1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 u16 reg; 94 u32 val; 95 96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 97 * here only QINT_RQCTL 98 */ 99 reg = rx_ring->reg_idx; 100 val = rd32(hw, QINT_RQCTL(reg)); 101 val &= ~QINT_RQCTL_CAUSE_ENA_M; 102 wr32(hw, QINT_RQCTL(reg), val); 103 104 if (q_vector) { 105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 106 ice_flush(hw); 107 synchronize_irq(q_vector->irq.virq); 108 } 109 } 110 111 /** 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 113 * @vsi: the VSI that contains queue vector 114 * @q_vector: queue vector 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 struct ice_tx_ring *tx_ring; 123 struct ice_rx_ring *rx_ring; 124 125 ice_cfg_itr(hw, q_vector); 126 127 ice_for_each_tx_ring(tx_ring, q_vector->tx) 128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 129 q_vector->tx.itr_idx); 130 131 ice_for_each_rx_ring(rx_ring, q_vector->rx) 132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 133 q_vector->rx.itr_idx); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector 140 * @vsi: the VSI that contains queue vector 141 * @q_vector: queue vector 142 */ 143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 144 { 145 struct ice_pf *pf = vsi->back; 146 struct ice_hw *hw = &pf->hw; 147 148 ice_irq_dynamic_ena(hw, vsi, q_vector); 149 150 ice_flush(hw); 151 } 152 153 /** 154 * ice_qp_dis - Disables a queue pair 155 * @vsi: VSI of interest 156 * @q_idx: ring index in array 157 * 158 * Returns 0 on success, negative on failure. 159 */ 160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 161 { 162 struct ice_txq_meta txq_meta = { }; 163 struct ice_q_vector *q_vector; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 int timeout = 50; 167 int err; 168 169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 170 return -EINVAL; 171 172 tx_ring = vsi->tx_rings[q_idx]; 173 rx_ring = vsi->rx_rings[q_idx]; 174 q_vector = rx_ring->q_vector; 175 176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 177 timeout--; 178 if (!timeout) 179 return -EBUSY; 180 usleep_range(1000, 2000); 181 } 182 183 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 184 ice_qvec_toggle_napi(vsi, q_vector, false); 185 186 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 187 188 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 189 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 190 if (err) 191 return err; 192 if (ice_is_xdp_ena_vsi(vsi)) { 193 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 194 195 memset(&txq_meta, 0, sizeof(txq_meta)); 196 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 197 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 198 &txq_meta); 199 if (err) 200 return err; 201 } 202 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 203 if (err) 204 return err; 205 206 ice_qp_clean_rings(vsi, q_idx); 207 ice_qp_reset_stats(vsi, q_idx); 208 209 return 0; 210 } 211 212 /** 213 * ice_qp_ena - Enables a queue pair 214 * @vsi: VSI of interest 215 * @q_idx: ring index in array 216 * 217 * Returns 0 on success, negative on failure. 218 */ 219 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 220 { 221 struct ice_aqc_add_tx_qgrp *qg_buf; 222 struct ice_q_vector *q_vector; 223 struct ice_tx_ring *tx_ring; 224 struct ice_rx_ring *rx_ring; 225 u16 size; 226 int err; 227 228 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 229 return -EINVAL; 230 231 size = struct_size(qg_buf, txqs, 1); 232 qg_buf = kzalloc(size, GFP_KERNEL); 233 if (!qg_buf) 234 return -ENOMEM; 235 236 qg_buf->num_txqs = 1; 237 238 tx_ring = vsi->tx_rings[q_idx]; 239 rx_ring = vsi->rx_rings[q_idx]; 240 q_vector = rx_ring->q_vector; 241 242 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 243 if (err) 244 goto free_buf; 245 246 if (ice_is_xdp_ena_vsi(vsi)) { 247 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 248 249 memset(qg_buf, 0, size); 250 qg_buf->num_txqs = 1; 251 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 252 if (err) 253 goto free_buf; 254 ice_set_ring_xdp(xdp_ring); 255 ice_tx_xsk_pool(vsi, q_idx); 256 } 257 258 err = ice_vsi_cfg_rxq(rx_ring); 259 if (err) 260 goto free_buf; 261 262 ice_qvec_cfg_msix(vsi, q_vector); 263 264 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 265 if (err) 266 goto free_buf; 