E1000_SW_FW_SYNC); 963 swfw_sync &= ~mask; 964 wr32(E1000_SW_FW_SYNC, swfw_sync); 965 966 igb_put_hw_semaphore(hw); 967 } 968 969 /** 970 * igb_get_cfg_done_82575 - Read config done bit 971 * @hw: pointer to the HW structure 972 * 973 * Read the management control register for the config done bit for 974 * completion status. NOTE: silicon which is EEPROM-less will fail trying 975 * to read the config done bit, so an error is *ONLY* logged and returns 976 * 0. If we were to return with error, EEPROM-less silicon 977 * would not be able to be reset or change link. 978 **/ 979 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) 980 { 981 s32 timeout = PHY_CFG_TIMEOUT; 982 s32 ret_val = 0; 983 u32 mask = E1000_NVM_CFG_DONE_PORT_0; 984 985 if (hw->bus.func == 1) 986 mask = E1000_NVM_CFG_DONE_PORT_1; 987 else if (hw->bus.func == E1000_FUNC_2) 988 mask = E1000_NVM_CFG_DONE_PORT_2; 989 else if (hw->bus.func == E1000_FUNC_3) 990 mask = E1000_NVM_CFG_DONE_PORT_3; 991 992 while (timeout) { 993 if (rd32(E1000_EEMNGCTL) & mask) 994 break; 995 msleep(1); 996 timeout--; 997 } 998 if (!timeout) 999 hw_dbg("MNG configuration cycle has not completed.\n"); 1000 1001 /* If EEPROM is not marked present, init the PHY manually */ 1002 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && 1003 (hw->phy.type == e1000_phy_igp_3)) 1004 igb_phy_init_script_igp3(hw); 1005 1006 return ret_val; 1007 } 1008 1009 /** 1010 * igb_check_for_link_82575 - Check for link 1011 * @hw: pointer to the HW structure 1012 * 1013 * If sgmii is enabled, then use the pcs register to determine link, otherwise 1014 * use the generic interface for determining link. 1015 **/ 1016 static s32 igb_check_for_link_82575(struct e1000_hw *hw) 1017 { 1018 s32 ret_val; 1019 u16 speed, duplex; 1020 1021 if (hw->phy.media_type != e1000_media_type_copper) { 1022 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, 1023 &duplex); 1024 /* 1025 * Use this flag to determine if link needs to be checked or 1026 * not. If we have link clear the flag so that we do not 1027 * continue to check for link. 1028 */ 1029 hw->mac.get_link_status = !hw->mac.serdes_has_link; 1030 } else { 1031 ret_val = igb_check_for_copper_link(hw); 1032 } 1033 1034 return ret_val; 1035 } 1036 1037 /** 1038 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown 1039 * @hw: pointer to the HW structure 1040 **/ 1041 void igb_power_up_serdes_link_82575(struct e1000_hw *hw) 1042 { 1043 u32 reg; 1044 1045 1046 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1047 !igb_sgmii_active_82575(hw)) 1048 return; 1049 1050 /* Enable PCS to turn on link */ 1051 reg = rd32(E1000_PCS_CFG0); 1052 reg |= E1000_PCS_CFG_PCS_EN; 1053 wr32(E1000_PCS_CFG0, reg); 1054 1055 /* Power up the laser */ 1056 reg = rd32(E1000_CTRL_EXT); 1057 reg &= ~E1000_CTRL_EXT_SDP3_DATA; 1058 wr32(E1000_CTRL_EXT, reg); 1059 1060 /* flush the write to verify completion */ 1061 wrfl(); 1062 msleep(1); 1063 } 1064 1065 /** 1066 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex 1067 * @hw: pointer to the HW structure 1068 * @speed: stores the current speed 1069 * @duplex: stores the current duplex 1070 * 1071 * Using the physical coding sub-layer (PCS), retrieve the current speed and 1072 * duplex, then store the values in the pointers provided. 1073 **/ 1074 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, 1075 u16 *duplex) 1076 { 1077 struct e1000_mac_info *mac = &hw->mac; 1078 u32 pcs; 1079 1080 /* Set up defaults for the return values of this function */ 1081 mac->serdes_has_link = false; 1082 *speed = 0; 1083 *duplex = 0; 1084 1085 /* 1086 * Read the PCS Status register for link state. For non-copper mode, 1087 * the status register is not accurate. The PCS status register is 1088 * used instead. 1089 */ 1090 pcs = rd32(E1000_PCS_LSTAT); 1091 1092 /* 1093 * The link up bit determines when link is up on autoneg. The sync ok 1094 * gets set once both sides sync up and agree upon link. Stable link 1095 * can be determined by checking for both link up and link sync ok 1096 */ 1097 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { 1098 mac->serdes_has_link = true; 1099 1100 /* Detect and store PCS speed */ 1101 if (pcs & E1000_PCS_LSTS_SPEED_1000) { 1102 *speed = SPEED_1000; 1103 } else if (pcs & E1000_PCS_LSTS_SPEED_100) { 1104 *speed = SPEED_100; 1105 } else { 1106 *speed = SPEED_10; 1107 } 1108 1109 /* Detect and store PCS duplex */ 1110 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { 1111 *duplex = FULL_DUPLEX; 1112 } else { 1113 *duplex = HALF_DUPLEX; 1114 } 1115 } 1116 1117 return 0; 1118 } 1119 1120 /** 1121 * igb_shutdown_serdes_link_82575 - Remove link during power down 1122 * @hw: pointer to the HW structure 1123 * 1124 * In the case of fiber serdes, shut down optics and PCS on driver unload 1125 * when management pass thru is not enabled. 