1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) { 45 synchronize_rcu(); 46 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 47 } 48 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 49 } 50 51 /** 52 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 53 * @vsi: VSI that has netdev 54 * @q_vector: q_vector that has NAPI context 55 * @enable: true for enable, false for disable 56 */ 57 static void 58 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 59 bool enable) 60 { 61 if (!vsi->netdev || !q_vector) 62 return; 63 64 if (enable) 65 napi_enable(&q_vector->napi); 66 else 67 napi_disable(&q_vector->napi); 68 } 69 70 /** 71 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 72 * @vsi: the VSI that contains queue vector being un-configured 73 * @rx_ring: Rx ring that will have its IRQ disabled 74 * @q_vector: queue vector 75 */ 76 static void 77 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 78 struct ice_q_vector *q_vector) 79 { 80 struct ice_pf *pf = vsi->back; 81 struct ice_hw *hw = &pf->hw; 82 int base = vsi->base_vector; 83 u16 reg; 84 u32 val; 85 86 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 87 * here only QINT_RQCTL 88 */ 89 reg = rx_ring->reg_idx; 90 val = rd32(hw, QINT_RQCTL(reg)); 91 val &= ~QINT_RQCTL_CAUSE_ENA_M; 92 wr32(hw, QINT_RQCTL(reg), val); 93 94 if (q_vector) { 95 u16 v_idx = q_vector->v_idx; 96 97 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 98 ice_flush(hw); 99 synchronize_irq(pf->msix_entries[v_idx + base].vector); 100 } 101 } 102 103 /** 104 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 105 * @vsi: the VSI that contains queue vector 106 * @q_vector: queue vector 107 */ 108 static void 109 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 110 { 111 u16 reg_idx = q_vector->reg_idx; 112 struct ice_pf *pf = vsi->back; 113 struct ice_hw *hw = &pf->hw; 114 struct ice_tx_ring *tx_ring; 115 struct ice_rx_ring *rx_ring; 116 117 ice_cfg_itr(hw, q_vector); 118 119 ice_for_each_tx_ring(tx_ring, q_vector->tx) 120 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 121 q_vector->tx.itr_idx); 122 123 ice_for_each_rx_ring(rx_ring, q_vector->rx) 124 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 125 q_vector->rx.itr_idx); 126 127 ice_flush(hw); 128 } 129 130 /** 131 * ice_qvec_ena_irq - Enable IRQ for given queue vector 132 * @vsi: the VSI that contains queue vector 133 * @q_vector: queue vector 134 */ 135 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 136 { 137 struct ice_pf *pf = vsi->back; 138 struct ice_hw *hw = &pf->hw; 139 140 ice_irq_dynamic_ena(hw, vsi, q_vector); 141 142 ice_flush(hw); 143 } 144 145 /** 146 * ice_qp_dis - Disables a queue pair 147 * @vsi: VSI of interest 148 * @q_idx: ring index in array 149 * 150 * Returns 0 on success, negative on failure. 151 */ 152 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 153 { 154 struct ice_txq_meta txq_meta = { }; 155 struct ice_q_vector *q_vector; 156 struct ice_tx_ring *tx_ring; 157 struct ice_rx_ring *rx_ring; 158 int timeout = 50; 159 int err; 160 161 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 162 return -EINVAL; 163 164 tx_ring = vsi->tx_rings[q_idx]; 165 rx_ring = vsi->rx_rings[q_idx]; 166 q_vector = rx_ring->q_vector; 167 168 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 169 timeout--; 170 if (!timeout) 171 return -EBUSY; 172 usleep_range(1000, 2000); 173 } 174 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 175 176 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 177 178 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 179 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 180 if (err) 181 return err; 182 if (ice_is_xdp_ena_vsi(vsi)) { 183 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 184 185 memset(&txq_meta, 0, sizeof(txq_meta)); 186 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 187 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 188 &txq_meta); 189 if (err) 190 return err; 191 } 192 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 193 if (err) 194 return err; 195 ice_clean_rx_ring(rx_ring); 196 197 ice_qvec_toggle_napi(vsi, q_vector, false); 198 ice_qp_clean_rings(vsi, q_idx); 199 ice_qp_reset_stats(vsi, q_idx); 200 201 return 0; 202 } 203 204 /** 205 * ice_qp_ena - Enables a queue pair 206 * @vsi: VSI of interest 207 * @q_idx: ring index in array 208 * 209 * Returns 0 on success, negative on failure. 