1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) 45 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 46 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 47 } 48 49 /** 50 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 51 * @vsi: VSI that has netdev 52 * @q_vector: q_vector that has NAPI context 53 * @enable: true for enable, false for disable 54 */ 55 static void 56 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 57 bool enable) 58 { 59 if (!vsi->netdev || !q_vector) 60 return; 61 62 if (enable) 63 napi_enable(&q_vector->napi); 64 else 65 napi_disable(&q_vector->napi); 66 } 67 68 /** 69 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 70 * @vsi: the VSI that contains queue vector being un-configured 71 * @rx_ring: Rx ring that will have its IRQ disabled 72 * @q_vector: queue vector 73 */ 74 static void 75 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 76 struct ice_q_vector *q_vector) 77 { 78 struct ice_pf *pf = vsi->back; 79 struct ice_hw *hw = &pf->hw; 80 int base = vsi->base_vector; 81 u16 reg; 82 u32 val; 83 84 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 85 * here only QINT_RQCTL 86 */ 87 reg = rx_ring->reg_idx; 88 val = rd32(hw, QINT_RQCTL(reg)); 89 val &= ~QINT_RQCTL_CAUSE_ENA_M; 90 wr32(hw, QINT_RQCTL(reg), val); 91 92 if (q_vector) { 93 u16 v_idx = q_vector->v_idx; 94 95 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 96 ice_flush(hw); 97 synchronize_irq(pf->msix_entries[v_idx + base].vector); 98 } 99 } 100 101 /** 102 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 103 * @vsi: the VSI that contains queue vector 104 * @q_vector: queue vector 105 */ 106 static void 107 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 108 { 109 u16 reg_idx = q_vector->reg_idx; 110 struct ice_pf *pf = vsi->back; 111 struct ice_hw *hw = &pf->hw; 112 struct ice_tx_ring *tx_ring; 113 struct ice_rx_ring *rx_ring; 114 115 ice_cfg_itr(hw, q_vector); 116 117 ice_for_each_tx_ring(tx_ring, q_vector->tx) 118 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 119 q_vector->tx.itr_idx); 120 121 ice_for_each_rx_ring(rx_ring, q_vector->rx) 122 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 123 q_vector->rx.itr_idx); 124 125 ice_flush(hw); 126 } 127 128 /** 129 * ice_qvec_ena_irq - Enable IRQ for given queue vector 130 * @vsi: the VSI that contains queue vector 131 * @q_vector: queue vector 132 */ 133 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 134 { 135 struct ice_pf *pf = vsi->back; 136 struct ice_hw *hw = &pf->hw; 137 138 ice_irq_dynamic_ena(hw, vsi, q_vector); 139 140 ice_flush(hw); 141 } 142 143 /** 144 * ice_qp_dis - Disables a queue pair 145 * @vsi: VSI of interest 146 * @q_idx: ring index in array 147 * 148 * Returns 0 on success, negative on failure. 149 */ 150 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 151 { 152 struct ice_txq_meta txq_meta = { }; 153 struct ice_q_vector *q_vector; 154 struct ice_tx_ring *tx_ring; 155 struct ice_rx_ring *rx_ring; 156 int timeout = 50; 157 int err; 158 159 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 160 return -EINVAL; 161 162 tx_ring = vsi->tx_rings[q_idx]; 163 rx_ring = vsi->rx_rings[q_idx]; 164 q_vector = rx_ring->q_vector; 165 166 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 167 timeout--; 168 if (!timeout) 169 return -EBUSY; 170 usleep_range(1000, 2000); 171 } 172 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 173 174 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 175 176 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 177 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 178 if (err) 179 return err; 180 if (ice_is_xdp_ena_vsi(vsi)) { 181 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 182 183 memset(&txq_meta, 0, sizeof(txq_meta)); 184 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 186 &txq_meta); 187 if (err) 188 return err; 189 } 190 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 191 if (err) 192 return err; 193 194 ice_qvec_toggle_napi(vsi, q_vector, false); 195 ice_qp_clean_rings(vsi, q_idx); 196 ice_qp_reset_stats(vsi, q_idx); 197 198 return 0; 199 } 200 201 /** 202 * ice_qp_ena - Enables a queue pair 203 * @vsi: VSI of interest 204 * @q_idx: ring index in array 205 * 206 * Returns 0 on success, negative on failure. 