1 /*******************************************************************************
2 
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 /* e1000_82575
29  * e1000_82576
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36 
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40 
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64 						 u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77 	{ 36, 72, 144, 1, 2, 4, 8, 16,
78 	  35, 70, 140 };
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80 	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81 
82 /**
83  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84  *  @hw: pointer to the HW structure
85  *
86  *  Called to determine if the I2C pins are being used for I2C or as an
87  *  external MDIO interface since the two options are mutually exclusive.
88  **/
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90 {
91 	u32 reg = 0;
92 	bool ext_mdio = false;
93 
94 	switch (hw->mac.type) {
95 	case e1000_82575:
96 	case e1000_82576:
97 		reg = rd32(E1000_MDIC);
98 		ext_mdio = !!(reg & E1000_MDIC_DEST);
99 		break;
100 	case e1000_82580:
101 	case e1000_i350:
102 	case e1000_i210:
103 	case e1000_i211:
104 		reg = rd32(E1000_MDICNFG);
105 		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 		break;
107 	default:
108 		break;
109 	}
110 	return ext_mdio;
111 }
112 
113 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114 {
115 	struct e1000_phy_info *phy = &hw->phy;
116 	struct e1000_nvm_info *nvm = &hw->nvm;
117 	struct e1000_mac_info *mac = &hw->mac;
118 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119 	u32 eecd;
120 	s32 ret_val;
121 	u16 size;
122 	u32 ctrl_ext = 0;
123 
124 	switch (hw->device_id) {
125 	case E1000_DEV_ID_82575EB_COPPER:
126 	case E1000_DEV_ID_82575EB_FIBER_SERDES:
127 	case E1000_DEV_ID_82575GB_QUAD_COPPER:
128 		mac->type = e1000_82575;
129 		break;
130 	case E1000_DEV_ID_82576:
131 	case E1000_DEV_ID_82576_NS:
132 	case E1000_DEV_ID_82576_NS_SERDES:
133 	case E1000_DEV_ID_82576_FIBER:
134 	case E1000_DEV_ID_82576_SERDES:
135 	case E1000_DEV_ID_82576_QUAD_COPPER:
136 	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137 	case E1000_DEV_ID_82576_SERDES_QUAD:
138 		mac->type = e1000_82576;
139 		break;
140 	case E1000_DEV_ID_82580_COPPER:
141 	case E1000_DEV_ID_82580_FIBER:
142 	case E1000_DEV_ID_82580_QUAD_FIBER:
143 	case E1000_DEV_ID_82580_SERDES:
144 	case E1000_DEV_ID_82580_SGMII:
145 	case E1000_DEV_ID_82580_COPPER_DUAL:
146 	case E1000_DEV_ID_DH89XXCC_SGMII:
147 	case E1000_DEV_ID_DH89XXCC_SERDES:
148 	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149 	case E1000_DEV_ID_DH89XXCC_SFP:
150 		mac->type = e1000_82580;
151 		break;
152 	case E1000_DEV_ID_I350_COPPER:
153 	case E1000_DEV_ID_I350_FIBER:
154 	case E1000_DEV_ID_I350_SERDES:
155 	case E1000_DEV_ID_I350_SGMII:
156 		mac->type = e1000_i350;
157 		break;
158 	case E1000_DEV_ID_I210_COPPER:
159 	case E1000_DEV_ID_I210_COPPER_OEM1:
160 	case E1000_DEV_ID_I210_COPPER_IT:
161 	case E1000_DEV_ID_I210_FIBER:
162 	case E1000_DEV_ID_I210_SERDES:
163 	case E1000_DEV_ID_I210_SGMII:
164 		mac->type = e1000_i210;
165 		break;
166 	case E1000_DEV_ID_I211_COPPER:
167 		mac->type = e1000_i211;
168 		break;
169 	default:
170 		return -E1000_ERR_MAC_INIT;
171 		break;
172 	}
173 
174 	/* Set media type */
175 	/*
176 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
177 	 * based on the EEPROM. We cannot rely upon device ID. There
178 	 * is no distinguishable difference between fiber and internal
179 	 * SerDes mode on the 82575. There can be an external PHY attached
180 	 * on the SGMII interface. For this, we'll set sgmii_active to true.
181 	 */
182 	phy->media_type = e1000_media_type_copper;
183 	dev_spec->sgmii_active = false;
184 
185 	ctrl_ext = rd32(E1000_CTRL_EXT);
186 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188 		dev_spec->sgmii_active = true;
189 		break;
190 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191 	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192 		hw->phy.media_type = e1000_media_type_internal_serdes;
193 		break;
194 	default:
195 		break;
196 	}
197 
198 	/* Set mta register count */
199 	mac->mta_reg_count = 128;
200 	/* Set rar entry count */
201 	switch (mac->type) {
202 	case e1000_82576:
203 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204 		break;
205 	case e1000_82580:
206 		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207 		break;
208 	case e1000_i350:
209 		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210 		break;
211 	default:
212 		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
213 		break;
214 	}
215 	/* reset */
216 	if (mac->type >= e1000_82580)
217 		mac->ops.reset_hw = igb_reset_hw_82580;
218 	else
219 		mac->ops.reset_hw = igb_reset_hw_82575;
220 
221 	if (mac->type >= e1000_i210) {
222 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
223 		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
224 	} else {
225 		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
226 		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
227 	}
228 
229 	/* Set if part includes ASF firmware */
230 	mac->asf_firmware_present = true;
231 	/* Set if manageability features are enabled. */
232 	mac->arc_subsystem_valid =
233 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
234 			? true : false;
235 	/* enable EEE on i350 parts and later parts */
236 	if (mac->type >= e1000_i350)
237 		dev_spec->eee_disable = false;
238 	else
239 		dev_spec->eee_disable = true;
240 	/* physical interface link setup */
241 	mac->ops.setup_physical_interface =
242 		(hw->phy.media_type == e1000_media_type_copper)
243 			? igb_setup_copper_link_82575
244 			: igb_setup_serdes_link_82575;
245 
246 	/* NVM initialization */
247 	eecd = rd32(E1000_EECD);
248 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
249 		     E1000_EECD_SIZE_EX_SHIFT);
250 
251 	/*
252 	 * Added to a constant, "size" becomes the left-shift value
253 	 * for setting word_size.
