xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_xsk.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (ice_is_xdp_ena_vsi(vsi))
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (ice_is_xdp_ena_vsi(vsi)) {
56 		synchronize_rcu();
57 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 	}
59 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60 }
61 
62 /**
63  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64  * @vsi: VSI that has netdev
65  * @q_vector: q_vector that has NAPI context
66  * @enable: true for enable, false for disable
67  */
68 static void
69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 		     bool enable)
71 {
72 	if (!vsi->netdev || !q_vector)
73 		return;
74 
75 	if (enable)
76 		napi_enable(&q_vector->napi);
77 	else
78 		napi_disable(&q_vector->napi);
79 }
80 
81 /**
82  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83  * @vsi: the VSI that contains queue vector being un-configured
84  * @rx_ring: Rx ring that will have its IRQ disabled
85  * @q_vector: queue vector
86  */
87 static void
88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 		 struct ice_q_vector *q_vector)
90 {
91 	struct ice_pf *pf = vsi->back;
92 	struct ice_hw *hw = &pf->hw;
93 	u16 reg;
94 	u32 val;
95 
96 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
97 	 * here only QINT_RQCTL
98 	 */
99 	reg = rx_ring->reg_idx;
100 	val = rd32(hw, QINT_RQCTL(reg));
101 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
102 	wr32(hw, QINT_RQCTL(reg), val);
103 
104 	if (q_vector) {
105 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
106 		ice_flush(hw);
107 		synchronize_irq(q_vector->irq.virq);
108 	}
109 }
110 
111 /**
112  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
113  * @vsi: the VSI that contains queue vector
114  * @q_vector: queue vector
115  */
116 static void
117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
118 {
119 	u16 reg_idx = q_vector->reg_idx;
120 	struct ice_pf *pf = vsi->back;
121 	struct ice_hw *hw = &pf->hw;
122 	struct ice_tx_ring *tx_ring;
123 	struct ice_rx_ring *rx_ring;
124 
125 	ice_cfg_itr(hw, q_vector);
126 
127 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
128 		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
129 				      q_vector->tx.itr_idx);
130 
131 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
132 		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
133 				      q_vector->rx.itr_idx);
134 
135 	ice_flush(hw);
136 }
137 
138 /**
139  * ice_qvec_ena_irq - Enable IRQ for given queue vector
140  * @vsi: the VSI that contains queue vector
141  * @q_vector: queue vector
142  */
143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
144 {
145 	struct ice_pf *pf = vsi->back;
146 	struct ice_hw *hw = &pf->hw;
147 
148 	ice_irq_dynamic_ena(hw, vsi, q_vector);
149 
150 	ice_flush(hw);
151 }
152 
153 /**
154  * ice_qp_dis - Disables a queue pair
155  * @vsi: VSI of interest
156  * @q_idx: ring index in array
157  *
158  * Returns 0 on success, negative on failure.
159  */
160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
161 {
162 	struct ice_txq_meta txq_meta = { };
163 	struct ice_q_vector *q_vector;
164 	struct ice_tx_ring *tx_ring;
165 	struct ice_rx_ring *rx_ring;
166 	int timeout = 50;
167 	int err;
168 
169 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
170 		return -EINVAL;
171 
172 	tx_ring = vsi->tx_rings[q_idx];
173 	rx_ring = vsi->rx_rings[q_idx];
174 	q_vector = rx_ring->q_vector;
175 
176 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
177 		timeout--;
178 		if (!timeout)
179 			return -EBUSY;
180 		usleep_range(1000, 2000);
181 	}
182 
183 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
184 	ice_qvec_toggle_napi(vsi, q_vector, false);
185 
186 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
187 
188 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
189 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
190 	if (err)
191 		return err;
192 	if (ice_is_xdp_ena_vsi(vsi)) {
193 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
194 
195 		memset(&txq_meta, 0, sizeof(txq_meta));
196 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
197 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
198 					   &txq_meta);
199 		if (err)
200 			return err;
201 	}
202 	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
203 	if (err)
204 		return err;
205 
206 	ice_qp_clean_rings(vsi, q_idx);
207 	ice_qp_reset_stats(vsi, q_idx);
208 
209 	return 0;
210 }
211 
212 /**
213  * ice_qp_ena - Enables a queue pair
214  * @vsi: VSI of interest
215  * @q_idx: ring index in array
216  *
217  * Returns 0 on success, negative on failure.