267 268 ice_qvec_toggle_napi(vsi, q_vector, true); 269 ice_qvec_ena_irq(vsi, q_vector); 270 271 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 272 clear_bit(ICE_CFG_BUSY, vsi->state); 273 free_buf: 274 kfree(qg_buf); 275 return err; 276 } 277 278 /** 279 * ice_xsk_pool_disable - disable a buffer pool region 280 * @vsi: Current VSI 281 * @qid: queue ID 282 * 283 * Returns 0 on success, negative on failure 284 */ 285 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 286 { 287 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 288 289 if (!pool) 290 return -EINVAL; 291 292 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 293 294 return 0; 295 } 296 297 /** 298 * ice_xsk_pool_enable - enable a buffer pool region 299 * @vsi: Current VSI 300 * @pool: pointer to a requested buffer pool region 301 * @qid: queue ID 302 * 303 * Returns 0 on success, negative on failure 304 */ 305 static int 306 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 307 { 308 int err; 309 310 if (vsi->type != ICE_VSI_PF) 311 return -EINVAL; 312 313 if (qid >= vsi->netdev->real_num_rx_queues || 314 qid >= vsi->netdev->real_num_tx_queues) 315 return -EINVAL; 316 317 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 318 ICE_RX_DMA_ATTR); 319 if (err) 320 return err; 321 322 return 0; 323 } 324 325 /** 326 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 327 * @rx_ring: Rx ring 328 * @pool_present: is pool for XSK present 329 * 330 * Try allocating memory and return ENOMEM, if failed to allocate. 331 * If allocation was successful, substitute buffer with allocated one. 332 * Returns 0 on success, negative on failure 333 */ 334 static int 335 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 336 { 337 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 338 sizeof(*rx_ring->rx_buf); 339 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 340 341 if (!sw_ring) 342 return -ENOMEM; 343 344 if (pool_present) { 345 kfree(rx_ring->rx_buf); 346 rx_ring->rx_buf = NULL; 347 rx_ring->xdp_buf = sw_ring; 348 } else { 349 kfree(rx_ring->xdp_buf); 350 rx_ring->xdp_buf = NULL; 351 rx_ring->rx_buf = sw_ring; 352 } 353 354 return 0; 355 } 356 357 /** 358 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 359 * @vsi: Current VSI 360 * @zc: is zero copy set 361 * 362 * Reallocate buffer for rx_rings that might be used by XSK. 363 * XDP requires more memory, than rx_buf provides. 364 * Returns 0 on success, negative on failure 365 */ 366 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 367 { 368 struct ice_rx_ring *rx_ring; 369 uint i; 370 371 ice_for_each_rxq(vsi, i) { 372 rx_ring = vsi->rx_rings[i]; 373 if (!rx_ring->xsk_pool) 374 continue; 375 376 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 377 return -ENOMEM; 378 } 379 380 return 0; 381 } 382 383 /** 384 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 385 * @vsi: Current VSI 386 * @pool: buffer pool to enable/associate to a ring, NULL to disable 387 * @qid: queue ID 388 * 389 * Returns 0 on success, negative on failure 390 */ 391 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 392 { 393 bool if_running, pool_present = !!pool; 394 int ret = 0, pool_failure = 0; 395 396 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 397 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 398 pool_failure = -EINVAL; 399 goto failure; 400 } 401 402 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 403 404 if (if_running) { 405 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 406 407 ret = ice_qp_dis(vsi, qid); 408 if (ret) { 409 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 410 goto xsk_pool_if_up; 411 } 412 413 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 414 if (ret) 415 goto xsk_pool_if_up; 416 } 417 418 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 419 ice_xsk_pool_disable(vsi, qid); 420 421 xsk_pool_if_up: 422 if (if_running) { 423 ret = ice_qp_ena(vsi, qid); 424 if (!ret && pool_present) 425 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 426 else if (ret) 427 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 428 } 429 430 failure: 431 if (pool_failure) { 432 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 433 pool_present ? "en" : "dis", pool_failure); 434 return pool_failure; 435 } 436 437 return ret; 438 } 439 440 /** 441 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 442 * @pool: XSK Buffer pool to pull the buffers from 443 * @xdp: SW ring of xdp_buff that will hold the buffers 444 * @rx_desc: Pointer to Rx descriptors that will be filled 445 * @count: The number of buffers to allocate 446 * 447 * This function allocates a number of Rx buffers from the fill ring 448 * or the internal recycle mechanism and places them on the Rx ring. 449 * 450 * Note that ring wrap should be handled by caller of this function. 