1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 /** 16 * ice_qp_reset_stats - Resets all stats for rings of given index 17 * @vsi: VSI that contains rings of interest 18 * @q_idx: ring index in array 19 */ 20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 21 { 22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 23 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 24 memset(&vsi->tx_rings[q_idx]->stats, 0, 25 sizeof(vsi->tx_rings[q_idx]->stats)); 26 if (ice_is_xdp_ena_vsi(vsi)) 27 memset(&vsi->xdp_rings[q_idx]->stats, 0, 28 sizeof(vsi->xdp_rings[q_idx]->stats)); 29 } 30 31 /** 32 * ice_qp_clean_rings - Cleans all the rings of a given index 33 * @vsi: VSI that contains rings of interest 34 * @q_idx: ring index in array 35 */ 36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 37 { 38 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 39 if (ice_is_xdp_ena_vsi(vsi)) 40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 41 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 42 } 43 44 /** 45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 46 * @vsi: VSI that has netdev 47 * @q_vector: q_vector that has NAPI context 48 * @enable: true for enable, false for disable 49 */ 50 static void 51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 52 bool enable) 53 { 54 if (!vsi->netdev || !q_vector) 55 return; 56 57 if (enable) 58 napi_enable(&q_vector->napi); 59 else 60 napi_disable(&q_vector->napi); 61 } 62 63 /** 64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 65 * @vsi: the VSI that contains queue vector being un-configured 66 * @rx_ring: Rx ring that will have its IRQ disabled 67 * @q_vector: queue vector 68 */ 69 static void 70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring, 71 struct ice_q_vector *q_vector) 72 { 73 struct ice_pf *pf = vsi->back; 74 struct ice_hw *hw = &pf->hw; 75 int base = vsi->base_vector; 76 u16 reg; 77 u32 val; 78 79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 80 * here only QINT_RQCTL 81 */ 82 reg = rx_ring->reg_idx; 83 val = rd32(hw, QINT_RQCTL(reg)); 84 val &= ~QINT_RQCTL_CAUSE_ENA_M; 85 wr32(hw, QINT_RQCTL(reg), val); 86 87 if (q_vector) { 88 u16 v_idx = q_vector->v_idx; 89 90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 91 ice_flush(hw); 92 synchronize_irq(pf->msix_entries[v_idx + base].vector); 93 } 94 } 95 96 /** 97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 98 * @vsi: the VSI that contains queue vector 99 * @q_vector: queue vector 100 */ 101 static void 102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 103 { 104 u16 reg_idx = q_vector->reg_idx; 105 struct ice_pf *pf = vsi->back; 106 struct ice_hw *hw = &pf->hw; 107 struct ice_ring *ring; 108 109 ice_cfg_itr(hw, q_vector); 110 111 ice_for_each_ring(ring, q_vector->tx) 112 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx, 113 q_vector->tx.itr_idx); 114 115 ice_for_each_ring(ring, q_vector->rx) 116 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx, 117 q_vector->rx.itr_idx); 118 119 ice_flush(hw); 120 } 121 122 /** 123 * ice_qvec_ena_irq - Enable IRQ for given queue vector 124 * @vsi: the VSI that contains queue vector 125 * @q_vector: queue vector 126 */ 127 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 128 { 129 struct ice_pf *pf = vsi->back; 130 struct ice_hw *hw = &pf->hw; 131 132 ice_irq_dynamic_ena(hw, vsi, q_vector); 133 134 ice_flush(hw); 135 } 136 137 /** 138 * ice_qp_dis - Disables a queue pair 139 * @vsi: VSI of interest 140 * @q_idx: ring index in array 141 * 142 * Returns 0 on success, negative on failure. 143 */ 144 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 145 { 146 struct ice_txq_meta txq_meta = { }; 147 struct ice_ring *tx_ring, *rx_ring; 148 struct ice_q_vector *q_vector; 149 int timeout = 50; 150 int err; 151 152 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 153 return -EINVAL; 154 155 tx_ring = vsi->tx_rings[q_idx]; 156 rx_ring = vsi->rx_rings[q_idx]; 157 q_vector = rx_ring->q_vector; 158 159 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 160 timeout--; 161 if (!timeout) 162 return -EBUSY; 163 usleep_range(1000, 2000); 164 } 165 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 166 167 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 168 169 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 170 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 171 if (err) 