1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (ice_is_xdp_ena_vsi(vsi))
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (ice_is_xdp_ena_vsi(vsi)) {
56 		synchronize_rcu();
57 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
58 	}
59 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
60 }
61 
62 /**
63  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
64  * @vsi: VSI that has netdev
65  * @q_vector: q_vector that has NAPI context
66  * @enable: true for enable, false for disable
67  */
68 static void
69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
70 		     bool enable)
71 {
72 	if (!vsi->netdev || !q_vector)
73 		return;
74 
75 	if (enable)
76 		napi_enable(&q_vector->napi);
77 	else
78 		napi_disable(&q_vector->napi);
79 }
80 
81 /**
82  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
83  * @vsi: the VSI that contains queue vector being un-configured
84  * @rx_ring: Rx ring that will have its IRQ disabled
85  * @q_vector: queue vector
86  */
87 static void
88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
89 		 struct ice_q_vector *q_vector)
90 {
91 	struct ice_pf *pf = vsi->back;
92 	struct ice_hw *hw = &pf->hw;
93 	int base = vsi->base_vector;
94 	u16 reg;
95 	u32 val;
96 
97 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
98 	 * here only QINT_RQCTL
99 	 */
100 	reg = rx_ring->reg_idx;
101 	val = rd32(hw, QINT_RQCTL(reg));
102 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
103 	wr32(hw, QINT_RQCTL(reg), val);
104 
105 	if (q_vector) {
106 		u16 v_idx = q_vector->v_idx;
107 
108 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
109 		ice_flush(hw);
110 		synchronize_irq(pf->msix_entries[v_idx + base].vector);
111 	}
112 }
113 
114 /**
115  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
116  * @vsi: the VSI that contains queue vector
117  * @q_vector: queue vector
118  */
119 static void
120 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
121 {
122 	u16 reg_idx = q_vector->reg_idx;
123 	struct ice_pf *pf = vsi->back;
124 	struct ice_hw *hw = &pf->hw;
125 	struct ice_tx_ring *tx_ring;
126 	struct ice_rx_ring *rx_ring;
127 
128 	ice_cfg_itr(hw, q_vector);
129 
130 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
131 		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
132 				      q_vector->tx.itr_idx);
133 
134 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
135 		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
136 				      q_vector->rx.itr_idx);
137 
138 	ice_flush(hw);
139 }
140 
141 /**
142  * ice_qvec_ena_irq - Enable IRQ for given queue vector
143  * @vsi: the VSI that contains queue vector
144  * @q_vector: queue vector
145  */
146 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
147 {
148 	struct ice_pf *pf = vsi->back;
149 	struct ice_hw *hw = &pf->hw;
150 
151 	ice_irq_dynamic_ena(hw, vsi, q_vector);
152 
153 	ice_flush(hw);
154 }
155 
156 /**
157  * ice_qp_dis - Disables a queue pair
158  * @vsi: VSI of interest
159  * @q_idx: ring index in array
160  *
161  * Returns 0 on success, negative on failure.
162  */
163 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
164 {
165 	struct ice_txq_meta txq_meta = { };
166 	struct ice_q_vector *q_vector;
167 	struct ice_tx_ring *tx_ring;
168 	struct ice_rx_ring *rx_ring;
169 	int timeout = 50;
170 	int err;
171 
172 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
173 		return -EINVAL;
174 
175 	tx_ring = vsi->tx_rings[q_idx];
176 	rx_ring = vsi->rx_rings[q_idx];
177 	q_vector = rx_ring->q_vector;
178 
179 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
180 		timeout--;
181 		if (!timeout)
182 			return -EBUSY;
183 		usleep_range(1000, 2000);
184 	}
185 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
186 
187 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
188 
189 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
190 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
191 	if (err)
192 		return err;
193 	if (ice_is_xdp_ena_vsi(vsi)) {
194 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
195 
196 		memset(&txq_meta, 0, sizeof(txq_meta));
197 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
198 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
199 					   &txq_meta);
200 		if (err)
201 			return err;
202 	}
203 	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
204 	if (err)
205 		return err;
206 	ice_clean_rx_ring(rx_ring);
207 
208 	ice_qvec_toggle_napi(vsi, q_vector, false);
209 	ice_qp_clean_rings(vsi, q_idx);
210 	ice_qp_reset_stats(vsi, q_idx);
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_qp_ena - Enables a queue pair
217  * @vsi: VSI of interest
218  * @q_idx: ring index in array
219  *
220  * Returns 0 on success, negative on failure.