451 * 452 * Returns the amount of allocated Rx descriptors 453 */ 454 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 455 union ice_32b_rx_flex_desc *rx_desc, u16 count) 456 { 457 dma_addr_t dma; 458 u16 buffs; 459 int i; 460 461 buffs = xsk_buff_alloc_batch(pool, xdp, count); 462 for (i = 0; i < buffs; i++) { 463 dma = xsk_buff_xdp_get_dma(*xdp); 464 rx_desc->read.pkt_addr = cpu_to_le64(dma); 465 rx_desc->wb.status_error0 = 0; 466 467 rx_desc++; 468 xdp++; 469 } 470 471 return buffs; 472 } 473 474 /** 475 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 476 * @rx_ring: Rx ring 477 * @count: The number of buffers to allocate 478 * 479 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 480 * for case where space from next_to_use up to the end of ring is less 481 * than @count. Finally do a tail bump. 482 * 483 * Returns true if all allocations were successful, false if any fail. 484 */ 485 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 486 { 487 u32 nb_buffs_extra = 0, nb_buffs = 0; 488 union ice_32b_rx_flex_desc *rx_desc; 489 u16 ntu = rx_ring->next_to_use; 490 u16 total_count = count; 491 struct xdp_buff **xdp; 492 493 rx_desc = ICE_RX_DESC(rx_ring, ntu); 494 xdp = ice_xdp_buf(rx_ring, ntu); 495 496 if (ntu + count >= rx_ring->count) { 497 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 498 rx_desc, 499 rx_ring->count - ntu); 500 if (nb_buffs_extra != rx_ring->count - ntu) { 501 ntu += nb_buffs_extra; 502 goto exit; 503 } 504 rx_desc = ICE_RX_DESC(rx_ring, 0); 505 xdp = ice_xdp_buf(rx_ring, 0); 506 ntu = 0; 507 count -= nb_buffs_extra; 508 ice_release_rx_desc(rx_ring, 0); 509 } 510 511 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 512 513 ntu += nb_buffs; 514 if (ntu == rx_ring->count) 515 ntu = 0; 516 517 exit: 518 if (rx_ring->next_to_use != ntu) 519 ice_release_rx_desc(rx_ring, ntu); 520 521 return total_count == (nb_buffs_extra + nb_buffs); 522 } 523 524 /** 525 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 526 * @rx_ring: Rx ring 527 * @count: The number of buffers to allocate 528 * 529 * Wrapper for internal allocation routine; figure out how many tail 530 * bumps should take place based on the given threshold 531 * 532 * Returns true if all calls to internal alloc routine succeeded 533 */ 534 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 535 { 536 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 537 u16 leftover, i, tail_bumps; 538 539 tail_bumps = count / rx_thresh; 540 leftover = count - (tail_bumps * rx_thresh); 541 542 for (i = 0; i < tail_bumps; i++) 543 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 544 return false; 545 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 546 } 547 548 /** 549 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 550 * @rx_ring: Rx ring 551 * @xdp: Pointer to XDP buffer 552 * 553 * This function allocates a new skb from a zero-copy Rx buffer. 554 * 555 * Returns the skb on success, NULL on failure. 556 */ 557 static struct sk_buff * 558 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 559 { 560 unsigned int totalsize = xdp->data_end - xdp->data_meta; 561 unsigned int metasize = xdp->data - xdp->data_meta; 562 struct skb_shared_info *sinfo = NULL; 563 struct sk_buff *skb; 564 u32 nr_frags = 0; 565 566 if (unlikely(xdp_buff_has_frags(xdp))) { 567 sinfo = xdp_get_shared_info_from_buff(xdp); 568 nr_frags = sinfo->nr_frags; 569 } 570 net_prefetch(xdp->data_meta); 571 572 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 573 GFP_ATOMIC | __GFP_NOWARN); 574 if (unlikely(!skb)) 575 return NULL; 576 577 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 578 ALIGN(totalsize, sizeof(long))); 579 580 if (metasize) { 581 skb_metadata_set(skb, metasize); 582 __skb_pull(skb, metasize); 583 } 584 585 