172 return err; 173 if (ice_is_xdp_ena_vsi(vsi)) { 174 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 175 176 memset(&txq_meta, 0, sizeof(txq_meta)); 177 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 178 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 179 &txq_meta); 180 if (err) 181 return err; 182 } 183 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 184 if (err) 185 return err; 186 187 ice_qvec_toggle_napi(vsi, q_vector, false); 188 ice_qp_clean_rings(vsi, q_idx); 189 ice_qp_reset_stats(vsi, q_idx); 190 191 return 0; 192 } 193 194 /** 195 * ice_qp_ena - Enables a queue pair 196 * @vsi: VSI of interest 197 * @q_idx: ring index in array 198 * 199 * Returns 0 on success, negative on failure. 200 */ 201 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 202 { 203 struct ice_aqc_add_tx_qgrp *qg_buf; 204 struct ice_ring *tx_ring, *rx_ring; 205 struct ice_q_vector *q_vector; 206 u16 size; 207 int err; 208 209 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 210 return -EINVAL; 211 212 size = struct_size(qg_buf, txqs, 1); 213 qg_buf = kzalloc(size, GFP_KERNEL); 214 if (!qg_buf) 215 return -ENOMEM; 216 217 qg_buf->num_txqs = 1; 218 219 tx_ring = vsi->tx_rings[q_idx]; 220 rx_ring = vsi->rx_rings[q_idx]; 221 q_vector = rx_ring->q_vector; 222 223 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 224 if (err) 225 goto free_buf; 226 227 if (ice_is_xdp_ena_vsi(vsi)) { 228 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 229 230 memset(qg_buf, 0, size); 231 qg_buf->num_txqs = 1; 232 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 233 if (err) 234 goto free_buf; 235 ice_set_ring_xdp(xdp_ring); 236 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 237 } 238 239 err = ice_vsi_cfg_rxq(rx_ring); 240 if (err) 241 goto free_buf; 242 243 ice_qvec_cfg_msix(vsi, q_vector); 244 245 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 246 if (err) 247 goto free_buf; 248 249 clear_bit(ICE_CFG_BUSY, vsi->state); 250 ice_qvec_toggle_napi(vsi, q_vector, true); 251 ice_qvec_ena_irq(vsi, q_vector); 252 253 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 254 free_buf: 255 kfree(qg_buf); 256 return err; 257 } 258 259 /** 260 * ice_xsk_pool_disable - disable a buffer pool region 261 * @vsi: Current VSI 262 * @qid: queue ID 263 * 264 * Returns 0 on success, negative on failure 265 */ 266 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 267 { 268 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 269 270 if (!pool) 271 return -EINVAL; 272 273 clear_bit(qid, vsi->af_xdp_zc_qps); 274 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 275 276 return 0; 277 } 278 279 /** 280 * ice_xsk_pool_enable - enable a buffer pool region 281 * @vsi: Current VSI 282 * @pool: pointer to a requested buffer pool region 283 * @qid: queue ID 284 * 285 * Returns 0 on success, negative on failure 286 */ 287 static int 288 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 289 { 290 int err; 291 292 if (vsi->type != ICE_VSI_PF) 293 return -EINVAL; 294 295 if (qid >= vsi->netdev->real_num_rx_queues || 296 qid >= vsi->netdev->real_num_tx_queues) 297 return -EINVAL; 298 299 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 300 ICE_RX_DMA_ATTR); 301 if (err) 302 return err; 303 304 set_bit(qid, vsi->af_xdp_zc_qps); 305 306 return 0; 307 } 308 309 /** 310 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 311 * @vsi: Current VSI 312 * @pool: buffer pool to enable/associate to a ring, NULL to disable 313 * @qid: queue ID 314 * 315 * Returns 0 on success, negative on failure 316 */ 317 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 318 { 319 bool if_running, pool_present = !!pool; 320 int ret = 0, pool_failure = 0; 321 322 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 323 324 if (if_running) { 325 ret = ice_qp_dis(vsi, qid); 326 if (ret) { 327 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 328 goto xsk_pool_if_up; 329 } 330 } 331 332 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 333 ice_xsk_pool_disable(vsi, qid); 334 335 xsk_pool_if_up: 336 if (if_running) { 337 ret = ice_qp_ena(vsi, qid); 338 if (!ret && pool_present) 339 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 340 else if (ret) 341 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 342 } 343 344 if (pool_failure) { 345 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 346 pool_present ? "en" : "dis", pool_failure); 347 return pool_failure; 348 } 349 350 return ret; 351 } 352 353 /** 354 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 355 * @rx_ring: Rx ring 356 * @count: The number of buffers to allocate 357 * 358 * This function allocates a number of Rx buffers from the fill ring 359 * or the internal recycle mechanism and places them on the Rx ring. 360 * 361 * Returns true if all allocations were successful, false if any fail. 362 */ 363 bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count) 364 { 365 union ice_32b_rx_flex_desc *rx_desc; 366 u16 ntu = rx_ring->next_to_use; 367 struct xdp_buff **xdp; 368 u32 nb_buffs, i; 369 dma_addr_t dma; 370 371 rx_desc = ICE_RX_DESC(rx_ring, ntu); 372 xdp = &rx_ring->xdp_buf[ntu]; 373 374 nb_buffs = min_t(u16, count, rx_ring->count - ntu); 375 nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs); 376 if (!nb_buffs) 377 return false; 378 379 i = nb_buffs; 380 while (i--) { 381 dma = xsk_buff_xdp_get_dma(*xdp); 382 rx_desc->read.pkt_addr = cpu_to_le64(dma); 383 384 rx_desc++; 385 xdp++; 386 } 387 388 ntu += nb_buffs; 389 if (ntu == rx_ring->count) { 390 rx_desc = ICE_RX_DESC(rx_ring, 0); 391 xdp = rx_ring->xdp_buf; 392 ntu = 0; 393 } 394 395 /* clear the status bits for the next_to_use descriptor */ 396 rx_desc->wb.status_error0 = 0; 397 ice_release_rx_desc(rx_ring, ntu); 398 399 return count == nb_buffs ? true : false; 400 } 401 402 /** 403 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 404 * @rx_ring: Rx ring 405 */ 406 static void ice_bump_ntc(struct ice_ring *rx_ring) 407 { 408 int ntc = rx_ring->next_to_clean + 1; 409 410 ntc = (ntc < rx_ring->count) ? ntc : 0; 411 rx_ring->next_to_clean = ntc; 412 prefetch(ICE_RX_DESC(rx_ring, ntc)); 413 } 414 415 /** 416 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 417 * @rx_ring: Rx ring 418 * @xdp_arr: Pointer to the SW ring of xdp_buff pointers 419 * 420 * This function allocates a new skb from a zero-copy Rx buffer. 421 * 422 * Returns the skb on success, NULL on failure. 423 */ 424 static struct sk_buff * 425 ice_construct_skb_zc(struct ice_ring *rx_ring, struct xdp_buff **xdp_arr) 426 { 427 struct xdp_buff *xdp = *xdp_arr; 428 unsigned int metasize = xdp->data - xdp->data_meta; 429 unsigned int datasize = xdp->data_end - xdp->data; 430 unsigned int datasize_hard = xdp->data_end - xdp->data_hard_start; 431 struct sk_buff *skb; 432 433 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, 434 GFP_ATOMIC | __GFP_NOWARN); 435 if (unlikely(!skb)) 436 return NULL; 437 438 skb_reserve(skb, xdp->data - xdp->data_hard_start); 439 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 440 if (metasize) 441 skb_metadata_set(skb, metasize); 442 443 xsk_buff_free(xdp); 444 *xdp_arr = NULL; 445 return skb; 446 } 447 448 /** 449 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 450 * @rx_ring: Rx ring 451 * @xdp: xdp_buff used as input to the XDP program 452 * 453 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 454 */ 455 static int 456 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp) 457 { 458 int err, result = ICE_XDP_PASS; 459 struct bpf_prog *xdp_prog; 460 struct ice_ring *xdp_ring; 461 u32 act; 462 463 /* ZC patch is enabled only when XDP program is set, 464 * so here it can not be NULL 465 */ 466 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 467 468 act = bpf_prog_run_xdp(xdp_prog, xdp); 469 470 if (likely(act == XDP_REDIRECT)) { 471 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 472 if (err) 473 goto out_failure; 474 return ICE_XDP_REDIR; 475 } 476 477 switch (act) { 478 case XDP_PASS: 479 break; 480 case XDP_TX: 481 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; 482 result = ice_xmit_xdp_buff(xdp, xdp_ring); 483 if (result == ICE_XDP_CONSUMED) 484 goto out_failure; 485 break; 486 default: 487 bpf_warn_invalid_xdp_action(act); 488 fallthrough; 489 case XDP_ABORTED: 490 out_failure: 491 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 492 fallthrough; 493 case XDP_DROP: 494 result = ICE_XDP_CONSUMED; 495 break; 496 } 497 498 return result; 499 } 500 501 /** 502 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 503 * @rx_ring: AF_XDP Rx ring 504 * @budget: NAPI budget 505 * 506 * Returns number of processed packets on success, remaining budget on failure. 