210 */ 211 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 212 { 213 struct ice_aqc_add_tx_qgrp *qg_buf; 214 struct ice_q_vector *q_vector; 215 struct ice_tx_ring *tx_ring; 216 struct ice_rx_ring *rx_ring; 217 u16 size; 218 int err; 219 220 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 221 return -EINVAL; 222 223 size = struct_size(qg_buf, txqs, 1); 224 qg_buf = kzalloc(size, GFP_KERNEL); 225 if (!qg_buf) 226 return -ENOMEM; 227 228 qg_buf->num_txqs = 1; 229 230 tx_ring = vsi->tx_rings[q_idx]; 231 rx_ring = vsi->rx_rings[q_idx]; 232 q_vector = rx_ring->q_vector; 233 234 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 235 if (err) 236 goto free_buf; 237 238 if (ice_is_xdp_ena_vsi(vsi)) { 239 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 240 241 memset(qg_buf, 0, size); 242 qg_buf->num_txqs = 1; 243 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 244 if (err) 245 goto free_buf; 246 ice_set_ring_xdp(xdp_ring); 247 ice_tx_xsk_pool(vsi, q_idx); 248 } 249 250 err = ice_vsi_cfg_rxq(rx_ring); 251 if (err) 252 goto free_buf; 253 254 ice_qvec_cfg_msix(vsi, q_vector); 255 256 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 257 if (err) 258 goto free_buf; 259 260 clear_bit(ICE_CFG_BUSY, vsi->state); 261 ice_qvec_toggle_napi(vsi, q_vector, true); 262 ice_qvec_ena_irq(vsi, q_vector); 263 264 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 265 free_buf: 266 kfree(qg_buf); 267 return err; 268 } 269 270 /** 271 * ice_xsk_pool_disable - disable a buffer pool region 272 * @vsi: Current VSI 273 * @qid: queue ID 274 * 275 * Returns 0 on success, negative on failure 276 */ 277 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 278 { 279 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 280 281 if (!pool) 282 return -EINVAL; 283 284 clear_bit(qid, vsi->af_xdp_zc_qps); 285 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 286 287 return 0; 288 } 289 290 /** 291 * ice_xsk_pool_enable - enable a buffer pool region 292 * @vsi: Current VSI 293 * @pool: pointer to a requested buffer pool region 294 * @qid: queue ID 295 * 296 * Returns 0 on success, negative on failure 297 */ 298 static int 299 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 300 { 301 int err; 302 303 if (vsi->type != ICE_VSI_PF) 304 return -EINVAL; 305 306 if (qid >= vsi->netdev->real_num_rx_queues || 307 qid >= vsi->netdev->real_num_tx_queues) 308 return -EINVAL; 309 310 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 311 ICE_RX_DMA_ATTR); 312 if (err) 313 return err; 314 315 set_bit(qid, vsi->af_xdp_zc_qps); 316 317 return 0; 318 } 319 320 /** 321 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 322 * @rx_ring: Rx ring 323 * @pool_present: is pool for XSK present 324 * 325 * Try allocating memory and return ENOMEM, if failed to allocate. 326 * If allocation was successful, substitute buffer with allocated one. 327 * Returns 0 on success, negative on failure 328 */ 329 static int 330 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 331 { 332 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 333 sizeof(*rx_ring->rx_buf); 334 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 335 336 if (!sw_ring) 337 return -ENOMEM; 338 339 if (pool_present) { 340 kfree(rx_ring->rx_buf); 341 rx_ring->rx_buf = NULL; 342 rx_ring->xdp_buf = sw_ring; 343 } else { 344 kfree(rx_ring->xdp_buf); 345 rx_ring->xdp_buf = NULL; 346 rx_ring->rx_buf = sw_ring; 347 } 348 349 return 0; 350 } 351 352 /** 353 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 354 * @vsi: Current VSI 355 * @zc: is zero copy set 356 * 357 * Reallocate buffer for rx_rings that might be used by XSK. 358 * XDP requires more memory, than rx_buf provides. 359 * Returns 0 on success, negative on failure 360 */ 361 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 362 { 363 struct ice_rx_ring *rx_ring; 364 unsigned long q; 365 366 for_each_set_bit(q, vsi->af_xdp_zc_qps, 367 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 368 rx_ring = vsi->rx_rings[q]; 369 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 370 return -ENOMEM; 371 } 372 373 return 0; 374 } 375 376 /** 377 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 378 * @vsi: Current VSI 379 * @pool: buffer pool to enable/associate to a ring, NULL to disable 380 * @qid: queue ID 381 * 382 * Returns 0 on success, negative on failure 383 */ 384 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 385 { 386 bool if_running, pool_present = !!pool; 387 int ret = 0, pool_failure = 0; 388 389 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 390 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 391 pool_failure = -EINVAL; 392 goto failure; 393 } 394 395 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 396 397 if (if_running) { 398 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 399 400 ret = ice_qp_dis(vsi, qid); 401 if (ret) { 402 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 403 goto xsk_pool_if_up; 404 } 405 406 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 