1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 int base = vsi->base_vector; 94 u16 reg; 95 u32 val; 96 97 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 98 * here only QINT_RQCTL 99 */ 100 reg = rx_ring->reg_idx; 101 val = rd32(hw, QINT_RQCTL(reg)); 102 val &= ~QINT_RQCTL_CAUSE_ENA_M; 103 wr32(hw, QINT_RQCTL(reg), val); 104 105 if (q_vector) { 106 u16 v_idx = q_vector->v_idx; 107 108 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 109 ice_flush(hw); 110 synchronize_irq(pf->msix_entries[v_idx + base].vector); 111 } 112 } 113 114 /** 115 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 116 * @vsi: the VSI that contains queue vector 117 * @q_vector: queue vector 118 */ 119 static void 120 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 121 { 122 u16 reg_idx = q_vector->reg_idx; 123 struct ice_pf *pf = vsi->back; 124 struct ice_hw *hw = &pf->hw; 125 struct ice_tx_ring *tx_ring; 126 struct ice_rx_ring *rx_ring; 127 128 ice_cfg_itr(hw, q_vector); 129 130 ice_for_each_tx_ring(tx_ring, q_vector->tx) 131 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 132 q_vector->tx.itr_idx); 133 134 ice_for_each_rx_ring(rx_ring, q_vector->rx) 135 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 136 q_vector->rx.itr_idx); 137 138 ice_flush(hw); 139 } 140 141 /** 142 * ice_qvec_ena_irq - Enable IRQ for given queue vector 143 * @vsi: the VSI that contains queue vector 144 * @q_vector: queue vector 145 */ 146 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 147 { 148 struct ice_pf *pf = vsi->back; 149 struct ice_hw *hw = &pf->hw; 150 151 ice_irq_dynamic_ena(hw, vsi, q_vector); 152 153 ice_flush(hw); 154 } 155 156 /** 157 * ice_qp_dis - Disables a queue pair 158 * @vsi: VSI of interest 159 * @q_idx: ring index in array 160 * 161 * Returns 0 on success, negative on failure. 162 */ 163 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 164 { 165 struct ice_txq_meta txq_meta = { }; 166 struct ice_q_vector *q_vector; 167 struct ice_tx_ring *tx_ring; 168 struct ice_rx_ring *rx_ring; 169 int timeout = 50; 170 int err; 171 172 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 173 return -EINVAL; 174 175 tx_ring = vsi->tx_rings[q_idx]; 176 rx_ring = vsi->rx_rings[q_idx]; 177 q_vector = rx_ring->q_vector; 178 179 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 180 timeout--; 181 if (!timeout) 182 return -EBUSY; 183 usleep_range(1000, 2000); 184 } 185 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 186 187 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 188 189 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 190 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 191 if (err) 192 return err; 193 if (ice_is_xdp_ena_vsi(vsi)) { 194 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 195 196 memset(&txq_meta, 0, sizeof(txq_meta)); 197 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 198 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 199 &txq_meta); 200 if (err) 201 return err; 202 } 203 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 204 if (err) 205 return err; 206 ice_clean_rx_ring(rx_ring); 207 208 ice_qvec_toggle_napi(vsi, q_vector, false); 209 ice_qp_clean_rings(vsi, q_idx); 210 ice_qp_reset_stats(vsi, q_idx); 211 212 return 0; 213 } 214 215 /** 216 * ice_qp_ena - Enables a queue pair 217 * @vsi: VSI of interest 218 * @q_idx: ring index in array 219 * 220 * Returns 0 on success, negative on failure. 221 */ 222 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 223 { 224 struct ice_aqc_add_tx_qgrp *qg_buf; 225 struct ice_q_vector *q_vector; 226 struct ice_tx_ring *tx_ring; 227 struct ice_rx_ring *rx_ring; 228 u16 size; 229 int err; 230 231 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 232 return -EINVAL; 233 234 size = struct_size(qg_buf, txqs, 1); 235 qg_buf = kzalloc(size, GFP_KERNEL); 236 if (!qg_buf) 237 return -ENOMEM; 238 239 qg_buf->num_txqs = 1; 240 241 tx_ring = vsi->tx_rings[q_idx]; 242 rx_ring = vsi->rx_rings[q_idx]; 243 q_vector = rx_ring->q_vector; 244 245 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 246 if (err) 247 goto free_buf; 248 249 if (ice_is_xdp_ena_vsi(vsi)) { 250 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 251 252 memset(qg_buf, 0, size); 253 qg_buf->num_txqs = 1; 254 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 255 if (err) 256 goto free_buf; 257 ice_set_ring_xdp(xdp_ring); 258 ice_tx_xsk_pool(vsi, q_idx); 259 } 260 261 err = ice_vsi_cfg_rxq(rx_ring); 262 if (err) 263 goto free_buf; 264 265 ice_qvec_cfg_msix(vsi, q_vector); 