1126 **/ 1127 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) 1128 { 1129 u32 reg; 1130 1131 if (hw->phy.media_type != e1000_media_type_internal_serdes && 1132 igb_sgmii_active_82575(hw)) 1133 return; 1134 1135 if (!igb_enable_mng_pass_thru(hw)) { 1136 /* Disable PCS to turn off link */ 1137 reg = rd32(E1000_PCS_CFG0); 1138 reg &= ~E1000_PCS_CFG_PCS_EN; 1139 wr32(E1000_PCS_CFG0, reg); 1140 1141 /* shutdown the laser */ 1142 reg = rd32(E1000_CTRL_EXT); 1143 reg |= E1000_CTRL_EXT_SDP3_DATA; 1144 wr32(E1000_CTRL_EXT, reg); 1145 1146 /* flush the write to verify completion */ 1147 wrfl(); 1148 msleep(1); 1149 } 1150 } 1151 1152 /** 1153 * igb_reset_hw_82575 - Reset hardware 1154 * @hw: pointer to the HW structure 1155 * 1156 * This resets the hardware into a known state. This is a 1157 * function pointer entry point called by the api module. 1158 **/ 1159 static s32 igb_reset_hw_82575(struct e1000_hw *hw) 1160 { 1161 u32 ctrl, icr; 1162 s32 ret_val; 1163 1164 /* 1165 * Prevent the PCI-E bus from sticking if there is no TLP connection 1166 * on the last TLP read/write transaction when MAC is reset. 1167 */ 1168 ret_val = igb_disable_pcie_master(hw); 1169 if (ret_val) 1170 hw_dbg("PCI-E Master disable polling has failed.\n"); 1171 1172 /* set the completion timeout for interface */ 1173 ret_val = igb_set_pcie_completion_timeout(hw); 1174 if (ret_val) { 1175 hw_dbg("PCI-E Set completion timeout has failed.\n"); 1176 } 1177 1178 hw_dbg("Masking off all interrupts\n"); 1179 wr32(E1000_IMC, 0xffffffff); 1180 1181 wr32(E1000_RCTL, 0); 1182 wr32(E1000_TCTL, E1000_TCTL_PSP); 1183 wrfl(); 1184 1185 msleep(10); 1186 1187 ctrl = rd32(E1000_CTRL); 1188 1189 hw_dbg("Issuing a global reset to MAC\n"); 1190 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); 1191 1192 ret_val = igb_get_auto_rd_done(hw); 1193 if (ret_val) { 1194 /* 1195 * When auto config read does not complete, do not 1196 * return with an error. This can happen in situations 1197 * where there is no eeprom and prevents getting link. 1198 */ 1199 hw_dbg("Auto Read Done did not complete\n"); 1200 } 1201 1202 /* If EEPROM is not present, run manual init scripts */ 1203 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 1204 igb_reset_init_script_82575(hw); 1205 1206 /* Clear any pending interrupt events. */ 1207 wr32(E1000_IMC, 0xffffffff); 1208 icr = rd32(E1000_ICR); 1209 1210 /* Install any alternate MAC address into RAR0 */ 1211 ret_val = igb_check_alt_mac_addr(hw); 1212 1213 return ret_val; 1214 } 1215 1216 /** 1217 * igb_init_hw_82575 - Initialize hardware 1218 * @hw: pointer to the HW structure 1219 * 1220 * This inits the hardware readying it for operation. 1221 **/ 1222 static s32 igb_init_hw_82575(struct e1000_hw *hw) 1223 { 1224 struct e1000_mac_info *mac = &hw->mac; 1225 s32 ret_val; 1226 u16 i, rar_count = mac->rar_entry_count; 1227 1228 /* Initialize identification LED */ 1229 ret_val = igb_id_led_init(hw); 1230 if (ret_val) { 1231 hw_dbg("Error initializing identification LED\n"); 1232 /* This is not fatal and we should not stop init due to this */ 1233 } 1234 1235 /* Disabling VLAN filtering */ 1236 hw_dbg("Initializing the IEEE VLAN\n"); 1237 if (hw->mac.type == e1000_i350) 1238 igb_clear_vfta_i350(hw); 1239 else 1240 igb_clear_vfta(hw); 1241 1242 /* Setup the receive address */ 1243 igb_init_rx_addrs(hw, rar_count); 1244 1245 /* Zero out the Multicast HASH table */ 1246 hw_dbg("Zeroing the MTA\n"); 1247 for (i = 0; i < mac->mta_reg_count; i++) 1248 array_wr32(E1000_MTA, i, 0); 1249 1250 /* Zero out the Unicast HASH table */ 1251 hw_dbg("Zeroing the UTA\n"); 1252 for (i = 0; i < mac->uta_reg_count; i++) 1253 array_wr32(E1000_UTA, i, 0); 1254 1255 /* Setup link and flow control */ 1256 ret_val = igb_setup_link(hw); 1257 1258 /* 1259 * Clear all of the statistics registers (clear on read). It is 1260 * important that we do this after we have tried to establish link 1261 * because the symbol error count will increment wildly if there 1262 * is no link. 1263 */ 1264 igb_clear_hw_cntrs_82575(hw); 1265 return ret_val; 1266 } 1267 1268 /** 1269 * igb_setup_copper_link_82575 - Configure copper link settings 1270 * @hw: pointer to the HW structure 1271 * 1272 * Configures the link for auto-neg or forced speed and duplex. Then we check 1273 * for link, once link is established calls to configure collision distance 1274 * and flow control are called. 1275 **/ 1276 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) 1277 { 1278 u32 ctrl; 1279 s32 ret_val; 1280 1281 ctrl = rd32(E1000_CTRL); 1282 ctrl |= E1000_CTRL_SLU; 1283 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 1284 wr32(E1000_CTRL, ctrl); 1285 1286 ret_val = igb_setup_serdes_link_82575(hw); 1287 if (ret_val) 1288 goto out; 1289 1290 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { 1291 /* allow time for SFP cage time to power up phy */ 1292 msleep(300); 1293 1294 ret_val = hw->phy.ops.reset(hw); 1295 if (ret_val) { 1296 hw_dbg("Error resetting the PHY.