407 if (ret) 408 goto xsk_pool_if_up; 409 } 410 411 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 412 ice_xsk_pool_disable(vsi, qid); 413 414 xsk_pool_if_up: 415 if (if_running) { 416 ret = ice_qp_ena(vsi, qid); 417 if (!ret && pool_present) 418 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 419 else if (ret) 420 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 421 } 422 423 failure: 424 if (pool_failure) { 425 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 426 pool_present ? "en" : "dis", pool_failure); 427 return pool_failure; 428 } 429 430 return ret; 431 } 432 433 /** 434 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 435 * @pool: XSK Buffer pool to pull the buffers from 436 * @xdp: SW ring of xdp_buff that will hold the buffers 437 * @rx_desc: Pointer to Rx descriptors that will be filled 438 * @count: The number of buffers to allocate 439 * 440 * This function allocates a number of Rx buffers from the fill ring 441 * or the internal recycle mechanism and places them on the Rx ring. 442 * 443 * Note that ring wrap should be handled by caller of this function. 444 * 445 * Returns the amount of allocated Rx descriptors 446 */ 447 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 448 union ice_32b_rx_flex_desc *rx_desc, u16 count) 449 { 450 dma_addr_t dma; 451 u16 buffs; 452 int i; 453 454 buffs = xsk_buff_alloc_batch(pool, xdp, count); 455 for (i = 0; i < buffs; i++) { 456 dma = xsk_buff_xdp_get_dma(*xdp); 457 rx_desc->read.pkt_addr = cpu_to_le64(dma); 458 rx_desc->wb.status_error0 = 0; 459 460 rx_desc++; 461 xdp++; 462 } 463 464 return buffs; 465 } 466 467 /** 468 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 469 * @rx_ring: Rx ring 470 * @count: The number of buffers to allocate 471 * 472 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 473 * for case where space from next_to_use up to the end of ring is less 474 * than @count. Finally do a tail bump. 475 * 476 * Returns true if all allocations were successful, false if any fail. 477 */ 478 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 479 { 480 u32 nb_buffs_extra = 0, nb_buffs = 0; 481 union ice_32b_rx_flex_desc *rx_desc; 482 u16 ntu = rx_ring->next_to_use; 483 u16 total_count = count; 484 struct xdp_buff **xdp; 485 486 rx_desc = ICE_RX_DESC(rx_ring, ntu); 487 xdp = ice_xdp_buf(rx_ring, ntu); 488 489 if (ntu + count >= rx_ring->count) { 490 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 491 rx_desc, 492 rx_ring->count - ntu); 493 if (nb_buffs_extra != rx_ring->count - ntu) { 494 ntu += nb_buffs_extra; 495 goto exit; 496 } 497 rx_desc = ICE_RX_DESC(rx_ring, 0); 498 xdp = ice_xdp_buf(rx_ring, 0); 499 ntu = 0; 500 count -= nb_buffs_extra; 501 ice_release_rx_desc(rx_ring, 0); 502 } 503 504 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 505 506 ntu += nb_buffs; 507 if (ntu == rx_ring->count) 508 ntu = 0; 509 510 exit: 511 if (rx_ring->next_to_use != ntu) 512 ice_release_rx_desc(rx_ring, ntu); 513 514 return total_count == (nb_buffs_extra + nb_buffs); 515 } 516 517 /** 518 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 519 * @rx_ring: Rx ring 520 * @count: The number of buffers to allocate 521 * 522 * Wrapper for internal allocation routine; figure out how many tail 523 * bumps should take place based on the given threshold 524 * 525 * Returns true if all calls to internal alloc routine succeeded 526 */ 527 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 528 { 529 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 530 u16 leftover, i, tail_bumps; 531 532 tail_bumps = count / rx_thresh; 533 leftover = count - (tail_bumps * rx_thresh); 534 535 for (i = 0; i < tail_bumps; i++) 536 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 537 return false; 538 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 539 } 540 541 /** 542 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 543 * @rx_ring: Rx ring 544 */ 545 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 546 { 547 int ntc = rx_ring->next_to_clean + 1; 548 549 ntc = (ntc < rx_ring->count) ? ntc : 0; 550 rx_ring->next_to_clean = ntc; 551 prefetch(ICE_RX_DESC(rx_ring, ntc)); 552 } 553 554 /** 555 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 556 * @rx_ring: Rx ring 557 * @xdp: Pointer to XDP buffer 558 * 559 * This function allocates a new skb from a zero-copy Rx buffer. 560 * 561 * Returns the skb on success, NULL on failure. 