266 267 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 268 if (err) 269 goto free_buf; 270 271 clear_bit(ICE_CFG_BUSY, vsi->state); 272 ice_qvec_toggle_napi(vsi, q_vector, true); 273 ice_qvec_ena_irq(vsi, q_vector); 274 275 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 276 free_buf: 277 kfree(qg_buf); 278 return err; 279 } 280 281 /** 282 * ice_xsk_pool_disable - disable a buffer pool region 283 * @vsi: Current VSI 284 * @qid: queue ID 285 * 286 * Returns 0 on success, negative on failure 287 */ 288 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 289 { 290 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 291 292 if (!pool) 293 return -EINVAL; 294 295 clear_bit(qid, vsi->af_xdp_zc_qps); 296 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 297 298 return 0; 299 } 300 301 /** 302 * ice_xsk_pool_enable - enable a buffer pool region 303 * @vsi: Current VSI 304 * @pool: pointer to a requested buffer pool region 305 * @qid: queue ID 306 * 307 * Returns 0 on success, negative on failure 308 */ 309 static int 310 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 311 { 312 int err; 313 314 if (vsi->type != ICE_VSI_PF) 315 return -EINVAL; 316 317 if (qid >= vsi->netdev->real_num_rx_queues || 318 qid >= vsi->netdev->real_num_tx_queues) 319 return -EINVAL; 320 321 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 322 ICE_RX_DMA_ATTR); 323 if (err) 324 return err; 325 326 set_bit(qid, vsi->af_xdp_zc_qps); 327 328 return 0; 329 } 330 331 /** 332 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 333 * @rx_ring: Rx ring 334 * @pool_present: is pool for XSK present 335 * 336 * Try allocating memory and return ENOMEM, if failed to allocate. 337 * If allocation was successful, substitute buffer with allocated one. 338 * Returns 0 on success, negative on failure 339 */ 340 static int 341 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 342 { 343 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 344 sizeof(*rx_ring->rx_buf); 345 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 346 347 if (!sw_ring) 348 return -ENOMEM; 349 350 if (pool_present) { 351 kfree(rx_ring->rx_buf); 352 rx_ring->rx_buf = NULL; 353 rx_ring->xdp_buf = sw_ring; 354 } else { 355 kfree(rx_ring->xdp_buf); 356 rx_ring->xdp_buf = NULL; 357 rx_ring->rx_buf = sw_ring; 358 } 359 360 return 0; 361 } 362 363 /** 364 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 365 * @vsi: Current VSI 366 * @zc: is zero copy set 367 * 368 * Reallocate buffer for rx_rings that might be used by XSK. 369 * XDP requires more memory, than rx_buf provides. 370 * Returns 0 on success, negative on failure 371 */ 372 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 373 { 374 struct ice_rx_ring *rx_ring; 375 unsigned long q; 376 377 for_each_set_bit(q, vsi->af_xdp_zc_qps, 378 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 379 rx_ring = vsi->rx_rings[q]; 380 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 381 return -ENOMEM; 382 } 383 384 return 0; 385 } 386 387 /** 388 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 389 * @vsi: Current VSI 390 * @pool: buffer pool to enable/associate to a ring, NULL to disable 391 * @qid: queue ID 392 * 393 * Returns 0 on success, negative on failure 394 */ 395 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 396 { 397 bool if_running, pool_present = !!pool; 398 int ret = 0, pool_failure = 0; 399 400 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 401 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 402 pool_failure = -EINVAL; 403 goto failure; 404 } 405 406 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 407 408 if (if_running) { 409 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 410 411 ret = ice_qp_dis(vsi, qid); 412 if (ret) { 413 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 414 goto xsk_pool_if_up; 415 } 416 417 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 418 if (ret) 419 goto xsk_pool_if_up; 420 } 421 422 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 423 ice_xsk_pool_disable(vsi, qid); 424 425 xsk_pool_if_up: 426 if (if_running) { 427 ret = ice_qp_ena(vsi, qid); 428 if (!ret && pool_present) 429 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 430 else if (ret) 431 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 432 } 433 434 failure: 435 if (pool_failure) { 436 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 437 pool_present ? "en" : "dis", pool_failure); 438 return pool_failure; 439 } 440 441 return ret; 442 } 443 444 /** 445 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 446 * @pool: XSK Buffer pool to pull the buffers from 447 * @xdp: SW ring of xdp_buff that will hold the buffers 448 * @rx_desc: Pointer to Rx descriptors that will be filled 449 * @count: The number of buffers to allocate 450 * 451 * This function allocates a number of Rx buffers from the fill ring 452 * or the internal recycle mechanism and places them on the Rx ring. 453 * 454 * Note that ring wrap should be handled by caller of this function. 