1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 u16 reg; 94 u32 val; 95 96 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 97 * here only QINT_RQCTL 98 */ 99 reg = rx_ring->reg_idx; 100 val = rd32(hw, QINT_RQCTL(reg)); 101 val &= ~QINT_RQCTL_CAUSE_ENA_M; 102 wr32(hw, QINT_RQCTL(reg), val); 103 104 if (q_vector) { 105 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 106 ice_flush(hw); 107 synchronize_irq(q_vector->irq.virq); 108 } 109 } 110 111 /** 112 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 113 * @vsi: the VSI that contains queue vector 114 * @q_vector: queue vector 115 */ 116 static void 117 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 118 { 119 u16 reg_idx = q_vector->reg_idx; 120 struct ice_pf *pf = vsi->back; 121 struct ice_hw *hw = &pf->hw; 122 struct ice_tx_ring *tx_ring; 123 struct ice_rx_ring *rx_ring; 124 125 ice_cfg_itr(hw, q_vector); 126 127 ice_for_each_tx_ring(tx_ring, q_vector->tx) 128 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 129 q_vector->tx.itr_idx); 130 131 ice_for_each_rx_ring(rx_ring, q_vector->rx) 132 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 133 q_vector->rx.itr_idx); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qvec_ena_irq - Enable IRQ for given queue vector 140 * @vsi: the VSI that contains queue vector 141 * @q_vector: queue vector 142 */ 143 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 144 { 145 struct ice_pf *pf = vsi->back; 146 struct ice_hw *hw = &pf->hw; 147 148 ice_irq_dynamic_ena(hw, vsi, q_vector); 149 150 ice_flush(hw); 151 } 152 153 /** 154 * ice_qp_dis - Disables a queue pair 155 * @vsi: VSI of interest 156 * @q_idx: ring index in array 157 * 158 * Returns 0 on success, negative on failure. 159 */ 160 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 161 { 162 struct ice_txq_meta txq_meta = { }; 163 struct ice_q_vector *q_vector; 164 struct ice_tx_ring *tx_ring; 165 struct ice_rx_ring *rx_ring; 166 int timeout = 50; 167 int err; 168 169 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 170 return -EINVAL; 171 172 tx_ring = vsi->tx_rings[q_idx]; 173 rx_ring = vsi->rx_rings[q_idx]; 174 q_vector = rx_ring->q_vector; 175 176 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 177 timeout--; 178 if (!timeout) 179 return -EBUSY; 180 usleep_range(1000, 2000); 181 } 182 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 183 184 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 186 if (err) 187 return err; 188 if (ice_is_xdp_ena_vsi(vsi)) { 189 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 190 191 memset(&txq_meta, 0, sizeof(txq_meta)); 192 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 193 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 194 &txq_meta); 195 if (err) 196 return err; 197 } 198 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 199 200 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 201 if (err) 202 return err; 203 204 ice_qvec_toggle_napi(vsi, q_vector, false); 205 ice_qp_clean_rings(vsi, q_idx); 206 ice_qp_reset_stats(vsi, q_idx); 207 208 return 0; 209 } 210 211 /** 212 * ice_qp_ena - Enables a queue pair 213 * @vsi: VSI of interest 214 * @q_idx: ring index in array 215 * 216 * Returns 0 on success, negative on failure. 217 */ 218 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 219 { 220 struct ice_aqc_add_tx_qgrp *qg_buf; 221 struct ice_q_vector *q_vector; 222 struct ice_tx_ring *tx_ring; 223 struct ice_rx_ring *rx_ring; 224 u16 size; 225 int err; 226 227 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 228 return -EINVAL; 229 230 size = struct_size(qg_buf, txqs, 1); 231 qg_buf = kzalloc(size, GFP_KERNEL); 232 if (!qg_buf) 233 return -ENOMEM; 234 235 qg_buf->num_txqs = 1; 236 237 tx_ring = vsi->tx_rings[q_idx]; 238 rx_ring = vsi->rx_rings[q_idx]; 239 q_vector = rx_ring->q_vector; 240 241 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 242 if (err) 243 goto free_buf; 244 245 if (ice_is_xdp_ena_vsi(vsi)) { 246 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 247 248 memset(qg_buf, 0, size); 249 qg_buf->num_txqs = 1; 250 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 251 if (err) 252 goto free_buf; 253 ice_set_ring_xdp(xdp_ring); 254 ice_tx_xsk_pool(vsi, q_idx); 255 } 256 257 err = ice_vsi_cfg_rxq(rx_ring); 258 if (err) 259 goto free_buf; 260 261 ice_qvec_cfg_msix(vsi, q_vector); 262 263 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 264 if (err) 265 goto free_buf; 266 267 clear_bit(ICE_CFG_BUSY, vsi->state); 268 ice_qvec_toggle_napi(vsi, q_vector, true); 269 ice_qvec_ena_irq(vsi, q_vector); 270 271 