221  */
222 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
223 {
224 	struct ice_aqc_add_tx_qgrp *qg_buf;
225 	struct ice_q_vector *q_vector;
226 	struct ice_tx_ring *tx_ring;
227 	struct ice_rx_ring *rx_ring;
228 	u16 size;
229 	int err;
230 
231 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
232 		return -EINVAL;
233 
234 	size = struct_size(qg_buf, txqs, 1);
235 	qg_buf = kzalloc(size, GFP_KERNEL);
236 	if (!qg_buf)
237 		return -ENOMEM;
238 
239 	qg_buf->num_txqs = 1;
240 
241 	tx_ring = vsi->tx_rings[q_idx];
242 	rx_ring = vsi->rx_rings[q_idx];
243 	q_vector = rx_ring->q_vector;
244 
245 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
246 	if (err)
247 		goto free_buf;
248 
249 	if (ice_is_xdp_ena_vsi(vsi)) {
250 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
251 
252 		memset(qg_buf, 0, size);
253 		qg_buf->num_txqs = 1;
254 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
255 		if (err)
256 			goto free_buf;
257 		ice_set_ring_xdp(xdp_ring);
258 		ice_tx_xsk_pool(vsi, q_idx);
259 	}
260 
261 	err = ice_vsi_cfg_rxq(rx_ring);
262 	if (err)
263 		goto free_buf;
264 
265 	ice_qvec_cfg_msix(vsi, q_vector);
266 
267 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
268 	if (err)
269 		goto free_buf;
270 
271 	clear_bit(ICE_CFG_BUSY, vsi->state);
272 	ice_qvec_toggle_napi(vsi, q_vector, true);
273 	ice_qvec_ena_irq(vsi, q_vector);
274 
275 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
276 free_buf:
277 	kfree(qg_buf);
278 	return err;
279 }
280 
281 /**
282  * ice_xsk_pool_disable - disable a buffer pool region
283  * @vsi: Current VSI
284  * @qid: queue ID
285  *
286  * Returns 0 on success, negative on failure
287  */
288 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
289 {
290 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
291 
292 	if (!pool)
293 		return -EINVAL;
294 
295 	clear_bit(qid, vsi->af_xdp_zc_qps);
296 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
297 
298 	return 0;
299 }
300 
301 /**
302  * ice_xsk_pool_enable - enable a buffer pool region
303  * @vsi: Current VSI
304  * @pool: pointer to a requested buffer pool region
305  * @qid: queue ID
306  *
307  * Returns 0 on success, negative on failure
308  */
309 static int
310 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
311 {
312 	int err;
313 
314 	if (vsi->type != ICE_VSI_PF)
315 		return -EINVAL;
316 
317 	if (qid >= vsi->netdev->real_num_rx_queues ||
318 	    qid >= vsi->netdev->real_num_tx_queues)
319 		return -EINVAL;
320 
321 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
322 			       ICE_RX_DMA_ATTR);
323 	if (err)
324 		return err;
325 
326 	set_bit(qid, vsi->af_xdp_zc_qps);
327 
328 	return 0;
329 }
330 
331 /**
332  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
333  * @rx_ring: Rx ring
334  * @pool_present: is pool for XSK present
335  *
336  * Try allocating memory and return ENOMEM, if failed to allocate.
337  * If allocation was successful, substitute buffer with allocated one.
