1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 /**
16  * ice_qp_reset_stats - Resets all stats for rings of given index
17  * @vsi: VSI that contains rings of interest
18  * @q_idx: ring index in array
19  */
20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21 {
22 	memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 	       sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 	memset(&vsi->tx_rings[q_idx]->stats, 0,
25 	       sizeof(vsi->tx_rings[q_idx]->stats));
26 	if (ice_is_xdp_ena_vsi(vsi))
27 		memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 		       sizeof(vsi->xdp_rings[q_idx]->stats));
29 }
30 
31 /**
32  * ice_qp_clean_rings - Cleans all the rings of a given index
33  * @vsi: VSI that contains rings of interest
34  * @q_idx: ring index in array
35  */
36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37 {
38 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 	if (ice_is_xdp_ena_vsi(vsi))
40 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42 }
43 
44 /**
45  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46  * @vsi: VSI that has netdev
47  * @q_vector: q_vector that has NAPI context
48  * @enable: true for enable, false for disable
49  */
50 static void
51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 		     bool enable)
53 {
54 	if (!vsi->netdev || !q_vector)
55 		return;
56 
57 	if (enable)
58 		napi_enable(&q_vector->napi);
59 	else
60 		napi_disable(&q_vector->napi);
61 }
62 
63 /**
64  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65  * @vsi: the VSI that contains queue vector being un-configured
66  * @rx_ring: Rx ring that will have its IRQ disabled
67  * @q_vector: queue vector
68  */
69 static void
70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 		 struct ice_q_vector *q_vector)
72 {
73 	struct ice_pf *pf = vsi->back;
74 	struct ice_hw *hw = &pf->hw;
75 	int base = vsi->base_vector;
76 	u16 reg;
77 	u32 val;
78 
79 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 	 * here only QINT_RQCTL
81 	 */
82 	reg = rx_ring->reg_idx;
83 	val = rd32(hw, QINT_RQCTL(reg));
84 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 	wr32(hw, QINT_RQCTL(reg), val);
86 
87 	if (q_vector) {
88 		u16 v_idx = q_vector->v_idx;
89 
90 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 		ice_flush(hw);
92 		synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 	}
94 }
95 
96 /**
97  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98  * @vsi: the VSI that contains queue vector
99  * @q_vector: queue vector
100  */
101 static void
102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103 {
104 	u16 reg_idx = q_vector->reg_idx;
105 	struct ice_pf *pf = vsi->back;
106 	struct ice_hw *hw = &pf->hw;
107 	struct ice_ring *ring;
108 
109 	ice_cfg_itr(hw, q_vector);
110 
111 	ice_for_each_ring(ring, q_vector->tx)
112 		ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
113 				      q_vector->tx.itr_idx);
114 
115 	ice_for_each_ring(ring, q_vector->rx)
116 		ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
117 				      q_vector->rx.itr_idx);
118 
119 	ice_flush(hw);
120 }
121 
122 /**
123  * ice_qvec_ena_irq - Enable IRQ for given queue vector
124  * @vsi: the VSI that contains queue vector
125  * @q_vector: queue vector
126  */
127 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
128 {
129 	struct ice_pf *pf = vsi->back;
130 	struct ice_hw *hw = &pf->hw;
131 
132 	ice_irq_dynamic_ena(hw, vsi, q_vector);
133 
134 	ice_flush(hw);
135 }
136 
137 /**
138  * ice_qp_dis - Disables a queue pair
139  * @vsi: VSI of interest
140  * @q_idx: ring index in array
141  *
142  * Returns 0 on success, negative on failure.
143  */
144 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
145 {
146 	struct ice_txq_meta txq_meta = { };
147 	struct ice_ring *tx_ring, *rx_ring;
148 	struct ice_q_vector *q_vector;
149 	int timeout = 50;
150 	int err;
151 
152 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
153 		return -EINVAL;
154 
155 	tx_ring = vsi->tx_rings[q_idx];
156 	rx_ring = vsi->rx_rings[q_idx];
157 	q_vector = rx_ring->q_vector;
158 
159 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
160 		timeout--;
161 		if (!timeout)
162 			return -EBUSY;
163 		usleep_range(1000, 2000);
164 	}
165 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
166 
167 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
168 
169 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
170 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
171 	if (err)
172 		return err;
173 	if (ice_is_xdp_ena_vsi(vsi)) {
174 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
175 
176 		memset(&txq_meta, 0, sizeof(txq_meta));
177 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
178 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
179 					   &txq_meta);
180 		if (err)
181 			return err;
182 	}
183 	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
184 	if (err)
185 		return err;
186 
187 	ice_qvec_toggle_napi(vsi, q_vector, false);
188 	ice_qp_clean_rings(vsi, q_idx);
189 	ice_qp_reset_stats(vsi, q_idx);
190 
191 	return 0;
192 }
193 
194 /**
195  * ice_qp_ena - Enables a queue pair
196  * @vsi: VSI of interest
197  * @q_idx: ring index in array
198  *
199  * Returns 0 on success, negative on failure.