254 	 */
255 	size += NVM_WORD_SIZE_BASE_SHIFT;
256 
257 	/*
258 	 * Check for invalid size
259 	 */
260 	if ((hw->mac.type == e1000_82576) && (size > 15)) {
261 		pr_notice("The NVM size is not valid, defaulting to 32K\n");
262 		size = 15;
263 	}
264 
265 	nvm->word_size = 1 << size;
266 	if (hw->mac.type < e1000_i210) {
267 		nvm->opcode_bits        = 8;
268 		nvm->delay_usec         = 1;
269 		switch (nvm->override) {
270 		case e1000_nvm_override_spi_large:
271 			nvm->page_size    = 32;
272 			nvm->address_bits = 16;
273 			break;
274 		case e1000_nvm_override_spi_small:
275 			nvm->page_size    = 8;
276 			nvm->address_bits = 8;
277 			break;
278 		default:
279 			nvm->page_size    = eecd
280 				& E1000_EECD_ADDR_BITS ? 32 : 8;
281 			nvm->address_bits = eecd
282 				& E1000_EECD_ADDR_BITS ? 16 : 8;
283 			break;
284 		}
285 		if (nvm->word_size == (1 << 15))
286 			nvm->page_size = 128;
287 
288 		nvm->type = e1000_nvm_eeprom_spi;
289 	} else
290 		nvm->type = e1000_nvm_flash_hw;
291 
292 	/* NVM Function Pointers */
293 	switch (hw->mac.type) {
294 	case e1000_82580:
295 		nvm->ops.validate = igb_validate_nvm_checksum_82580;
296 		nvm->ops.update = igb_update_nvm_checksum_82580;
297 		nvm->ops.acquire = igb_acquire_nvm_82575;
298 		nvm->ops.release = igb_release_nvm_82575;
299 		if (nvm->word_size < (1 << 15))
300 			nvm->ops.read = igb_read_nvm_eerd;
301 		else
302 			nvm->ops.read = igb_read_nvm_spi;
303 		nvm->ops.write = igb_write_nvm_spi;
304 		break;
305 	case e1000_i350:
306 		nvm->ops.validate = igb_validate_nvm_checksum_i350;
307 		nvm->ops.update = igb_update_nvm_checksum_i350;
308 		nvm->ops.acquire = igb_acquire_nvm_82575;
309 		nvm->ops.release = igb_release_nvm_82575;
310 		if (nvm->word_size < (1 << 15))
311 			nvm->ops.read = igb_read_nvm_eerd;
312 		else
313 			nvm->ops.read = igb_read_nvm_spi;
314 		nvm->ops.write = igb_write_nvm_spi;
315 		break;
316 	case e1000_i210:
317 		nvm->ops.validate = igb_validate_nvm_checksum_i210;
318 		nvm->ops.update   = igb_update_nvm_checksum_i210;
319 		nvm->ops.acquire = igb_acquire_nvm_i210;
320 		nvm->ops.release = igb_release_nvm_i210;
321 		nvm->ops.read    = igb_read_nvm_srrd_i210;
322 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
323 		break;
324 	case e1000_i211:
325 		nvm->ops.acquire  = igb_acquire_nvm_i210;
326 		nvm->ops.release  = igb_release_nvm_i210;
327 		nvm->ops.read     = igb_read_nvm_i211;
328 		nvm->ops.valid_led_default = igb_valid_led_default_i210;
329 		nvm->ops.validate = NULL;
330 		nvm->ops.update   = NULL;
331 		nvm->ops.write    = NULL;
332 		break;
333 	default:
334 		nvm->ops.validate = igb_validate_nvm_checksum;
335 		nvm->ops.update = igb_update_nvm_checksum;
336 		nvm->ops.acquire = igb_acquire_nvm_82575;
337 		nvm->ops.release = igb_release_nvm_82575;
338 		if (nvm->word_size < (1 << 15))
339 			nvm->ops.read = igb_read_nvm_eerd;
340 		else
341 			nvm->ops.read = igb_read_nvm_spi;
342 		nvm->ops.write = igb_write_nvm_spi;
343 		break;
344 	}
345 
346 	/* if part supports SR-IOV then initialize mailbox parameters */
347 	switch (mac->type) {
348 	case e1000_82576:
349 	case e1000_i350:
350 		igb_init_mbx_params_pf(hw);
351 		break;
352 	default:
353 		break;
354 	}
355 
356 	/* setup PHY parameters */
357 	if (phy->media_type != e1000_media_type_copper) {
358 		phy->type = e1000_phy_none;
359 		return 0;
360 	}
361 
362 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363 	phy->reset_delay_us      = 100;
364 
365 	ctrl_ext = rd32(E1000_CTRL_EXT);
366 
367 	/* PHY function pointers */
368 	if (igb_sgmii_active_82575(hw)) {
369 		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
370 		ctrl_ext |= E1000_CTRL_I2C_ENA;
371 	} else {
372 		phy->ops.reset      = igb_phy_hw_reset;
373 		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
374 	}
375 
376 	wr32(E1000_CTRL_EXT, ctrl_ext);
377 	igb_reset_mdicnfg_82580(hw);
378 
379 	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
380 		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
381 		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
382 	} else if ((hw->mac.type == e1000_82580)
383 		|| (hw->mac.type == e1000_i350)) {
384 		phy->ops.read_reg   = igb_read_phy_reg_82580;
385 		phy->ops.write_reg  = igb_write_phy_reg_82580;
386 	} else if (hw->phy.type >= e1000_phy_i210) {
387 		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
388 		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
389 	} else {
390 		phy->ops.read_reg   = igb_read_phy_reg_igp;
391 		phy->ops.write_reg  = igb_write_phy_reg_igp;
392 	}
393 
394 	/* set lan id */
395 	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
396 	               E1000_STATUS_FUNC_SHIFT;
397 
398 	/* Set phy->phy_addr and phy->id. */
399 	ret_val = igb_get_phy_id_82575(hw);
400 	if (ret_val)
401 		return ret_val;
402 
403 	/* Verify phy id and set remaining function pointers */
404 	switch (phy->id) {
405 	case I347AT4_E_PHY_ID:
406 	case M88E1112_E_PHY_ID:
407 	case M88E1111_I_PHY_ID:
408 		phy->type                   = e1000_phy_m88;
409 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
410 
411 		if (phy->id == I347AT4_E_PHY_ID ||
412 		    phy->id == M88E1112_E_PHY_ID)
413 			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
414 		else
415 			phy->ops.get_cable_length = igb_get_cable_length_m88;
416 
417 		if (phy->id == I210_I_PHY_ID) {
418 			phy->ops.get_cable_length =
419 					 igb_get_cable_length_m88_gen2;
420 			phy->ops.set_d0_lplu_state =
421 					igb_set_d0_lplu_state_82580;
422 			phy->ops.set_d3_lplu_state =
423 					igb_set_d3_lplu_state_82580;
424 		}
425 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
426 		break;
427 	case IGP03E1000_E_PHY_ID:
428 		phy->type                   = e1000_phy_igp_3;
429 		phy->ops.get_phy_info       = igb_get_phy_info_igp;
430 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
431 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
432 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
433 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
434 		break;
435 	case I82580_I_PHY_ID:
436 	case I350_I_PHY_ID:
437 		phy->type                   = e1000_phy_82580;
438 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
439 		phy->ops.get_cable_length   = igb_get_cable_length_82580;
440 		phy->ops.get_phy_info       = igb_get_phy_info_82580;
441 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
442 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
443 		break;
444 	case I210_I_PHY_ID:
445 		phy->type                   = e1000_phy_i210;
446 		phy->ops.get_phy_info       = igb_get_phy_info_m88;
447 		phy->ops.check_polarity     = igb_check_polarity_m88;
448 		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
449 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
450 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
451 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
452 		break;
453 	default:
454 		return -E1000_ERR_PHY;
455 	}
456 
457 	return 0;
458 }
459 
460 /**
461  *  igb_acquire_phy_82575 - Acquire rights to access PHY
462  *  @hw: pointer to the HW structure
463  *
464  *  Acquire access rights to the correct PHY.  This is a
465  *  function pointer entry point called by the api module.
466  **/
467 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
468 {
469 	u16 mask = E1000_SWFW_PHY0_SM;
470 
471 	if (hw->bus.func == E1000_FUNC_1)
472 		mask = E1000_SWFW_PHY1_SM;
473 	else if (hw->bus.func == E1000_FUNC_2)
474 		mask = E1000_SWFW_PHY2_SM;
475 	else if (hw->bus.func == E1000_FUNC_3)
476 		mask = E1000_SWFW_PHY3_SM;
477 
478 	return hw->mac.ops.acquire_swfw_sync(hw, mask);
479 }
480 
481 /**
482  *  igb_release_phy_82575 - Release rights to access PHY
483  *  @hw: pointer to the HW structure
484  *
485  *  A wrapper to release access rights to the correct PHY.  This is a
486  *  function pointer entry point called by the api module.
487  **/
488 static void igb_release_phy_82575(struct e1000_hw *hw)
489 {
490 	u16 mask = E1000_SWFW_PHY0_SM;
491 
492 	if (hw->bus.func == E1000_FUNC_1)
493 		mask = E1000_SWFW_PHY1_SM;
494 	else if (hw->bus.func == E1000_FUNC_2)
495 		mask = E1000_SWFW_PHY2_SM;
496 	else if (hw->bus.func == E1000_FUNC_3)
497 		mask = E1000_SWFW_PHY3_SM;
498 
499 	hw->mac.ops.release_swfw_sync(hw, mask);
500 }
501 
502 /**
503  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504  *  @hw: pointer to the HW structure
505  *  @offset: register offset to be read
506  *  @data: pointer to the read data
507  *
508  *  Reads the PHY register at offset using the serial gigabit media independent
509  *  interface and stores the retrieved information in data.
510  **/
511 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
512 					  u16 *data)
513 {
514 	s32 ret_val = -E1000_ERR_PARAM;
515 
516 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
517 		hw_dbg("PHY Address %u is out of range\n", offset);
518 		goto out;
519 	}
520 
521 	ret_val = hw->phy.ops.acquire(hw);
522 	if (ret_val)
523 		goto out;
524 
525 	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
526 
527 	hw->phy.ops.release(hw);
528 
529 out:
530 	return ret_val;
531 }
532 
533 /**
534  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535  *  @hw: pointer to the HW structure
536  *  @offset: register offset to write to
537  *  @data: data to write at register offset
538  *
539  *  Writes the data to PHY register at the offset using the serial gigabit
540  *  media independent interface.
541  **/
542 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
543 					   u16 data)
544 {
545 	s32 ret_val = -E1000_ERR_PARAM;
546 
547 
548 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
549 		hw_dbg("PHY Address %d is out of range\n", offset);
550 		goto out;
551 	}
552 
553 	ret_val = hw->phy.ops.acquire(hw);
554 	if (ret_val)
555 		goto out;
556 
557 	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
558 
559 	hw->phy.ops.release(hw);
560 
561 out:
562 	return ret_val;
563 }
564 
565 /**
566  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
567  *  @hw: pointer to the HW structure
568  *
569  *  Retrieves the PHY address and ID for both PHY's which do and do not use
570  *  sgmi interface.