338  * Returns 0 on success, negative on failure
339  */
340 static int
341 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
342 {
343 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
344 					  sizeof(*rx_ring->rx_buf);
345 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
346 
347 	if (!sw_ring)
348 		return -ENOMEM;
349 
350 	if (pool_present) {
351 		kfree(rx_ring->rx_buf);
352 		rx_ring->rx_buf = NULL;
353 		rx_ring->xdp_buf = sw_ring;
354 	} else {
355 		kfree(rx_ring->xdp_buf);
356 		rx_ring->xdp_buf = NULL;
357 		rx_ring->rx_buf = sw_ring;
358 	}
359 
360 	return 0;
361 }
362 
363 /**
364  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
365  * @vsi: Current VSI
366  * @zc: is zero copy set
367  *
368  * Reallocate buffer for rx_rings that might be used by XSK.
369  * XDP requires more memory, than rx_buf provides.
370  * Returns 0 on success, negative on failure
371  */
372 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
373 {
374 	struct ice_rx_ring *rx_ring;
375 	unsigned long q;
376 
377 	for_each_set_bit(q, vsi->af_xdp_zc_qps,
378 			 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) {
379 		rx_ring = vsi->rx_rings[q];
380 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
381 			return -ENOMEM;
382 	}
383 
384 	return 0;
385 }
386 
387 /**
388  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
389  * @vsi: Current VSI
390  * @pool: buffer pool to enable/associate to a ring, NULL to disable
391  * @qid: queue ID
392  *
393  * Returns 0 on success, negative on failure
394  */
395 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
396 {
397 	bool if_running, pool_present = !!pool;
398 	int ret = 0, pool_failure = 0;
399 
400 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
401 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
402 		pool_failure = -EINVAL;
403 		goto failure;
404 	}
405 
406 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
407 
408 	if (if_running) {
409 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
410 
411 		ret = ice_qp_dis(vsi, qid);
412 		if (ret) {
413 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
414 			goto xsk_pool_if_up;
415 		}
416 
417 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
418 		if (ret)
419 			goto xsk_pool_if_up;
420 	}
421 
422 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
423 				      ice_xsk_pool_disable(vsi, qid);
424 
425 xsk_pool_if_up:
426 	if (if_running) {
427 		ret = ice_qp_ena(vsi, qid);
428 		if (!ret && pool_present)
429 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
430 		else if (ret)
431 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
432 	}
433 
434 failure:
435 	if (pool_failure) {
436 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
437 			   pool_present ? "en" : "dis", pool_failure);
438 		return pool_failure;
439 	}
440 
441 	return ret;
442 }
443 
444 /**
445  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
446  * @pool: XSK Buffer pool to pull the buffers from
447  * @xdp: SW ring of xdp_buff that will hold the buffers
448  * @rx_desc: Pointer to Rx descriptors that will be filled
449  * @count: The number of buffers to allocate
450  *
451  * This function allocates a number of Rx buffers from the fill ring
452  * or the internal recycle mechanism and places them on the Rx ring.
453  *
454  * Note that ring wrap should be handled by caller of this function.
455  *
456  * Returns the amount of allocated Rx descriptors
457  */
458 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
459 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
460 {
461 	dma_addr_t dma;
462 	u16 buffs;
463 	int i;
464 
465 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
466 	for (i = 0; i < buffs; i++) {
467 		dma = xsk_buff_xdp_get_dma(*xdp);
468 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
469 		rx_desc->wb.status_error0 = 0;
470 
471 		rx_desc++;
472 		xdp++;
473 	}
474 
475 	return buffs;
476 }
477 
478 /**
479  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
480  * @rx_ring: Rx ring
481  * @count: The number of buffers to allocate
482  *
483  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
484  * for case where space from next_to_use up to the end of ring is less
485  * than @count. Finally do a tail bump.
486  *
487  * Returns true if all allocations were successful, false if any fail.