218  */
219 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
220 {
221 	struct ice_aqc_add_tx_qgrp *qg_buf;
222 	struct ice_q_vector *q_vector;
223 	struct ice_tx_ring *tx_ring;
224 	struct ice_rx_ring *rx_ring;
225 	u16 size;
226 	int err;
227 
228 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
229 		return -EINVAL;
230 
231 	size = struct_size(qg_buf, txqs, 1);
232 	qg_buf = kzalloc(size, GFP_KERNEL);
233 	if (!qg_buf)
234 		return -ENOMEM;
235 
236 	qg_buf->num_txqs = 1;
237 
238 	tx_ring = vsi->tx_rings[q_idx];
239 	rx_ring = vsi->rx_rings[q_idx];
240 	q_vector = rx_ring->q_vector;
241 
242 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
243 	if (err)
244 		goto free_buf;
245 
246 	if (ice_is_xdp_ena_vsi(vsi)) {
247 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
248 
249 		memset(qg_buf, 0, size);
250 		qg_buf->num_txqs = 1;
251 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
252 		if (err)
253 			goto free_buf;
254 		ice_set_ring_xdp(xdp_ring);
255 		ice_tx_xsk_pool(vsi, q_idx);
256 	}
257 
258 	err = ice_vsi_cfg_rxq(rx_ring);
259 	if (err)
260 		goto free_buf;
261 
262 	ice_qvec_cfg_msix(vsi, q_vector);
263 
264 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
265 	if (err)
266 		goto free_buf;
267 
268 	ice_qvec_toggle_napi(vsi, q_vector, true);
269 	ice_qvec_ena_irq(vsi, q_vector);
270 
271 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
272 	clear_bit(ICE_CFG_BUSY, vsi->state);
273 free_buf:
274 	kfree(qg_buf);
275 	return err;
276 }
277 
278 /**
279  * ice_xsk_pool_disable - disable a buffer pool region
280  * @vsi: Current VSI
281  * @qid: queue ID
282  *
283  * Returns 0 on success, negative on failure
284  */
285 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
286 {
287 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
288 
289 	if (!pool)
290 		return -EINVAL;
291 
292 	clear_bit(qid, vsi->af_xdp_zc_qps);
293 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
294 
295 	return 0;
296 }
297 
298 /**
299  * ice_xsk_pool_enable - enable a buffer pool region
300  * @vsi: Current VSI
301  * @pool: pointer to a requested buffer pool region
302  * @qid: queue ID
303  *
304  * Returns 0 on success, negative on failure
305  */
306 static int
307 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
308 {
309 	int err;
310 
311 	if (vsi->type != ICE_VSI_PF)
312 		return -EINVAL;
313 
314 	if (qid >= vsi->netdev->real_num_rx_queues ||
315 	    qid >= vsi->netdev->real_num_tx_queues)
316 		return -EINVAL;
317 
318 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
319 			       ICE_RX_DMA_ATTR);
320 	if (err)
321 		return err;
322 
323 	set_bit(qid, vsi->af_xdp_zc_qps);
324 
325 	return 0;
326 }
327 
328 /**
329  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
330  * @rx_ring: Rx ring
331  * @pool_present: is pool for XSK present
332  *
333  * Try allocating memory and return ENOMEM, if failed to allocate.
334  * If allocation was successful, substitute buffer with allocated one.