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 272 free_buf: 273 kfree(qg_buf); 274 return err; 275 } 276 277 /** 278 * ice_xsk_pool_disable - disable a buffer pool region 279 * @vsi: Current VSI 280 * @qid: queue ID 281 * 282 * Returns 0 on success, negative on failure 283 */ 284 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 285 { 286 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 287 288 if (!pool) 289 return -EINVAL; 290 291 clear_bit(qid, vsi->af_xdp_zc_qps); 292 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 293 294 return 0; 295 } 296 297 /** 298 * ice_xsk_pool_enable - enable a buffer pool region 299 * @vsi: Current VSI 300 * @pool: pointer to a requested buffer pool region 301 * @qid: queue ID 302 * 303 * Returns 0 on success, negative on failure 304 */ 305 static int 306 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 307 { 308 int err; 309 310 if (vsi->type != ICE_VSI_PF) 311 return -EINVAL; 312 313 if (qid >= vsi->netdev->real_num_rx_queues || 314 qid >= vsi->netdev->real_num_tx_queues) 315 return -EINVAL; 316 317 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 318 ICE_RX_DMA_ATTR); 319 if (err) 320 return err; 321 322 set_bit(qid, vsi->af_xdp_zc_qps); 323 324 return 0; 325 } 326 327 /** 328 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 329 * @rx_ring: Rx ring 330 * @pool_present: is pool for XSK present 331 * 332 * Try allocating memory and return ENOMEM, if failed to allocate. 333 * If allocation was successful, substitute buffer with allocated one. 334 * Returns 0 on success, negative on failure 335 */ 336 static int 337 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 338 { 339 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 340 sizeof(*rx_ring->rx_buf); 341 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 342 343 if (!sw_ring) 344 return -ENOMEM; 345 346 if (pool_present) { 347 kfree(rx_ring->rx_buf); 348 rx_ring->rx_buf = NULL; 349 rx_ring->xdp_buf = sw_ring; 350 } else { 351 kfree(rx_ring->xdp_buf); 352 rx_ring->xdp_buf = NULL; 353 rx_ring->rx_buf = sw_ring; 354 } 355 356 return 0; 357 } 358 359 /** 360 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 361 * @vsi: Current VSI 362 * @zc: is zero copy set 363 * 364 * Reallocate buffer for rx_rings that might be used by XSK. 365 * XDP requires more memory, than rx_buf provides. 366 * Returns 0 on success, negative on failure 367 */ 368 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 369 { 370 struct ice_rx_ring *rx_ring; 371 unsigned long q; 372 373 for_each_set_bit(q, vsi->af_xdp_zc_qps, 374 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 375 rx_ring = vsi->rx_rings[q]; 376 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 377 return -ENOMEM; 378 } 379 380 return 0; 381 } 382 383 /** 384 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 385 * @vsi: Current VSI 386 * @pool: buffer pool to enable/associate to a ring, NULL to disable 387 * @qid: queue ID 388 * 389 * Returns 0 on success, negative on failure 390 */ 391 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 392 { 393 bool if_running, pool_present = !!pool; 394 int ret = 0, pool_failure = 0; 395 396 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 397 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 398 pool_failure = -EINVAL; 399 goto failure; 400 } 401 402 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 403 404 if (if_running) { 405 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 406 407 ret = ice_qp_dis(vsi, qid); 408 if (ret) { 409 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 410 goto xsk_pool_if_up; 411 } 412 413 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 414 if (ret) 415 goto xsk_pool_if_up; 416 } 417 418 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 419 ice_xsk_pool_disable(vsi, qid); 420 421 xsk_pool_if_up: 422 if (if_running) { 423 ret = ice_qp_ena(vsi, qid); 424 if (!ret && pool_present) 425 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 426 else if (ret) 427 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 428 } 429 430 failure: 431 if (pool_failure) { 432 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 433 pool_present ? "en" : "dis", pool_failure); 434 return pool_failure; 435 } 436 437 return ret; 438 } 439 440 /** 441 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 442 * @pool: XSK Buffer pool to pull the buffers from 443 * @xdp: SW ring of xdp_buff that will hold the buffers 444 * @rx_desc: Pointer to Rx descriptors that will be filled 445 * @count: The number of buffers to allocate 446 * 447 * This function allocates a number of Rx buffers from the fill ring 448 * or the internal recycle mechanism and places them on the Rx ring. 449 * 450 * Note that ring wrap should be handled by caller of this function. 