562 */ 563 static struct sk_buff * 564 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 565 { 566 unsigned int totalsize = xdp->data_end - xdp->data_meta; 567 unsigned int metasize = xdp->data - xdp->data_meta; 568 struct sk_buff *skb; 569 570 net_prefetch(xdp->data_meta); 571 572 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 573 GFP_ATOMIC | __GFP_NOWARN); 574 if (unlikely(!skb)) 575 return NULL; 576 577 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 578 ALIGN(totalsize, sizeof(long))); 579 580 if (metasize) { 581 skb_metadata_set(skb, metasize); 582 __skb_pull(skb, metasize); 583 } 584 585 xsk_buff_free(xdp); 586 return skb; 587 } 588 589 /** 590 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 591 * @rx_ring: Rx ring 592 * @xdp: xdp_buff used as input to the XDP program 593 * @xdp_prog: XDP program to run 594 * @xdp_ring: ring to be used for XDP_TX action 595 * 596 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 597 */ 598 static int 599 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 600 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 601 { 602 int err, result = ICE_XDP_PASS; 603 u32 act; 604 605 act = bpf_prog_run_xdp(xdp_prog, xdp); 606 607 if (likely(act == XDP_REDIRECT)) { 608 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 609 if (!err) 610 return ICE_XDP_REDIR; 611 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 612 result = ICE_XDP_EXIT; 613 else 614 result = ICE_XDP_CONSUMED; 615 goto out_failure; 616 } 617 618 switch (act) { 619 case XDP_PASS: 620 break; 621 case XDP_TX: 622 result = ice_xmit_xdp_buff(xdp, xdp_ring); 623 if (result == ICE_XDP_CONSUMED) 624 goto out_failure; 625 break; 626 case XDP_DROP: 627 result = ICE_XDP_CONSUMED; 628 break; 629 default: 630 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 631 fallthrough; 632 case XDP_ABORTED: 633 result = ICE_XDP_CONSUMED; 634 out_failure: 635 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 636 break; 637 } 638 639 return result; 640 } 641 642 /** 643 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 644 * @rx_ring: AF_XDP Rx ring 645 * @budget: NAPI budget 646 * 647 * Returns number of processed packets on success, remaining budget on failure. 648 */ 649 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 650 { 651 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 652 struct ice_tx_ring *xdp_ring; 653 unsigned int xdp_xmit = 0; 654 struct bpf_prog *xdp_prog; 655 bool failure = false; 656 int entries_to_alloc; 657 658 /* ZC patch is enabled only when XDP program is set, 659 * so here it can not be NULL 660 */ 661 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 662 xdp_ring = rx_ring->xdp_ring; 663 664 while (likely(total_rx_packets < (unsigned int)budget)) { 665 union ice_32b_rx_flex_desc *rx_desc; 666 unsigned int size, xdp_res = 0; 667 struct xdp_buff *xdp; 668 struct sk_buff *skb; 669 u16 stat_err_bits; 670 u16 vlan_tag = 0; 671 u16 rx_ptype; 672 673 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 674 675 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 676 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 677 break; 678 679 /* This memory barrier is needed to keep us from reading 680 * any other fields out of the rx_desc until we have 681 * verified the descriptor has been written back. 682 */ 683 dma_rmb(); 684 685 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 686 break; 687 688 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 689 690 size = le16_to_cpu(rx_desc->wb.pkt_len) & 691 ICE_RX_FLX_DESC_PKT_LEN_M; 692 if (!size) { 693 xdp->data = NULL; 694 xdp->data_end = NULL; 695 xdp->data_hard_start = NULL; 696 xdp->data_meta = NULL; 697 goto construct_skb; 698 } 699 700 xsk_buff_set_size(xdp, size); 701 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 702 703 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 704 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 705 xdp_xmit |= xdp_res; 706 } else if (xdp_res == ICE_XDP_EXIT) { 707 failure = true; 708 break; 709 } else if (xdp_res == ICE_XDP_CONSUMED) { 710 xsk_buff_free(xdp); 711 } else if (xdp_res == ICE_XDP_PASS) { 712 goto construct_skb; 713 } 714 715 total_rx_bytes += size; 716 total_rx_packets++; 717 718 ice_bump_ntc(rx_ring); 719 continue; 720 721 construct_skb: 722 /* XDP_PASS path */ 723 skb = ice_construct_skb_zc(rx_ring, xdp); 724 if (!skb) { 725 rx_ring->rx_stats.alloc_buf_failed++; 726 break; 727 } 728 729 ice_bump_ntc(rx_ring); 730 731 if (eth_skb_pad(skb)) { 732 skb = NULL; 733 continue; 734 } 735 736 total_rx_bytes += skb->len; 737 total_rx_packets++; 738 739 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 740 741 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 742 ICE_RX_FLEX_DESC_PTYPE_M; 743 744 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 745 ice_receive_skb(rx_ring, skb, vlan_tag); 746 } 747 748 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 749 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 