if (likely(!xdp_buff_has_frags(xdp))) 586 goto out; 587 588 for (int i = 0; i < nr_frags; i++) { 589 struct skb_shared_info *skinfo = skb_shinfo(skb); 590 skb_frag_t *frag = &sinfo->frags[i]; 591 struct page *page; 592 void *addr; 593 594 page = dev_alloc_page(); 595 if (!page) { 596 dev_kfree_skb(skb); 597 return NULL; 598 } 599 addr = page_to_virt(page); 600 601 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 602 603 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 604 addr, 0, skb_frag_size(frag)); 605 } 606 607 out: 608 xsk_buff_free(xdp); 609 return skb; 610 } 611 612 /** 613 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 614 * @xdp_ring: XDP Tx ring 615 */ 616 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 617 { 618 u16 ntc = xdp_ring->next_to_clean; 619 struct ice_tx_desc *tx_desc; 620 u16 cnt = xdp_ring->count; 621 struct ice_tx_buf *tx_buf; 622 u16 completed_frames = 0; 623 u16 xsk_frames = 0; 624 u16 last_rs; 625 int i; 626 627 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 628 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 629 if (tx_desc->cmd_type_offset_bsz & 630 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 631 if (last_rs >= ntc) 632 completed_frames = last_rs - ntc + 1; 633 else 634 completed_frames = last_rs + cnt - ntc + 1; 635 } 636 637 if (!completed_frames) 638 return 0; 639 640 if (likely(!xdp_ring->xdp_tx_active)) { 641 xsk_frames = completed_frames; 642 goto skip; 643 } 644 645 ntc = xdp_ring->next_to_clean; 646 for (i = 0; i < completed_frames; i++) { 647 tx_buf = &xdp_ring->tx_buf[ntc]; 648 649 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 650 tx_buf->type = ICE_TX_BUF_EMPTY; 651 xsk_buff_free(tx_buf->xdp); 652 xdp_ring->xdp_tx_active--; 653 } else { 654 xsk_frames++; 655 } 656 657 ntc++; 658 if (ntc >= xdp_ring->count) 659 ntc = 0; 660 } 661 skip: 662 tx_desc->cmd_type_offset_bsz = 0; 663 xdp_ring->next_to_clean += completed_frames; 664 if (xdp_ring->next_to_clean >= cnt) 665 xdp_ring->next_to_clean -= cnt; 666 if (xsk_frames) 667 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 668 669 return completed_frames; 670 } 671 672 /** 673 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 674 * @xdp: XDP buffer to xmit 675 * @xdp_ring: XDP ring to produce descriptor onto 676 * 677 * note that this function works directly on xdp_buff, no need to convert 678 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 679 * side will be able to xsk_buff_free() it. 680 * 681 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 682 * was not enough space on XDP ring 683 */ 684 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 685 struct ice_tx_ring *xdp_ring) 686 { 687 struct skb_shared_info *sinfo = NULL; 688 u32 size = xdp->data_end - xdp->data; 689 u32 ntu = xdp_ring->next_to_use; 690 struct ice_tx_desc *tx_desc; 691 struct ice_tx_buf *tx_buf; 692 struct xdp_buff *head; 693 u32 nr_frags = 0; 694 u32 free_space; 695 u32 frag = 0; 696 697 free_space = ICE_DESC_UNUSED(xdp_ring); 698 if (free_space < ICE_RING_QUARTER(xdp_ring)) 699 free_space += ice_clean_xdp_irq_zc(xdp_ring); 700 701 if (unlikely(!free_space)) 702 goto busy; 703 704 if (unlikely(xdp_buff_has_frags(xdp))) { 705 sinfo = xdp_get_shared_info_from_buff(xdp); 706 nr_frags = sinfo->nr_frags; 707 if (free_space < nr_frags + 1) 708 goto busy; 709 } 710 711 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 712 tx_buf = &xdp_ring->tx_buf[ntu]; 713 head = xdp; 714 715 for (;;) { 716 dma_addr_t dma; 717 718 dma = xsk_buff_xdp_get_dma(xdp); 719 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 720 721 tx_buf->xdp = xdp; 722 tx_buf->type = ICE_TX_BUF_XSK_TX; 723 tx_desc->buf_addr = cpu_to_le64(dma); 724 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 725 /* account for each xdp_buff from xsk_buff_pool */ 726 xdp_ring->xdp_tx_active++; 727 728 if (++ntu == xdp_ring->count) 729 ntu = 0; 730 731 if (frag == nr_frags) 732 break; 733 734 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 735 tx_buf = &xdp_ring->tx_buf[ntu]; 736 737 xdp = xsk_buff_get_frag(head); 738 size = skb_frag_size(&sinfo->frags[frag]); 739 frag++; 740 } 741 742 xdp_ring->next_to_use = ntu; 743 /* update last descriptor from a frame with EOP */ 744 tx_desc->cmd_type_offset_bsz |= 745 