1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 /** 16 * ice_qp_reset_stats - Resets all stats for rings of given index 17 * @vsi: VSI that contains rings of interest 18 * @q_idx: ring index in array 19 */ 20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 21 { 22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 23 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 24 memset(&vsi->tx_rings[q_idx]->stats, 0, 25 sizeof(vsi->tx_rings[q_idx]->stats)); 26 if (ice_is_xdp_ena_vsi(vsi)) 27 memset(&vsi->xdp_rings[q_idx]->stats, 0, 28 sizeof(vsi->xdp_rings[q_idx]->stats)); 29 } 30 31 /** 32 * ice_qp_clean_rings - Cleans all the rings of a given index 33 * @vsi: VSI that contains rings of interest 34 * @q_idx: ring index in array 35 */ 36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 37 { 38 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 39 if (ice_is_xdp_ena_vsi(vsi)) 40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 41 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 42 } 43 44 /** 45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 46 * @vsi: VSI that has netdev 47 * @q_vector: q_vector that has NAPI context 48 * @enable: true for enable, false for disable 49 */ 50 static void 51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 52 bool enable) 53 { 54 if (!vsi->netdev || !q_vector) 55 return; 56 57 if (enable) 58 napi_enable(&q_vector->napi); 59 else 60 napi_disable(&q_vector->napi); 61 } 62 63 /** 64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 65 * @vsi: the VSI that contains queue vector being un-configured 66 * @rx_ring: Rx ring that will have its IRQ disabled 67 * @q_vector: queue vector 68 */ 69 static void 70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 71 struct ice_q_vector *q_vector) 72 { 73 struct ice_pf *pf = vsi->back; 74 struct ice_hw *hw = &pf->hw; 75 int base = vsi->base_vector; 76 u16 reg; 77 u32 val; 78 79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 80 * here only QINT_RQCTL 81 */ 82 reg = rx_ring->reg_idx; 83 val = rd32(hw, QINT_RQCTL(reg)); 84 val &= ~QINT_RQCTL_CAUSE_ENA_M; 85 wr32(hw, QINT_RQCTL(reg), val); 86 87 if (q_vector) { 88 u16 v_idx = q_vector->v_idx; 89 90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 91 ice_flush(hw); 92 synchronize_irq(pf->msix_entries[v_idx + base].vector); 93 } 94 } 95 96 /** 97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 98 * @vsi: the VSI that contains queue vector 99 * @q_vector: queue vector 100 */ 101 static void 102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 103 { 104 u16 reg_idx = q_vector->reg_idx; 105 struct ice_pf *pf = vsi->back; 106 struct ice_hw *hw = &pf->hw; 107 struct ice_tx_ring *tx_ring; 108 struct ice_rx_ring *rx_ring; 109 110 ice_cfg_itr(hw, q_vector); 111 112 ice_for_each_tx_ring(tx_ring, q_vector->tx) 113 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 114 q_vector->tx.itr_idx); 115 116 ice_for_each_rx_ring(rx_ring, q_vector->rx) 117 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 118 q_vector->rx.itr_idx); 119 120 ice_flush(hw); 121 } 122 123 /** 124 * ice_qvec_ena_irq - Enable IRQ for given queue vector 125 * @vsi: the VSI that contains queue vector 126 * @q_vector: queue vector 127 */ 128 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 129 { 130 struct ice_pf *pf = vsi->back; 131 struct ice_hw *hw = &pf->hw; 132 133 ice_irq_dynamic_ena(hw, vsi, q_vector); 134 135 ice_flush(hw); 136 } 137 138 /** 139 * ice_qp_dis - Disables a queue pair 140 * @vsi: VSI of interest 141 * @q_idx: ring index in array 142 * 143 * Returns 0 on success, negative on failure. 144 */ 145 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 146 { 147 struct ice_txq_meta txq_meta = { }; 148 struct ice_q_vector *q_vector; 149 struct ice_tx_ring *tx_ring; 150 struct ice_rx_ring *rx_ring; 151 int timeout = 50; 152 int err; 153 154 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 155 return -EINVAL; 156 157 tx_ring = vsi->tx_rings[q_idx]; 158 rx_ring = vsi->rx_rings[q_idx]; 159 q_vector = rx_ring->q_vector; 160 161 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 162 timeout--; 163 if (!timeout) 164 return -EBUSY; 165 usleep_range(1000, 2000); 166 } 167 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 168 169 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 170 171 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 172 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 