451 * 452 * Returns the amount of allocated Rx descriptors 453 */ 454 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 455 union ice_32b_rx_flex_desc *rx_desc, u16 count) 456 { 457 dma_addr_t dma; 458 u16 buffs; 459 int i; 460 461 buffs = xsk_buff_alloc_batch(pool, xdp, count); 462 for (i = 0; i < buffs; i++) { 463 dma = xsk_buff_xdp_get_dma(*xdp); 464 rx_desc->read.pkt_addr = cpu_to_le64(dma); 465 rx_desc->wb.status_error0 = 0; 466 467 rx_desc++; 468 xdp++; 469 } 470 471 return buffs; 472 } 473 474 /** 475 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 476 * @rx_ring: Rx ring 477 * @count: The number of buffers to allocate 478 * 479 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 480 * for case where space from next_to_use up to the end of ring is less 481 * than @count. Finally do a tail bump. 482 * 483 * Returns true if all allocations were successful, false if any fail. 484 */ 485 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 486 { 487 u32 nb_buffs_extra = 0, nb_buffs = 0; 488 union ice_32b_rx_flex_desc *rx_desc; 489 u16 ntu = rx_ring->next_to_use; 490 u16 total_count = count; 491 struct xdp_buff **xdp; 492 493 rx_desc = ICE_RX_DESC(rx_ring, ntu); 494 xdp = ice_xdp_buf(rx_ring, ntu); 495 496 if (ntu + count >= rx_ring->count) { 497 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 498 rx_desc, 499 rx_ring->count - ntu); 500 if (nb_buffs_extra != rx_ring->count - ntu) { 501 ntu += nb_buffs_extra; 502 goto exit; 503 } 504 rx_desc = ICE_RX_DESC(rx_ring, 0); 505 xdp = ice_xdp_buf(rx_ring, 0); 506 ntu = 0; 507 count -= nb_buffs_extra; 508 ice_release_rx_desc(rx_ring, 0); 509 } 510 511 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 512 513 ntu += nb_buffs; 514 if (ntu == rx_ring->count) 515 ntu = 0; 516 517 exit: 518 if (rx_ring->next_to_use != ntu) 519 ice_release_rx_desc(rx_ring, ntu); 520 521 return total_count == (nb_buffs_extra + nb_buffs); 522 } 523 524 /** 525 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 526 * @rx_ring: Rx ring 527 * @count: The number of buffers to allocate 528 * 529 * Wrapper for internal allocation routine; figure out how many tail 530 * bumps should take place based on the given threshold 531 * 532 * Returns true if all calls to internal alloc routine succeeded 533 */ 534 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 535 { 536 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 537 u16 leftover, i, tail_bumps; 538 539 tail_bumps = count / rx_thresh; 540 leftover = count - (tail_bumps * rx_thresh); 541 542 for (i = 0; i < tail_bumps; i++) 543 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 544 return false; 545 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 546 } 547 548 /** 549 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 550 * @rx_ring: Rx ring 551 */ 552 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 553 { 554 int ntc = rx_ring->next_to_clean + 1; 555 556 ntc = (ntc < rx_ring->count) ? ntc : 0; 557 rx_ring->next_to_clean = ntc; 558 prefetch(ICE_RX_DESC(rx_ring, ntc)); 559 } 560 561 /** 562 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 563 * @rx_ring: Rx ring 564 * @xdp: Pointer to XDP buffer 565 * 566 * This function allocates a new skb from a zero-copy Rx buffer. 567 * 568 * Returns the skb on success, NULL on failure. 569 */ 570 static struct sk_buff * 571 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 572 { 573 unsigned int totalsize = xdp->data_end - xdp->data_meta; 574 unsigned int metasize = xdp->data - xdp->data_meta; 575 struct sk_buff *skb; 576 577 net_prefetch(xdp->data_meta); 578 579 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 580 GFP_ATOMIC | __GFP_NOWARN); 581 if (unlikely(!skb)) 582 return NULL; 583 584 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 585 ALIGN(totalsize, sizeof(long))); 586 587 if (metasize) { 588 skb_metadata_set(skb, metasize); 589 __skb_pull(skb, metasize); 590 } 591 592 xsk_buff_free(xdp); 593 return skb; 594 } 595 596 /** 597 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 598 * @xdp_ring: XDP Tx ring 599 */ 600 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 601 { 602 u16 ntc = xdp_ring->next_to_clean; 603 struct ice_tx_desc *tx_desc; 604 u16 cnt = xdp_ring->count; 605 struct ice_tx_buf *tx_buf; 606 u16 completed_frames = 0; 607 u16 xsk_frames = 0; 608 u16 last_rs; 609 int i; 610 611 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 612 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 