335  * Returns 0 on success, negative on failure
336  */
337 static int
338 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
339 {
340 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
341 					  sizeof(*rx_ring->rx_buf);
342 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
343 
344 	if (!sw_ring)
345 		return -ENOMEM;
346 
347 	if (pool_present) {
348 		kfree(rx_ring->rx_buf);
349 		rx_ring->rx_buf = NULL;
350 		rx_ring->xdp_buf = sw_ring;
351 	} else {
352 		kfree(rx_ring->xdp_buf);
353 		rx_ring->xdp_buf = NULL;
354 		rx_ring->rx_buf = sw_ring;
355 	}
356 
357 	return 0;
358 }
359 
360 /**
361  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
362  * @vsi: Current VSI
363  * @zc: is zero copy set
364  *
365  * Reallocate buffer for rx_rings that might be used by XSK.
366  * XDP requires more memory, than rx_buf provides.
367  * Returns 0 on success, negative on failure
368  */
369 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
370 {
371 	struct ice_rx_ring *rx_ring;
372 	unsigned long q;
373 
374 	for_each_set_bit(q, vsi->af_xdp_zc_qps,
375 			 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
376 		rx_ring = vsi->rx_rings[q];
377 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
378 			return -ENOMEM;
379 	}
380 
381 	return 0;
382 }
383 
384 /**
385  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
386  * @vsi: Current VSI
387  * @pool: buffer pool to enable/associate to a ring, NULL to disable
388  * @qid: queue ID
389  *
390  * Returns 0 on success, negative on failure
391  */
392 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
393 {
394 	bool if_running, pool_present = !!pool;
395 	int ret = 0, pool_failure = 0;
396 
397 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
398 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
399 		pool_failure = -EINVAL;
400 		goto failure;
401 	}
402 
403 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
404 
405 	if (if_running) {
406 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
407 
408 		ret = ice_qp_dis(vsi, qid);
409 		if (ret) {
410 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
411 			goto xsk_pool_if_up;
412 		}
413 
414 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
415 		if (ret)
416 			goto xsk_pool_if_up;
417 	}
418 
419 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
420 				      ice_xsk_pool_disable(vsi, qid);
421 
422 xsk_pool_if_up:
423 	if (if_running) {
424 		ret = ice_qp_ena(vsi, qid);
425 		if (!ret && pool_present)
426 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
427 		else if (ret)
428 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
429 	}
430 
431 failure:
432 	if (pool_failure) {
433 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
434 			   pool_present ? "en" : "dis", pool_failure);
435 		return pool_failure;
436 	}
437 
438 	return ret;
439 }
440 
441 /**
442  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
443  * @pool: XSK Buffer pool to pull the buffers from
444  * @xdp: SW ring of xdp_buff that will hold the buffers
445  * @rx_desc: Pointer to Rx descriptors that will be filled
446  * @count: The number of buffers to allocate
447  *
448  * This function allocates a number of Rx buffers from the fill ring
449  * or the internal recycle mechanism and places them on the Rx ring.
450  *
451  * Note that ring wrap should be handled by caller of this function.
452  *
453  * Returns the amount of allocated Rx descriptors
454  */
455 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
456 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
457 {
458 	dma_addr_t dma;
459 	u16 buffs;
460 	int i;
461 
462 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
463 	for (i = 0; i < buffs; i++) {
464 		dma = xsk_buff_xdp_get_dma(*xdp);
465 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
466 		rx_desc->wb.status_error0 = 0;
467 
468 		rx_desc++;
469 		xdp++;
470 	}
471 
472 	return buffs;
473 }
474 
475 /**
476  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
477  * @rx_ring: Rx ring
478  * @count: The number of buffers to allocate
479  *
480  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
481  * for case where space from next_to_use up to the end of ring is less
482  * than @count. Finally do a tail bump.
483  *
484  * Returns true if all allocations were successful, false if any fail.