750 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 751 752 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 753 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 754 755 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 756 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 757 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 758 else 759 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 760 761 return (int)total_rx_packets; 762 } 763 764 return failure ? budget : (int)total_rx_packets; 765 } 766 767 /** 768 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 769 * @xdp_ring: XDP Tx ring 770 * @tx_buf: Tx buffer to clean 771 */ 772 static void 773 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 774 { 775 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 776 xdp_ring->xdp_tx_active--; 777 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 778 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 779 dma_unmap_len_set(tx_buf, len, 0); 780 } 781 782 /** 783 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 784 * @xdp_ring: XDP Tx ring 785 */ 786 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 787 { 788 u16 ntc = xdp_ring->next_to_clean; 789 struct ice_tx_desc *tx_desc; 790 u16 cnt = xdp_ring->count; 791 struct ice_tx_buf *tx_buf; 792 u16 xsk_frames = 0; 793 u16 last_rs; 794 int i; 795 796 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 797 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 798 if ((tx_desc->cmd_type_offset_bsz & 799 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) { 800 if (last_rs >= ntc) 801 xsk_frames = last_rs - ntc + 1; 802 else 803 xsk_frames = last_rs + cnt - ntc + 1; 804 } 805 806 if (!xsk_frames) 807 return; 808 809 if (likely(!xdp_ring->xdp_tx_active)) 810 goto skip; 811 812 ntc = xdp_ring->next_to_clean; 813 for (i = 0; i < xsk_frames; i++) { 814 tx_buf = &xdp_ring->tx_buf[ntc]; 815 816 if (tx_buf->raw_buf) { 817 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 818 tx_buf->raw_buf = NULL; 819 } else { 820 xsk_frames++; 821 } 822 823 ntc++; 824 if (ntc >= xdp_ring->count) 825 ntc = 0; 826 } 827 skip: 828 tx_desc->cmd_type_offset_bsz = 0; 829 xdp_ring->next_to_clean += xsk_frames; 830 if (xdp_ring->next_to_clean >= cnt) 831 xdp_ring->next_to_clean -= cnt; 832 if (xsk_frames) 833 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 834 } 835 836 /** 837 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 838 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 839 * @desc: AF_XDP descriptor to pull the DMA address and length from 840 * @total_bytes: bytes accumulator that will be used for stats update 841 */ 842 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 843 unsigned int *total_bytes) 844 { 845 struct ice_tx_desc *tx_desc; 846 dma_addr_t dma; 847 848 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 849 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 850 851 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 852 tx_desc->buf_addr = cpu_to_le64(dma); 853 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 854 0, desc->len, 0); 855 856 *total_bytes += desc->len; 857 } 858 859 /** 860 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 861 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 862 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 863 * @total_bytes: bytes accumulator that will be used for stats update 864 */ 865 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 866 unsigned int *total_bytes) 867 { 868 u16 ntu = xdp_ring->next_to_use; 869 struct ice_tx_desc *tx_desc; 870 u32 i; 871 872 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 873 dma_addr_t dma; 874 875 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 876 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 877 878 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 879 tx_desc->buf_addr = cpu_to_le64(dma); 880 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 881 0, descs[i].len, 0); 882 883 *total_bytes += descs[i].len; 884 } 885 886 xdp_ring->next_to_use = ntu; 887 } 888 889 /** 890 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 891 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 892 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 893 * @nb_pkts: count of packets to be send 894 * @total_bytes: bytes accumulator that will be used for stats update 895 */ 896 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 897 u32 nb_pkts, unsigned int *total_bytes) 898 { 899 u32 batched, leftover, i; 900 901 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 902 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 903 for (i = 0; i < batched; i += PKTS_PER_BATCH) 904 