173 if (err) 174 return err; 175 if (ice_is_xdp_ena_vsi(vsi)) { 176 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 177 178 memset(&txq_meta, 0, sizeof(txq_meta)); 179 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 180 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 181 &txq_meta); 182 if (err) 183 return err; 184 } 185 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 186 if (err) 187 return err; 188 189 ice_qvec_toggle_napi(vsi, q_vector, false); 190 ice_qp_clean_rings(vsi, q_idx); 191 ice_qp_reset_stats(vsi, q_idx); 192 193 return 0; 194 } 195 196 /** 197 * ice_qp_ena - Enables a queue pair 198 * @vsi: VSI of interest 199 * @q_idx: ring index in array 200 * 201 * Returns 0 on success, negative on failure. 202 */ 203 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 204 { 205 struct ice_aqc_add_tx_qgrp *qg_buf; 206 struct ice_q_vector *q_vector; 207 struct ice_tx_ring *tx_ring; 208 struct ice_rx_ring *rx_ring; 209 u16 size; 210 int err; 211 212 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 213 return -EINVAL; 214 215 size = struct_size(qg_buf, txqs, 1); 216 qg_buf = kzalloc(size, GFP_KERNEL); 217 if (!qg_buf) 218 return -ENOMEM; 219 220 qg_buf->num_txqs = 1; 221 222 tx_ring = vsi->tx_rings[q_idx]; 223 rx_ring = vsi->rx_rings[q_idx]; 224 q_vector = rx_ring->q_vector; 225 226 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 227 if (err) 228 goto free_buf; 229 230 if (ice_is_xdp_ena_vsi(vsi)) { 231 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 232 233 memset(qg_buf, 0, size); 234 qg_buf->num_txqs = 1; 235 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 236 if (err) 237 goto free_buf; 238 ice_set_ring_xdp(xdp_ring); 239 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 240 } 241 242 err = ice_vsi_cfg_rxq(rx_ring); 243 if (err) 244 goto free_buf; 245 246 ice_qvec_cfg_msix(vsi, q_vector); 247 248 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 249 if (err) 250 goto free_buf; 251 252 clear_bit(ICE_CFG_BUSY, vsi->state); 253 ice_qvec_toggle_napi(vsi, q_vector, true); 254 ice_qvec_ena_irq(vsi, q_vector); 255 256 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 257 free_buf: 258 kfree(qg_buf); 259 return err; 260 } 261 262 /** 263 * ice_xsk_pool_disable - disable a buffer pool region 264 * @vsi: Current VSI 265 * @qid: queue ID 266 * 267 * Returns 0 on success, negative on failure 268 */ 269 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 270 { 271 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 272 273 if (!pool) 274 return -EINVAL; 275 276 clear_bit(qid, vsi->af_xdp_zc_qps); 277 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 278 279 return 0; 280 } 281 282 /** 283 * ice_xsk_pool_enable - enable a buffer pool region 284 * @vsi: Current VSI 285 * @pool: pointer to a requested buffer pool region 286 * @qid: queue ID 287 * 288 * Returns 0 on success, negative on failure 289 */ 290 static int 291 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 292 { 293 int err; 294 295 if (vsi->type != ICE_VSI_PF) 296 return -EINVAL; 297 298 if (qid >= vsi->netdev->real_num_rx_queues || 299 qid >= vsi->netdev->real_num_tx_queues) 300 return -EINVAL; 301 302 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 303 ICE_RX_DMA_ATTR); 304 if (err) 305 return err; 306 307 set_bit(qid, vsi->af_xdp_zc_qps); 308 309 return 0; 310 } 311 312 /** 313 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 314 * @vsi: Current VSI 315 * @pool: buffer pool to enable/associate to a ring, NULL to disable 316 * @qid: queue ID 317 * 318 * Returns 0 on success, negative on failure 319 */ 320 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 321 { 322 bool if_running, pool_present = !!pool; 323 int ret = 0, pool_failure = 0; 324 325 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 326 327 if (if_running) { 328 ret = ice_qp_dis(vsi, qid); 329 if (ret) { 330 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 331 goto xsk_pool_if_up; 332 } 333 } 334 335 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 336 ice_xsk_pool_disable(vsi, qid); 337 338 xsk_pool_if_up: 339 if (if_running) { 340 ret = ice_qp_ena(vsi, qid); 341 if (!ret && pool_present) 342 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 343 else if (ret) 344 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 345 } 346 347 if (pool_failure) { 348 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 349 pool_present ? "en" : "dis", pool_failure); 350 return pool_failure; 351 } 352 353 return ret; 354 } 355 356 /** 357 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 358 * @rx_ring: Rx ring 359 * @count: The number of buffers to allocate 360 * 361 * This function allocates a number of Rx buffers from the fill ring 362 * or the internal recycle mechanism and places them on the Rx ring. 363 * 364 * Returns true if all allocations were successful, false if any fail. 365 */ 366 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 367 { 368 union ice_32b_rx_flex_desc *rx_desc; 369 u16 ntu = rx_ring->next_to_use; 370 struct xdp_buff **xdp; 371 u32 nb_buffs, i; 372 dma_addr_t dma; 373 374 rx_desc = ICE_RX_DESC(rx_ring, ntu); 375 xdp = &rx_ring->xdp_buf[ntu]; 376 377 nb_buffs = min_t(u16, count, rx_ring->count - ntu); 378 nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs); 379 if (!nb_buffs) 380 return false; 381 382 i = nb_buffs; 383 while (i--) { 384 dma = xsk_buff_xdp_get_dma(*xdp); 385 rx_desc->read.pkt_addr = cpu_to_le64(dma); 386 rx_desc->wb.status_error0 = 0; 387 388 rx_desc++; 389 xdp++; 390 } 391 392 ntu += nb_buffs; 393 if (ntu == rx_ring->count) { 394 rx_desc = ICE_RX_DESC(rx_ring, 0); 395 xdp = rx_ring->xdp_buf; 396 ntu = 0; 397 } 398 399 /* clear the status bits for the next_to_use descriptor */ 400 rx_desc->wb.status_error0 = 0; 401 ice_release_rx_desc(rx_ring, ntu); 402 403 return count == nb_buffs; 404 } 405 406 /** 407 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 408 * @rx_ring: Rx ring 409 */ 410 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 411 { 412 int ntc = rx_ring->next_to_clean + 1; 413 414 ntc = (ntc < rx_ring->count) ? ntc : 0; 415 rx_ring->next_to_clean = ntc; 416 prefetch(ICE_RX_DESC(rx_ring, ntc)); 417 } 418 419 /** 420 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 421 * @rx_ring: Rx ring 422 * @xdp_arr: Pointer to the SW ring of xdp_buff pointers 423 * 424 * This function allocates a new skb from a zero-copy Rx buffer. 425 * 426 * Returns the skb on success, NULL on failure. 427 */ 428 static struct sk_buff * 429 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff **xdp_arr) 430 { 431 struct xdp_buff *xdp = *xdp_arr; 432 unsigned int metasize = xdp->data - xdp->data_meta; 433 unsigned int datasize = xdp->data_end - xdp->data; 434 unsigned int datasize_hard = xdp->data_end - xdp->data_hard_start; 435 struct sk_buff *skb; 436 437 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, 438 GFP_ATOMIC | __GFP_NOWARN); 439 if (unlikely(!skb)) 440 return NULL; 441 442 skb_reserve(skb, xdp->data - xdp->data_hard_start); 443 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 444 if (metasize) 445 skb_metadata_set(skb, metasize); 446 447 xsk_buff_free(xdp); 448 *xdp_arr = NULL; 449 return skb; 450 } 451 452 /** 453 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 454 * @rx_ring: Rx ring 455 * @xdp: xdp_buff used as input to the XDP program 456 * @xdp_prog: XDP program to run 457 * @xdp_ring: ring to be used for XDP_TX action 458 * 459 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 460 */ 461 static int 462 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 463 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 464 { 465 int err, result = ICE_XDP_PASS; 466 u32 act; 467 468 act = bpf_prog_run_xdp(xdp_prog, xdp); 469 470 if (likely(act == XDP_REDIRECT)) { 471 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 472 if (err) 473 goto out_failure; 474 return ICE_XDP_REDIR; 475 } 476 477 switch (act) { 478 case XDP_PASS: 479 break; 480 case XDP_TX: 481 result = ice_xmit_xdp_buff(xdp, xdp_ring); 482 if (result == ICE_XDP_CONSUMED) 483 goto out_failure; 484 break; 485 default: 486 bpf_warn_invalid_xdp_action(act); 487 fallthrough; 488 case XDP_ABORTED: 489 out_failure: 490 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 491 fallthrough; 492 case XDP_DROP: 493 result = ICE_XDP_CONSUMED; 494 break; 495 } 496 497 return result; 498 } 499 500 /** 501 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 502 * @rx_ring: AF_XDP Rx ring 503 * @budget: NAPI budget 504 * 505 * Returns number of processed packets on success, remaining budget on failure. 