\n"); 1297 goto out; 1298 } 1299 } 1300 switch (hw->phy.type) { 1301 case e1000_phy_i210: 1302 case e1000_phy_m88: 1303 if (hw->phy.id == I347AT4_E_PHY_ID || 1304 hw->phy.id == M88E1112_E_PHY_ID) 1305 ret_val = igb_copper_link_setup_m88_gen2(hw); 1306 else 1307 ret_val = igb_copper_link_setup_m88(hw); 1308 break; 1309 case e1000_phy_igp_3: 1310 ret_val = igb_copper_link_setup_igp(hw); 1311 break; 1312 case e1000_phy_82580: 1313 ret_val = igb_copper_link_setup_82580(hw); 1314 break; 1315 default: 1316 ret_val = -E1000_ERR_PHY; 1317 break; 1318 } 1319 1320 if (ret_val) 1321 goto out; 1322 1323 ret_val = igb_setup_copper_link(hw); 1324 out: 1325 return ret_val; 1326 } 1327 1328 /** 1329 * igb_setup_serdes_link_82575 - Setup link for serdes 1330 * @hw: pointer to the HW structure 1331 * 1332 * Configure the physical coding sub-layer (PCS) link. The PCS link is 1333 * used on copper connections where the serialized gigabit media independent 1334 * interface (sgmii), or serdes fiber is being used. Configures the link 1335 * for auto-negotiation or forces speed/duplex. 1336 **/ 1337 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) 1338 { 1339 u32 ctrl_ext, ctrl_reg, reg; 1340 bool pcs_autoneg; 1341 s32 ret_val = E1000_SUCCESS; 1342 u16 data; 1343 1344 if ((hw->phy.media_type != e1000_media_type_internal_serdes) && 1345 !igb_sgmii_active_82575(hw)) 1346 return ret_val; 1347 1348 1349 /* 1350 * On the 82575, SerDes loopback mode persists until it is 1351 * explicitly turned off or a power cycle is performed. A read to 1352 * the register does not indicate its status. Therefore, we ensure 1353 * loopback mode is disabled during initialization. 1354 */ 1355 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); 1356 1357 /* power on the sfp cage if present */ 1358 ctrl_ext = rd32(E1000_CTRL_EXT); 1359 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; 1360 wr32(E1000_CTRL_EXT, ctrl_ext); 1361 1362 ctrl_reg = rd32(E1000_CTRL); 1363 ctrl_reg |= E1000_CTRL_SLU; 1364 1365 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { 1366 /* set both sw defined pins */ 1367 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; 1368 1369 /* Set switch control to serdes energy detect */ 1370 reg = rd32(E1000_CONNSW); 1371 reg |= E1000_CONNSW_ENRGSRC; 1372 wr32(E1000_CONNSW, reg); 1373 } 1374 1375 reg = rd32(E1000_PCS_LCTL); 1376 1377 /* default pcs_autoneg to the same setting as mac autoneg */ 1378 pcs_autoneg = hw->mac.autoneg; 1379 1380 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { 1381 case E1000_CTRL_EXT_LINK_MODE_SGMII: 1382 /* sgmii mode lets the phy handle forcing speed/duplex */ 1383 pcs_autoneg = true; 1384 /* autoneg time out should be disabled for SGMII mode */ 1385 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); 1386 break; 1387 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: 1388 /* disable PCS autoneg and support parallel detect only */ 1389 pcs_autoneg = false; 1390 default: 1391 if (hw->mac.type == e1000_82575 || 1392 hw->mac.type == e1000_82576) { 1393 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); 1394 if (ret_val) { 1395 printk(KERN_DEBUG "NVM Read Error\n\n"); 1396 return ret_val; 1397 } 1398 1399 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) 1400 pcs_autoneg = false; 1401 } 1402 1403 /* 1404 * non-SGMII modes only supports a speed of 1000/Full for the 1405 * link so it is best to just force the MAC and let the pcs 1406 * link either autoneg or be forced to 1000/Full 1407 */ 1408 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | 1409 E1000_CTRL_FD | E1000_CTRL_FRCDPX; 1410 1411 /* set speed of 1000/Full if speed/duplex is forced */ 1412 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; 1413 break; 1414 } 1415 1416 wr32(E1000_CTRL, ctrl_reg); 1417 1418 /* 1419 * New SerDes mode allows for forcing speed or autonegotiating speed 1420 * at 1gb. Autoneg should be default set by most drivers. This is the 1421 * mode that will be compatible with older link partners and switches. 1422 * However, both are supported by the hardware and some drivers/tools. 1423 */ 1424 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | 1425 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); 1426 1427 /* 1428 * We force flow control to prevent the CTRL register values from being 1429 * overwritten by the autonegotiated flow control values 1430 */ 1431 reg |= E1000_PCS_LCTL_FORCE_FCTRL; 1432 1433 if (pcs_autoneg) { 1434 /* Set PCS register for autoneg */ 1435 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ 1436 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ 1437 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); 1438 } else { 1439 /* Set PCS register for forced link */ 1440 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ 1441 1442 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); 1443 } 1444 1445 wr32(E1000_PCS_LCTL, reg); 1446 1447 if (!igb_sgmii_active_82575(hw)) 1448 igb_force_mac_fc(hw); 1449 1450 return ret_val; 1451 } 1452 1453 /** 1454 * igb_sgmii_active_82575 - Return sgmii state 1455 * @hw: pointer to the HW structure 1456 * 1457 * 82575 silicon has a serialized gigabit media independent interface (sgmii) 1458 * which can be enabled for use in the embedded applications. Simply 1459 * return the current state of the sgmii interface. 