207 */ 208 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 209 { 210 struct ice_aqc_add_tx_qgrp *qg_buf; 211 struct ice_q_vector *q_vector; 212 struct ice_tx_ring *tx_ring; 213 struct ice_rx_ring *rx_ring; 214 u16 size; 215 int err; 216 217 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 218 return -EINVAL; 219 220 size = struct_size(qg_buf, txqs, 1); 221 qg_buf = kzalloc(size, GFP_KERNEL); 222 if (!qg_buf) 223 return -ENOMEM; 224 225 qg_buf->num_txqs = 1; 226 227 tx_ring = vsi->tx_rings[q_idx]; 228 rx_ring = vsi->rx_rings[q_idx]; 229 q_vector = rx_ring->q_vector; 230 231 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 232 if (err) 233 goto free_buf; 234 235 if (ice_is_xdp_ena_vsi(vsi)) { 236 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 237 238 memset(qg_buf, 0, size); 239 qg_buf->num_txqs = 1; 240 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 241 if (err) 242 goto free_buf; 243 ice_set_ring_xdp(xdp_ring); 244 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 245 } 246 247 err = ice_vsi_cfg_rxq(rx_ring); 248 if (err) 249 goto free_buf; 250 251 ice_qvec_cfg_msix(vsi, q_vector); 252 253 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 254 if (err) 255 goto free_buf; 256 257 clear_bit(ICE_CFG_BUSY, vsi->state); 258 ice_qvec_toggle_napi(vsi, q_vector, true); 259 ice_qvec_ena_irq(vsi, q_vector); 260 261 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 262 free_buf: 263 kfree(qg_buf); 264 return err; 265 } 266 267 /** 268 * ice_xsk_pool_disable - disable a buffer pool region 269 * @vsi: Current VSI 270 * @qid: queue ID 271 * 272 * Returns 0 on success, negative on failure 273 */ 274 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 275 { 276 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 277 278 if (!pool) 279 return -EINVAL; 280 281 clear_bit(qid, vsi->af_xdp_zc_qps); 282 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 283 284 return 0; 285 } 286 287 /** 288 * ice_xsk_pool_enable - enable a buffer pool region 289 * @vsi: Current VSI 290 * @pool: pointer to a requested buffer pool region 291 * @qid: queue ID 292 * 293 * Returns 0 on success, negative on failure 294 */ 295 static int 296 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 297 { 298 int err; 299 300 if (vsi->type != ICE_VSI_PF) 301 return -EINVAL; 302 303 if (qid >= vsi->netdev->real_num_rx_queues || 304 qid >= vsi->netdev->real_num_tx_queues) 305 return -EINVAL; 306 307 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 308 ICE_RX_DMA_ATTR); 309 if (err) 310 return err; 311 312 set_bit(qid, vsi->af_xdp_zc_qps); 313 314 return 0; 315 } 316 317 /** 318 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 319 * @vsi: Current VSI 320 * @pool: buffer pool to enable/associate to a ring, NULL to disable 321 * @qid: queue ID 322 * 323 * Returns 0 on success, negative on failure 324 */ 325 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 326 { 327 bool if_running, pool_present = !!pool; 328 int ret = 0, pool_failure = 0; 329 330 if (!is_power_of_2(vsi->rx_rings[qid]->count) || 331 !is_power_of_2(vsi->tx_rings[qid]->count)) { 332 netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n"); 333 pool_failure = -EINVAL; 334 goto failure; 335 } 336 337 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 338 339 if (if_running) { 340 ret = ice_qp_dis(vsi, qid); 341 if (ret) { 342 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 343 goto xsk_pool_if_up; 344 } 345 } 346 347 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 348 ice_xsk_pool_disable(vsi, qid); 349 350 xsk_pool_if_up: 351 if (if_running) { 352 ret = ice_qp_ena(vsi, qid); 353 if (!ret && pool_present) 354 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 355 else if (ret) 356 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 357 } 358 359 failure: 360 if (pool_failure) { 361 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 362 pool_present ? "en" : "dis", pool_failure); 363 return pool_failure; 364 } 365 366 return ret; 367 } 368 369 /** 370 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 371 * @pool: XSK Buffer pool to pull the buffers from 372 * @xdp: SW ring of xdp_buff that will hold the buffers 373 * @rx_desc: Pointer to Rx descriptors that will be filled 374 * @count: The number of buffers to allocate 375 * 376 * This function allocates a number of Rx buffers from the fill ring 377 * or the internal recycle mechanism and places them on the Rx ring. 378 * 379 * Note that ring wrap should be handled by caller of this function. 