455 * 456 * Returns the amount of allocated Rx descriptors 457 */ 458 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 459 union ice_32b_rx_flex_desc *rx_desc, u16 count) 460 { 461 dma_addr_t dma; 462 u16 buffs; 463 int i; 464 465 buffs = xsk_buff_alloc_batch(pool, xdp, count); 466 for (i = 0; i < buffs; i++) { 467 dma = xsk_buff_xdp_get_dma(*xdp); 468 rx_desc->read.pkt_addr = cpu_to_le64(dma); 469 rx_desc->wb.status_error0 = 0; 470 471 rx_desc++; 472 xdp++; 473 } 474 475 return buffs; 476 } 477 478 /** 479 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 480 * @rx_ring: Rx ring 481 * @count: The number of buffers to allocate 482 * 483 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 484 * for case where space from next_to_use up to the end of ring is less 485 * than @count. Finally do a tail bump. 486 * 487 * Returns true if all allocations were successful, false if any fail. 488 */ 489 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 490 { 491 u32 nb_buffs_extra = 0, nb_buffs = 0; 492 union ice_32b_rx_flex_desc *rx_desc; 493 u16 ntu = rx_ring->next_to_use; 494 u16 total_count = count; 495 struct xdp_buff **xdp; 496 497 rx_desc = ICE_RX_DESC(rx_ring, ntu); 498 xdp = ice_xdp_buf(rx_ring, ntu); 499 500 if (ntu + count >= rx_ring->count) { 501 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 502 rx_desc, 503 rx_ring->count - ntu); 504 if (nb_buffs_extra != rx_ring->count - ntu) { 505 ntu += nb_buffs_extra; 506 goto exit; 507 } 508 rx_desc = ICE_RX_DESC(rx_ring, 0); 509 xdp = ice_xdp_buf(rx_ring, 0); 510 ntu = 0; 511 count -= nb_buffs_extra; 512 ice_release_rx_desc(rx_ring, 0); 513 } 514 515 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 516 517 ntu += nb_buffs; 518 if (ntu == rx_ring->count) 519 ntu = 0; 520 521 exit: 522 if (rx_ring->next_to_use != ntu) 523 ice_release_rx_desc(rx_ring, ntu); 524 525 return total_count == (nb_buffs_extra + nb_buffs); 526 } 527 528 /** 529 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 530 * @rx_ring: Rx ring 531 * @count: The number of buffers to allocate 532 * 533 * Wrapper for internal allocation routine; figure out how many tail 534 * bumps should take place based on the given threshold 535 * 536 * Returns true if all calls to internal alloc routine succeeded 537 */ 538 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 539 { 540 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 541 u16 leftover, i, tail_bumps; 542 543 tail_bumps = count / rx_thresh; 544 leftover = count - (tail_bumps * rx_thresh); 545 546 for (i = 0; i < tail_bumps; i++) 547 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 548 return false; 549 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 550 } 551 552 /** 553 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 554 * @rx_ring: Rx ring 555 */ 556 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 557 { 558 int ntc = rx_ring->next_to_clean + 1; 559 560 ntc = (ntc < rx_ring->count) ? ntc : 0; 561 rx_ring->next_to_clean = ntc; 562 prefetch(ICE_RX_DESC(rx_ring, ntc)); 563 } 564 565 /** 566 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 567 * @rx_ring: Rx ring 568 * @xdp: Pointer to XDP buffer 569 * 570 * This function allocates a new skb from a zero-copy Rx buffer. 571 * 572 * Returns the skb on success, NULL on failure. 573 */ 574 static struct sk_buff * 575 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 576 { 577 unsigned int totalsize = xdp->data_end - xdp->data_meta; 578 unsigned int metasize = xdp->data - xdp->data_meta; 579 struct sk_buff *skb; 580 581 net_prefetch(xdp->data_meta); 582 583 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 584 GFP_ATOMIC | __GFP_NOWARN); 585 if (unlikely(!skb)) 586 return NULL; 587 588 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 589 ALIGN(totalsize, sizeof(long))); 590 591 if (metasize) { 592 skb_metadata_set(skb, metasize); 593 __skb_pull(skb, metasize); 594 } 595 596 xsk_buff_free(xdp); 597 return skb; 598 } 599 600 /** 601 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 602 * @rx_ring: Rx ring 603 * @xdp: xdp_buff used as input to the XDP program 604 * @xdp_prog: XDP program to run 605 * @xdp_ring: ring to be used for XDP_TX action 606 * 607 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 608 */ 609 static int 610 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 611 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 612 { 613 int err, result = ICE_XDP_PASS; 614 u32 act; 615 616 act = bpf_prog_run_xdp(xdp_prog, xdp); 617 618 if (likely(act == XDP_REDIRECT)) { 619 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 620 if (!err) 621 return ICE_XDP_REDIR; 622 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 623 result = ICE_XDP_EXIT; 624 else 625 result = ICE_XDP_CONSUMED; 626 goto out_failure; 627 } 628 629 switch (act) { 630 case XDP_PASS: 631 break; 632 case XDP_TX: 633 result = ice_xmit_xdp_buff(xdp, xdp_ring); 634 if (result == ICE_XDP_CONSUMED) 635 goto out_failure; 636 break; 637 case XDP_DROP: 638 result = ICE_XDP_CONSUMED; 639 break; 640 default: 641 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 642 fallthrough; 643 case XDP_ABORTED: 644 result = ICE_XDP_CONSUMED; 645 out_failure: 646 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 647 break; 648 } 649 650 return result; 651 } 652 653 /** 654 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 655 * @rx_ring: AF_XDP Rx ring 656 * @budget: NAPI budget 657 * 658 * Returns number of processed packets on success, remaining budget on failure. 659 */ 660 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 661 { 662 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 663 struct ice_tx_ring *xdp_ring; 664 unsigned int xdp_xmit = 0; 665 struct bpf_prog *xdp_prog; 666 bool failure = false; 667 int entries_to_alloc; 668 669 /* ZC patch is enabled only when XDP program is set, 670 * so here it can not be NULL 671 */ 672 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 673 xdp_ring = rx_ring->xdp_ring; 674 675 while (likely(total_rx_packets < (unsigned int)budget)) { 676 union ice_32b_rx_flex_desc *rx_desc; 677 unsigned int size, xdp_res = 0; 678 struct xdp_buff *xdp; 679 struct sk_buff *skb; 680 u16 stat_err_bits; 681 u16 vlan_tag = 0; 682 u16 rx_ptype; 683 684 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 685 686 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 687 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 688 break; 689 690 /* This memory barrier is needed to keep us from reading 691 * any other fields out of the rx_desc until we have 692 * verified the descriptor has been written back. 693 */ 694 dma_rmb(); 695 696 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 697 break; 698 699 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 700 701 size = le16_to_cpu(rx_desc->wb.pkt_len) & 702 ICE_RX_FLX_DESC_PKT_LEN_M; 703 if (!size) { 704 xdp->data = NULL; 705 xdp->data_end = NULL; 706 xdp->data_hard_start = NULL; 707 xdp->data_meta = NULL; 708 goto construct_skb; 709 } 710 711 xsk_buff_set_size(xdp, size); 712 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 713 714 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 715 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 716 xdp_xmit |= xdp_res; 717 } else if (xdp_res == ICE_XDP_EXIT) { 718 failure = true; 719 break; 720 } else if (xdp_res == ICE_XDP_CONSUMED) { 721 xsk_buff_free(xdp); 722 } else if (xdp_res == ICE_XDP_PASS) { 723 goto construct_skb; 724 } 725 726 total_rx_bytes += size; 727 total_rx_packets++; 728 729 ice_bump_ntc(rx_ring); 730 continue; 731 732 construct_skb: 733 /* XDP_PASS path */ 734 skb = ice_construct_skb_zc(rx_ring, xdp); 735 if (!skb) { 736 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 737 break; 738 } 739 740 ice_bump_ntc(rx_ring); 741 742 if (eth_skb_pad(skb)) { 743 skb = NULL; 744 continue; 745 } 746 747 total_rx_bytes += skb->len; 748 total_rx_packets++; 749 750 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 751 752 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 753 ICE_RX_FLEX_DESC_PTYPE_M; 754 755 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 756 ice_receive_skb(rx_ring, skb, vlan_tag); 757 } 758 759 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 760 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 761 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 762 763 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 764 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 765 766 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 767 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 