571  **/
572 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
573 {
574 	struct e1000_phy_info *phy = &hw->phy;
575 	s32  ret_val = 0;
576 	u16 phy_id;
577 	u32 ctrl_ext;
578 	u32 mdic;
579 
580 	/*
581 	 * For SGMII PHYs, we try the list of possible addresses until
582 	 * we find one that works.  For non-SGMII PHYs
583 	 * (e.g. integrated copper PHYs), an address of 1 should
584 	 * work.  The result of this function should mean phy->phy_addr
585 	 * and phy->id are set correctly.
586 	 */
587 	if (!(igb_sgmii_active_82575(hw))) {
588 		phy->addr = 1;
589 		ret_val = igb_get_phy_id(hw);
590 		goto out;
591 	}
592 
593 	if (igb_sgmii_uses_mdio_82575(hw)) {
594 		switch (hw->mac.type) {
595 		case e1000_82575:
596 		case e1000_82576:
597 			mdic = rd32(E1000_MDIC);
598 			mdic &= E1000_MDIC_PHY_MASK;
599 			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
600 			break;
601 		case e1000_82580:
602 		case e1000_i350:
603 		case e1000_i210:
604 		case e1000_i211:
605 			mdic = rd32(E1000_MDICNFG);
606 			mdic &= E1000_MDICNFG_PHY_MASK;
607 			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
608 			break;
609 		default:
610 			ret_val = -E1000_ERR_PHY;
611 			goto out;
612 			break;
613 		}
614 		ret_val = igb_get_phy_id(hw);
615 		goto out;
616 	}
617 
618 	/* Power on sgmii phy if it is disabled */
619 	ctrl_ext = rd32(E1000_CTRL_EXT);
620 	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
621 	wrfl();
622 	msleep(300);
623 
624 	/*
625 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
626 	 * Therefore, we need to test 1-7
627 	 */
628 	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
629 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
630 		if (ret_val == 0) {
631 			hw_dbg("Vendor ID 0x%08X read at address %u\n",
632 			       phy_id, phy->addr);
633 			/*
634 			 * At the time of this writing, The M88 part is
635 			 * the only supported SGMII PHY product.
636 			 */
637 			if (phy_id == M88_VENDOR)
638 				break;
639 		} else {
640 			hw_dbg("PHY address %u was unreadable\n", phy->addr);
641 		}
642 	}
643 
644 	/* A valid PHY type couldn't be found. */
645 	if (phy->addr == 8) {
646 		phy->addr = 0;
647 		ret_val = -E1000_ERR_PHY;
648 		goto out;
649 	} else {
650 		ret_val = igb_get_phy_id(hw);
651 	}
652 
653 	/* restore previous sfp cage power state */
654 	wr32(E1000_CTRL_EXT, ctrl_ext);
655 
656 out:
657 	return ret_val;
658 }
659 
660 /**
661  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662  *  @hw: pointer to the HW structure
663  *
664  *  Resets the PHY using the serial gigabit media independent interface.
665  **/
666 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
667 {
668 	s32 ret_val;
669 
670 	/*
671 	 * This isn't a true "hard" reset, but is the only reset
672 	 * available to us at this time.
673 	 */
674 
675 	hw_dbg("Soft resetting SGMII attached PHY...\n");
676 
677 	/*
678 	 * SFP documentation requires the following to configure the SPF module
679 	 * to work on SGMII.  No further documentation is given.
680 	 */
681 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
682 	if (ret_val)
683 		goto out;
684 
685 	ret_val = igb_phy_sw_reset(hw);
686 
687 out:
688 	return ret_val;
689 }
690 
691 /**
692  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693  *  @hw: pointer to the HW structure
694  *  @active: true to enable LPLU, false to disable
695  *
696  *  Sets the LPLU D0 state according to the active flag.  When
697  *  activating LPLU this function also disables smart speed
698  *  and vice versa.  LPLU will not be activated unless the
699  *  device autonegotiation advertisement meets standards of
700  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
701  *  This is a function pointer entry point only called by
702  *  PHY setup routines.
703  **/
704 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
705 {
706 	struct e1000_phy_info *phy = &hw->phy;
707 	s32 ret_val;
708 	u16 data;
709 
710 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
711 	if (ret_val)
712 		goto out;
713 
714 	if (active) {
715 		data |= IGP02E1000_PM_D0_LPLU;
716 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
717 						 data);
718 		if (ret_val)
719 			goto out;
720 
721 		/* When LPLU is enabled, we should disable SmartSpeed */
722 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
723 						&data);
724 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
725 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
726 						 data);
727 		if (ret_val)
728 			goto out;
729 	} else {
730 		data &= ~IGP02E1000_PM_D0_LPLU;
731 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
732 						 data);
733 		/*
734 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
735 		 * during Dx states where the power conservation is most
736 		 * important.  During driver activity we should enable
737 		 * SmartSpeed, so performance is maintained.
738 		 */
739 		if (phy->smart_speed == e1000_smart_speed_on) {
740 			ret_val = phy->ops.read_reg(hw,
741 					IGP01E1000_PHY_PORT_CONFIG, &data);
742 			if (ret_val)
743 				goto out;
744 
745 			data |= IGP01E1000_PSCFR_SMART_SPEED;
746 			ret_val = phy->ops.write_reg(hw,
747 					IGP01E1000_PHY_PORT_CONFIG, data);
748 			if (ret_val)
749 				goto out;
750 		} else if (phy->smart_speed == e1000_smart_speed_off) {
751 			ret_val = phy->ops.read_reg(hw,
752 					IGP01E1000_PHY_PORT_CONFIG, &data);
753 			if (ret_val)
754 				goto out;
755 
756 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
757 			ret_val = phy->ops.write_reg(hw,
758 					IGP01E1000_PHY_PORT_CONFIG, data);
759 			if (ret_val)
760 				goto out;
761 		}
762 	}
763 
764 out:
765 	return ret_val;
766 }
767 
768 /**
769  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
770  *  @hw: pointer to the HW structure
771  *  @active: true to enable LPLU, false to disable
772  *
773  *  Sets the LPLU D0 state according to the active flag.  When
774  *  activating LPLU this function also disables smart speed
775  *  and vice versa.  LPLU will not be activated unless the
776  *  device autonegotiation advertisement meets standards of
777  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
778  *  This is a function pointer entry point only called by
779  *  PHY setup routines.
780  **/
781 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
782 {
783 	struct e1000_phy_info *phy = &hw->phy;
784 	s32 ret_val = 0;
785 	u16 data;
786 
787 	data = rd32(E1000_82580_PHY_POWER_MGMT);
788 
789 	if (active) {
790 		data |= E1000_82580_PM_D0_LPLU;
791 
792 		/* When LPLU is enabled, we should disable SmartSpeed */
793 		data &= ~E1000_82580_PM_SPD;
794 	} else {
795 		data &= ~E1000_82580_PM_D0_LPLU;
796 
797 		/*
798 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
799 		 * during Dx states where the power conservation is most
800 		 * important.  During driver activity we should enable
801 		 * SmartSpeed, so performance is maintained.
802 		 */
803 		if (phy->smart_speed == e1000_smart_speed_on)
804 			data |= E1000_82580_PM_SPD;
805 		else if (phy->smart_speed == e1000_smart_speed_off)
806 			data &= ~E1000_82580_PM_SPD; }
807 
808 	wr32(E1000_82580_PHY_POWER_MGMT, data);
809 	return ret_val;
810 }
811 
812 /**
813  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
814  *  @hw: pointer to the HW structure
815  *  @active: boolean used to enable/disable lplu
816  *
817  *  Success returns 0, Failure returns 1
818  *
819  *  The low power link up (lplu) state is set to the power management level D3
820  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
821  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
822  *  is used during Dx states where the power conservation is most important.
823  *  During driver activity, SmartSpeed should be enabled so performance is
824  *  maintained.
825  **/
826 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
827 {
828 	struct e1000_phy_info *phy = &hw->phy;
829 	s32 ret_val = 0;
830 	u16 data;
831 
832 	data = rd32(E1000_82580_PHY_POWER_MGMT);
833 
834 	if (!active) {
835 		data &= ~E1000_82580_PM_D3_LPLU;
836 		/*
837 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
838 		 * during Dx states where the power conservation is most
839 		 * important.  During driver activity we should enable
840 		 * SmartSpeed, so performance is maintained.