380 * 381 * Returns the amount of allocated Rx descriptors 382 */ 383 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 384 union ice_32b_rx_flex_desc *rx_desc, u16 count) 385 { 386 dma_addr_t dma; 387 u16 buffs; 388 int i; 389 390 buffs = xsk_buff_alloc_batch(pool, xdp, count); 391 for (i = 0; i < buffs; i++) { 392 dma = xsk_buff_xdp_get_dma(*xdp); 393 rx_desc->read.pkt_addr = cpu_to_le64(dma); 394 rx_desc->wb.status_error0 = 0; 395 396 rx_desc++; 397 xdp++; 398 } 399 400 return buffs; 401 } 402 403 /** 404 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 405 * @rx_ring: Rx ring 406 * @count: The number of buffers to allocate 407 * 408 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 409 * for case where space from next_to_use up to the end of ring is less 410 * than @count. Finally do a tail bump. 411 * 412 * Returns true if all allocations were successful, false if any fail. 413 */ 414 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 415 { 416 union ice_32b_rx_flex_desc *rx_desc; 417 u32 nb_buffs_extra = 0, nb_buffs; 418 u16 ntu = rx_ring->next_to_use; 419 u16 total_count = count; 420 struct xdp_buff **xdp; 421 422 rx_desc = ICE_RX_DESC(rx_ring, ntu); 423 xdp = ice_xdp_buf(rx_ring, ntu); 424 425 if (ntu + count >= rx_ring->count) { 426 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 427 rx_desc, 428 rx_ring->count - ntu); 429 rx_desc = ICE_RX_DESC(rx_ring, 0); 430 xdp = ice_xdp_buf(rx_ring, 0); 431 ntu = 0; 432 count -= nb_buffs_extra; 433 ice_release_rx_desc(rx_ring, 0); 434 } 435 436 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 437 438 ntu += nb_buffs; 439 if (ntu == rx_ring->count) 440 ntu = 0; 441 442 if (rx_ring->next_to_use != ntu) 443 ice_release_rx_desc(rx_ring, ntu); 444 445 return total_count == (nb_buffs_extra + nb_buffs); 446 } 447 448 /** 449 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 450 * @rx_ring: Rx ring 451 * @count: The number of buffers to allocate 452 * 453 * Wrapper for internal allocation routine; figure out how many tail 454 * bumps should take place based on the given threshold 455 * 456 * Returns true if all calls to internal alloc routine succeeded 457 */ 458 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 459 { 460 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 461 u16 batched, leftover, i, tail_bumps; 462 463 batched = ALIGN_DOWN(count, rx_thresh); 464 tail_bumps = batched / rx_thresh; 465 leftover = count & (rx_thresh - 1); 466 467 for (i = 0; i < tail_bumps; i++) 468 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 469 return false; 470 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 471 } 472 473 /** 474 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 475 * @rx_ring: Rx ring 476 */ 477 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 478 { 479 int ntc = rx_ring->next_to_clean + 1; 480 481 ntc = (ntc < rx_ring->count) ? ntc : 0; 482 rx_ring->next_to_clean = ntc; 483 prefetch(ICE_RX_DESC(rx_ring, ntc)); 484 } 485 486 /** 487 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 488 * @rx_ring: Rx ring 489 * @xdp: Pointer to XDP buffer 490 * 491 * This function allocates a new skb from a zero-copy Rx buffer. 492 * 493 * Returns the skb on success, NULL on failure. 494 */ 495 static struct sk_buff * 496 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 497 { 498 unsigned int totalsize = xdp->data_end - xdp->data_meta; 499 unsigned int metasize = xdp->data - xdp->data_meta; 500 struct sk_buff *skb; 501 502 net_prefetch(xdp->data_meta); 503 504 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 505 GFP_ATOMIC | __GFP_NOWARN); 506 if (unlikely(!skb)) 507 return NULL; 508 509 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 510 ALIGN(totalsize, sizeof(long))); 511 512 if (metasize) { 513 skb_metadata_set(skb, metasize); 514 __skb_pull(skb, metasize); 515 } 516 517 xsk_buff_free(xdp); 518 return skb; 519 } 520 521 /** 522 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 523 * @rx_ring: Rx ring 524 * @xdp: xdp_buff used as input to the XDP program 525 * @xdp_prog: XDP program to run 526 * @xdp_ring: ring to be used for XDP_TX action 527 * 528 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 529 */ 530 static int 531 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 532 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 533 { 534 int err, result = ICE_XDP_PASS; 535 u32 act; 536 537 act = bpf_prog_run_xdp(xdp_prog, xdp); 538 539 if (likely(act == XDP_REDIRECT)) { 540 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 541 if (err) 542 goto out_failure; 543 return ICE_XDP_REDIR; 544 } 545 546 switch (act) { 547 case XDP_PASS: 548 break; 549 case XDP_TX: 550 result = ice_xmit_xdp_buff(xdp, xdp_ring); 551 if (result == ICE_XDP_CONSUMED) 552 goto out_failure; 553 break; 554 default: 555 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 556 fallthrough; 557 case XDP_ABORTED: 558 out_failure: 559 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 560 fallthrough; 561 case XDP_DROP: 562 result = ICE_XDP_CONSUMED; 563 break; 564 } 565 566 return result; 567 } 568 569 /** 570 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 571 * @rx_ring: AF_XDP Rx ring 572 * @budget: NAPI budget 573 * 574 * Returns number of processed packets on success, remaining budget on failure. 575 */ 576 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 577 { 578 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 579 struct ice_tx_ring *xdp_ring; 580 unsigned int xdp_xmit = 0; 581 struct bpf_prog *xdp_prog; 582 bool failure = false; 583 584 /* ZC patch is enabled only when XDP program is set, 585 * so here it can not be NULL 586 */ 587 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 588 xdp_ring = rx_ring->xdp_ring; 589 590 while (likely(total_rx_packets < (unsigned int)budget)) { 591 union ice_32b_rx_flex_desc *rx_desc; 592 unsigned int size, xdp_res = 0; 593 struct xdp_buff *xdp; 594 struct sk_buff *skb; 595 u16 stat_err_bits; 596 u16 vlan_tag = 0; 597 u16 rx_ptype; 598 599 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 600 601 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 602 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 603 break; 604 605 /* This memory barrier is needed to keep us from reading 606 * any other fields out of the rx_desc until we have 607 * verified the descriptor has been written back. 608 */ 609 dma_rmb(); 610 611 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 612 613 size = le16_to_cpu(rx_desc->wb.pkt_len) & 614 ICE_RX_FLX_DESC_PKT_LEN_M; 615 if (!size) { 616 xdp->data = NULL; 617 xdp->data_end = NULL; 618 xdp->data_hard_start = NULL; 619 xdp->data_meta = NULL; 620 goto construct_skb; 621 } 622 623 xsk_buff_set_size(xdp, size); 624 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 625 626 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 627 if (xdp_res) { 628 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 629 xdp_xmit |= xdp_res; 630 else 631 xsk_buff_free(xdp); 632 633 total_rx_bytes += size; 634 total_rx_packets++; 635 636 ice_bump_ntc(rx_ring); 637 continue; 638 } 639 construct_skb: 640 /* XDP_PASS path */ 641 skb = ice_construct_skb_zc(rx_ring, xdp); 642 if (!skb) { 643 rx_ring->rx_stats.alloc_buf_failed++; 644 break; 645 } 646 647 ice_bump_ntc(rx_ring); 648 649 if (eth_skb_pad(skb)) { 650 skb = NULL; 651 continue; 652 } 653 654 total_rx_bytes += skb->len; 655 total_rx_packets++; 656 657 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 658 659 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 660 ICE_RX_FLEX_DESC_PTYPE_M; 661 662 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 663 ice_receive_skb(rx_ring, skb, vlan_tag); 664 } 665 666 failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring)); 667 668 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 669 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 670 671 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 672 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 673 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 674 else 675 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 676 677 return (int)total_rx_packets; 678 } 679 680 return failure ? budget : (int)total_rx_packets; 681 } 682 683 /** 684 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 685 * @xdp_ring: XDP Tx ring 686 * @tx_buf: Tx buffer to clean 687 */ 688 static void 689 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 690 { 691 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 692 xdp_ring->xdp_tx_active--; 693 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 694 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 695 dma_unmap_len_set(tx_buf, len, 0); 696 } 697 698 /** 699 * ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring 700 * @xdp_ring: XDP ring to clean 701 * @napi_budget: amount of descriptors that NAPI allows us to clean 702 * 703 * Returns count of cleaned descriptors 704 */ 705 static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget) 706 { 707 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 708 int budget = napi_budget / tx_thresh; 709 u16 next_dd = xdp_ring->next_dd; 710 u16 ntc, cleared_dds = 0; 711 712 do { 713 struct ice_tx_desc *next_dd_desc; 714 u16 desc_cnt = xdp_ring->count; 715 struct ice_tx_buf *tx_buf; 716 u32 xsk_frames; 717 u16 i; 718 719 next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd); 720 if (!