768 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 769 else 770 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 771 772 return (int)total_rx_packets; 773 } 774 775 return failure ? budget : (int)total_rx_packets; 776 } 777 778 /** 779 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 780 * @xdp_ring: XDP Tx ring 781 * @tx_buf: Tx buffer to clean 782 */ 783 static void 784 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 785 { 786 page_frag_free(tx_buf->raw_buf); 787 xdp_ring->xdp_tx_active--; 788 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 789 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 790 dma_unmap_len_set(tx_buf, len, 0); 791 } 792 793 /** 794 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 795 * @xdp_ring: XDP Tx ring 796 */ 797 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 798 { 799 u16 ntc = xdp_ring->next_to_clean; 800 struct ice_tx_desc *tx_desc; 801 u16 cnt = xdp_ring->count; 802 struct ice_tx_buf *tx_buf; 803 u16 xsk_frames = 0; 804 u16 last_rs; 805 int i; 806 807 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 808 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 809 if ((tx_desc->cmd_type_offset_bsz & 810 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) { 811 if (last_rs >= ntc) 812 xsk_frames = last_rs - ntc + 1; 813 else 814 xsk_frames = last_rs + cnt - ntc + 1; 815 } 816 817 if (!xsk_frames) 818 return; 819 820 if (likely(!xdp_ring->xdp_tx_active)) 821 goto skip; 822 823 ntc = xdp_ring->next_to_clean; 824 for (i = 0; i < xsk_frames; i++) { 825 tx_buf = &xdp_ring->tx_buf[ntc]; 826 827 if (tx_buf->raw_buf) { 828 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 829 tx_buf->raw_buf = NULL; 830 } else { 831 xsk_frames++; 832 } 833 834 ntc++; 835 if (ntc >= xdp_ring->count) 836 ntc = 0; 837 } 838 skip: 839 tx_desc->cmd_type_offset_bsz = 0; 840 xdp_ring->next_to_clean += xsk_frames; 841 if (xdp_ring->next_to_clean >= cnt) 842 xdp_ring->next_to_clean -= cnt; 843 if (xsk_frames) 844 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 845 } 846 847 /** 848 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 849 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 850 * @desc: AF_XDP descriptor to pull the DMA address and length from 851 * @total_bytes: bytes accumulator that will be used for stats update 852 */ 853 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 854 unsigned int *total_bytes) 855 { 856 struct ice_tx_desc *tx_desc; 857 dma_addr_t dma; 858 859 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 860 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 861 862 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 863 tx_desc->buf_addr = cpu_to_le64(dma); 864 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 865 0, desc->len, 0); 866 867 *total_bytes += desc->len; 868 } 869 870 /** 871 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 872 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 873 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 874 * @total_bytes: bytes accumulator that will be used for stats update 875 */ 876 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 877 unsigned int *total_bytes) 878 { 879 u16 ntu = xdp_ring->next_to_use; 880 struct ice_tx_desc *tx_desc; 881 u32 i; 882 883 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 884 dma_addr_t dma; 885 886 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 887 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 888 889 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 890 tx_desc->buf_addr = cpu_to_le64(dma); 891 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 892 0, descs[i].len, 0); 893 894 *total_bytes += descs[i].len; 895 } 896 897 xdp_ring->next_to_use = ntu; 898 } 899 900 /** 901 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 902 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 903 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 904 * @nb_pkts: count of packets to be send 905 * @total_bytes: bytes accumulator that will be used for stats update 906 */ 907 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 908 u32 nb_pkts, unsigned int *total_bytes) 909 { 910 u32 batched, leftover, i; 911 912 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 913 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 914 for (i = 0; i < batched; i += PKTS_PER_BATCH) 915 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 916 for (; i < batched + leftover; i++) 917 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 