1460 **/ 1461 static bool igb_sgmii_active_82575(struct e1000_hw *hw) 1462 { 1463 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; 1464 return dev_spec->sgmii_active; 1465 } 1466 1467 /** 1468 * igb_reset_init_script_82575 - Inits HW defaults after reset 1469 * @hw: pointer to the HW structure 1470 * 1471 * Inits recommended HW defaults after a reset when there is no EEPROM 1472 * detected. This is only for the 82575. 1473 **/ 1474 static s32 igb_reset_init_script_82575(struct e1000_hw *hw) 1475 { 1476 if (hw->mac.type == e1000_82575) { 1477 hw_dbg("Running reset init script for 82575\n"); 1478 /* SerDes configuration via SERDESCTRL */ 1479 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); 1480 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); 1481 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); 1482 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); 1483 1484 /* CCM configuration via CCMCTL register */ 1485 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); 1486 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); 1487 1488 /* PCIe lanes configuration */ 1489 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); 1490 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); 1491 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); 1492 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); 1493 1494 /* PCIe PLL Configuration */ 1495 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); 1496 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); 1497 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); 1498 } 1499 1500 return 0; 1501 } 1502 1503 /** 1504 * igb_read_mac_addr_82575 - Read device MAC address 1505 * @hw: pointer to the HW structure 1506 **/ 1507 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) 1508 { 1509 s32 ret_val = 0; 1510 1511 /* 1512 * If there's an alternate MAC address place it in RAR0 1513 * so that it will override the Si installed default perm 1514 * address. 1515 */ 1516 ret_val = igb_check_alt_mac_addr(hw); 1517 if (ret_val) 1518 goto out; 1519 1520 ret_val = igb_read_mac_addr(hw); 1521 1522 out: 1523 return ret_val; 1524 } 1525 1526 /** 1527 * igb_power_down_phy_copper_82575 - Remove link during PHY power down 1528 * @hw: pointer to the HW structure 1529 * 1530 * In the case of a PHY power down to save power, or to turn off link during a 1531 * driver unload, or wake on lan is not enabled, remove the link. 1532 **/ 1533 void igb_power_down_phy_copper_82575(struct e1000_hw *hw) 1534 { 1535 /* If the management interface is not enabled, then power down */ 1536 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) 1537 igb_power_down_phy_copper(hw); 1538 } 1539 1540 /** 1541 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters 1542 * @hw: pointer to the HW structure 1543 * 1544 * Clears the hardware counters by reading the counter registers. 1545 **/ 1546 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) 1547 { 1548 igb_clear_hw_cntrs_base(hw); 1549 1550 rd32(E1000_PRC64); 1551 rd32(E1000_PRC127); 1552 rd32(E1000_PRC255); 1553 rd32(E1000_PRC511); 1554 rd32(E1000_PRC1023); 1555 rd32(E1000_PRC1522); 1556 rd32(E1000_PTC64); 1557 rd32(E1000_PTC127); 1558 rd32(E1000_PTC255); 1559 rd32(E1000_PTC511); 1560 rd32(E1000_PTC1023); 1561 rd32(E1000_PTC1522); 1562 1563 rd32(E1000_ALGNERRC); 1564 rd32(E1000_RXERRC); 1565 rd32(E1000_TNCRS); 1566 rd32(E1000_CEXTERR); 1567 rd32(E1000_TSCTC); 1568 rd32(E1000_TSCTFC); 1569 1570 rd32(E1000_MGTPRC); 1571 rd32(E1000_MGTPDC); 1572 rd32(E1000_MGTPTC); 1573 1574 rd32(E1000_IAC); 1575 rd32(E1000_ICRXOC); 1576 1577 rd32(E1000_ICRXPTC); 1578 rd32(E1000_ICRXATC); 1579 rd32(E1000_ICTXPTC); 1580 rd32(E1000_ICTXATC); 1581 rd32(E1000_ICTXQEC); 1582 rd32(E1000_ICTXQMTC); 1583 rd32(E1000_ICRXDMTC); 1584 1585 rd32(E1000_CBTMPC); 1586 rd32(E1000_HTDPMC); 1587 rd32(E1000_CBRMPC); 1588 rd32(E1000_RPTHC); 1589 rd32(E1000_HGPTC); 1590 rd32(E1000_HTCBDPC); 1591 rd32(E1000_HGORCL); 1592 rd32(E1000_HGORCH); 1593 rd32(E1000_HGOTCL); 1594 rd32(E1000_HGOTCH); 1595 rd32(E1000_LENERRS); 1596 1597 /* This register should not be read in copper configurations */ 1598 if (hw->phy.media_type == e1000_media_type_internal_serdes || 1599 igb_sgmii_active_82575(hw)) 1600 rd32(E1000_SCVPC); 1601 } 1602 1603 /** 1604 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable 1605 * @hw: pointer to the HW structure 1606 * 1607 * After rx enable if managability is enabled then there is likely some 1608 * bad data at the start of the fifo and possibly in the DMA fifo. This 1609 * function clears the fifos and flushes any packets that came in as rx was 1610 * being enabled. 