841 		 */
842 		if (phy->smart_speed == e1000_smart_speed_on)
843 			data |= E1000_82580_PM_SPD;
844 		else if (phy->smart_speed == e1000_smart_speed_off)
845 			data &= ~E1000_82580_PM_SPD;
846 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
847 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
848 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
849 		data |= E1000_82580_PM_D3_LPLU;
850 		/* When LPLU is enabled, we should disable SmartSpeed */
851 		data &= ~E1000_82580_PM_SPD;
852 	}
853 
854 	wr32(E1000_82580_PHY_POWER_MGMT, data);
855 	return ret_val;
856 }
857 
858 /**
859  *  igb_acquire_nvm_82575 - Request for access to EEPROM
860  *  @hw: pointer to the HW structure
861  *
862  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
863  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
864  *  Return successful if access grant bit set, else clear the request for
865  *  EEPROM access and return -E1000_ERR_NVM (-1).
866  **/
867 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
868 {
869 	s32 ret_val;
870 
871 	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
872 	if (ret_val)
873 		goto out;
874 
875 	ret_val = igb_acquire_nvm(hw);
876 
877 	if (ret_val)
878 		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
879 
880 out:
881 	return ret_val;
882 }
883 
884 /**
885  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
886  *  @hw: pointer to the HW structure
887  *
888  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
889  *  then release the semaphores acquired.
890  **/
891 static void igb_release_nvm_82575(struct e1000_hw *hw)
892 {
893 	igb_release_nvm(hw);
894 	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
895 }
896 
897 /**
898  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899  *  @hw: pointer to the HW structure
900  *  @mask: specifies which semaphore to acquire
901  *
902  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
903  *  will also specify which port we're acquiring the lock for.
904  **/
905 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
906 {
907 	u32 swfw_sync;
908 	u32 swmask = mask;
909 	u32 fwmask = mask << 16;
910 	s32 ret_val = 0;
911 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
912 
913 	while (i < timeout) {
914 		if (igb_get_hw_semaphore(hw)) {
915 			ret_val = -E1000_ERR_SWFW_SYNC;
916 			goto out;
917 		}
918 
919 		swfw_sync = rd32(E1000_SW_FW_SYNC);
920 		if (!(swfw_sync & (fwmask | swmask)))
921 			break;
922 
923 		/*
924 		 * Firmware currently using resource (fwmask)
925 		 * or other software thread using resource (swmask)
926 		 */
927 		igb_put_hw_semaphore(hw);
928 		mdelay(5);
929 		i++;
930 	}
931 
932 	if (i == timeout) {
933 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934 		ret_val = -E1000_ERR_SWFW_SYNC;
935 		goto out;
936 	}
937 
938 	swfw_sync |= swmask;
939 	wr32(E1000_SW_FW_SYNC, swfw_sync);
940 
941 	igb_put_hw_semaphore(hw);
942 
943 out:
944 	return ret_val;
945 }
946 
947 /**
948  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
949  *  @hw: pointer to the HW structure
950  *  @mask: specifies which semaphore to acquire
951  *
952  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
953  *  will also specify which port we're releasing the lock for.
954  **/
955 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
956 {
957 	u32 swfw_sync;
958 
959 	while (igb_get_hw_semaphore(hw) != 0);
960 	/* Empty */
961 
962 	swfw_sync = rd32(E1000_SW_FW_SYNC);
963 	swfw_sync &= ~mask;
964 	wr32(E1000_SW_FW_SYNC, swfw_sync);
965 
966 	igb_put_hw_semaphore(hw);
967 }
968 
969 /**
970  *  igb_get_cfg_done_82575 - Read config done bit
971  *  @hw: pointer to the HW structure
972  *
973  *  Read the management control register for the config done bit for
974  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
975  *  to read the config done bit, so an error is *ONLY* logged and returns
976  *  0.  If we were to return with error, EEPROM-less silicon
977  *  would not be able to be reset or change link.
978  **/
979 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
980 {
981 	s32 timeout = PHY_CFG_TIMEOUT;
982 	s32 ret_val = 0;
983 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
984 
985 	if (hw->bus.func == 1)
986 		mask = E1000_NVM_CFG_DONE_PORT_1;
987 	else if (hw->bus.func == E1000_FUNC_2)
988 		mask = E1000_NVM_CFG_DONE_PORT_2;
989 	else if (hw->bus.func == E1000_FUNC_3)
990 		mask = E1000_NVM_CFG_DONE_PORT_3;
991 
992 	while (timeout) {
993 		if (rd32(E1000_EEMNGCTL) & mask)
994 			break;
995 		msleep(1);
996 		timeout--;
997 	}
998 	if (!timeout)
999 		hw_dbg("MNG configuration cycle has not completed.\n");
1000 
1001 	/* If EEPROM is not marked present, init the PHY manually */
1002 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003 	    (hw->phy.type == e1000_phy_igp_3))
1004 		igb_phy_init_script_igp3(hw);
1005 
1006 	return ret_val;
1007 }
1008 
1009 /**
1010  *  igb_check_for_link_82575 - Check for link
1011  *  @hw: pointer to the HW structure
1012  *
1013  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1014  *  use the generic interface for determining link.
1015  **/
1016 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017 {
1018 	s32 ret_val;
1019 	u16 speed, duplex;
1020 
1021 	if (hw->phy.media_type != e1000_media_type_copper) {
1022 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023 		                                             &duplex);
1024 		/*
1025 		 * Use this flag to determine if link needs to be checked or
1026 		 * not.  If  we have link clear the flag so that we do not
1027 		 * continue to check for link.
1028 		 */
1029 		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1030 	} else {
1031 		ret_val = igb_check_for_copper_link(hw);
1032 	}
1033 
1034 	return ret_val;
1035 }
1036 
1037 /**
1038  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039  *  @hw: pointer to the HW structure
1040  **/
1041 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042 {
1043 	u32 reg;
1044 
1045 
1046 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047 	    !igb_sgmii_active_82575(hw))
1048 		return;
1049 
1050 	/* Enable PCS to turn on link */
1051 	reg = rd32(E1000_PCS_CFG0);
1052 	reg |= E1000_PCS_CFG_PCS_EN;
1053 	wr32(E1000_PCS_CFG0, reg);
1054 
1055 	/* Power up the laser */
1056 	reg = rd32(E1000_CTRL_EXT);
1057 	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058 	wr32(E1000_CTRL_EXT, reg);
1059 
1060 	/* flush the write to verify completion */
1061 	wrfl();
1062 	msleep(1);
1063 }
1064 
1065 /**
1066  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067  *  @hw: pointer to the HW structure
1068  *  @speed: stores the current speed
1069  *  @duplex: stores the current duplex
1070  *
1071  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072  *  duplex, then store the values in the pointers provided.
1073  **/
1074 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075 						u16 *duplex)
1076 {
1077 	struct e1000_mac_info *mac = &hw->mac;
1078 	u32 pcs;
1079 
1080 	/* Set up defaults for the return values of this function */
1081 	mac->serdes_has_link = false;
1082 	*speed = 0;
1083 	*duplex = 0;
1084 
1085 	/*
1086 	 * Read the PCS Status register for link state. For non-copper mode,
1087 	 * the status register is not accurate. The PCS status register is
1088 	 * used instead.
1089 	 */
1090 	pcs = rd32(E1000_PCS_LSTAT);
1091 
1092 	/*
1093 	 * The link up bit determines when link is up on autoneg. The sync ok
1094 	 * gets set once both sides sync up and agree upon link. Stable link
1095 	 * can be determined by checking for both link up and link sync ok
1096 	 */
1097 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098 		mac->serdes_has_link = true;
1099 
1100 		/* Detect and store PCS speed */
1101 		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102 			*speed = SPEED_1000;
1103 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104 			*speed = SPEED_100;
1105 		} else {
1106 			*speed = SPEED_10;
1107 		}
1108 
1109 		/* Detect and store PCS duplex */
1110 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111 			*duplex = FULL_DUPLEX;
1112 		} else {
1113 			*duplex = HALF_DUPLEX;
1114 		}
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1125  *  when management pass thru is not enabled.
1126  **/
1127 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128 {
1129 	u32 reg;
1130 
1131 	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132 	    igb_sgmii_active_82575(hw))
1133 		return;
1134 
1135 	if (!igb_enable_mng_pass_thru(hw)) {
1136 		/* Disable PCS to turn off link */
1137 		reg = rd32(E1000_PCS_CFG0);
1138 		reg &= ~E1000_PCS_CFG_PCS_EN;
1139 		wr32(E1000_PCS_CFG0, reg);
1140 
1141 		/* shutdown the laser */
1142 		reg = rd32(E1000_CTRL_EXT);
1143 		reg |= E1000_CTRL_EXT_SDP3_DATA;
1144 		wr32(E1000_CTRL_EXT, reg);
1145 
1146 		/* flush the write to verify completion */
1147 		wrfl();
1148 		msleep(1);
1149 	}
1150 }
1151 
1152 /**
1153  *  igb_reset_hw_82575 - Reset hardware
1154  *  @hw: pointer to the HW structure
1155  *
1156  *  This resets the hardware into a known state.  This is a
1157  *  function pointer entry point called by the api module.