488  */
489 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
490 {
491 	u32 nb_buffs_extra = 0, nb_buffs = 0;
492 	union ice_32b_rx_flex_desc *rx_desc;
493 	u16 ntu = rx_ring->next_to_use;
494 	u16 total_count = count;
495 	struct xdp_buff **xdp;
496 
497 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
498 	xdp = ice_xdp_buf(rx_ring, ntu);
499 
500 	if (ntu + count >= rx_ring->count) {
501 		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
502 						   rx_desc,
503 						   rx_ring->count - ntu);
504 		if (nb_buffs_extra != rx_ring->count - ntu) {
505 			ntu += nb_buffs_extra;
506 			goto exit;
507 		}
508 		rx_desc = ICE_RX_DESC(rx_ring, 0);
509 		xdp = ice_xdp_buf(rx_ring, 0);
510 		ntu = 0;
511 		count -= nb_buffs_extra;
512 		ice_release_rx_desc(rx_ring, 0);
513 	}
514 
515 	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
516 
517 	ntu += nb_buffs;
518 	if (ntu == rx_ring->count)
519 		ntu = 0;
520 
521 exit:
522 	if (rx_ring->next_to_use != ntu)
523 		ice_release_rx_desc(rx_ring, ntu);
524 
525 	return total_count == (nb_buffs_extra + nb_buffs);
526 }
527 
528 /**
529  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
530  * @rx_ring: Rx ring
531  * @count: The number of buffers to allocate
532  *
533  * Wrapper for internal allocation routine; figure out how many tail
534  * bumps should take place based on the given threshold
535  *
536  * Returns true if all calls to internal alloc routine succeeded
537  */
538 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
539 {
540 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
541 	u16 leftover, i, tail_bumps;
542 
543 	tail_bumps = count / rx_thresh;
544 	leftover = count - (tail_bumps * rx_thresh);
545 
546 	for (i = 0; i < tail_bumps; i++)
547 		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
548 			return false;
549 	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
550 }
551 
552 /**
553  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
554  * @rx_ring: Rx ring
555  */
556 static void ice_bump_ntc(struct ice_rx_ring *rx_ring)
557 {
558 	int ntc = rx_ring->next_to_clean + 1;
559 
560 	ntc = (ntc < rx_ring->count) ? ntc : 0;
561 	rx_ring->next_to_clean = ntc;
562 	prefetch(ICE_RX_DESC(rx_ring, ntc));
563 }
564 
565 /**
566  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
567  * @rx_ring: Rx ring
568  * @xdp: Pointer to XDP buffer
569  *
570  * This function allocates a new skb from a zero-copy Rx buffer.
571  *
572  * Returns the skb on success, NULL on failure.
573  */
574 static struct sk_buff *
575 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
576 {
577 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
578 	unsigned int metasize = xdp->data - xdp->data_meta;
579 	struct sk_buff *skb;
580 
581 	net_prefetch(xdp->data_meta);
582 
583 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
584 			       GFP_ATOMIC | __GFP_NOWARN);
585 	if (unlikely(!skb))
586 		return NULL;
587 
588 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
589 	       ALIGN(totalsize, sizeof(long)));
590 
591 	if (metasize) {
592 		skb_metadata_set(skb, metasize);
593 		__skb_pull(skb, metasize);
594 	}
595 
596 	xsk_buff_free(xdp);
597 	return skb;
598 }
599 
600 /**
601  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
602  * @rx_ring: Rx ring
603  * @xdp: xdp_buff used as input to the XDP program
604  * @xdp_prog: XDP program to run
605  * @xdp_ring: ring to be used for XDP_TX action
606  *
607  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
608  */
609 static int
610 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
611 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
612 {
613 	int err, result = ICE_XDP_PASS;
614 	u32 act;
615 
616 	act = bpf_prog_run_xdp(xdp_prog, xdp);
617 
618 	if (likely(act == XDP_REDIRECT)) {
619 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
620 		if (!err)
621 			return ICE_XDP_REDIR;
622 		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
623 			result = ICE_XDP_EXIT;
624 		else
625 			result = ICE_XDP_CONSUMED;
626 		goto out_failure;
627 	}
628 
629 	switch (act) {
630 	case XDP_PASS:
631 		break;
632 	case XDP_TX:
633 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
634 		if (result == ICE_XDP_CONSUMED)
635 			goto out_failure;
636 		break;
637 	case XDP_DROP:
638 		result = ICE_XDP_CONSUMED;
639 		break;
640 	default:
641 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
642 		fallthrough;
643 	case XDP_ABORTED:
644 		result = ICE_XDP_CONSUMED;
645 out_failure:
646 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
647 		break;
648 	}
649 
650 	return result;
651 }
652 
653 /**
654  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
655  * @rx_ring: AF_XDP Rx ring
656  * @budget: NAPI budget
657  *
658  * Returns number of processed packets on success, remaining budget on failure.