1611 **/ 1612 void igb_rx_fifo_flush_82575(struct e1000_hw *hw) 1613 { 1614 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; 1615 int i, ms_wait; 1616 1617 if (hw->mac.type != e1000_82575 || 1618 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) 1619 return; 1620 1621 /* Disable all RX queues */ 1622 for (i = 0; i < 4; i++) { 1623 rxdctl[i] = rd32(E1000_RXDCTL(i)); 1624 wr32(E1000_RXDCTL(i), 1625 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); 1626 } 1627 /* Poll all queues to verify they have shut down */ 1628 for (ms_wait = 0; ms_wait < 10; ms_wait++) { 1629 msleep(1); 1630 rx_enabled = 0; 1631 for (i = 0; i < 4; i++) 1632 rx_enabled |= rd32(E1000_RXDCTL(i)); 1633 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) 1634 break; 1635 } 1636 1637 if (ms_wait == 10) 1638 hw_dbg("Queue disable timed out after 10ms\n"); 1639 1640 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all 1641 * incoming packets are rejected. Set enable and wait 2ms so that 1642 * any packet that was coming in as RCTL.EN was set is flushed 1643 */ 1644 rfctl = rd32(E1000_RFCTL); 1645 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); 1646 1647 rlpml = rd32(E1000_RLPML); 1648 wr32(E1000_RLPML, 0); 1649 1650 rctl = rd32(E1000_RCTL); 1651 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); 1652 temp_rctl |= E1000_RCTL_LPE; 1653 1654 wr32(E1000_RCTL, temp_rctl); 1655 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); 1656 wrfl(); 1657 msleep(2); 1658 1659 /* Enable RX queues that were previously enabled and restore our 1660 * previous state 1661 */ 1662 for (i = 0; i < 4; i++) 1663 wr32(E1000_RXDCTL(i), rxdctl[i]); 1664 wr32(E1000_RCTL, rctl); 1665 wrfl(); 1666 1667 wr32(E1000_RLPML, rlpml); 1668 wr32(E1000_RFCTL, rfctl); 1669 1670 /* Flush receive errors generated by workaround */ 1671 rd32(E1000_ROC); 1672 rd32(E1000_RNBC); 1673 rd32(E1000_MPC); 1674 } 1675 1676 /** 1677 * igb_set_pcie_completion_timeout - set pci-e completion timeout 1678 * @hw: pointer to the HW structure 1679 * 1680 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, 1681 * however the hardware default for these parts is 500us to 1ms which is less 1682 * than the 10ms recommended by the pci-e spec. To address this we need to 1683 * increase the value to either 10ms to 200ms for capability version 1 config, 1684 * or 16ms to 55ms for version 2. 1685 **/ 1686 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) 1687 { 1688 u32 gcr = rd32(E1000_GCR); 1689 s32 ret_val = 0; 1690 u16 pcie_devctl2; 1691 1692 /* only take action if timeout value is defaulted to 0 */ 1693 if (gcr & E1000_GCR_CMPL_TMOUT_MASK) 1694 goto out; 1695 1696 /* 1697 * if capababilities version is type 1 we can write the 1698 * timeout of 10ms to 200ms through the GCR register 1699 */ 1700 if (!(gcr & E1000_GCR_CAP_VER2)) { 1701 gcr |= E1000_GCR_CMPL_TMOUT_10ms; 1702 goto out; 1703 } 1704 1705 /* 1706 * for version 2 capabilities we need to write the config space 1707 * directly in order to set the completion timeout value for 1708 * 16ms to 55ms 1709 */ 1710 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 1711 &pcie_devctl2); 1712 if (ret_val) 1713 goto out; 1714 1715 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; 1716 1717 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, 1718 &pcie_devctl2); 1719 out: 1720 /* disable completion timeout resend */ 1721 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; 1722 1723 wr32(E1000_GCR, gcr); 1724 return ret_val; 1725 } 1726 1727 /** 1728 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing 1729 * @hw: pointer to the hardware struct 1730 * @enable: state to enter, either enabled or disabled 1731 * @pf: Physical Function pool - do not set anti-spoofing for the PF 1732 * 1733 * enables/disables L2 switch anti-spoofing functionality. 1734 **/ 1735 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) 1736 { 1737 u32 dtxswc; 1738 1739 switch (hw->mac.type) { 1740 case e1000_82576: 1741 case e1000_i350: 1742 dtxswc = rd32(E1000_DTXSWC); 1743 if (enable) { 1744 dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | 1745 E1000_DTXSWC_VLAN_SPOOF_MASK); 1746 /* The PF can spoof - it has to in order to 1747 * support emulation mode NICs */ 1748 dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); 1749 } else { 1750 dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | 1751 E1000_DTXSWC_VLAN_SPOOF_MASK); 1752 } 1753 wr32(E1000_DTXSWC, dtxswc); 1754 break; 1755 default: 1756 break; 1757 } 1758 } 1759 1760 /** 1761 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback 1762 * @hw: pointer to the hardware struct 1763 * @enable: state to enter, either enabled or disabled 1764 * 1765 * enables/disables L2 switch loopback functionality. 