1158  **/
1159 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160 {
1161 	u32 ctrl, icr;
1162 	s32 ret_val;
1163 
1164 	/*
1165 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1166 	 * on the last TLP read/write transaction when MAC is reset.
1167 	 */
1168 	ret_val = igb_disable_pcie_master(hw);
1169 	if (ret_val)
1170 		hw_dbg("PCI-E Master disable polling has failed.\n");
1171 
1172 	/* set the completion timeout for interface */
1173 	ret_val = igb_set_pcie_completion_timeout(hw);
1174 	if (ret_val) {
1175 		hw_dbg("PCI-E Set completion timeout has failed.\n");
1176 	}
1177 
1178 	hw_dbg("Masking off all interrupts\n");
1179 	wr32(E1000_IMC, 0xffffffff);
1180 
1181 	wr32(E1000_RCTL, 0);
1182 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1183 	wrfl();
1184 
1185 	msleep(10);
1186 
1187 	ctrl = rd32(E1000_CTRL);
1188 
1189 	hw_dbg("Issuing a global reset to MAC\n");
1190 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191 
1192 	ret_val = igb_get_auto_rd_done(hw);
1193 	if (ret_val) {
1194 		/*
1195 		 * When auto config read does not complete, do not
1196 		 * return with an error. This can happen in situations
1197 		 * where there is no eeprom and prevents getting link.
1198 		 */
1199 		hw_dbg("Auto Read Done did not complete\n");
1200 	}
1201 
1202 	/* If EEPROM is not present, run manual init scripts */
1203 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204 		igb_reset_init_script_82575(hw);
1205 
1206 	/* Clear any pending interrupt events. */
1207 	wr32(E1000_IMC, 0xffffffff);
1208 	icr = rd32(E1000_ICR);
1209 
1210 	/* Install any alternate MAC address into RAR0 */
1211 	ret_val = igb_check_alt_mac_addr(hw);
1212 
1213 	return ret_val;
1214 }
1215 
1216 /**
1217  *  igb_init_hw_82575 - Initialize hardware
1218  *  @hw: pointer to the HW structure
1219  *
1220  *  This inits the hardware readying it for operation.
1221  **/
1222 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223 {
1224 	struct e1000_mac_info *mac = &hw->mac;
1225 	s32 ret_val;
1226 	u16 i, rar_count = mac->rar_entry_count;
1227 
1228 	/* Initialize identification LED */
1229 	ret_val = igb_id_led_init(hw);
1230 	if (ret_val) {
1231 		hw_dbg("Error initializing identification LED\n");
1232 		/* This is not fatal and we should not stop init due to this */
1233 	}
1234 
1235 	/* Disabling VLAN filtering */
1236 	hw_dbg("Initializing the IEEE VLAN\n");
1237 	if (hw->mac.type == e1000_i350)
1238 		igb_clear_vfta_i350(hw);
1239 	else
1240 		igb_clear_vfta(hw);
1241 
1242 	/* Setup the receive address */
1243 	igb_init_rx_addrs(hw, rar_count);
1244 
1245 	/* Zero out the Multicast HASH table */
1246 	hw_dbg("Zeroing the MTA\n");
1247 	for (i = 0; i < mac->mta_reg_count; i++)
1248 		array_wr32(E1000_MTA, i, 0);
1249 
1250 	/* Zero out the Unicast HASH table */
1251 	hw_dbg("Zeroing the UTA\n");
1252 	for (i = 0; i < mac->uta_reg_count; i++)
1253 		array_wr32(E1000_UTA, i, 0);
1254 
1255 	/* Setup link and flow control */
1256 	ret_val = igb_setup_link(hw);
1257 
1258 	/*
1259 	 * Clear all of the statistics registers (clear on read).  It is
1260 	 * important that we do this after we have tried to establish link
1261 	 * because the symbol error count will increment wildly if there
1262 	 * is no link.
1263 	 */
1264 	igb_clear_hw_cntrs_82575(hw);
1265 	return ret_val;
1266 }
1267 
1268 /**
1269  *  igb_setup_copper_link_82575 - Configure copper link settings
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1273  *  for link, once link is established calls to configure collision distance
1274  *  and flow control are called.
1275  **/
1276 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277 {
1278 	u32 ctrl;
1279 	s32  ret_val;
1280 
1281 	ctrl = rd32(E1000_CTRL);
1282 	ctrl |= E1000_CTRL_SLU;
1283 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284 	wr32(E1000_CTRL, ctrl);
1285 
1286 	ret_val = igb_setup_serdes_link_82575(hw);
1287 	if (ret_val)
1288 		goto out;
1289 
1290 	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291 		/* allow time for SFP cage time to power up phy */
1292 		msleep(300);
1293 
1294 		ret_val = hw->phy.ops.reset(hw);
1295 		if (ret_val) {
1296 			hw_dbg("Error resetting the PHY.\n");
1297 			goto out;
1298 		}
1299 	}
1300 	switch (hw->phy.type) {
1301 	case e1000_phy_i210:
1302 	case e1000_phy_m88:
1303 		if (hw->phy.id == I347AT4_E_PHY_ID ||
1304 		    hw->phy.id == M88E1112_E_PHY_ID)
1305 			ret_val = igb_copper_link_setup_m88_gen2(hw);
1306 		else
1307 			ret_val = igb_copper_link_setup_m88(hw);
1308 		break;
1309 	case e1000_phy_igp_3:
1310 		ret_val = igb_copper_link_setup_igp(hw);
1311 		break;
1312 	case e1000_phy_82580:
1313 		ret_val = igb_copper_link_setup_82580(hw);
1314 		break;
1315 	default:
1316 		ret_val = -E1000_ERR_PHY;
1317 		break;
1318 	}
1319 
1320 	if (ret_val)
1321 		goto out;
1322 
1323 	ret_val = igb_setup_copper_link(hw);
1324 out:
1325 	return ret_val;
1326 }
1327 
1328 /**
1329  *  igb_setup_serdes_link_82575 - Setup link for serdes
1330  *  @hw: pointer to the HW structure
1331  *
1332  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1333  *  used on copper connections where the serialized gigabit media independent
1334  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1335  *  for auto-negotiation or forces speed/duplex.
1336  **/
1337 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338 {
1339 	u32 ctrl_ext, ctrl_reg, reg;
1340 	bool pcs_autoneg;
1341 	s32 ret_val = E1000_SUCCESS;
1342 	u16 data;
1343 
1344 	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345 	    !igb_sgmii_active_82575(hw))
1346 		return ret_val;
1347 
1348 
1349 	/*
1350 	 * On the 82575, SerDes loopback mode persists until it is
1351 	 * explicitly turned off or a power cycle is performed.  A read to
1352 	 * the register does not indicate its status.  Therefore, we ensure
1353 	 * loopback mode is disabled during initialization.
1354 	 */
1355 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356 
1357 	/* power on the sfp cage if present */
1358 	ctrl_ext = rd32(E1000_CTRL_EXT);
1359 	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1360 	wr32(E1000_CTRL_EXT, ctrl_ext);
1361 
1362 	ctrl_reg = rd32(E1000_CTRL);
1363 	ctrl_reg |= E1000_CTRL_SLU;
1364 
1365 	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366 		/* set both sw defined pins */
1367 		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368 
1369 		/* Set switch control to serdes energy detect */
1370 		reg = rd32(E1000_CONNSW);
1371 		reg |= E1000_CONNSW_ENRGSRC;
1372 		wr32(E1000_CONNSW, reg);
1373 	}
1374 
1375 	reg = rd32(E1000_PCS_LCTL);
1376 
1377 	/* default pcs_autoneg to the same setting as mac autoneg */
1378 	pcs_autoneg = hw->mac.autoneg;
1379 
1380 	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381 	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382 		/* sgmii mode lets the phy handle forcing speed/duplex */
1383 		pcs_autoneg = true;
1384 		/* autoneg time out should be disabled for SGMII mode */
1385 		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386 		break;
1387 	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388 		/* disable PCS autoneg and support parallel detect only */
1389 		pcs_autoneg = false;
1390 	default:
1391 		if (hw->mac.type == e1000_82575 ||
1392 		    hw->mac.type == e1000_82576) {
1393 			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394 			if (ret_val) {
1395 				printk(KERN_DEBUG "NVM Read Error\n\n");
1396 				return ret_val;
1397 			}
1398 
1399 			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400 				pcs_autoneg = false;
1401 		}
1402 
1403 		/*
1404 		 * non-SGMII modes only supports a speed of 1000/Full for the
1405 		 * link so it is best to just force the MAC and let the pcs
1406 		 * link either autoneg or be forced to 1000/Full
1407 		 */
1408 		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409 		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410 
1411 		/* set speed of 1000/Full if speed/duplex is forced */
1412 		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413 		break;
1414 	}
1415 
1416 	wr32(E1000_CTRL, ctrl_reg);
1417 
1418 	/*
1419 	 * New SerDes mode allows for forcing speed or autonegotiating speed
1420 	 * at 1gb. Autoneg should be default set by most drivers. This is the
1421 	 * mode that will be compatible with older link partners and switches.