659  */
660 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
661 {
662 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
663 	struct ice_tx_ring *xdp_ring;
664 	unsigned int xdp_xmit = 0;
665 	struct bpf_prog *xdp_prog;
666 	bool failure = false;
667 	int entries_to_alloc;
668 
669 	/* ZC patch is enabled only when XDP program is set,
670 	 * so here it can not be NULL
671 	 */
672 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
673 	xdp_ring = rx_ring->xdp_ring;
674 
675 	while (likely(total_rx_packets < (unsigned int)budget)) {
676 		union ice_32b_rx_flex_desc *rx_desc;
677 		unsigned int size, xdp_res = 0;
678 		struct xdp_buff *xdp;
679 		struct sk_buff *skb;
680 		u16 stat_err_bits;
681 		u16 vlan_tag = 0;
682 		u16 rx_ptype;
683 
684 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
685 
686 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
687 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
688 			break;
689 
690 		/* This memory barrier is needed to keep us from reading
691 		 * any other fields out of the rx_desc until we have
692 		 * verified the descriptor has been written back.
693 		 */
694 		dma_rmb();
695 
696 		if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use))
697 			break;
698 
699 		xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean);
700 
701 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
702 				   ICE_RX_FLX_DESC_PKT_LEN_M;
703 		if (!size) {
704 			xdp->data = NULL;
705 			xdp->data_end = NULL;
706 			xdp->data_hard_start = NULL;
707 			xdp->data_meta = NULL;
708 			goto construct_skb;
709 		}
710 
711 		xsk_buff_set_size(xdp, size);
712 		xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool);
713 
714 		xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring);
715 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
716 			xdp_xmit |= xdp_res;
717 		} else if (xdp_res == ICE_XDP_EXIT) {
718 			failure = true;
719 			break;
720 		} else if (xdp_res == ICE_XDP_CONSUMED) {
721 			xsk_buff_free(xdp);
722 		} else if (xdp_res == ICE_XDP_PASS) {
723 			goto construct_skb;
724 		}
725 
726 		total_rx_bytes += size;
727 		total_rx_packets++;
728 
729 		ice_bump_ntc(rx_ring);
730 		continue;
731 
732 construct_skb:
733 		/* XDP_PASS path */
734 		skb = ice_construct_skb_zc(rx_ring, xdp);
735 		if (!skb) {
736 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
737 			break;
738 		}
739 
740 		ice_bump_ntc(rx_ring);
741 
742 		if (eth_skb_pad(skb)) {
743 			skb = NULL;
744 			continue;
745 		}
746 
747 		total_rx_bytes += skb->len;
748 		total_rx_packets++;
749 
750 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
751 
752 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
753 				       ICE_RX_FLEX_DESC_PTYPE_M;
754 
755 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
756 		ice_receive_skb(rx_ring, skb, vlan_tag);
757 	}
758 
759 	entries_to_alloc = ICE_DESC_UNUSED(rx_ring);
760 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
761 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
762 
763 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
764 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
765 
766 	if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) {
767 		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
768 			xsk_set_rx_need_wakeup(rx_ring->xsk_pool);
769 		else
770 			xsk_clear_rx_need_wakeup(rx_ring->xsk_pool);
771 
772 		return (int)total_rx_packets;
773 	}
774 
775 	return failure ? budget : (int)total_rx_packets;
776 }
777 
778 /**
779  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
780  * @xdp_ring: XDP Tx ring
781  * @tx_buf: Tx buffer to clean
782  */
783 static void
784 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
785 {
786 	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
787 	xdp_ring->xdp_tx_active--;
788 	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
789 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
790 	dma_unmap_len_set(tx_buf, len, 0);
791 }
792 
793 /**
794  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
795  * @xdp_ring: XDP Tx ring
796  */
797 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
798 {
799 	u16 ntc = xdp_ring->next_to_clean;
800 	struct ice_tx_desc *tx_desc;