506 */ 507 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 508 { 509 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 510 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 511 struct ice_tx_ring *xdp_ring; 512 unsigned int xdp_xmit = 0; 513 struct bpf_prog *xdp_prog; 514 bool failure = false; 515 516 /* ZC patch is enabled only when XDP program is set, 517 * so here it can not be NULL 518 */ 519 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 520 xdp_ring = rx_ring->xdp_ring; 521 522 while (likely(total_rx_packets < (unsigned int)budget)) { 523 union ice_32b_rx_flex_desc *rx_desc; 524 unsigned int size, xdp_res = 0; 525 struct xdp_buff **xdp; 526 struct sk_buff *skb; 527 u16 stat_err_bits; 528 u16 vlan_tag = 0; 529 u16 rx_ptype; 530 531 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 532 533 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 534 if (!ice_test_staterr(rx_desc, stat_err_bits)) 535 break; 536 537 /* This memory barrier is needed to keep us from reading 538 * any other fields out of the rx_desc until we have 539 * verified the descriptor has been written back. 540 */ 541 dma_rmb(); 542 543 size = le16_to_cpu(rx_desc->wb.pkt_len) & 544 ICE_RX_FLX_DESC_PKT_LEN_M; 545 if (!size) 546 break; 547 548 xdp = &rx_ring->xdp_buf[rx_ring->next_to_clean]; 549 xsk_buff_set_size(*xdp, size); 550 xsk_buff_dma_sync_for_cpu(*xdp, rx_ring->xsk_pool); 551 552 xdp_res = ice_run_xdp_zc(rx_ring, *xdp, xdp_prog, xdp_ring); 553 if (xdp_res) { 554 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 555 xdp_xmit |= xdp_res; 556 else 557 xsk_buff_free(*xdp); 558 559 *xdp = NULL; 560 total_rx_bytes += size; 561 total_rx_packets++; 562 cleaned_count++; 563 564 ice_bump_ntc(rx_ring); 565 continue; 566 } 567 568 /* XDP_PASS path */ 569 skb = ice_construct_skb_zc(rx_ring, xdp); 570 if (!skb) { 571 rx_ring->rx_stats.alloc_buf_failed++; 572 break; 573 } 574 575 cleaned_count++; 576 ice_bump_ntc(rx_ring); 577 578 if (eth_skb_pad(skb)) { 579 skb = NULL; 580 continue; 581 } 582 583 total_rx_bytes += skb->len; 584 total_rx_packets++; 585 586 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 587 if (ice_test_staterr(rx_desc, stat_err_bits)) 588 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 589 590 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 591 ICE_RX_FLEX_DESC_PTYPE_M; 592 593 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 594 ice_receive_skb(rx_ring, skb, vlan_tag); 595 } 596 597 if (cleaned_count >= ICE_RX_BUF_WRITE) 598 failure = !ice_alloc_rx_bufs_zc(rx_ring, cleaned_count); 599 600 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 601 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 602 603 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 604 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 605 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 606 else 607 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 608 609 return (int)total_rx_packets; 610 } 611 612 return failure ? budget : (int)total_rx_packets; 613 } 614 615 /** 616 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 617 * @xdp_ring: XDP Tx ring 618 * @budget: max number of frames to xmit 619 * 620 * Returns true if cleanup/transmission is done. 621 */ 622 static bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, int budget) 623 { 624 struct ice_tx_desc *tx_desc = NULL; 625 bool work_done = true; 626 struct xdp_desc desc; 627 dma_addr_t dma; 628 629 while (likely(budget-- > 0)) { 630 struct ice_tx_buf *tx_buf; 631 632 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 633 xdp_ring->tx_stats.tx_busy++; 634 work_done = false; 635 break; 636 } 637 638 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 639 640 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc)) 641 break; 642 643 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr); 644 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, 645 desc.len); 646 647 tx_buf->bytecount = desc.len; 648 649 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 650 tx_desc->buf_addr = cpu_to_le64(dma); 651 tx_desc->cmd_type_offset_bsz = 652 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 653 654 xdp_ring->next_to_use++; 655 if (xdp_ring->next_to_use == xdp_ring->count) 656 xdp_ring->next_to_use = 0; 657 } 658 659 if (tx_desc) { 660 ice_xdp_ring_update_tail(xdp_ring); 661 xsk_tx_release(xdp_ring->xsk_pool); 662 } 663 664 return budget > 0 && work_done; 665 } 666 667 /** 668 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 669 * @xdp_ring: XDP Tx ring 670 * @tx_buf: Tx buffer to clean 671 */ 672 static void 673 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 674 { 675 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 