485  */
486 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
487 {
488 	u32 nb_buffs_extra = 0, nb_buffs = 0;
489 	union ice_32b_rx_flex_desc *rx_desc;
490 	u16 ntu = rx_ring->next_to_use;
491 	u16 total_count = count;
492 	struct xdp_buff **xdp;
493 
494 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
495 	xdp = ice_xdp_buf(rx_ring, ntu);
496 
497 	if (ntu + count >= rx_ring->count) {
498 		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
499 						   rx_desc,
500 						   rx_ring->count - ntu);
501 		if (nb_buffs_extra != rx_ring->count - ntu) {
502 			ntu += nb_buffs_extra;
503 			goto exit;
504 		}
505 		rx_desc = ICE_RX_DESC(rx_ring, 0);
506 		xdp = ice_xdp_buf(rx_ring, 0);
507 		ntu = 0;
508 		count -= nb_buffs_extra;
509 		ice_release_rx_desc(rx_ring, 0);
510 	}
511 
512 	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
513 
514 	ntu += nb_buffs;
515 	if (ntu == rx_ring->count)
516 		ntu = 0;
517 
518 exit:
519 	if (rx_ring->next_to_use != ntu)
520 		ice_release_rx_desc(rx_ring, ntu);
521 
522 	return total_count == (nb_buffs_extra + nb_buffs);
523 }
524 
525 /**
526  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
527  * @rx_ring: Rx ring
528  * @count: The number of buffers to allocate
529  *
530  * Wrapper for internal allocation routine; figure out how many tail
531  * bumps should take place based on the given threshold
532  *
533  * Returns true if all calls to internal alloc routine succeeded
534  */
535 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
536 {
537 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
538 	u16 leftover, i, tail_bumps;
539 
540 	tail_bumps = count / rx_thresh;
541 	leftover = count - (tail_bumps * rx_thresh);
542 
543 	for (i = 0; i < tail_bumps; i++)
544 		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
545 			return false;
546 	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
547 }
548 
549 /**
550  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
551  * @rx_ring: Rx ring
552  * @xdp: Pointer to XDP buffer
553  *
554  * This function allocates a new skb from a zero-copy Rx buffer.
555  *
556  * Returns the skb on success, NULL on failure.
557  */
558 static struct sk_buff *
559 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
560 {
561 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
562 	unsigned int metasize = xdp->data - xdp->data_meta;
563 	struct skb_shared_info *sinfo = NULL;
564 	struct sk_buff *skb;
565 	u32 nr_frags = 0;
566 
567 	if (unlikely(xdp_buff_has_frags(xdp))) {
568 		sinfo = xdp_get_shared_info_from_buff(xdp);
569 		nr_frags = sinfo->nr_frags;
570 	}
571 	net_prefetch(xdp->data_meta);
572 
573 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
574 			       GFP_ATOMIC | __GFP_NOWARN);
575 	if (unlikely(!skb))
576 		return NULL;
577 
578 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
579 	       ALIGN(totalsize, sizeof(long)));
580 
581 	if (metasize) {
582 		skb_metadata_set(skb, metasize);
583 		__skb_pull(skb, metasize);
584 	}
585 
586 	if (likely(!xdp_buff_has_frags(xdp)))
587 		goto out;
588 
589 	for (int i = 0; i < nr_frags; i++) {
590 		struct skb_shared_info *skinfo = skb_shinfo(skb);
591 		skb_frag_t *frag = &sinfo->frags[i];
592 		struct page *page;
593 		void *addr;
594 
595 		page = dev_alloc_page();
596 		if (!page) {
597 			dev_kfree_skb(skb);
598 			return NULL;
599 		}
600 		addr = page_to_virt(page);
601 
602 		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
603 
604 		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
605 					   addr, 0, skb_frag_size(frag));
606 	}
607 
608 out:
609 	xsk_buff_free(xdp);
610 	return skb;
611 }
612 
613 /**
614  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
615  * @xdp_ring: XDP Tx ring
616  */
617 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
618 {