801 	u16 cnt = xdp_ring->count;
802 	struct ice_tx_buf *tx_buf;
803 	u16 xsk_frames = 0;
804 	u16 last_rs;
805 	int i;
806 
807 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
808 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
809 	if ((tx_desc->cmd_type_offset_bsz &
810 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
811 		if (last_rs >= ntc)
812 			xsk_frames = last_rs - ntc + 1;
813 		else
814 			xsk_frames = last_rs + cnt - ntc + 1;
815 	}
816 
817 	if (!xsk_frames)
818 		return;
819 
820 	if (likely(!xdp_ring->xdp_tx_active))
821 		goto skip;
822 
823 	ntc = xdp_ring->next_to_clean;
824 	for (i = 0; i < xsk_frames; i++) {
825 		tx_buf = &xdp_ring->tx_buf[ntc];
826 
827 		if (tx_buf->raw_buf) {
828 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
829 			tx_buf->raw_buf = NULL;
830 		} else {
831 			xsk_frames++;
832 		}
833 
834 		ntc++;
835 		if (ntc >= xdp_ring->count)
836 			ntc = 0;
837 	}
838 skip:
839 	tx_desc->cmd_type_offset_bsz = 0;
840 	xdp_ring->next_to_clean += xsk_frames;
841 	if (xdp_ring->next_to_clean >= cnt)
842 		xdp_ring->next_to_clean -= cnt;
843 	if (xsk_frames)
844 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
845 }
846 
847 /**
848  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
849  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
850  * @desc: AF_XDP descriptor to pull the DMA address and length from
851  * @total_bytes: bytes accumulator that will be used for stats update
852  */
853 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
854 			 unsigned int *total_bytes)
855 {
856 	struct ice_tx_desc *tx_desc;
857 	dma_addr_t dma;
858 
859 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
860 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
861 
862 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
863 	tx_desc->buf_addr = cpu_to_le64(dma);
864 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
865 						      0, desc->len, 0);
866 
867 	*total_bytes += desc->len;
868 }
869 
870 /**
871  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
872  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
873  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
874  * @total_bytes: bytes accumulator that will be used for stats update
875  */
876 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
877 			       unsigned int *total_bytes)
878 {
879 	u16 ntu = xdp_ring->next_to_use;
880 	struct ice_tx_desc *tx_desc;
881 	u32 i;
882 
883 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
884 		dma_addr_t dma;
885 
886 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
887 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
888 
889 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
890 		tx_desc->buf_addr = cpu_to_le64(dma);
891 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP,
892 							      0, descs[i].len, 0);
893 
894 		*total_bytes += descs[i].len;
895 	}
896 
897 	xdp_ring->next_to_use = ntu;
898 }
899 
900 /**
901  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
902  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
903  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
904  * @nb_pkts: count of packets to be send
905  * @total_bytes: bytes accumulator that will be used for stats update
906  */
907 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
908 				u32 nb_pkts, unsigned int *total_bytes)
909 {
910 	u32 batched, leftover, i;
911 
912 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
913 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
914 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
915 		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
916 	for (; i < batched + leftover; i++)
917 		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
918 }
919 
920 /**
921  * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU)
922  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
923  */
924 static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring)
925 {
926 	u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1;
927 	struct ice_tx_desc *tx_desc;
928 
929 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
930 	tx_desc->cmd_type_offset_bsz |=
931 		cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S);