1422 	 * However, both are supported by the hardware and some drivers/tools.
1423 	 */
1424 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426 
1427 	/*
1428 	 * We force flow control to prevent the CTRL register values from being
1429 	 * overwritten by the autonegotiated flow control values
1430 	 */
1431 	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432 
1433 	if (pcs_autoneg) {
1434 		/* Set PCS register for autoneg */
1435 		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436 		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1437 		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438 	} else {
1439 		/* Set PCS register for forced link */
1440 		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1441 
1442 		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443 	}
1444 
1445 	wr32(E1000_PCS_LCTL, reg);
1446 
1447 	if (!igb_sgmii_active_82575(hw))
1448 		igb_force_mac_fc(hw);
1449 
1450 	return ret_val;
1451 }
1452 
1453 /**
1454  *  igb_sgmii_active_82575 - Return sgmii state
1455  *  @hw: pointer to the HW structure
1456  *
1457  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1458  *  which can be enabled for use in the embedded applications.  Simply
1459  *  return the current state of the sgmii interface.
1460  **/
1461 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462 {
1463 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464 	return dev_spec->sgmii_active;
1465 }
1466 
1467 /**
1468  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469  *  @hw: pointer to the HW structure
1470  *
1471  *  Inits recommended HW defaults after a reset when there is no EEPROM
1472  *  detected. This is only for the 82575.
1473  **/
1474 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475 {
1476 	if (hw->mac.type == e1000_82575) {
1477 		hw_dbg("Running reset init script for 82575\n");
1478 		/* SerDes configuration via SERDESCTRL */
1479 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483 
1484 		/* CCM configuration via CCMCTL register */
1485 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487 
1488 		/* PCIe lanes configuration */
1489 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493 
1494 		/* PCIe PLL Configuration */
1495 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 /**
1504  *  igb_read_mac_addr_82575 - Read device MAC address
1505  *  @hw: pointer to the HW structure
1506  **/
1507 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508 {
1509 	s32 ret_val = 0;
1510 
1511 	/*
1512 	 * If there's an alternate MAC address place it in RAR0
1513 	 * so that it will override the Si installed default perm
1514 	 * address.
1515 	 */
1516 	ret_val = igb_check_alt_mac_addr(hw);
1517 	if (ret_val)
1518 		goto out;
1519 
1520 	ret_val = igb_read_mac_addr(hw);
1521 
1522 out:
1523 	return ret_val;
1524 }
1525 
1526 /**
1527  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528  * @hw: pointer to the HW structure
1529  *
1530  * In the case of a PHY power down to save power, or to turn off link during a
1531  * driver unload, or wake on lan is not enabled, remove the link.
1532  **/
1533 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534 {
1535 	/* If the management interface is not enabled, then power down */
1536 	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537 		igb_power_down_phy_copper(hw);
1538 }
1539 
1540 /**
1541  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Clears the hardware counters by reading the counter registers.
1545  **/
1546 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547 {
1548 	igb_clear_hw_cntrs_base(hw);
1549 
1550 	rd32(E1000_PRC64);
1551 	rd32(E1000_PRC127);
1552 	rd32(E1000_PRC255);
1553 	rd32(E1000_PRC511);
1554 	rd32(E1000_PRC1023);
1555 	rd32(E1000_PRC1522);
1556 	rd32(E1000_PTC64);
1557 	rd32(E1000_PTC127);
1558 	rd32(E1000_PTC255);
1559 	rd32(E1000_PTC511);
1560 	rd32(E1000_PTC1023);
1561 	rd32(E1000_PTC1522);
1562 
1563 	rd32(E1000_ALGNERRC);
1564 	rd32(E1000_RXERRC);
1565 	rd32(E1000_TNCRS);
1566 	rd32(E1000_CEXTERR);
1567 	rd32(E1000_TSCTC);
1568 	rd32(E1000_TSCTFC);
1569 
1570 	rd32(E1000_MGTPRC);
1571 	rd32(E1000_MGTPDC);
1572 	rd32(E1000_MGTPTC);
1573 
1574 	rd32(E1000_IAC);
1575 	rd32(E1000_ICRXOC);
1576 
1577 	rd32(E1000_ICRXPTC);
1578 	rd32(E1000_ICRXATC);
1579 	rd32(E1000_ICTXPTC);
1580 	rd32(E1000_ICTXATC);
1581 	rd32(E1000_ICTXQEC);
1582 	rd32(E1000_ICTXQMTC);
1583 	rd32(E1000_ICRXDMTC);
1584 
1585 	rd32(E1000_CBTMPC);
1586 	rd32(E1000_HTDPMC);
1587 	rd32(E1000_CBRMPC);
1588 	rd32(E1000_RPTHC);
1589 	rd32(E1000_HGPTC);
1590 	rd32(E1000_HTCBDPC);
1591 	rd32(E1000_HGORCL);
1592 	rd32(E1000_HGORCH);
1593 	rd32(E1000_HGOTCL);
1594 	rd32(E1000_HGOTCH);
1595 	rd32(E1000_LENERRS);
1596 
1597 	/* This register should not be read in copper configurations */
1598 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599 	    igb_sgmii_active_82575(hw))
1600 		rd32(E1000_SCVPC);
1601 }
1602 
1603 /**
1604  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605  *  @hw: pointer to the HW structure
1606  *
1607  *  After rx enable if managability is enabled then there is likely some
1608  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1609  *  function clears the fifos and flushes any packets that came in as rx was
1610  *  being enabled.
1611  **/
1612 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613 {
1614 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615 	int i, ms_wait;
1616 
1617 	if (hw->mac.type != e1000_82575 ||
1618 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619 		return;
1620 
1621 	/* Disable all RX queues */
1622 	for (i = 0; i < 4; i++) {
1623 		rxdctl[i] = rd32(E1000_RXDCTL(i));
1624 		wr32(E1000_RXDCTL(i),
1625 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626 	}
1627 	/* Poll all queues to verify they have shut down */
1628 	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629 		msleep(1);
1630 		rx_enabled = 0;
1631 		for (i = 0; i < 4; i++)
1632 			rx_enabled |= rd32(E1000_RXDCTL(i));
1633 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634 			break;
1635 	}
1636 
1637 	if (ms_wait == 10)
1638 		hw_dbg("Queue disable timed out after 10ms\n");
1639 
1640 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641 	 * incoming packets are rejected.  Set enable and wait 2ms so that
1642 	 * any packet that was coming in as RCTL.EN was set is flushed
1643 	 */
1644 	rfctl = rd32(E1000_RFCTL);
1645 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646 
1647 	rlpml = rd32(E1000_RLPML);
1648 	wr32(E1000_RLPML, 0);
1649 
1650 	rctl = rd32(E1000_RCTL);
1651 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652 	temp_rctl |= E1000_RCTL_LPE;
1653 
1654 	wr32(E1000_RCTL, temp_rctl);
1655 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656 	wrfl();
1657 	msleep(2);
1658 
1659 	/* Enable RX queues that were previously enabled and restore our
1660 	 * previous state
1661 	 */
1662 	for (i = 0; i < 4; i++)
1663 		wr32(E1000_RXDCTL(i), rxdctl[i]);
1664 	wr32(E1000_RCTL, rctl);
1665 	wrfl();
1666 
1667 	wr32(E1000_RLPML, rlpml);
1668 	wr32(E1000_RFCTL, rfctl);
1669 
1670 	/* Flush receive errors generated by workaround */
1671 	rd32(E1000_ROC);
1672 	rd32(E1000_RNBC);
1673 	rd32(E1000_MPC);
1674 }
1675 
1676 /**
1677  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681  *  however the hardware default for these parts is 500us to 1ms which is less
1682  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1683  *  increase the value to either 10ms to 200ms for capability version 1 config,
1684  *  or 16ms to 55ms for version 2.