200  */
201 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
202 {
203 	struct ice_aqc_add_tx_qgrp *qg_buf;
204 	struct ice_ring *tx_ring, *rx_ring;
205 	struct ice_q_vector *q_vector;
206 	u16 size;
207 	int err;
208 
209 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
210 		return -EINVAL;
211 
212 	size = struct_size(qg_buf, txqs, 1);
213 	qg_buf = kzalloc(size, GFP_KERNEL);
214 	if (!qg_buf)
215 		return -ENOMEM;
216 
217 	qg_buf->num_txqs = 1;
218 
219 	tx_ring = vsi->tx_rings[q_idx];
220 	rx_ring = vsi->rx_rings[q_idx];
221 	q_vector = rx_ring->q_vector;
222 
223 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
224 	if (err)
225 		goto free_buf;
226 
227 	if (ice_is_xdp_ena_vsi(vsi)) {
228 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
229 
230 		memset(qg_buf, 0, size);
231 		qg_buf->num_txqs = 1;
232 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
233 		if (err)
234 			goto free_buf;
235 		ice_set_ring_xdp(xdp_ring);
236 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
237 	}
238 
239 	err = ice_vsi_cfg_rxq(rx_ring);
240 	if (err)
241 		goto free_buf;
242 
243 	ice_qvec_cfg_msix(vsi, q_vector);
244 
245 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
246 	if (err)
247 		goto free_buf;
248 
249 	clear_bit(ICE_CFG_BUSY, vsi->state);
250 	ice_qvec_toggle_napi(vsi, q_vector, true);
251 	ice_qvec_ena_irq(vsi, q_vector);
252 
253 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
254 free_buf:
255 	kfree(qg_buf);
256 	return err;
257 }
258 
259 /**
260  * ice_xsk_pool_disable - disable a buffer pool region
261  * @vsi: Current VSI
262  * @qid: queue ID
263  *
264  * Returns 0 on success, negative on failure
265  */
266 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
267 {
268 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
269 
270 	if (!pool)
271 		return -EINVAL;
272 
273 	clear_bit(qid, vsi->af_xdp_zc_qps);
274 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
275 
276 	return 0;
277 }
278 
279 /**
280  * ice_xsk_pool_enable - enable a buffer pool region
281  * @vsi: Current VSI
282  * @pool: pointer to a requested buffer pool region
283  * @qid: queue ID
284  *
285  * Returns 0 on success, negative on failure
286  */
287 static int
288 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
289 {
290 	int err;
291 
292 	if (vsi->type != ICE_VSI_PF)
293 		return -EINVAL;
294 
295 	if (qid >= vsi->netdev->real_num_rx_queues ||
296 	    qid >= vsi->netdev->real_num_tx_queues)
297 		return -EINVAL;
298 
299 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
300 			       ICE_RX_DMA_ATTR);
301 	if (err)
302 		return err;
303 
304 	set_bit(qid, vsi->af_xdp_zc_qps);
305 
306 	return 0;
307 }
308 
309 /**
310  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
311  * @vsi: Current VSI
312  * @pool: buffer pool to enable/associate to a ring, NULL to disable
313  * @qid: queue ID
314  *
315  * Returns 0 on success, negative on failure
316  */
317 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
318 {
319 	bool if_running, pool_present = !!pool;
320 	int ret = 0, pool_failure = 0;
321 
322 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
323 
324 	if (if_running) {
325 		ret = ice_qp_dis(vsi, qid);
326 		if (ret) {
327 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
328 			goto xsk_pool_if_up;
329 		}
330 	}
331 
332 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
333 				      ice_xsk_pool_disable(vsi, qid);
334 
335 xsk_pool_if_up:
336 	if (if_running) {
337 		ret = ice_qp_ena(vsi, qid);
338 		if (!ret && pool_present)
339 			napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
340 		else if (ret)
341 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
342 	}
343 
344 	if (pool_failure) {
345 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
346 			   pool_present ? "en" : "dis", pool_failure);
347 		return pool_failure;
348 	}
349 
350 	return ret;
351 }
352 
353 /**
354  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
355  * @rx_ring: Rx ring
356  * @count: The number of buffers to allocate
357  *
358  * This function allocates a number of Rx buffers from the fill ring
359  * or the internal recycle mechanism and places them on the Rx ring.