619 	u16 ntc = xdp_ring->next_to_clean;
620 	struct ice_tx_desc *tx_desc;
621 	u16 cnt = xdp_ring->count;
622 	struct ice_tx_buf *tx_buf;
623 	u16 completed_frames = 0;
624 	u16 xsk_frames = 0;
625 	u16 last_rs;
626 	int i;
627 
628 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
629 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
630 	if (tx_desc->cmd_type_offset_bsz &
631 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
632 		if (last_rs >= ntc)
633 			completed_frames = last_rs - ntc + 1;
634 		else
635 			completed_frames = last_rs + cnt - ntc + 1;
636 	}
637 
638 	if (!completed_frames)
639 		return 0;
640 
641 	if (likely(!xdp_ring->xdp_tx_active)) {
642 		xsk_frames = completed_frames;
643 		goto skip;
644 	}
645 
646 	ntc = xdp_ring->next_to_clean;
647 	for (i = 0; i < completed_frames; i++) {
648 		tx_buf = &xdp_ring->tx_buf[ntc];
649 
650 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
651 			tx_buf->type = ICE_TX_BUF_EMPTY;
652 			xsk_buff_free(tx_buf->xdp);
653 			xdp_ring->xdp_tx_active--;
654 		} else {
655 			xsk_frames++;
656 		}
657 
658 		ntc++;
659 		if (ntc >= xdp_ring->count)
660 			ntc = 0;
661 	}
662 skip:
663 	tx_desc->cmd_type_offset_bsz = 0;
664 	xdp_ring->next_to_clean += completed_frames;
665 	if (xdp_ring->next_to_clean >= cnt)
666 		xdp_ring->next_to_clean -= cnt;
667 	if (xsk_frames)
668 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
669 
670 	return completed_frames;
671 }
672 
673 /**
674  * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
675  * @xdp: XDP buffer to xmit
676  * @xdp_ring: XDP ring to produce descriptor onto
677  *
678  * note that this function works directly on xdp_buff, no need to convert
679  * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
680  * side will be able to xsk_buff_free() it.
681  *
682  * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
683  * was not enough space on XDP ring
684  */
685 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
686 			      struct ice_tx_ring *xdp_ring)
687 {
688 	struct skb_shared_info *sinfo = NULL;
689 	u32 size = xdp->data_end - xdp->data;
690 	u32 ntu = xdp_ring->next_to_use;
691 	struct ice_tx_desc *tx_desc;
692 	struct ice_tx_buf *tx_buf;
693 	struct xdp_buff *head;
694 	u32 nr_frags = 0;
695 	u32 free_space;
696 	u32 frag = 0;
697 
698 	free_space = ICE_DESC_UNUSED(xdp_ring);
699 	if (free_space < ICE_RING_QUARTER(xdp_ring))
700 		free_space += ice_clean_xdp_irq_zc(xdp_ring);
701 
702 	if (unlikely(!free_space))
703 		goto busy;
704 
705 	if (unlikely(xdp_buff_has_frags(xdp))) {
706 		sinfo = xdp_get_shared_info_from_buff(xdp);
707 		nr_frags = sinfo->nr_frags;
708 		if (free_space < nr_frags + 1)
709 			goto busy;
710 	}
711 
712 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
713 	tx_buf = &xdp_ring->tx_buf[ntu];
714 	head = xdp;
715 
716 	for (;;) {
717 		dma_addr_t dma;
718 
719 		dma = xsk_buff_xdp_get_dma(xdp);
720 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
721 
722 		tx_buf->xdp = xdp;
723 		tx_buf->type = ICE_TX_BUF_XSK_TX;
724 		tx_desc->buf_addr = cpu_to_le64(dma);
725 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
726 		/* account for each xdp_buff from xsk_buff_pool */
727 		xdp_ring->xdp_tx_active++;
728 
729 		if (++ntu == xdp_ring->count)
730 			ntu = 0;
731 
732 		if (frag == nr_frags)
733 			break;
734 
735 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
736 		tx_buf = &xdp_ring->tx_buf[ntu];
737 
738 		xdp = xsk_buff_get_frag(head);
739 		size = skb_frag_size(&sinfo->frags[frag]);
740 		frag++;
741 	}
742 
743 	xdp_ring->next_to_use = ntu;
744 	/* update last descriptor from a frame with EOP */
745 	tx_desc->cmd_type_offset_bsz |=
746 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
747 
748 	return ICE_XDP_TX;
749 
750 busy:
751 	xdp_ring->ring_stats->tx_stats.tx_busy++;
752 
753 	return ICE_XDP_CONSUMED;