676 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 677 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 678 dma_unmap_len_set(tx_buf, len, 0); 679 } 680 681 /** 682 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 683 * @xdp_ring: XDP Tx ring 684 * @budget: NAPI budget 685 * 686 * Returns true if cleanup/tranmission is done. 687 */ 688 bool ice_clean_tx_irq_zc(struct ice_tx_ring *xdp_ring, int budget) 689 { 690 int total_packets = 0, total_bytes = 0; 691 s16 ntc = xdp_ring->next_to_clean; 692 struct ice_tx_desc *tx_desc; 693 struct ice_tx_buf *tx_buf; 694 u32 xsk_frames = 0; 695 bool xmit_done; 696 697 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 698 tx_buf = &xdp_ring->tx_buf[ntc]; 699 ntc -= xdp_ring->count; 700 701 do { 702 if (!(tx_desc->cmd_type_offset_bsz & 703 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 704 break; 705 706 total_bytes += tx_buf->bytecount; 707 total_packets++; 708 709 if (tx_buf->raw_buf) { 710 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 711 tx_buf->raw_buf = NULL; 712 } else { 713 xsk_frames++; 714 } 715 716 tx_desc->cmd_type_offset_bsz = 0; 717 tx_buf++; 718 tx_desc++; 719 ntc++; 720 721 if (unlikely(!ntc)) { 722 ntc -= xdp_ring->count; 723 tx_buf = xdp_ring->tx_buf; 724 tx_desc = ICE_TX_DESC(xdp_ring, 0); 725 } 726 727 prefetch(tx_desc); 728 729 } while (likely(--budget)); 730 731 ntc += xdp_ring->count; 732 xdp_ring->next_to_clean = ntc; 733 734 if (xsk_frames) 735 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 736 737 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 738 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 739 740 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 741 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 742 743 return budget > 0 && xmit_done; 744 } 745 746 /** 747 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 748 * @netdev: net_device 749 * @queue_id: queue to wake up 750 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 751 * 752 * Returns negative on error, zero otherwise. 753 */ 754 int 755 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 756 u32 __always_unused flags) 757 { 758 struct ice_netdev_priv *np = netdev_priv(netdev); 759 struct ice_q_vector *q_vector; 760 struct ice_vsi *vsi = np->vsi; 761 struct ice_tx_ring *ring; 762 763 if (test_bit(ICE_DOWN, vsi->state)) 764 return -ENETDOWN; 765 766 if (!ice_is_xdp_ena_vsi(vsi)) 767 return -ENXIO; 768 769 if (queue_id >= vsi->num_txq) 770 return -ENXIO; 771 772 if (!vsi->xdp_rings[queue_id]->xsk_pool) 773 return -ENXIO; 774 775 ring = vsi->xdp_rings[queue_id]; 776 777 /* The idea here is that if NAPI is running, mark a miss, so 778 * it will run again. If not, trigger an interrupt and 779 * schedule the NAPI from interrupt context. If NAPI would be 780 * scheduled here, the interrupt affinity would not be 781 * honored. 782 */ 783 q_vector = ring->q_vector; 784 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 785 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 786 787 return 0; 788 } 789 790 /** 791 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 792 * @vsi: VSI to be checked 793 * 794 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 795 */ 796 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 797 { 798 int i; 799 800 ice_for_each_rxq(vsi, i) { 801 if (xsk_get_pool_from_qid(vsi->netdev, i)) 802 return true; 803 } 804 805 return false; 806 } 807 808 /** 809 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 810 * @rx_ring: ring to be cleaned 811 */ 812 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 813 { 814 u16 i; 815 816 for (i = 0; i < rx_ring->count; i++) { 817 struct xdp_buff **xdp = &rx_ring->xdp_buf[i]; 818 819 if (!xdp) 820 continue; 821 822 *xdp = NULL; 823 } 824 } 825 826 /** 827 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 828 * @xdp_ring: XDP_Tx ring 829 */ 830 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 831 { 832 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 833 u32 xsk_frames = 0; 834 835 while (ntc != ntu) { 836 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 837 838 if (tx_buf->raw_buf) 839 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 840 else 841 xsk_frames++; 842 843 tx_buf->raw_buf = NULL; 844 845 ntc++; 846 if (ntc >= xdp_ring->count) 847 ntc = 0; 848 } 849 850 if (xsk_frames) 851 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 852 } 853