(next_dd_desc->cmd_type_offset_bsz & 721 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 722 break; 723 724 cleared_dds++; 725 xsk_frames = 0; 726 if (likely(!xdp_ring->xdp_tx_active)) { 727 xsk_frames = tx_thresh; 728 goto skip; 729 } 730 731 ntc = xdp_ring->next_to_clean; 732 733 for (i = 0; i < tx_thresh; i++) { 734 tx_buf = &xdp_ring->tx_buf[ntc]; 735 736 if (tx_buf->raw_buf) { 737 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 738 tx_buf->raw_buf = NULL; 739 } else { 740 xsk_frames++; 741 } 742 743 ntc++; 744 if (ntc >= xdp_ring->count) 745 ntc = 0; 746 } 747 skip: 748 xdp_ring->next_to_clean += tx_thresh; 749 if (xdp_ring->next_to_clean >= desc_cnt) 750 xdp_ring->next_to_clean -= desc_cnt; 751 if (xsk_frames) 752 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 753 next_dd_desc->cmd_type_offset_bsz = 0; 754 next_dd = next_dd + tx_thresh; 755 if (next_dd >= desc_cnt) 756 next_dd = tx_thresh - 1; 757 } while (budget--); 758 759 xdp_ring->next_dd = next_dd; 760 761 return cleared_dds * tx_thresh; 762 } 763 764 /** 765 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 766 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 767 * @desc: AF_XDP descriptor to pull the DMA address and length from 768 * @total_bytes: bytes accumulator that will be used for stats update 769 */ 770 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 771 unsigned int *total_bytes) 772 { 773 struct ice_tx_desc *tx_desc; 774 dma_addr_t dma; 775 776 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 777 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 778 779 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 780 tx_desc->buf_addr = cpu_to_le64(dma); 781 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 782 0, desc->len, 0); 783 784 *total_bytes += desc->len; 785 } 786 787 /** 788 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 789 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 790 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 791 * @total_bytes: bytes accumulator that will be used for stats update 792 */ 793 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 794 unsigned int *total_bytes) 795 { 796 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 797 u16 ntu = xdp_ring->next_to_use; 798 struct ice_tx_desc *tx_desc; 799 u32 i; 800 801 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 802 dma_addr_t dma; 803 804 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 805 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 806 807 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 808 tx_desc->buf_addr = cpu_to_le64(dma); 809 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 810 0, descs[i].len, 0); 811 812 *total_bytes += descs[i].len; 813 } 814 815 xdp_ring->next_to_use = ntu; 816 817 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 818 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 819 tx_desc->cmd_type_offset_bsz |= 820 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 821 xdp_ring->next_rs += tx_thresh; 822 } 823 } 824 825 /** 826 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 827 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 828 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 829 * @nb_pkts: count of packets to be send 830 * @total_bytes: bytes accumulator that will be used for stats update 831 */ 832 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 833 u32 nb_pkts, unsigned int *total_bytes) 834 { 835 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 836 u32 batched, leftover, i; 837 838 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 839 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 840 for (i = 0; i < batched; i += PKTS_PER_BATCH) 841 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 842 for (; i < batched + leftover; i++) 843 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 844 845 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 846 struct ice_tx_desc *tx_desc; 847 848 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 849 