932 }
933 
934 /**
935  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
936  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
937  *
938  * Returns true if there is no more work that needs to be done, false otherwise
939  */
940 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
941 {
942 	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
943 	u32 nb_pkts, nb_processed = 0;
944 	unsigned int total_bytes = 0;
945 	int budget;
946 
947 	ice_clean_xdp_irq_zc(xdp_ring);
948 
949 	budget = ICE_DESC_UNUSED(xdp_ring);
950 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
951 
952 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
953 	if (!nb_pkts)
954 		return true;
955 
956 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
957 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
958 		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
959 		xdp_ring->next_to_use = 0;
960 	}
961 
962 	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
963 			    &total_bytes);
964 
965 	ice_set_rs_bit(xdp_ring);
966 	ice_xdp_ring_update_tail(xdp_ring);
967 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
968 
969 	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
970 		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
971 
972 	return nb_pkts < budget;
973 }
974 
975 /**
976  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
977  * @netdev: net_device
978  * @queue_id: queue to wake up
979  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
980  *
981  * Returns negative on error, zero otherwise.
982  */
983 int
984 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
985 	       u32 __always_unused flags)
986 {
987 	struct ice_netdev_priv *np = netdev_priv(netdev);
988 	struct ice_q_vector *q_vector;
989 	struct ice_vsi *vsi = np->vsi;
990 	struct ice_tx_ring *ring;
991 
992 	if (test_bit(ICE_VSI_DOWN, vsi->state))
993 		return -ENETDOWN;
994 
995 	if (!ice_is_xdp_ena_vsi(vsi))
996 		return -EINVAL;
997 
998 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
999 		return -EINVAL;
1000 
1001 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1002 
1003 	if (!ring->xsk_pool)
1004 		return -EINVAL;
1005 
1006 	/* The idea here is that if NAPI is running, mark a miss, so
1007 	 * it will run again. If not, trigger an interrupt and
1008 	 * schedule the NAPI from interrupt context. If NAPI would be
1009 	 * scheduled here, the interrupt affinity would not be
1010 	 * honored.
1011 	 */
1012 	q_vector = ring->q_vector;
1013 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1014 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1015 
1016 	return 0;
1017 }
1018 
1019 /**
1020  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1021  * @vsi: VSI to be checked
1022  *
1023  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1024  */
1025 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1026 {
1027 	int i;
1028 
1029 	ice_for_each_rxq(vsi, i) {
1030 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1031 			return true;
1032 	}
1033 
1034 	return false;
1035 }
1036 
1037 /**
1038  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1039  * @rx_ring: ring to be cleaned
1040  */
1041 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1042 {
1043 	u16 ntc = rx_ring->next_to_clean;
1044 	u16 ntu = rx_ring->next_to_use;
1045 
1046 	while (ntc != ntu) {
1047 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1048 
1049 		xsk_buff_free(xdp);
1050 		ntc++;
1051 		if (ntc >= rx_ring->count)
1052 			ntc = 0;
1053 	}
1054 }
1055 
1056 /**
1057  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1058  * @xdp_ring: XDP_Tx ring
1059  */
1060 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1061 {
1062 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1063 	u32 xsk_frames = 0;
1064 
1065 	while (ntc != ntu) {
1066 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1067 
1068 		if (tx_buf->raw_buf)
1069 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1070 		else
1071 			xsk_frames++;
1072 
1073 		tx_buf->raw_buf = NULL;
1074 
1075 		ntc++;
1076 		if (ntc >= xdp_ring->count)
1077 			ntc = 0;
1078 	}
1079 
1080 	if (xsk_frames)
1081 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1082 }
1083