754 }
755 
756 /**
757  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
758  * @rx_ring: Rx ring
759  * @xdp: xdp_buff used as input to the XDP program
760  * @xdp_prog: XDP program to run
761  * @xdp_ring: ring to be used for XDP_TX action
762  *
763  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
764  */
765 static int
766 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
767 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
768 {
769 	int err, result = ICE_XDP_PASS;
770 	u32 act;
771 
772 	act = bpf_prog_run_xdp(xdp_prog, xdp);
773 
774 	if (likely(act == XDP_REDIRECT)) {
775 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
776 		if (!err)
777 			return ICE_XDP_REDIR;
778 		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
779 			result = ICE_XDP_EXIT;
780 		else
781 			result = ICE_XDP_CONSUMED;
782 		goto out_failure;
783 	}
784 
785 	switch (act) {
786 	case XDP_PASS:
787 		break;
788 	case XDP_TX:
789 		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
790 		if (result == ICE_XDP_CONSUMED)
791 			goto out_failure;
792 		break;
793 	case XDP_DROP:
794 		result = ICE_XDP_CONSUMED;
795 		break;
796 	default:
797 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
798 		fallthrough;
799 	case XDP_ABORTED:
800 		result = ICE_XDP_CONSUMED;
801 out_failure:
802 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
803 		break;
804 	}
805 
806 	return result;
807 }
808 
809 static int
810 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
811 		 struct xdp_buff *xdp, const unsigned int size)
812 {
813 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
814 
815 	if (!size)
816 		return 0;
817 
818 	if (!xdp_buff_has_frags(first)) {
819 		sinfo->nr_frags = 0;
820 		sinfo->xdp_frags_size = 0;
821 		xdp_buff_set_frags_flag(first);
822 	}
823 
824 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
825 		xsk_buff_free(first);
826 		return -ENOMEM;
827 	}
828 
829 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
830 				   virt_to_page(xdp->data_hard_start),
831 				   XDP_PACKET_HEADROOM, size);
832 	sinfo->xdp_frags_size += size;
833 	xsk_buff_add_frag(xdp);
834 
835 	return 0;
836 }
837 
838 /**
839  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
840  * @rx_ring: AF_XDP Rx ring
841  * @budget: NAPI budget
842  *
843  * Returns number of processed packets on success, remaining budget on failure.
844  */
845 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
846 {
847 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
848 	struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
849 	u32 ntc = rx_ring->next_to_clean;
850 	u32 ntu = rx_ring->next_to_use;
851 	struct xdp_buff *first = NULL;
852 	struct ice_tx_ring *xdp_ring;
853 	unsigned int xdp_xmit = 0;
854 	struct bpf_prog *xdp_prog;
855 	u32 cnt = rx_ring->count;
856 	bool failure = false;
857 	int entries_to_alloc;
858 
859 	/* ZC patch is enabled only when XDP program is set,
860 	 * so here it can not be NULL
861 	 */
862 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
863 	xdp_ring = rx_ring->xdp_ring;
864 
865 	if (ntc != rx_ring->first_desc)
866 		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
867 
868 	while (likely(total_rx_packets < (unsigned int)budget)) {
869 		union ice_32b_rx_flex_desc *rx_desc;
870 		unsigned int size, xdp_res = 0;
871 		struct xdp_buff *xdp;
872 		struct sk_buff *skb;
873 		u16 stat_err_bits;
874 		u16 vlan_tag = 0;
875 		u16 rx_ptype;
876 
877 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
878 
879 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
880 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
881 			break;
882 
883 		/* This memory barrier is needed to keep us from reading
884 		 * any other fields out of the rx_desc until we have
885 		 * verified the descriptor has been written back.