613 if (tx_desc->cmd_type_offset_bsz & 614 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 615 if (last_rs >= ntc) 616 completed_frames = last_rs - ntc + 1; 617 else 618 completed_frames = last_rs + cnt - ntc + 1; 619 } 620 621 if (!completed_frames) 622 return; 623 624 if (likely(!xdp_ring->xdp_tx_active)) { 625 xsk_frames = completed_frames; 626 goto skip; 627 } 628 629 ntc = xdp_ring->next_to_clean; 630 for (i = 0; i < completed_frames; i++) { 631 tx_buf = &xdp_ring->tx_buf[ntc]; 632 633 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 634 tx_buf->type = ICE_TX_BUF_EMPTY; 635 xsk_buff_free(tx_buf->xdp); 636 xdp_ring->xdp_tx_active--; 637 } else { 638 xsk_frames++; 639 } 640 641 ntc++; 642 if (ntc >= xdp_ring->count) 643 ntc = 0; 644 } 645 skip: 646 tx_desc->cmd_type_offset_bsz = 0; 647 xdp_ring->next_to_clean += completed_frames; 648 if (xdp_ring->next_to_clean >= cnt) 649 xdp_ring->next_to_clean -= cnt; 650 if (xsk_frames) 651 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 652 } 653 654 /** 655 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 656 * @xdp: XDP buffer to xmit 657 * @xdp_ring: XDP ring to produce descriptor onto 658 * 659 * note that this function works directly on xdp_buff, no need to convert 660 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 661 * side will be able to xsk_buff_free() it. 662 * 663 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 664 * was not enough space on XDP ring 665 */ 666 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 667 struct ice_tx_ring *xdp_ring) 668 { 669 u32 size = xdp->data_end - xdp->data; 670 u32 ntu = xdp_ring->next_to_use; 671 struct ice_tx_desc *tx_desc; 672 struct ice_tx_buf *tx_buf; 673 dma_addr_t dma; 674 675 if (ICE_DESC_UNUSED(xdp_ring) < ICE_RING_QUARTER(xdp_ring)) { 676 ice_clean_xdp_irq_zc(xdp_ring); 677 if (!ICE_DESC_UNUSED(xdp_ring)) { 678 xdp_ring->ring_stats->tx_stats.tx_busy++; 679 return ICE_XDP_CONSUMED; 680 } 681 } 682 683 dma = xsk_buff_xdp_get_dma(xdp); 684 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 685 686 tx_buf = &xdp_ring->tx_buf[ntu]; 687 tx_buf->xdp = xdp; 688 tx_buf->type = ICE_TX_BUF_XSK_TX; 689 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 690 tx_desc->buf_addr = cpu_to_le64(dma); 691 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 692 0, size, 0); 693 xdp_ring->xdp_tx_active++; 694 695 if (++ntu == xdp_ring->count) 696 ntu = 0; 697 xdp_ring->next_to_use = ntu; 698 699 return ICE_XDP_TX; 700 } 701 702 /** 703 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 704 * @rx_ring: Rx ring 705 * @xdp: xdp_buff used as input to the XDP program 706 * @xdp_prog: XDP program to run 707 * @xdp_ring: ring to be used for XDP_TX action 708 * 709 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 710 */ 711 static int 712 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 713 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 714 { 715 int err, result = ICE_XDP_PASS; 716 u32 act; 717 718 act = bpf_prog_run_xdp(xdp_prog, xdp); 719 720 if (likely(act == XDP_REDIRECT)) { 721 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 722 if (!err) 723 return ICE_XDP_REDIR; 724 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 725 result = ICE_XDP_EXIT; 726 else 727 result = ICE_XDP_CONSUMED; 728 goto out_failure; 729 } 730 731 switch (act) { 732 case XDP_PASS: 733 break; 734 case XDP_TX: 735 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 736 if (result == ICE_XDP_CONSUMED) 737 goto out_failure; 738 break; 739 case XDP_DROP: 740 result = ICE_XDP_CONSUMED; 741 break; 742 default: 743 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 744 fallthrough; 745 case XDP_ABORTED: 746 result = ICE_XDP_CONSUMED; 747 out_failure: 748 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 749 break; 750 } 751 752 return result; 753 } 754 755 /** 756 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 757 * @rx_ring: AF_XDP Rx ring 758 * @budget: NAPI budget 759 * 760 * Returns number of processed packets on success, remaining budget on failure. 