1766 **/ 1767 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) 1768 { 1769 u32 dtxswc; 1770 1771 switch (hw->mac.type) { 1772 case e1000_82576: 1773 dtxswc = rd32(E1000_DTXSWC); 1774 if (enable) 1775 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1776 else 1777 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1778 wr32(E1000_DTXSWC, dtxswc); 1779 break; 1780 case e1000_i350: 1781 dtxswc = rd32(E1000_TXSWC); 1782 if (enable) 1783 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1784 else 1785 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; 1786 wr32(E1000_TXSWC, dtxswc); 1787 break; 1788 default: 1789 /* Currently no other hardware supports loopback */ 1790 break; 1791 } 1792 1793 1794 } 1795 1796 /** 1797 * igb_vmdq_set_replication_pf - enable or disable vmdq replication 1798 * @hw: pointer to the hardware struct 1799 * @enable: state to enter, either enabled or disabled 1800 * 1801 * enables/disables replication of packets across multiple pools. 1802 **/ 1803 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) 1804 { 1805 u32 vt_ctl = rd32(E1000_VT_CTL); 1806 1807 if (enable) 1808 vt_ctl |= E1000_VT_CTL_VM_REPL_EN; 1809 else 1810 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; 1811 1812 wr32(E1000_VT_CTL, vt_ctl); 1813 } 1814 1815 /** 1816 * igb_read_phy_reg_82580 - Read 82580 MDI control register 1817 * @hw: pointer to the HW structure 1818 * @offset: register offset to be read 1819 * @data: pointer to the read data 1820 * 1821 * Reads the MDI control register in the PHY at offset and stores the 1822 * information read to data. 1823 **/ 1824 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) 1825 { 1826 s32 ret_val; 1827 1828 1829 ret_val = hw->phy.ops.acquire(hw); 1830 if (ret_val) 1831 goto out; 1832 1833 ret_val = igb_read_phy_reg_mdic(hw, offset, data); 1834 1835 hw->phy.ops.release(hw); 1836 1837 out: 1838 return ret_val; 1839 } 1840 1841 /** 1842 * igb_write_phy_reg_82580 - Write 82580 MDI control register 1843 * @hw: pointer to the HW structure 1844 * @offset: register offset to write to 1845 * @data: data to write to register at offset 1846 * 1847 * Writes data to MDI control register in the PHY at offset. 1848 **/ 1849 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) 1850 { 1851 s32 ret_val; 1852 1853 1854 ret_val = hw->phy.ops.acquire(hw); 1855 if (ret_val) 1856 goto out; 1857 1858 ret_val = igb_write_phy_reg_mdic(hw, offset, data); 1859 1860 hw->phy.ops.release(hw); 1861 1862 out: 1863 return ret_val; 1864 } 1865 1866 /** 1867 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits 1868 * @hw: pointer to the HW structure 1869 * 1870 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on 1871 * the values found in the EEPROM. This addresses an issue in which these 1872 * bits are not restored from EEPROM after reset. 1873 **/ 1874 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) 1875 { 1876 s32 ret_val = 0; 1877 u32 mdicnfg; 1878 u16 nvm_data = 0; 1879 1880 if (hw->mac.type != e1000_82580) 1881 goto out; 1882 if (!igb_sgmii_active_82575(hw)) 1883 goto out; 1884 1885 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 1886 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 1887 &nvm_data); 1888 if (ret_val) { 1889 hw_dbg("NVM Read Error\n"); 1890 goto out; 1891 } 1892 1893 mdicnfg = rd32(E1000_MDICNFG); 1894 if (nvm_data & NVM_WORD24_EXT_MDIO) 1895 mdicnfg |= E1000_MDICNFG_EXT_MDIO; 1896 if (nvm_data & NVM_WORD24_COM_MDIO) 1897 mdicnfg |= E1000_MDICNFG_COM_MDIO; 1898 wr32(E1000_MDICNFG, mdicnfg); 1899 out: 1900 return ret_val; 1901 } 1902 1903 /** 1904 * igb_reset_hw_82580 - Reset hardware 1905 * @hw: pointer to the HW structure 1906 * 1907 * This resets function or entire device (all ports, etc.) 1908 * to a known state. 1909 **/ 1910 static s32 igb_reset_hw_82580(struct e1000_hw *hw) 1911 { 1912 s32 ret_val = 0; 1913 /* BH SW mailbox bit in SW_FW_SYNC */ 1914 u16 swmbsw_mask = E1000_SW_SYNCH_MB; 1915 u32 ctrl, icr; 1916 bool global_device_reset = hw->dev_spec._82575.global_device_reset; 1917 1918 1919 hw->dev_spec._82575.global_device_reset = false; 1920 1921 /* Get current control state. */ 1922 ctrl = rd32(E1000_CTRL); 1923 1924 /* 1925 * Prevent the PCI-E bus from sticking if there is no TLP connection 1926 * on the last TLP read/write transaction when MAC is reset. 1927 */ 1928 ret_val = igb_disable_pcie_master(hw); 1929 if (ret_val) 1930 hw_dbg("PCI-E Master disable polling has failed.