886 		 */
887 		dma_rmb();
888 
889 		if (unlikely(ntc == ntu))
890 			break;
891 
892 		xdp = *ice_xdp_buf(rx_ring, ntc);
893 
894 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
895 				   ICE_RX_FLX_DESC_PKT_LEN_M;
896 
897 		xsk_buff_set_size(xdp, size);
898 		xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
899 
900 		if (!first) {
901 			first = xdp;
902 		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
903 			break;
904 		}
905 
906 		if (++ntc == cnt)
907 			ntc = 0;
908 
909 		if (ice_is_non_eop(rx_ring, rx_desc))
910 			continue;
911 
912 		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
913 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
914 			xdp_xmit |= xdp_res;
915 		} else if (xdp_res == ICE_XDP_EXIT) {
916 			failure = true;
917 			first = NULL;
918 			rx_ring->first_desc = ntc;
919 			break;
920 		} else if (xdp_res == ICE_XDP_CONSUMED) {
921 			xsk_buff_free(first);
922 		} else if (xdp_res == ICE_XDP_PASS) {
923 			goto construct_skb;
924 		}
925 
926 		total_rx_bytes += xdp_get_buff_len(first);
927 		total_rx_packets++;
928 
929 		first = NULL;
930 		rx_ring->first_desc = ntc;
931 		continue;
932 
933 construct_skb:
934 		/* XDP_PASS path */
935 		skb = ice_construct_skb_zc(rx_ring, first);
936 		if (!skb) {
937 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
938 			break;
939 		}
940 
941 		first = NULL;
942 		rx_ring->first_desc = ntc;
943 
944 		if (eth_skb_pad(skb)) {
945 			skb = NULL;
946 			continue;
947 		}
948 
949 		total_rx_bytes += skb->len;
950 		total_rx_packets++;
951 
952 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
953 
954 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
955 				       ICE_RX_FLEX_DESC_PTYPE_M;
956 
957 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
958 		ice_receive_skb(rx_ring, skb, vlan_tag);
959 	}
960 
961 	rx_ring->next_to_clean = ntc;
962 	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
963 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
964 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
965 
966 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
967 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
968 
969 	if (xsk_uses_need_wakeup(xsk_pool)) {
970 		/* ntu could have changed when allocating entries above, so
971 		 * use rx_ring value instead of stack based one
972 		 */
973 		if (failure || ntc == rx_ring->next_to_use)
974 			xsk_set_rx_need_wakeup(xsk_pool);
975 		else
976 			xsk_clear_rx_need_wakeup(xsk_pool);
977 
978 		return (int)total_rx_packets;
979 	}
980 
981 	return failure ? budget : (int)total_rx_packets;
982 }
983 
984 /**
985  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
986  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
987  * @desc: AF_XDP descriptor to pull the DMA address and length from
988  * @total_bytes: bytes accumulator that will be used for stats update
989  */
990 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
991 			 unsigned int *total_bytes)
992 {
993 	struct ice_tx_desc *tx_desc;
994 	dma_addr_t dma;
995 
996 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
997 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
998 
999 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
1000 	tx_desc->buf_addr = cpu_to_le64(dma);
1001 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
1002 						      0, desc->len, 0);
1003 
1004 	*total_bytes += desc->len;
1005 }
1006 
1007 /**
1008  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1009  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1010  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1011  * @total_bytes: bytes accumulator that will be used for stats update
1012  */
1013 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1014 			       unsigned int *total_bytes)
1015 {
1016 	u16 ntu = xdp_ring->next_to_use;
1017 	struct ice_tx_desc *tx_desc;
1018 	u32 i;
1019 
1020 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1021 		dma_addr_t dma;
1022 
1023 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1024 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1025 
1026 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1027 		tx_desc->buf_addr = cpu_to_le64(dma);
1028 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1029 							      0, descs[i].len, 0);
1030 
1031 		*total_bytes += descs[i].len;
1032 	}
1033 
1034 	xdp_ring->next_to_use = ntu;
1035 }
1036 
1037 /**
1038  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1039  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1040  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1041  * @nb_pkts: count of packets to be send
1042  * @total_bytes: bytes accumulator that will be used for stats update