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 746 747 return ICE_XDP_TX; 748 749 busy: 750 xdp_ring->ring_stats->tx_stats.tx_busy++; 751 752 return ICE_XDP_CONSUMED; 753 } 754 755 /** 756 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 757 * @rx_ring: Rx ring 758 * @xdp: xdp_buff used as input to the XDP program 759 * @xdp_prog: XDP program to run 760 * @xdp_ring: ring to be used for XDP_TX action 761 * 762 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 763 */ 764 static int 765 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 766 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 767 { 768 int err, result = ICE_XDP_PASS; 769 u32 act; 770 771 act = bpf_prog_run_xdp(xdp_prog, xdp); 772 773 if (likely(act == XDP_REDIRECT)) { 774 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 775 if (!err) 776 return ICE_XDP_REDIR; 777 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 778 result = ICE_XDP_EXIT; 779 else 780 result = ICE_XDP_CONSUMED; 781 goto out_failure; 782 } 783 784 switch (act) { 785 case XDP_PASS: 786 break; 787 case XDP_TX: 788 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 789 if (result == ICE_XDP_CONSUMED) 790 goto out_failure; 791 break; 792 case XDP_DROP: 793 result = ICE_XDP_CONSUMED; 794 break; 795 default: 796 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 797 fallthrough; 798 case XDP_ABORTED: 799 result = ICE_XDP_CONSUMED; 800 out_failure: 801 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 802 break; 803 } 804 805 return result; 806 } 807 808 static int 809 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 810 struct xdp_buff *xdp, const unsigned int size) 811 { 812 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 813 814 if (!size) 815 return 0; 816 817 if (!xdp_buff_has_frags(first)) { 818 sinfo->nr_frags = 0; 819 sinfo->xdp_frags_size = 0; 820 xdp_buff_set_frags_flag(first); 821 } 822 823 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 824 xsk_buff_free(first); 825 return -ENOMEM; 826 } 827 828 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 829 virt_to_page(xdp->data_hard_start), 830 XDP_PACKET_HEADROOM, size); 831 sinfo->xdp_frags_size += size; 832 xsk_buff_add_frag(xdp); 833 834 return 0; 835 } 836 837 /** 838 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 839 * @rx_ring: AF_XDP Rx ring 840 * @budget: NAPI budget 841 * 842 * Returns number of processed packets on success, remaining budget on failure. 843 */ 844 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 845 { 846 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 847 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; 848 u32 ntc = rx_ring->next_to_clean; 849 u32 ntu = rx_ring->next_to_use; 850 struct xdp_buff *first = NULL; 851 struct ice_tx_ring *xdp_ring; 852 unsigned int xdp_xmit = 0; 853 struct bpf_prog *xdp_prog; 854 u32 cnt = rx_ring->count; 855 bool failure = false; 856 int entries_to_alloc; 857 858 /* ZC patch is enabled only when XDP program is set, 859 * so here it can not be NULL 860 */ 861 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 862 xdp_ring = rx_ring->xdp_ring; 863 864 if (ntc != rx_ring->first_desc) 865 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 866 867 while (likely(total_rx_packets < (unsigned int)budget)) { 868 union ice_32b_rx_flex_desc *rx_desc; 869 unsigned int size, xdp_res = 0; 870 struct xdp_buff *xdp; 871 struct sk_buff *skb; 872 u16 stat_err_bits; 873 u16 vlan_tag = 0; 874 u16 rx_ptype; 875 876 rx_desc = ICE_RX_DESC(rx_ring, ntc); 877 878 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 879 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 880 break; 881 882 /* This memory barrier is needed to keep us from reading 883 * any other fields out of the rx_desc until we have 884 * verified the descriptor has been written back. 885 */ 886 dma_rmb(); 887 888 if (unlikely(ntc == ntu)) 889 break; 890 891 xdp = *ice_xdp_buf(rx_ring, ntc); 892 893 size = le16_to_cpu(rx_desc->wb.pkt_len) & 894 ICE_RX_FLX_DESC_PKT_LEN_M; 895 896 xsk_buff_set_size(xdp, size); 897 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool); 898 899 if (!first) { 900 first = xdp; 901 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 902 break; 903 } 904 905 if (++ntc == cnt) 906 ntc = 0; 907 908 if (ice_is_non_eop(rx_ring, rx_desc)) 909 