\n"); 1931 1932 hw_dbg("Masking off all interrupts\n"); 1933 wr32(E1000_IMC, 0xffffffff); 1934 wr32(E1000_RCTL, 0); 1935 wr32(E1000_TCTL, E1000_TCTL_PSP); 1936 wrfl(); 1937 1938 msleep(10); 1939 1940 /* Determine whether or not a global dev reset is requested */ 1941 if (global_device_reset && 1942 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) 1943 global_device_reset = false; 1944 1945 if (global_device_reset && 1946 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) 1947 ctrl |= E1000_CTRL_DEV_RST; 1948 else 1949 ctrl |= E1000_CTRL_RST; 1950 1951 wr32(E1000_CTRL, ctrl); 1952 wrfl(); 1953 1954 /* Add delay to insure DEV_RST has time to complete */ 1955 if (global_device_reset) 1956 msleep(5); 1957 1958 ret_val = igb_get_auto_rd_done(hw); 1959 if (ret_val) { 1960 /* 1961 * When auto config read does not complete, do not 1962 * return with an error. This can happen in situations 1963 * where there is no eeprom and prevents getting link. 1964 */ 1965 hw_dbg("Auto Read Done did not complete\n"); 1966 } 1967 1968 /* If EEPROM is not present, run manual init scripts */ 1969 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) 1970 igb_reset_init_script_82575(hw); 1971 1972 /* clear global device reset status bit */ 1973 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); 1974 1975 /* Clear any pending interrupt events. */ 1976 wr32(E1000_IMC, 0xffffffff); 1977 icr = rd32(E1000_ICR); 1978 1979 ret_val = igb_reset_mdicnfg_82580(hw); 1980 if (ret_val) 1981 hw_dbg("Could not reset MDICNFG based on EEPROM\n"); 1982 1983 /* Install any alternate MAC address into RAR0 */ 1984 ret_val = igb_check_alt_mac_addr(hw); 1985 1986 /* Release semaphore */ 1987 if (global_device_reset) 1988 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); 1989 1990 return ret_val; 1991 } 1992 1993 /** 1994 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size 1995 * @data: data received by reading RXPBS register 1996 * 1997 * The 82580 uses a table based approach for packet buffer allocation sizes. 1998 * This function converts the retrieved value into the correct table value 1999 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 2000 * 0x0 36 72 144 1 2 4 8 16 2001 * 0x8 35 70 140 rsv rsv rsv rsv rsv 2002 */ 2003 u16 igb_rxpbs_adjust_82580(u32 data) 2004 { 2005 u16 ret_val = 0; 2006 2007 if (data < E1000_82580_RXPBS_TABLE_SIZE) 2008 ret_val = e1000_82580_rxpbs_table[data]; 2009 2010 return ret_val; 2011 } 2012 2013 /** 2014 * igb_validate_nvm_checksum_with_offset - Validate EEPROM 2015 * checksum 2016 * @hw: pointer to the HW structure 2017 * @offset: offset in words of the checksum protected region 2018 * 2019 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM 2020 * and then verifies that the sum of the EEPROM is equal to 0xBABA. 2021 **/ 2022 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, 2023 u16 offset) 2024 { 2025 s32 ret_val = 0; 2026 u16 checksum = 0; 2027 u16 i, nvm_data; 2028 2029 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { 2030 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2031 if (ret_val) { 2032 hw_dbg("NVM Read Error\n"); 2033 goto out; 2034 } 2035 checksum += nvm_data; 2036 } 2037 2038 if (checksum != (u16) NVM_SUM) { 2039 hw_dbg("NVM Checksum Invalid\n"); 2040 ret_val = -E1000_ERR_NVM; 2041 goto out; 2042 } 2043 2044 out: 2045 return ret_val; 2046 } 2047 2048 /** 2049 * igb_update_nvm_checksum_with_offset - Update EEPROM 2050 * checksum 2051 * @hw: pointer to the HW structure 2052 * @offset: offset in words of the checksum protected region 2053 * 2054 * Updates the EEPROM checksum by reading/adding each word of the EEPROM 2055 * up to the checksum. Then calculates the EEPROM checksum and writes the 2056 * value to the EEPROM. 2057 **/ 2058 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) 2059 { 2060 s32 ret_val; 2061 u16 checksum = 0; 2062 u16 i, nvm_data; 2063 2064 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { 2065 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); 2066 if (ret_val) { 2067 hw_dbg("NVM Read Error while updating checksum.\n"); 2068 goto out; 2069 } 2070 checksum += nvm_data; 2071 } 2072 checksum = (u16) NVM_SUM - checksum; 2073 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, 2074 &checksum); 2075 if (ret_val) 2076 hw_dbg("NVM Write Error while updating checksum.\n"); 2077 2078 out: 2079 return ret_val; 2080 } 2081 2082 /** 2083 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum 2084 * @hw: pointer to the HW structure 2085 * 2086 * Calculates the EEPROM section checksum by reading/adding each word of 2087 * the EEPROM and then verifies that the sum of the EEPROM is 2088 * equal to 0xBABA. 2089 **/ 2090 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) 2091 { 2092 s32 ret_val = 0; 2093 u16 eeprom_regions_count = 1; 2094 u16 j, nvm_data; 2095 u16 nvm_offset; 2096 2097 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2098 if (ret_val) { 2099 hw_dbg("NVM Read Error\n"); 2100 goto out; 2101 } 2102 2103 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { 2104 /* if checksums compatibility bit is set validate checksums 2105 * for all 4 ports. */ 2106 eeprom_regions_count = 4; 2107 } 2108 2109 for (j = 0; j < eeprom_regions_count; j++) { 2110 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2111 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2112 nvm_offset); 2113 if (ret_val != 0) 2114 goto out; 2115 } 2116 2117 out: 2118 return ret_val; 2119 } 2120 2121 /** 2122 * igb_update_nvm_checksum_82580 - Update EEPROM checksum 2123 * @hw: pointer to the HW structure 2124 * 2125 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2126 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2127 * checksum and writes the value to the EEPROM. 