1685  **/
1686 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687 {
1688 	u32 gcr = rd32(E1000_GCR);
1689 	s32 ret_val = 0;
1690 	u16 pcie_devctl2;
1691 
1692 	/* only take action if timeout value is defaulted to 0 */
1693 	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694 		goto out;
1695 
1696 	/*
1697 	 * if capababilities version is type 1 we can write the
1698 	 * timeout of 10ms to 200ms through the GCR register
1699 	 */
1700 	if (!(gcr & E1000_GCR_CAP_VER2)) {
1701 		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702 		goto out;
1703 	}
1704 
1705 	/*
1706 	 * for version 2 capabilities we need to write the config space
1707 	 * directly in order to set the completion timeout value for
1708 	 * 16ms to 55ms
1709 	 */
1710 	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711 	                                &pcie_devctl2);
1712 	if (ret_val)
1713 		goto out;
1714 
1715 	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716 
1717 	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718 	                                 &pcie_devctl2);
1719 out:
1720 	/* disable completion timeout resend */
1721 	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722 
1723 	wr32(E1000_GCR, gcr);
1724 	return ret_val;
1725 }
1726 
1727 /**
1728  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729  *  @hw: pointer to the hardware struct
1730  *  @enable: state to enter, either enabled or disabled
1731  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1732  *
1733  *  enables/disables L2 switch anti-spoofing functionality.
1734  **/
1735 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736 {
1737 	u32 dtxswc;
1738 
1739 	switch (hw->mac.type) {
1740 	case e1000_82576:
1741 	case e1000_i350:
1742 		dtxswc = rd32(E1000_DTXSWC);
1743 		if (enable) {
1744 			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745 				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1746 			/* The PF can spoof - it has to in order to
1747 			 * support emulation mode NICs */
1748 			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749 		} else {
1750 			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751 				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1752 		}
1753 		wr32(E1000_DTXSWC, dtxswc);
1754 		break;
1755 	default:
1756 		break;
1757 	}
1758 }
1759 
1760 /**
1761  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762  *  @hw: pointer to the hardware struct
1763  *  @enable: state to enter, either enabled or disabled
1764  *
1765  *  enables/disables L2 switch loopback functionality.
1766  **/
1767 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768 {
1769 	u32 dtxswc;
1770 
1771 	switch (hw->mac.type) {
1772 	case e1000_82576:
1773 		dtxswc = rd32(E1000_DTXSWC);
1774 		if (enable)
1775 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776 		else
1777 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778 		wr32(E1000_DTXSWC, dtxswc);
1779 		break;
1780 	case e1000_i350:
1781 		dtxswc = rd32(E1000_TXSWC);
1782 		if (enable)
1783 			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784 		else
1785 			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786 		wr32(E1000_TXSWC, dtxswc);
1787 		break;
1788 	default:
1789 		/* Currently no other hardware supports loopback */
1790 		break;
1791 	}
1792 
1793 
1794 }
1795 
1796 /**
1797  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798  *  @hw: pointer to the hardware struct
1799  *  @enable: state to enter, either enabled or disabled
1800  *
1801  *  enables/disables replication of packets across multiple pools.
1802  **/
1803 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804 {
1805 	u32 vt_ctl = rd32(E1000_VT_CTL);
1806 
1807 	if (enable)
1808 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809 	else
1810 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811 
1812 	wr32(E1000_VT_CTL, vt_ctl);
1813 }
1814 
1815 /**
1816  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1817  *  @hw: pointer to the HW structure
1818  *  @offset: register offset to be read
1819  *  @data: pointer to the read data
1820  *
1821  *  Reads the MDI control register in the PHY at offset and stores the
1822  *  information read to data.
1823  **/
1824 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825 {
1826 	s32 ret_val;
1827 
1828 
1829 	ret_val = hw->phy.ops.acquire(hw);
1830 	if (ret_val)
1831 		goto out;
1832 
1833 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834 
1835 	hw->phy.ops.release(hw);
1836 
1837 out:
1838 	return ret_val;
1839 }
1840 
1841 /**
1842  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1843  *  @hw: pointer to the HW structure
1844  *  @offset: register offset to write to
1845  *  @data: data to write to register at offset
1846  *
1847  *  Writes data to MDI control register in the PHY at offset.
1848  **/
1849 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850 {
1851 	s32 ret_val;
1852 
1853 
1854 	ret_val = hw->phy.ops.acquire(hw);
1855 	if (ret_val)
1856 		goto out;
1857 
1858 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859 
1860 	hw->phy.ops.release(hw);
1861 
1862 out:
1863 	return ret_val;
1864 }
1865 
1866 /**
1867  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868  *  @hw: pointer to the HW structure
1869  *
1870  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871  *  the values found in the EEPROM.  This addresses an issue in which these
1872  *  bits are not restored from EEPROM after reset.
1873  **/
1874 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875 {
1876 	s32 ret_val = 0;
1877 	u32 mdicnfg;
1878 	u16 nvm_data = 0;
1879 
1880 	if (hw->mac.type != e1000_82580)
1881 		goto out;
1882 	if (!igb_sgmii_active_82575(hw))
1883 		goto out;
1884 
1885 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886 				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887 				   &nvm_data);
1888 	if (ret_val) {
1889 		hw_dbg("NVM Read Error\n");
1890 		goto out;
1891 	}
1892 
1893 	mdicnfg = rd32(E1000_MDICNFG);
1894 	if (nvm_data & NVM_WORD24_EXT_MDIO)
1895 		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896 	if (nvm_data & NVM_WORD24_COM_MDIO)
1897 		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898 	wr32(E1000_MDICNFG, mdicnfg);
1899 out:
1900 	return ret_val;
1901 }
1902 
1903 /**
1904  *  igb_reset_hw_82580 - Reset hardware
1905  *  @hw: pointer to the HW structure
1906  *
1907  *  This resets function or entire device (all ports, etc.)
1908  *  to a known state.
1909  **/
1910 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911 {
1912 	s32 ret_val = 0;
1913 	/* BH SW mailbox bit in SW_FW_SYNC */
1914 	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915 	u32 ctrl, icr;
1916 	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917 
1918 
1919 	hw->dev_spec._82575.global_device_reset = false;
1920 
1921 	/* Get current control state. */
1922 	ctrl = rd32(E1000_CTRL);
1923 
1924 	/*
1925 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1926 	 * on the last TLP read/write transaction when MAC is reset.
1927 	 */
1928 	ret_val = igb_disable_pcie_master(hw);
1929 	if (ret_val)
1930 		hw_dbg("PCI-E Master disable polling has failed.\n");
1931 
1932 	hw_dbg("Masking off all interrupts\n");
1933 	wr32(E1000_IMC, 0xffffffff);
1934 	wr32(E1000_RCTL, 0);
1935 	wr32(E1000_TCTL, E1000_TCTL_PSP);
1936 	wrfl();
1937 
1938 	msleep(10);
1939 
1940 	/* Determine whether or not a global dev reset is requested */
1941 	if (global_device_reset &&
1942 		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943 			global_device_reset = false;
1944 
1945 	if (global_device_reset &&
1946 		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947 		ctrl |= E1000_CTRL_DEV_RST;
1948 	else
1949 		ctrl |= E1000_CTRL_RST;
1950 
1951 	wr32(E1000_CTRL, ctrl);
1952 	wrfl();
1953 
1954 	/* Add delay to insure DEV_RST has time to complete */
1955 	if (global_device_reset)
1956 		msleep(5);
1957 
1958 	ret_val = igb_get_auto_rd_done(hw);
1959 	if (ret_val) {
1960 		/*
1961 		 * When auto config read does not complete, do not
1962 		 * return with an error. This can happen in situations
1963 		 * where there is no eeprom and prevents getting link.