918 } 919 920 /** 921 * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU) 922 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 923 */ 924 static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring) 925 { 926 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; 927 struct ice_tx_desc *tx_desc; 928 929 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 930 tx_desc->cmd_type_offset_bsz |= 931 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 932 } 933 934 /** 935 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 936 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 937 * 938 * Returns true if there is no more work that needs to be done, false otherwise 939 */ 940 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 941 { 942 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 943 u32 nb_pkts, nb_processed = 0; 944 unsigned int total_bytes = 0; 945 int budget; 946 947 ice_clean_xdp_irq_zc(xdp_ring); 948 949 budget = ICE_DESC_UNUSED(xdp_ring); 950 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 951 952 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 953 if (!nb_pkts) 954 return true; 955 956 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 957 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 958 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 959 xdp_ring->next_to_use = 0; 960 } 961 962 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 963 &total_bytes); 964 965 ice_set_rs_bit(xdp_ring); 966 ice_xdp_ring_update_tail(xdp_ring); 967 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 968 969 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 970 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 971 972 return nb_pkts < budget; 973 } 974 975 /** 976 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 977 * @netdev: net_device 978 * @queue_id: queue to wake up 979 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 980 * 981 * Returns negative on error, zero otherwise. 982 */ 983 int 984 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 985 u32 __always_unused flags) 986 { 987 struct ice_netdev_priv *np = netdev_priv(netdev); 988 struct ice_q_vector *q_vector; 989 struct ice_vsi *vsi = np->vsi; 990 struct ice_tx_ring *ring; 991 992 if (test_bit(ICE_VSI_DOWN, vsi->state)) 993 return -ENETDOWN; 994 995 if (!ice_is_xdp_ena_vsi(vsi)) 996 return -EINVAL; 997 998 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 999 return -EINVAL; 1000 1001 ring = vsi->rx_rings[queue_id]->xdp_ring; 1002 1003 if (!ring->xsk_pool) 1004 return -EINVAL; 1005 1006 /* The idea here is that if NAPI is running, mark a miss, so 1007 * it will run again. If not, trigger an interrupt and 1008 * schedule the NAPI from interrupt context. If NAPI would be 1009 * scheduled here, the interrupt affinity would not be 1010 * honored. 1011 */ 1012 q_vector = ring->q_vector; 1013 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1014 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1015 1016 return 0; 1017 } 1018 1019 /** 1020 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1021 * @vsi: VSI to be checked 1022 * 1023 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1024 */ 1025 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1026 { 1027 int i; 1028 1029 ice_for_each_rxq(vsi, i) { 1030 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1031 return true; 1032 } 1033 1034 return false; 1035 } 1036 1037 /** 1038 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1039 * @rx_ring: ring to be cleaned 1040 */ 1041 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1042 { 1043 u16 ntc = rx_ring->next_to_clean; 1044 u16 ntu = rx_ring->next_to_use; 1045 1046 while (ntc != ntu) { 1047 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1048 1049 xsk_buff_free(xdp); 1050 ntc++; 1051 if (ntc >= rx_ring->count) 1052 ntc = 0; 1053 } 1054 } 1055 1056 /** 1057 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1058 * @xdp_ring: XDP_Tx ring 1059 */ 1060 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1061 { 1062 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1063 u32 xsk_frames = 0; 1064 1065 while (ntc != ntu) { 1066 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1067 1068 if (tx_buf->raw_buf) 1069 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 1070 else 1071 xsk_frames++; 1072 1073 tx_buf->raw_buf = NULL; 1074 1075 ntc++; 1076 if (ntc >= xdp_ring->count) 1077 ntc = 0; 1078 } 1079 1080 if (xsk_frames) 1081 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1082 } 1083