507 */ 508 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget) 509 { 510 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 511 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 512 unsigned int xdp_xmit = 0; 513 bool failure = false; 514 515 while (likely(total_rx_packets < (unsigned int)budget)) { 516 union ice_32b_rx_flex_desc *rx_desc; 517 unsigned int size, xdp_res = 0; 518 struct xdp_buff **xdp; 519 struct sk_buff *skb; 520 u16 stat_err_bits; 521 u16 vlan_tag = 0; 522 u16 rx_ptype; 523 524 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 525 526 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 527 if (!ice_test_staterr(rx_desc, stat_err_bits)) 528 break; 529 530 /* This memory barrier is needed to keep us from reading 531 * any other fields out of the rx_desc until we have 532 * verified the descriptor has been written back. 533 */ 534 dma_rmb(); 535 536 size = le16_to_cpu(rx_desc->wb.pkt_len) & 537 ICE_RX_FLX_DESC_PKT_LEN_M; 538 if (!size) 539 break; 540 541 xdp = &rx_ring->xdp_buf[rx_ring->next_to_clean]; 542 xsk_buff_set_size(*xdp, size); 543 xsk_buff_dma_sync_for_cpu(*xdp, rx_ring->xsk_pool); 544 545 xdp_res = ice_run_xdp_zc(rx_ring, *xdp); 546 if (xdp_res) { 547 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 548 xdp_xmit |= xdp_res; 549 else 550 xsk_buff_free(*xdp); 551 552 *xdp = NULL; 553 total_rx_bytes += size; 554 total_rx_packets++; 555 cleaned_count++; 556 557 ice_bump_ntc(rx_ring); 558 continue; 559 } 560 561 /* XDP_PASS path */ 562 skb = ice_construct_skb_zc(rx_ring, xdp); 563 if (!skb) { 564 rx_ring->rx_stats.alloc_buf_failed++; 565 break; 566 } 567 568 cleaned_count++; 569 ice_bump_ntc(rx_ring); 570 571 if (eth_skb_pad(skb)) { 572 skb = NULL; 573 continue; 574 } 575 576 total_rx_bytes += skb->len; 577 total_rx_packets++; 578 579 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 580 if (ice_test_staterr(rx_desc, stat_err_bits)) 581 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 582 583 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 584 ICE_RX_FLEX_DESC_PTYPE_M; 585 586 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 587 ice_receive_skb(rx_ring, skb, vlan_tag); 588 } 589 590 if (cleaned_count >= ICE_RX_BUF_WRITE) 591 failure = !ice_alloc_rx_bufs_zc(rx_ring, cleaned_count); 592 593 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 594 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 595 596 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 597 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 598 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 599 else 600 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 601 602 return (int)total_rx_packets; 603 } 604 605 return failure ? budget : (int)total_rx_packets; 606 } 607 608 /** 609 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 610 * @xdp_ring: XDP Tx ring 611 * @budget: max number of frames to xmit 612 * 613 * Returns true if cleanup/transmission is done. 614 */ 615 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget) 616 { 617 struct ice_tx_desc *tx_desc = NULL; 618 bool work_done = true; 619 struct xdp_desc desc; 620 dma_addr_t dma; 621 622 while (likely(budget-- > 0)) { 623 struct ice_tx_buf *tx_buf; 624 625 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 626 xdp_ring->tx_stats.tx_busy++; 627 work_done = false; 628 break; 629 } 630 631 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 632 633 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc)) 634 break; 635 636 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr); 637 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, 638 desc.len); 639 640 tx_buf->bytecount = desc.len; 641 642 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 643 tx_desc->buf_addr = cpu_to_le64(dma); 644 tx_desc->cmd_type_offset_bsz = 645 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 646 647 xdp_ring->next_to_use++; 648 if (xdp_ring->next_to_use == xdp_ring->count) 649 xdp_ring->next_to_use = 0; 650 } 651 652 if (tx_desc) { 653 ice_xdp_ring_update_tail(xdp_ring); 654 xsk_tx_release(xdp_ring->xsk_pool); 655 } 656 657 return budget > 0 && work_done; 658 } 659 660 /** 661 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 662 * @xdp_ring: XDP Tx ring 663 * @tx_buf: Tx buffer to clean 664 */ 665 static void 666 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf) 667 { 668 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 669 