360  *
361  * Returns true if all allocations were successful, false if any fail.
362  */
363 bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count)
364 {
365 	union ice_32b_rx_flex_desc *rx_desc;
366 	u16 ntu = rx_ring->next_to_use;
367 	struct xdp_buff **xdp;
368 	u32 nb_buffs, i;
369 	dma_addr_t dma;
370 
371 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
372 	xdp = &rx_ring->xdp_buf[ntu];
373 
374 	nb_buffs = min_t(u16, count, rx_ring->count - ntu);
375 	nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs);
376 	if (!nb_buffs)
377 		return false;
378 
379 	i = nb_buffs;
380 	while (i--) {
381 		dma = xsk_buff_xdp_get_dma(*xdp);
382 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
383 
384 		rx_desc++;
385 		xdp++;
386 	}
387 
388 	ntu += nb_buffs;
389 	if (ntu == rx_ring->count) {
390 		rx_desc = ICE_RX_DESC(rx_ring, 0);
391 		xdp = rx_ring->xdp_buf;
392 		ntu = 0;
393 	}
394 
395 	/* clear the status bits for the next_to_use descriptor */
396 	rx_desc->wb.status_error0 = 0;
397 	ice_release_rx_desc(rx_ring, ntu);
398 
399 	return count == nb_buffs ? true : false;
400 }
401 
402 /**
403  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
404  * @rx_ring: Rx ring
405  */
406 static void ice_bump_ntc(struct ice_ring *rx_ring)
407 {
408 	int ntc = rx_ring->next_to_clean + 1;
409 
410 	ntc = (ntc < rx_ring->count) ? ntc : 0;
411 	rx_ring->next_to_clean = ntc;
412 	prefetch(ICE_RX_DESC(rx_ring, ntc));
413 }
414 
415 /**
416  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
417  * @rx_ring: Rx ring
418  * @xdp_arr: Pointer to the SW ring of xdp_buff pointers
419  *
420  * This function allocates a new skb from a zero-copy Rx buffer.
421  *
422  * Returns the skb on success, NULL on failure.
423  */
424 static struct sk_buff *
425 ice_construct_skb_zc(struct ice_ring *rx_ring, struct xdp_buff **xdp_arr)
426 {
427 	struct xdp_buff *xdp = *xdp_arr;
428 	unsigned int metasize = xdp->data - xdp->data_meta;
429 	unsigned int datasize = xdp->data_end - xdp->data;
430 	unsigned int datasize_hard = xdp->data_end - xdp->data_hard_start;
431 	struct sk_buff *skb;
432 
433 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
434 			       GFP_ATOMIC | __GFP_NOWARN);
435 	if (unlikely(!skb))
436 		return NULL;
437 
438 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
439 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
440 	if (metasize)
441 		skb_metadata_set(skb, metasize);
442 
443 	xsk_buff_free(xdp);
444 	*xdp_arr = NULL;
445 	return skb;
446 }
447 
448 /**
449  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
450  * @rx_ring: Rx ring
451  * @xdp: xdp_buff used as input to the XDP program
452  *
453  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
454  */
455 static int
456 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
457 {
458 	int err, result = ICE_XDP_PASS;
459 	struct bpf_prog *xdp_prog;
460 	struct ice_ring *xdp_ring;
461 	u32 act;
462 
463 	/* ZC patch is enabled only when XDP program is set,
464 	 * so here it can not be NULL
465 	 */
466 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
467 
468 	act = bpf_prog_run_xdp(xdp_prog, xdp);
469 
470 	if (likely(act == XDP_REDIRECT)) {
471 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
472 		if (err)
473 			goto out_failure;
474 		return ICE_XDP_REDIR;
475 	}
476 
477 	switch (act) {
478 	case XDP_PASS:
479 		break;
480 	case XDP_TX:
481 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
482 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
483 		if (result == ICE_XDP_CONSUMED)
484 			goto out_failure;
485 		break;
486 	default:
487 		bpf_warn_invalid_xdp_action(act);
488 		fallthrough;
489 	case XDP_ABORTED:
490 out_failure:
491 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
492 		fallthrough;
493 	case XDP_DROP:
494 		result = ICE_XDP_CONSUMED;
495 		break;
496 	}
497 
498 	return result;
499 }
500 
501 /**
502  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
503  * @rx_ring: AF_XDP Rx ring
504  * @budget: NAPI budget
505  *
506  * Returns number of processed packets on success, remaining budget on failure.