tx_desc->cmd_type_offset_bsz |= 850 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 851 xdp_ring->next_rs += tx_thresh; 852 } 853 } 854 855 /** 856 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 857 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 858 * @budget: number of free descriptors on HW Tx ring that can be used 859 * @napi_budget: amount of descriptors that NAPI allows us to clean 860 * 861 * Returns true if there is no more work that needs to be done, false otherwise 862 */ 863 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget) 864 { 865 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 866 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 867 u32 nb_pkts, nb_processed = 0; 868 unsigned int total_bytes = 0; 869 870 if (budget < tx_thresh) 871 budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget); 872 873 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 874 if (!nb_pkts) 875 return true; 876 877 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 878 struct ice_tx_desc *tx_desc; 879 880 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 881 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 882 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 883 tx_desc->cmd_type_offset_bsz |= 884 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 885 xdp_ring->next_rs = tx_thresh - 1; 886 xdp_ring->next_to_use = 0; 887 } 888 889 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 890 &total_bytes); 891 892 ice_xdp_ring_update_tail(xdp_ring); 893 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 894 895 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 896 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 897 898 return nb_pkts < budget; 899 } 900 901 /** 902 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 903 * @netdev: net_device 904 * @queue_id: queue to wake up 905 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 906 * 907 * Returns negative on error, zero otherwise. 908 */ 909 int 910 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 911 u32 __always_unused flags) 912 { 913 struct ice_netdev_priv *np = netdev_priv(netdev); 914 struct ice_q_vector *q_vector; 915 struct ice_vsi *vsi = np->vsi; 916 struct ice_tx_ring *ring; 917 918 if (test_bit(ICE_DOWN, vsi->state)) 919 return -ENETDOWN; 920 921 if (!ice_is_xdp_ena_vsi(vsi)) 922 return -ENXIO; 923 924 if (queue_id >= vsi->num_txq) 925 return -ENXIO; 926 927 if (!vsi->xdp_rings[queue_id]->xsk_pool) 928 return -ENXIO; 929 930 ring = vsi->xdp_rings[queue_id]; 931 932 /* The idea here is that if NAPI is running, mark a miss, so 933 * it will run again. If not, trigger an interrupt and 934 * schedule the NAPI from interrupt context. If NAPI would be 935 * scheduled here, the interrupt affinity would not be 936 * honored. 937 */ 938 q_vector = ring->q_vector; 939 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 940 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 941 942 return 0; 943 } 944 945 /** 946 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 947 * @vsi: VSI to be checked 948 * 949 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 950 */ 951 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 952 { 953 int i; 954 955 ice_for_each_rxq(vsi, i) { 956 if (xsk_get_pool_from_qid(vsi->netdev, i)) 957 return true; 958 } 959 960 return false; 961 } 962 963 /** 964 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 965 * @rx_ring: ring to be cleaned 966 */ 967 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 968 { 969 u16 count_mask = rx_ring->count - 1; 970 u16 ntc = rx_ring->next_to_clean; 971 u16 ntu = rx_ring->next_to_use; 972 973 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 974 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 975 976 xsk_buff_free(xdp); 977 } 978 } 979 980 /** 981 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 982 * @xdp_ring: XDP_Tx ring 983 */ 984 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 985 { 986 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 987 u32 xsk_frames = 0; 988 989 while (ntc != ntu) { 990 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 991 992 if (tx_buf->raw_buf) 993 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 994 else 995 xsk_frames++; 996 997 tx_buf->raw_buf = NULL; 998 999 ntc++; 1000 if (ntc >= xdp_ring->count) 1001 ntc = 0; 1002 } 1003 1004 if (xsk_frames) 1005 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1006 } 1007