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 670 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 671 dma_unmap_len_set(tx_buf, len, 0); 672 } 673 674 /** 675 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 676 * @xdp_ring: XDP Tx ring 677 * @budget: NAPI budget 678 * 679 * Returns true if cleanup/tranmission is done. 680 */ 681 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget) 682 { 683 int total_packets = 0, total_bytes = 0; 684 s16 ntc = xdp_ring->next_to_clean; 685 struct ice_tx_desc *tx_desc; 686 struct ice_tx_buf *tx_buf; 687 u32 xsk_frames = 0; 688 bool xmit_done; 689 690 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 691 tx_buf = &xdp_ring->tx_buf[ntc]; 692 ntc -= xdp_ring->count; 693 694 do { 695 if (!(tx_desc->cmd_type_offset_bsz & 696 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 697 break; 698 699 total_bytes += tx_buf->bytecount; 700 total_packets++; 701 702 if (tx_buf->raw_buf) { 703 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 704 tx_buf->raw_buf = NULL; 705 } else { 706 xsk_frames++; 707 } 708 709 tx_desc->cmd_type_offset_bsz = 0; 710 tx_buf++; 711 tx_desc++; 712 ntc++; 713 714 if (unlikely(!ntc)) { 715 ntc -= xdp_ring->count; 716 tx_buf = xdp_ring->tx_buf; 717 tx_desc = ICE_TX_DESC(xdp_ring, 0); 718 } 719 720 prefetch(tx_desc); 721 722 } while (likely(--budget)); 723 724 ntc += xdp_ring->count; 725 xdp_ring->next_to_clean = ntc; 726 727 if (xsk_frames) 728 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 729 730 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 731 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 732 733 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 734 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 735 736 return budget > 0 && xmit_done; 737 } 738 739 /** 740 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 741 * @netdev: net_device 742 * @queue_id: queue to wake up 743 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 744 * 745 * Returns negative on error, zero otherwise. 746 */ 747 int 748 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 749 u32 __always_unused flags) 750 { 751 struct ice_netdev_priv *np = netdev_priv(netdev); 752 struct ice_q_vector *q_vector; 753 struct ice_vsi *vsi = np->vsi; 754 struct ice_ring *ring; 755 756 if (test_bit(ICE_DOWN, vsi->state)) 757 return -ENETDOWN; 758 759 if (!ice_is_xdp_ena_vsi(vsi)) 760 return -ENXIO; 761 762 if (queue_id >= vsi->num_txq) 763 return -ENXIO; 764 765 if (!vsi->xdp_rings[queue_id]->xsk_pool) 766 return -ENXIO; 767 768 ring = vsi->xdp_rings[queue_id]; 769 770 /* The idea here is that if NAPI is running, mark a miss, so 771 * it will run again. If not, trigger an interrupt and 772 * schedule the NAPI from interrupt context. If NAPI would be 773 * scheduled here, the interrupt affinity would not be 774 * honored. 775 */ 776 q_vector = ring->q_vector; 777 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 778 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 779 780 return 0; 781 } 782 783 /** 784 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 785 * @vsi: VSI to be checked 786 * 787 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 788 */ 789 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 790 { 791 int i; 792 793 ice_for_each_rxq(vsi, i) { 794 if (xsk_get_pool_from_qid(vsi->netdev, i)) 795 return true; 796 } 797 798 return false; 799 } 800 801 /** 802 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 803 * @rx_ring: ring to be cleaned 804 */ 805 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring) 806 { 807 u16 i; 808 809 for (i = 0; i < rx_ring->count; i++) { 810 struct xdp_buff **xdp = &rx_ring->xdp_buf[i]; 811 812 if (!xdp) 813 continue; 814 815 *xdp = NULL; 816 } 817 } 818 819 /** 820 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 821 * @xdp_ring: XDP_Tx ring 822 */ 823 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring) 824 { 825 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 826 u32 xsk_frames = 0; 827 828 while (ntc != ntu) { 829 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 830 831 if (tx_buf->raw_buf) 832 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 833 else 834 xsk_frames++; 835 836 tx_buf->raw_buf = NULL; 837 838 ntc++; 839 if (ntc >= xdp_ring->count) 840 ntc = 0; 841 } 842 843 if (xsk_frames) 844 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 845 } 846