continue; 910 911 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); 912 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 913 xdp_xmit |= xdp_res; 914 } else if (xdp_res == ICE_XDP_EXIT) { 915 failure = true; 916 first = NULL; 917 rx_ring->first_desc = ntc; 918 break; 919 } else if (xdp_res == ICE_XDP_CONSUMED) { 920 xsk_buff_free(first); 921 } else if (xdp_res == ICE_XDP_PASS) { 922 goto construct_skb; 923 } 924 925 total_rx_bytes += xdp_get_buff_len(first); 926 total_rx_packets++; 927 928 first = NULL; 929 rx_ring->first_desc = ntc; 930 continue; 931 932 construct_skb: 933 /* XDP_PASS path */ 934 skb = ice_construct_skb_zc(rx_ring, first); 935 if (!skb) { 936 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 937 break; 938 } 939 940 first = NULL; 941 rx_ring->first_desc = ntc; 942 943 if (eth_skb_pad(skb)) { 944 skb = NULL; 945 continue; 946 } 947 948 total_rx_bytes += skb->len; 949 total_rx_packets++; 950 951 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 952 953 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 954 ICE_RX_FLEX_DESC_PTYPE_M; 955 956 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 957 ice_receive_skb(rx_ring, skb, vlan_tag); 958 } 959 960 rx_ring->next_to_clean = ntc; 961 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 962 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 963 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 964 965 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 966 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 967 968 if (xsk_uses_need_wakeup(xsk_pool)) { 969 /* ntu could have changed when allocating entries above, so 970 * use rx_ring value instead of stack based one 971 */ 972 if (failure || ntc == rx_ring->next_to_use) 973 xsk_set_rx_need_wakeup(xsk_pool); 974 else 975 xsk_clear_rx_need_wakeup(xsk_pool); 976 977 return (int)total_rx_packets; 978 } 979 980 return failure ? budget : (int)total_rx_packets; 981 } 982 983 /** 984 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 985 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 986 * @desc: AF_XDP descriptor to pull the DMA address and length from 987 * @total_bytes: bytes accumulator that will be used for stats update 988 */ 989 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 990 unsigned int *total_bytes) 991 { 992 struct ice_tx_desc *tx_desc; 993 dma_addr_t dma; 994 995 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 996 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 997 998 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 999 tx_desc->buf_addr = cpu_to_le64(dma); 1000 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 1001 0, desc->len, 0); 1002 1003 *total_bytes += desc->len; 1004 } 1005 1006 /** 1007 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 1008 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1009 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1010 * @total_bytes: bytes accumulator that will be used for stats update 1011 */ 1012 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1013 unsigned int *total_bytes) 1014 { 1015 u16 ntu = xdp_ring->next_to_use; 1016 struct ice_tx_desc *tx_desc; 1017 u32 i; 1018 1019 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1020 dma_addr_t dma; 1021 1022 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 1023 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 1024 1025 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1026 tx_desc->buf_addr = cpu_to_le64(dma); 1027 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1028 0, descs[i].len, 0); 1029 1030 *total_bytes += descs[i].len; 1031 } 1032 1033 xdp_ring->next_to_use = ntu; 1034 } 1035 1036 /** 1037 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1038 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1039 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1040 * @nb_pkts: count of packets to be send 1041 * @total_bytes: bytes accumulator that will be used for stats update 1042 */ 1043 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1044 u32 nb_pkts, unsigned int *total_bytes) 1045 { 1046 u32 batched, leftover, i; 1047 1048 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1049 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1050 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1051 