2128 **/ 2129 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) 2130 { 2131 s32 ret_val; 2132 u16 j, nvm_data; 2133 u16 nvm_offset; 2134 2135 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); 2136 if (ret_val) { 2137 hw_dbg("NVM Read Error while updating checksum" 2138 " compatibility bit.\n"); 2139 goto out; 2140 } 2141 2142 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { 2143 /* set compatibility bit to validate checksums appropriately */ 2144 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; 2145 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, 2146 &nvm_data); 2147 if (ret_val) { 2148 hw_dbg("NVM Write Error while updating checksum" 2149 " compatibility bit.\n"); 2150 goto out; 2151 } 2152 } 2153 2154 for (j = 0; j < 4; j++) { 2155 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2156 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2157 if (ret_val) 2158 goto out; 2159 } 2160 2161 out: 2162 return ret_val; 2163 } 2164 2165 /** 2166 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum 2167 * @hw: pointer to the HW structure 2168 * 2169 * Calculates the EEPROM section checksum by reading/adding each word of 2170 * the EEPROM and then verifies that the sum of the EEPROM is 2171 * equal to 0xBABA. 2172 **/ 2173 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) 2174 { 2175 s32 ret_val = 0; 2176 u16 j; 2177 u16 nvm_offset; 2178 2179 for (j = 0; j < 4; j++) { 2180 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2181 ret_val = igb_validate_nvm_checksum_with_offset(hw, 2182 nvm_offset); 2183 if (ret_val != 0) 2184 goto out; 2185 } 2186 2187 out: 2188 return ret_val; 2189 } 2190 2191 /** 2192 * igb_update_nvm_checksum_i350 - Update EEPROM checksum 2193 * @hw: pointer to the HW structure 2194 * 2195 * Updates the EEPROM section checksums for all 4 ports by reading/adding 2196 * each word of the EEPROM up to the checksum. Then calculates the EEPROM 2197 * checksum and writes the value to the EEPROM. 2198 **/ 2199 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) 2200 { 2201 s32 ret_val = 0; 2202 u16 j; 2203 u16 nvm_offset; 2204 2205 for (j = 0; j < 4; j++) { 2206 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); 2207 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); 2208 if (ret_val != 0) 2209 goto out; 2210 } 2211 2212 out: 2213 return ret_val; 2214 } 2215 2216 /** 2217 * igb_set_eee_i350 - Enable/disable EEE support 2218 * @hw: pointer to the HW structure 2219 * 2220 * Enable/disable EEE based on setting in dev_spec structure. 2221 * 2222 **/ 2223 s32 igb_set_eee_i350(struct e1000_hw *hw) 2224 { 2225 s32 ret_val = 0; 2226 u32 ipcnfg, eeer; 2227 2228 if ((hw->mac.type < e1000_i350) || 2229 (hw->phy.media_type != e1000_media_type_copper)) 2230 goto out; 2231 ipcnfg = rd32(E1000_IPCNFG); 2232 eeer = rd32(E1000_EEER); 2233 2234 /* enable or disable per user setting */ 2235 if (!(hw->dev_spec._82575.eee_disable)) { 2236 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | 2237 E1000_IPCNFG_EEE_100M_AN); 2238 eeer |= (E1000_EEER_TX_LPI_EN | 2239 E1000_EEER_RX_LPI_EN | 2240 E1000_EEER_LPI_FC); 2241 2242 /* keep the LPI clock running before EEE is enabled */ 2243 if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) { 2244 u32 eee_su; 2245 eee_su = rd32(E1000_EEE_SU); 2246 eee_su &= ~E1000_EEE_SU_LPI_CLK_STP; 2247 wr32(E1000_EEE_SU, eee_su); 2248 } 2249 2250 } else { 2251 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | 2252 E1000_IPCNFG_EEE_100M_AN); 2253 eeer &= ~(E1000_EEER_TX_LPI_EN | 2254 E1000_EEER_RX_LPI_EN | 2255 E1000_EEER_LPI_FC); 2256 } 2257 wr32(E1000_IPCNFG, ipcnfg); 2258 wr32(E1000_EEER, eeer); 2259 rd32(E1000_IPCNFG); 2260 rd32(E1000_EEER); 2261 out: 2262 2263 return ret_val; 2264 } 2265 2266 static struct e1000_mac_operations e1000_mac_ops_82575 = { 2267 .init_hw = igb_init_hw_82575, 2268 .check_for_link = igb_check_for_link_82575, 2269 .rar_set = igb_rar_set, 2270 .read_mac_addr = igb_read_mac_addr_82575, 2271 .get_speed_and_duplex = igb_get_speed_and_duplex_copper, 2272 }; 2273 2274 static struct e1000_phy_operations e1000_phy_ops_82575 = { 2275 .acquire = igb_acquire_phy_82575, 2276 .get_cfg_done = igb_get_cfg_done_82575, 2277 .release = igb_release_phy_82575, 2278 }; 2279 2280 static struct e1000_nvm_operations e1000_nvm_ops_82575 = { 2281 .acquire = igb_acquire_nvm_82575, 2282 .read = igb_read_nvm_eerd, 2283 .release = igb_release_nvm_82575, 2284 .write = igb_write_nvm_spi, 2285 }; 2286 2287 const struct e1000_info e1000_82575_info = { 2288 .get_invariants = igb_get_invariants_82575, 2289 .mac_ops = &e1000_mac_ops_82575, 2290 .phy_ops = &e1000_phy_ops_82575, 2291 .nvm_ops = &e1000_nvm_ops_82575, 2292 }; 2293 2294