507  */
508 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
509 {
510 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
511 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
512 	unsigned int xdp_xmit = 0;
513 	bool failure = false;
514 
515 	while (likely(total_rx_packets < (unsigned int)budget)) {
516 		union ice_32b_rx_flex_desc *rx_desc;
517 		unsigned int size, xdp_res = 0;
518 		struct xdp_buff **xdp;
519 		struct sk_buff *skb;
520 		u16 stat_err_bits;
521 		u16 vlan_tag = 0;
522 		u16 rx_ptype;
523 
524 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
525 
526 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
527 		if (!ice_test_staterr(rx_desc, stat_err_bits))
528 			break;
529 
530 		/* This memory barrier is needed to keep us from reading
531 		 * any other fields out of the rx_desc until we have
532 		 * verified the descriptor has been written back.
533 		 */
534 		dma_rmb();
535 
536 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
537 				   ICE_RX_FLX_DESC_PKT_LEN_M;
538 		if (!size)
539 			break;
540 
541 		xdp = &rx_ring->xdp_buf[rx_ring->next_to_clean];
542 		xsk_buff_set_size(*xdp, size);
543 		xsk_buff_dma_sync_for_cpu(*xdp, rx_ring->xsk_pool);
544 
545 		xdp_res = ice_run_xdp_zc(rx_ring, *xdp);
546 		if (xdp_res) {
547 			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))
548 				xdp_xmit |= xdp_res;
549 			else
550 				xsk_buff_free(*xdp);
551 
552 			*xdp = NULL;
553 			total_rx_bytes += size;
554 			total_rx_packets++;
555 			cleaned_count++;
556 
557 			ice_bump_ntc(rx_ring);
558 			continue;
559 		}
560 
561 		/* XDP_PASS path */
562 		skb = ice_construct_skb_zc(rx_ring, xdp);
563 		if (!skb) {
564 			rx_ring->rx_stats.alloc_buf_failed++;
565 			break;
566 		}
567 
568 		cleaned_count++;
569 		ice_bump_ntc(rx_ring);
570 
571 		if (eth_skb_pad(skb)) {
572 			skb = NULL;
573 			continue;
574 		}
575 
576 		total_rx_bytes += skb->len;
577 		total_rx_packets++;
578 
579 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
580 		if (ice_test_staterr(rx_desc, stat_err_bits))
581 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
582 
583 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
584 				       ICE_RX_FLEX_DESC_PTYPE_M;
585 
586 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
587 		ice_receive_skb(rx_ring, skb, vlan_tag);
588 	}
589 
590 	if (cleaned_count >= ICE_RX_BUF_WRITE)
591 		failure = !ice_alloc_rx_bufs_zc(rx_ring, cleaned_count);
592 
593 	ice_finalize_xdp_rx(rx_ring, xdp_xmit);
594 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
595 
596 	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
597 		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
598 			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
599 		else
600 			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
601 
602 		return (int)total_rx_packets;
603 	}
604 
605 	return failure ? budget : (int)total_rx_packets;
606 }
607 
608 /**
609  * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
610  * @xdp_ring: XDP Tx ring
611  * @budget: max number of frames to xmit
612  *
613  * Returns true if cleanup/transmission is done.
614  */
615 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
616 {
617 	struct ice_tx_desc *tx_desc = NULL;
618 	bool work_done = true;
619 	struct xdp_desc desc;
620 	dma_addr_t dma;
621 
622 	while (likely(budget-- > 0)) {
623 		struct ice_tx_buf *tx_buf;
624 
625 		if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
626 			xdp_ring->tx_stats.tx_busy++;
627 			work_done = false;
628 			break;
629 		}
630 
631 		tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
632 
633 		if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc))
634 			break;
635 
636 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr);
637 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma,
638 						 desc.len);
639 
640 		tx_buf->bytecount = desc.len;
641 
642 		tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
643 		tx_desc->buf_addr = cpu_to_le64(dma);
644 		tx_desc->cmd_type_offset_bsz =
645 			ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0);
646 
647 		xdp_ring->next_to_use++;
648 		if (xdp_ring->next_to_use == xdp_ring->count)
649 			xdp_ring->next_to_use = 0;
650 	}
651 
652 	if (tx_desc) {
653 		ice_xdp_ring_update_tail(xdp_ring);
654 		xsk_tx_release(xdp_ring->xsk_pool);
655 	}
656 
657 	return budget > 0 && work_done;
658 }
659 
660 /**
661  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
662  * @xdp_ring: XDP Tx ring
663  * @tx_buf: Tx buffer to clean
664  */
665 static void
666 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
667 {
668 	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
669 	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
670 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
671 	dma_unmap_len_set(tx_buf, len, 0);
672 }
673 
674 /**
675  * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
676  * @xdp_ring: XDP Tx ring
677  * @budget: NAPI budget
678  *
679  * Returns true if cleanup/tranmission is done.