761 */ 762 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 763 { 764 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 765 struct ice_tx_ring *xdp_ring; 766 unsigned int xdp_xmit = 0; 767 struct bpf_prog *xdp_prog; 768 bool failure = false; 769 int entries_to_alloc; 770 771 /* ZC patch is enabled only when XDP program is set, 772 * so here it can not be NULL 773 */ 774 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 775 xdp_ring = rx_ring->xdp_ring; 776 777 while (likely(total_rx_packets < (unsigned int)budget)) { 778 union ice_32b_rx_flex_desc *rx_desc; 779 unsigned int size, xdp_res = 0; 780 struct xdp_buff *xdp; 781 struct sk_buff *skb; 782 u16 stat_err_bits; 783 u16 vlan_tag = 0; 784 u16 rx_ptype; 785 786 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 787 788 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 789 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 790 break; 791 792 /* This memory barrier is needed to keep us from reading 793 * any other fields out of the rx_desc until we have 794 * verified the descriptor has been written back. 795 */ 796 dma_rmb(); 797 798 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 799 break; 800 801 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 802 803 size = le16_to_cpu(rx_desc->wb.pkt_len) & 804 ICE_RX_FLX_DESC_PKT_LEN_M; 805 if (!size) { 806 xdp->data = NULL; 807 xdp->data_end = NULL; 808 xdp->data_hard_start = NULL; 809 xdp->data_meta = NULL; 810 goto construct_skb; 811 } 812 813 xsk_buff_set_size(xdp, size); 814 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 815 816 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 817 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 818 xdp_xmit |= xdp_res; 819 } else if (xdp_res == ICE_XDP_EXIT) { 820 failure = true; 821 break; 822 } else if (xdp_res == ICE_XDP_CONSUMED) { 823 xsk_buff_free(xdp); 824 } else if (xdp_res == ICE_XDP_PASS) { 825 goto construct_skb; 826 } 827 828 total_rx_bytes += size; 829 total_rx_packets++; 830 831 ice_bump_ntc(rx_ring); 832 continue; 833 834 construct_skb: 835 /* XDP_PASS path */ 836 skb = ice_construct_skb_zc(rx_ring, xdp); 837 if (!skb) { 838 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 839 break; 840 } 841 842 ice_bump_ntc(rx_ring); 843 844 if (eth_skb_pad(skb)) { 845 skb = NULL; 846 continue; 847 } 848 849 total_rx_bytes += skb->len; 850 total_rx_packets++; 851 852 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 853 854 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 855 ICE_RX_FLEX_DESC_PTYPE_M; 856 857 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 858 ice_receive_skb(rx_ring, skb, vlan_tag); 859 } 860 861 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 862 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 863 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 864 865 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 866 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 867 868 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 869 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 870 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 871 else 872 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 873 874 return (int)total_rx_packets; 875 } 876 877 return failure ? budget : (int)total_rx_packets; 878 } 879 880 /** 881 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 882 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 883 * @desc: AF_XDP descriptor to pull the DMA address and length from 884 * @total_bytes: bytes accumulator that will be used for stats update 885 */ 886 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 887 unsigned int *total_bytes) 888 { 889 struct ice_tx_desc *tx_desc; 890 dma_addr_t dma; 891 892 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 893 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 894 895 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 896 tx_desc->buf_addr = cpu_to_le64(dma); 897 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 898 0, desc->len, 0); 899 900 *total_bytes += desc->len; 901 } 902 903 /** 904 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 905 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 906 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 907 * @total_bytes: bytes accumulator that will be used for stats update 908 */ 909 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 910 unsigned int *total_bytes) 911 { 912 u16 ntu = xdp_ring->next_to_use; 913 struct ice_tx_desc *tx_desc; 914 u32 i; 915 916 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 917 dma_addr_t dma; 918 919 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 920 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 921 922 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 923 tx_desc->buf_addr = cpu_to_le64(dma); 924 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 925 0, descs[i].len, 0); 926 927 *total_bytes += descs[i].len; 928 } 929 930 xdp_ring->next_to_use = ntu; 931 } 932 933 /** 934 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 935 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 936 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 