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 1052 for (; i < batched + leftover; i++) 1053 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 1054 } 1055 1056 /** 1057 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1058 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1059 * 1060 * Returns true if there is no more work that needs to be done, false otherwise 1061 */ 1062 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 1063 { 1064 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 1065 u32 nb_pkts, nb_processed = 0; 1066 unsigned int total_bytes = 0; 1067 int budget; 1068 1069 ice_clean_xdp_irq_zc(xdp_ring); 1070 1071 budget = ICE_DESC_UNUSED(xdp_ring); 1072 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1073 1074 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 1075 if (!nb_pkts) 1076 return true; 1077 1078 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1079 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1080 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 1081 xdp_ring->next_to_use = 0; 1082 } 1083 1084 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 1085 &total_bytes); 1086 1087 ice_set_rs_bit(xdp_ring); 1088 ice_xdp_ring_update_tail(xdp_ring); 1089 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1090 1091 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1092 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1093 1094 return nb_pkts < budget; 1095 } 1096 1097 /** 1098 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1099 * @netdev: net_device 1100 * @queue_id: queue to wake up 1101 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1102 * 1103 * Returns negative on error, zero otherwise. 1104 */ 1105 int 1106 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1107 u32 __always_unused flags) 1108 { 1109 struct ice_netdev_priv *np = netdev_priv(netdev); 1110 struct ice_q_vector *q_vector; 1111 struct ice_vsi *vsi = np->vsi; 1112 struct ice_tx_ring *ring; 1113 1114 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1115 return -ENETDOWN; 1116 1117 if (!ice_is_xdp_ena_vsi(vsi)) 1118 return -EINVAL; 1119 1120 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1121 return -EINVAL; 1122 1123 ring = vsi->rx_rings[queue_id]->xdp_ring; 1124 1125 if (!ring->xsk_pool) 1126 return -EINVAL; 1127 1128 /* The idea here is that if NAPI is running, mark a miss, so 1129 * it will run again. If not, trigger an interrupt and 1130 * schedule the NAPI from interrupt context. If NAPI would be 1131 * scheduled here, the interrupt affinity would not be 1132 * honored. 1133 */ 1134 q_vector = ring->q_vector; 1135 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1136 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1137 1138 return 0; 1139 } 1140 1141 /** 1142 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1143 * @vsi: VSI to be checked 1144 * 1145 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1146 */ 1147 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1148 { 1149 int i; 1150 1151 ice_for_each_rxq(vsi, i) { 1152 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1153 return true; 1154 } 1155 1156 return false; 1157 } 1158 1159 /** 1160 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1161 * @rx_ring: ring to be cleaned 1162 */ 1163 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1164 { 1165 u16 ntc = rx_ring->next_to_clean; 1166 u16 ntu = rx_ring->next_to_use; 1167 1168 while (ntc != ntu) { 1169 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1170 1171 xsk_buff_free(xdp); 1172 ntc++; 1173 if (ntc >= rx_ring->count) 1174 ntc = 0; 1175 } 1176 } 1177 1178 /** 1179 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1180 * @xdp_ring: XDP_Tx ring 1181 */ 1182 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1183 { 1184 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1185 u32 xsk_frames = 0; 1186 1187 while (ntc != ntu) { 1188 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1189 1190 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1191 tx_buf->type = ICE_TX_BUF_EMPTY; 1192 xsk_buff_free(tx_buf->xdp); 1193 } else { 1194 xsk_frames++; 1195 } 1196 1197 ntc++; 1198 if (ntc >= xdp_ring->count) 1199 ntc = 0; 1200 } 1201 1202 if (xsk_frames) 1203 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1204 } 1205