1043  */
1044 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1045 				u32 nb_pkts, unsigned int *total_bytes)
1046 {
1047 	u32 batched, leftover, i;
1048 
1049 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1050 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1051 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1052 		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1053 	for (; i < batched + leftover; i++)
1054 		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1055 }
1056 
1057 /**
1058  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1059  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1060  *
1061  * Returns true if there is no more work that needs to be done, false otherwise
1062  */
1063 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1064 {
1065 	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1066 	u32 nb_pkts, nb_processed = 0;
1067 	unsigned int total_bytes = 0;
1068 	int budget;
1069 
1070 	ice_clean_xdp_irq_zc(xdp_ring);
1071 
1072 	budget = ICE_DESC_UNUSED(xdp_ring);
1073 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1074 
1075 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1076 	if (!nb_pkts)
1077 		return true;
1078 
1079 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1080 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1081 		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1082 		xdp_ring->next_to_use = 0;
1083 	}
1084 
1085 	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1086 			    &total_bytes);
1087 
1088 	ice_set_rs_bit(xdp_ring);
1089 	ice_xdp_ring_update_tail(xdp_ring);
1090 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1091 
1092 	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1093 		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1094 
1095 	return nb_pkts < budget;
1096 }
1097 
1098 /**
1099  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1100  * @netdev: net_device
1101  * @queue_id: queue to wake up
1102  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1103  *
1104  * Returns negative on error, zero otherwise.
1105  */
1106 int
1107 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1108 	       u32 __always_unused flags)
1109 {
1110 	struct ice_netdev_priv *np = netdev_priv(netdev);
1111 	struct ice_q_vector *q_vector;
1112 	struct ice_vsi *vsi = np->vsi;
1113 	struct ice_tx_ring *ring;
1114 
1115 	if (test_bit(ICE_VSI_DOWN, vsi->state))
1116 		return -ENETDOWN;
1117 
1118 	if (!ice_is_xdp_ena_vsi(vsi))
1119 		return -EINVAL;
1120 
1121 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1122 		return -EINVAL;
1123 
1124 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1125 
1126 	if (!ring->xsk_pool)
1127 		return -EINVAL;
1128 
1129 	/* The idea here is that if NAPI is running, mark a miss, so
1130 	 * it will run again. If not, trigger an interrupt and
1131 	 * schedule the NAPI from interrupt context. If NAPI would be
1132 	 * scheduled here, the interrupt affinity would not be
1133 	 * honored.
1134 	 */
1135 	q_vector = ring->q_vector;
1136 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1137 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1144  * @vsi: VSI to be checked
1145  *
1146  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1147  */
1148 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1149 {
1150 	int i;
1151 
1152 	ice_for_each_rxq(vsi, i) {
1153 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1154 			return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /**
1161  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1162  * @rx_ring: ring to be cleaned
1163  */
1164 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1165 {
1166 	u16 ntc = rx_ring->next_to_clean;
1167 	u16 ntu = rx_ring->next_to_use;
1168 
1169 	while (ntc != ntu) {
1170 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1171 
1172 		xsk_buff_free(xdp);
1173 		ntc++;
1174 		if (ntc >= rx_ring->count)
1175 			ntc = 0;
1176 	}
1177 }
1178 
1179 /**
1180  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1181  * @xdp_ring: XDP_Tx ring
1182  */
1183 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1184 {
1185 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1186 	u32 xsk_frames = 0;
1187 
1188 	while (ntc != ntu) {
1189 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1190 
1191 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1192 			tx_buf->type = ICE_TX_BUF_EMPTY;
1193 			xsk_buff_free(tx_buf->xdp);
1194 		} else {
1195 			xsk_frames++;
1196 		}
1197 
1198 		ntc++;
1199 		if (ntc >= xdp_ring->count)
1200 			ntc = 0;
1201 	}
1202 
1203 	if (xsk_frames)
1204 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1205 }
1206