937 * @nb_pkts: count of packets to be send 938 * @total_bytes: bytes accumulator that will be used for stats update 939 */ 940 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 941 u32 nb_pkts, unsigned int *total_bytes) 942 { 943 u32 batched, leftover, i; 944 945 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 946 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 947 for (i = 0; i < batched; i += PKTS_PER_BATCH) 948 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 949 for (; i < batched + leftover; i++) 950 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 951 } 952 953 /** 954 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 955 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 956 * 957 * Returns true if there is no more work that needs to be done, false otherwise 958 */ 959 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 960 { 961 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 962 u32 nb_pkts, nb_processed = 0; 963 unsigned int total_bytes = 0; 964 int budget; 965 966 ice_clean_xdp_irq_zc(xdp_ring); 967 968 budget = ICE_DESC_UNUSED(xdp_ring); 969 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 970 971 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 972 if (!nb_pkts) 973 return true; 974 975 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 976 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 977 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 978 xdp_ring->next_to_use = 0; 979 } 980 981 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 982 &total_bytes); 983 984 ice_set_rs_bit(xdp_ring); 985 ice_xdp_ring_update_tail(xdp_ring); 986 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 987 988 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 989 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 990 991 return nb_pkts < budget; 992 } 993 994 /** 995 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 996 * @netdev: net_device 997 * @queue_id: queue to wake up 998 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 999 * 1000 * Returns negative on error, zero otherwise. 1001 */ 1002 int 1003 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1004 u32 __always_unused flags) 1005 { 1006 struct ice_netdev_priv *np = netdev_priv(netdev); 1007 struct ice_q_vector *q_vector; 1008 struct ice_vsi *vsi = np->vsi; 1009 struct ice_tx_ring *ring; 1010 1011 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1012 return -ENETDOWN; 1013 1014 if (!ice_is_xdp_ena_vsi(vsi)) 1015 return -EINVAL; 1016 1017 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1018 return -EINVAL; 1019 1020 ring = vsi->rx_rings[queue_id]->xdp_ring; 1021 1022 if (!ring->xsk_pool) 1023 return -EINVAL; 1024 1025 /* The idea here is that if NAPI is running, mark a miss, so 1026 * it will run again. If not, trigger an interrupt and 1027 * schedule the NAPI from interrupt context. If NAPI would be 1028 * scheduled here, the interrupt affinity would not be 1029 * honored. 1030 */ 1031 q_vector = ring->q_vector; 1032 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1033 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1040 * @vsi: VSI to be checked 1041 * 1042 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1043 */ 1044 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1045 { 1046 int i; 1047 1048 ice_for_each_rxq(vsi, i) { 1049 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1050 return true; 1051 } 1052 1053 return false; 1054 } 1055 1056 /** 1057 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1058 * @rx_ring: ring to be cleaned 1059 */ 1060 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1061 { 1062 u16 ntc = rx_ring->next_to_clean; 1063 u16 ntu = rx_ring->next_to_use; 1064 1065 while (ntc != ntu) { 1066 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1067 1068 xsk_buff_free(xdp); 1069 ntc++; 1070 if (ntc >= rx_ring->count) 1071 ntc = 0; 1072 } 1073 } 1074 1075 /** 1076 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1077 * @xdp_ring: XDP_Tx ring 1078 */ 1079 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1080 { 1081 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1082 u32 xsk_frames = 0; 1083 1084 while (ntc != ntu) { 1085 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1086 1087 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1088 tx_buf->type = ICE_TX_BUF_EMPTY; 1089 xsk_buff_free(tx_buf->xdp); 1090 } else { 1091 xsk_frames++; 1092 } 1093 1094 ntc++; 1095 if (ntc >= xdp_ring->count) 1096 ntc = 0; 1097 } 1098 1099 if (xsk_frames) 1100 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1101 } 1102