1964 		 */
1965 		hw_dbg("Auto Read Done did not complete\n");
1966 	}
1967 
1968 	/* If EEPROM is not present, run manual init scripts */
1969 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970 		igb_reset_init_script_82575(hw);
1971 
1972 	/* clear global device reset status bit */
1973 	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974 
1975 	/* Clear any pending interrupt events. */
1976 	wr32(E1000_IMC, 0xffffffff);
1977 	icr = rd32(E1000_ICR);
1978 
1979 	ret_val = igb_reset_mdicnfg_82580(hw);
1980 	if (ret_val)
1981 		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982 
1983 	/* Install any alternate MAC address into RAR0 */
1984 	ret_val = igb_check_alt_mac_addr(hw);
1985 
1986 	/* Release semaphore */
1987 	if (global_device_reset)
1988 		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989 
1990 	return ret_val;
1991 }
1992 
1993 /**
1994  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995  *  @data: data received by reading RXPBS register
1996  *
1997  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1998  *  This function converts the retrieved value into the correct table value
1999  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000  *  0x0 36  72 144   1   2   4   8  16
2001  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2002  */
2003 u16 igb_rxpbs_adjust_82580(u32 data)
2004 {
2005 	u16 ret_val = 0;
2006 
2007 	if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008 		ret_val = e1000_82580_rxpbs_table[data];
2009 
2010 	return ret_val;
2011 }
2012 
2013 /**
2014  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015  *  checksum
2016  *  @hw: pointer to the HW structure
2017  *  @offset: offset in words of the checksum protected region
2018  *
2019  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021  **/
2022 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023 						 u16 offset)
2024 {
2025 	s32 ret_val = 0;
2026 	u16 checksum = 0;
2027 	u16 i, nvm_data;
2028 
2029 	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031 		if (ret_val) {
2032 			hw_dbg("NVM Read Error\n");
2033 			goto out;
2034 		}
2035 		checksum += nvm_data;
2036 	}
2037 
2038 	if (checksum != (u16) NVM_SUM) {
2039 		hw_dbg("NVM Checksum Invalid\n");
2040 		ret_val = -E1000_ERR_NVM;
2041 		goto out;
2042 	}
2043 
2044 out:
2045 	return ret_val;
2046 }
2047 
2048 /**
2049  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2050  *  checksum
2051  *  @hw: pointer to the HW structure
2052  *  @offset: offset in words of the checksum protected region
2053  *
2054  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2056  *  value to the EEPROM.
2057  **/
2058 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059 {
2060 	s32 ret_val;
2061 	u16 checksum = 0;
2062 	u16 i, nvm_data;
2063 
2064 	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065 		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066 		if (ret_val) {
2067 			hw_dbg("NVM Read Error while updating checksum.\n");
2068 			goto out;
2069 		}
2070 		checksum += nvm_data;
2071 	}
2072 	checksum = (u16) NVM_SUM - checksum;
2073 	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074 				&checksum);
2075 	if (ret_val)
2076 		hw_dbg("NVM Write Error while updating checksum.\n");
2077 
2078 out:
2079 	return ret_val;
2080 }
2081 
2082 /**
2083  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  Calculates the EEPROM section checksum by reading/adding each word of
2087  *  the EEPROM and then verifies that the sum of the EEPROM is
2088  *  equal to 0xBABA.
2089  **/
2090 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091 {
2092 	s32 ret_val = 0;
2093 	u16 eeprom_regions_count = 1;
2094 	u16 j, nvm_data;
2095 	u16 nvm_offset;
2096 
2097 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098 	if (ret_val) {
2099 		hw_dbg("NVM Read Error\n");
2100 		goto out;
2101 	}
2102 
2103 	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104 		/* if checksums compatibility bit is set validate checksums
2105 		 * for all 4 ports. */
2106 		eeprom_regions_count = 4;
2107 	}
2108 
2109 	for (j = 0; j < eeprom_regions_count; j++) {
2110 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112 								nvm_offset);
2113 		if (ret_val != 0)
2114 			goto out;
2115 	}
2116 
2117 out:
2118 	return ret_val;
2119 }
2120 
2121 /**
2122  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123  *  @hw: pointer to the HW structure
2124  *
2125  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2126  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2127  *  checksum and writes the value to the EEPROM.
2128  **/
2129 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130 {
2131 	s32 ret_val;
2132 	u16 j, nvm_data;
2133 	u16 nvm_offset;
2134 
2135 	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136 	if (ret_val) {
2137 		hw_dbg("NVM Read Error while updating checksum"
2138 			" compatibility bit.\n");
2139 		goto out;
2140 	}
2141 
2142 	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143 		/* set compatibility bit to validate checksums appropriately */
2144 		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145 		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146 					&nvm_data);
2147 		if (ret_val) {
2148 			hw_dbg("NVM Write Error while updating checksum"
2149 				" compatibility bit.\n");
2150 			goto out;
2151 		}
2152 	}
2153 
2154 	for (j = 0; j < 4; j++) {
2155 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157 		if (ret_val)
2158 			goto out;
2159 	}
2160 
2161 out:
2162 	return ret_val;
2163 }
2164 
2165 /**
2166  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167  *  @hw: pointer to the HW structure
2168  *
2169  *  Calculates the EEPROM section checksum by reading/adding each word of
2170  *  the EEPROM and then verifies that the sum of the EEPROM is
2171  *  equal to 0xBABA.
2172  **/
2173 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174 {
2175 	s32 ret_val = 0;
2176 	u16 j;
2177 	u16 nvm_offset;
2178 
2179 	for (j = 0; j < 4; j++) {
2180 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181 		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182 								nvm_offset);
2183 		if (ret_val != 0)
2184 			goto out;
2185 	}
2186 
2187 out:
2188 	return ret_val;
2189 }
2190 
2191 /**
2192  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193  *  @hw: pointer to the HW structure
2194  *
2195  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2196  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2197  *  checksum and writes the value to the EEPROM.
2198  **/
2199 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200 {
2201 	s32 ret_val = 0;
2202 	u16 j;
2203 	u16 nvm_offset;
2204 
2205 	for (j = 0; j < 4; j++) {
2206 		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207 		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208 		if (ret_val != 0)
2209 			goto out;
2210 	}
2211 
2212 out:
2213 	return ret_val;
2214 }
2215 
2216 /**
2217  *  igb_set_eee_i350 - Enable/disable EEE support
2218  *  @hw: pointer to the HW structure
2219  *
2220  *  Enable/disable EEE based on setting in dev_spec structure.
2221  *
2222  **/
2223 s32 igb_set_eee_i350(struct e1000_hw *hw)
2224 {
2225 	s32 ret_val = 0;
2226 	u32 ipcnfg, eeer;
2227 
2228 	if ((hw->mac.type < e1000_i350) ||
2229 	    (hw->phy.media_type != e1000_media_type_copper))
2230 		goto out;
2231 	ipcnfg = rd32(E1000_IPCNFG);
2232 	eeer = rd32(E1000_EEER);
2233 
2234 	/* enable or disable per user setting */
2235 	if (!(hw->dev_spec._82575.eee_disable)) {
2236 		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2237 			E1000_IPCNFG_EEE_100M_AN);
2238 		eeer |= (E1000_EEER_TX_LPI_EN |
2239 			E1000_EEER_RX_LPI_EN |
2240 			E1000_EEER_LPI_FC);
2241 
2242 		/* keep the LPI clock running before EEE is enabled */
2243 		if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
2244 			u32 eee_su;
2245 			eee_su = rd32(E1000_EEE_SU);
2246 			eee_su &= ~E1000_EEE_SU_LPI_CLK_STP;
2247 			wr32(E1000_EEE_SU, eee_su);
2248 		}
2249 
2250 	} else {
2251 		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2252 			E1000_IPCNFG_EEE_100M_AN);
2253 		eeer &= ~(E1000_EEER_TX_LPI_EN |
2254 			E1000_EEER_RX_LPI_EN |
2255 			E1000_EEER_LPI_FC);
2256 	}
2257 	wr32(E1000_IPCNFG, ipcnfg);
2258 	wr32(E1000_EEER, eeer);
2259 	rd32(E1000_IPCNFG);
2260 	rd32(E1000_EEER);
2261 out:
2262 
2263 	return ret_val;
2264 }
2265 
2266 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2267 	.init_hw              = igb_init_hw_82575,
2268 	.check_for_link       = igb_check_for_link_82575,
2269 	.rar_set              = igb_rar_set,
2270 	.read_mac_addr        = igb_read_mac_addr_82575,
2271 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2272 };
2273 
2274 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2275 	.acquire              = igb_acquire_phy_82575,
2276 	.get_cfg_done         = igb_get_cfg_done_82575,
2277 	.release              = igb_release_phy_82575,
2278 };
2279 
2280 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2281 	.acquire              = igb_acquire_nvm_82575,
2282 	.read                 = igb_read_nvm_eerd,
2283 	.release              = igb_release_nvm_82575,
2284 	.write                = igb_write_nvm_spi,
2285 };
2286 
2287 const struct e1000_info e1000_82575_info = {
2288 	.get_invariants = igb_get_invariants_82575,
2289 	.mac_ops = &e1000_mac_ops_82575,
2290 	.phy_ops = &e1000_phy_ops_82575,
2291 	.nvm_ops = &e1000_nvm_ops_82575,
2292 };
2293 
2294