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 905 for (; i < batched + leftover; i++) 906 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 907 } 908 909 /** 910 * ice_set_rs_bit - set RS bit on last produced descriptor (one behind current NTU) 911 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 912 */ 913 static void ice_set_rs_bit(struct ice_tx_ring *xdp_ring) 914 { 915 u16 ntu = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : xdp_ring->count - 1; 916 struct ice_tx_desc *tx_desc; 917 918 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 919 tx_desc->cmd_type_offset_bsz |= 920 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 921 } 922 923 /** 924 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 925 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 926 * 927 * Returns true if there is no more work that needs to be done, false otherwise 928 */ 929 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 930 { 931 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 932 u32 nb_pkts, nb_processed = 0; 933 unsigned int total_bytes = 0; 934 int budget; 935 936 ice_clean_xdp_irq_zc(xdp_ring); 937 938 budget = ICE_DESC_UNUSED(xdp_ring); 939 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 940 941 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 942 if (!nb_pkts) 943 return true; 944 945 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 946 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 947 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 948 xdp_ring->next_to_use = 0; 949 } 950 951 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 952 &total_bytes); 953 954 ice_set_rs_bit(xdp_ring); 955 ice_xdp_ring_update_tail(xdp_ring); 956 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 957 958 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 959 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 960 961 return nb_pkts < budget; 962 } 963 964 /** 965 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 966 * @netdev: net_device 967 * @queue_id: queue to wake up 968 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 969 * 970 * Returns negative on error, zero otherwise. 971 */ 972 int 973 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 974 u32 __always_unused flags) 975 { 976 struct ice_netdev_priv *np = netdev_priv(netdev); 977 struct ice_q_vector *q_vector; 978 struct ice_vsi *vsi = np->vsi; 979 struct ice_tx_ring *ring; 980 981 if (test_bit(ICE_VSI_DOWN, vsi->state)) 982 return -ENETDOWN; 983 984 if (!ice_is_xdp_ena_vsi(vsi)) 985 return -EINVAL; 986 987 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 988 return -EINVAL; 989 990 ring = vsi->rx_rings[queue_id]->xdp_ring; 991 992 if (!ring->xsk_pool) 993 return -EINVAL; 994 995 /* The idea here is that if NAPI is running, mark a miss, so 996 * it will run again. If not, trigger an interrupt and 997 * schedule the NAPI from interrupt context. If NAPI would be 998 * scheduled here, the interrupt affinity would not be 999 * honored. 1000 */ 1001 q_vector = ring->q_vector; 1002 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1003 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1004 1005 return 0; 1006 } 1007 1008 /** 1009 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1010 * @vsi: VSI to be checked 1011 * 1012 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1013 */ 1014 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1015 { 1016 int i; 1017 1018 ice_for_each_rxq(vsi, i) { 1019 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1020 return true; 1021 } 1022 1023 return false; 1024 } 1025 1026 /** 1027 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1028 * @rx_ring: ring to be cleaned 1029 */ 1030 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1031 { 1032 u16 ntc = rx_ring->next_to_clean; 1033 u16 ntu = rx_ring->next_to_use; 1034 1035 while (ntc != ntu) { 1036 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1037 1038 xsk_buff_free(xdp); 1039 ntc++; 1040 if (ntc >= rx_ring->count) 1041 ntc = 0; 1042 } 1043 } 1044 1045 /** 1046 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1047 * @xdp_ring: XDP_Tx ring 1048 */ 1049 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1050 { 1051 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1052 u32 xsk_frames = 0; 1053 1054 while (ntc != ntu) { 1055 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1056 1057 if (tx_buf->raw_buf) 1058 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 1059 else 1060 xsk_frames++; 1061 1062 tx_buf->raw_buf = NULL; 1063 1064 ntc++; 1065 if (ntc >= xdp_ring->count) 1066 ntc = 0; 1067 } 1068 1069 if (xsk_frames) 1070 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1071 } 1072