680  */
681 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
682 {
683 	int total_packets = 0, total_bytes = 0;
684 	s16 ntc = xdp_ring->next_to_clean;
685 	struct ice_tx_desc *tx_desc;
686 	struct ice_tx_buf *tx_buf;
687 	u32 xsk_frames = 0;
688 	bool xmit_done;
689 
690 	tx_desc = ICE_TX_DESC(xdp_ring, ntc);
691 	tx_buf = &xdp_ring->tx_buf[ntc];
692 	ntc -= xdp_ring->count;
693 
694 	do {
695 		if (!(tx_desc->cmd_type_offset_bsz &
696 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
697 			break;
698 
699 		total_bytes += tx_buf->bytecount;
700 		total_packets++;
701 
702 		if (tx_buf->raw_buf) {
703 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
704 			tx_buf->raw_buf = NULL;
705 		} else {
706 			xsk_frames++;
707 		}
708 
709 		tx_desc->cmd_type_offset_bsz = 0;
710 		tx_buf++;
711 		tx_desc++;
712 		ntc++;
713 
714 		if (unlikely(!ntc)) {
715 			ntc -= xdp_ring->count;
716 			tx_buf = xdp_ring->tx_buf;
717 			tx_desc = ICE_TX_DESC(xdp_ring, 0);
718 		}
719 
720 		prefetch(tx_desc);
721 
722 	} while (likely(--budget));
723 
724 	ntc += xdp_ring->count;
725 	xdp_ring->next_to_clean = ntc;
726 
727 	if (xsk_frames)
728 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
729 
730 	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
731 		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
732 
733 	ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
734 	xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
735 
736 	return budget > 0 && xmit_done;
737 }
738 
739 /**
740  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
741  * @netdev: net_device
742  * @queue_id: queue to wake up
743  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
744  *
745  * Returns negative on error, zero otherwise.
746  */
747 int
748 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
749 	       u32 __always_unused flags)
750 {
751 	struct ice_netdev_priv *np = netdev_priv(netdev);
752 	struct ice_q_vector *q_vector;
753 	struct ice_vsi *vsi = np->vsi;
754 	struct ice_ring *ring;
755 
756 	if (test_bit(ICE_DOWN, vsi->state))
757 		return -ENETDOWN;
758 
759 	if (!ice_is_xdp_ena_vsi(vsi))
760 		return -ENXIO;
761 
762 	if (queue_id >= vsi->num_txq)
763 		return -ENXIO;
764 
765 	if (!vsi->xdp_rings[queue_id]->xsk_pool)
766 		return -ENXIO;
767 
768 	ring = vsi->xdp_rings[queue_id];
769 
770 	/* The idea here is that if NAPI is running, mark a miss, so
771 	 * it will run again. If not, trigger an interrupt and
772 	 * schedule the NAPI from interrupt context. If NAPI would be
773 	 * scheduled here, the interrupt affinity would not be
774 	 * honored.
775 	 */
776 	q_vector = ring->q_vector;
777 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
778 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
779 
780 	return 0;
781 }
782 
783 /**
784  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
785  * @vsi: VSI to be checked
786  *
787  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
788  */
789 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
790 {
791 	int i;
792 
793 	ice_for_each_rxq(vsi, i) {
794 		if (xsk_get_pool_from_qid(vsi->netdev, i))
795 			return true;
796 	}
797 
798 	return false;
799 }
800 
801 /**
802  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
803  * @rx_ring: ring to be cleaned
804  */
805 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
806 {
807 	u16 i;
808 
809 	for (i = 0; i < rx_ring->count; i++) {
810 		struct xdp_buff **xdp = &rx_ring->xdp_buf[i];
811 
812 		if (!xdp)
813 			continue;
814 
815 		*xdp = NULL;
816 	}
817 }
818 
819 /**
820  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
821  * @xdp_ring: XDP_Tx ring
822  */
823 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
824 {
825 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
826 	u32 xsk_frames = 0;
827 
828 	while (ntc != ntu) {
829 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
830 
831 		if (tx_buf->raw_buf)
832 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
833 		else
834 			xsk_frames++;
835 
836 		tx_buf->raw_buf = NULL;
837 
838 		ntc++;
839 		if (ntc >= xdp_ring->count)
840 			ntc = 0;
841 	}
842 
843 	if (xsk_frames)
844 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
845 }
846