1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 	return &rx_ring->xdp_buf[idx];
18 }
19 
20 /**
21  * ice_qp_reset_stats - Resets all stats for rings of given index
22  * @vsi: VSI that contains rings of interest
23  * @q_idx: ring index in array
24  */
25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 	struct ice_vsi_stats *vsi_stat;
28 	struct ice_pf *pf;
29 
30 	pf = vsi->back;
31 	if (!pf->vsi_stats)
32 		return;
33 
34 	vsi_stat = pf->vsi_stats[vsi->idx];
35 	if (!vsi_stat)
36 		return;
37 
38 	memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 	       sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 	memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 	       sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 	if (ice_is_xdp_ena_vsi(vsi))
43 		memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 		       sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46 
47 /**
48  * ice_qp_clean_rings - Cleans all the rings of a given index
49  * @vsi: VSI that contains rings of interest
50  * @q_idx: ring index in array
51  */
52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 	if (ice_is_xdp_ena_vsi(vsi))
56 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58 }
59 
60 /**
61  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62  * @vsi: VSI that has netdev
63  * @q_vector: q_vector that has NAPI context
64  * @enable: true for enable, false for disable
65  */
66 static void
67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 		     bool enable)
69 {
70 	if (!vsi->netdev || !q_vector)
71 		return;
72 
73 	if (enable)
74 		napi_enable(&q_vector->napi);
75 	else
76 		napi_disable(&q_vector->napi);
77 }
78 
79 /**
80  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81  * @vsi: the VSI that contains queue vector being un-configured
82  * @rx_ring: Rx ring that will have its IRQ disabled
83  * @q_vector: queue vector
84  */
85 static void
86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 		 struct ice_q_vector *q_vector)
88 {
89 	struct ice_pf *pf = vsi->back;
90 	struct ice_hw *hw = &pf->hw;
91 	u16 reg;
92 	u32 val;
93 
94 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 	 * here only QINT_RQCTL
96 	 */
97 	reg = rx_ring->reg_idx;
98 	val = rd32(hw, QINT_RQCTL(reg));
99 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 	wr32(hw, QINT_RQCTL(reg), val);
101 
102 	if (q_vector) {
103 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 		ice_flush(hw);
105 		synchronize_irq(q_vector->irq.virq);
106 	}
107 }
108 
109 /**
110  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111  * @vsi: the VSI that contains queue vector
112  * @q_vector: queue vector
113  */
114 static void
115 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
116 {
117 	u16 reg_idx = q_vector->reg_idx;
118 	struct ice_pf *pf = vsi->back;
119 	struct ice_hw *hw = &pf->hw;
120 	struct ice_tx_ring *tx_ring;
121 	struct ice_rx_ring *rx_ring;
122 
123 	ice_cfg_itr(hw, q_vector);
124 
125 	ice_for_each_tx_ring(tx_ring, q_vector->tx)
126 		ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
127 				      q_vector->tx.itr_idx);
128 
129 	ice_for_each_rx_ring(rx_ring, q_vector->rx)
130 		ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
131 				      q_vector->rx.itr_idx);
132 
133 	ice_flush(hw);
134 }
135 
136 /**
137  * ice_qvec_ena_irq - Enable IRQ for given queue vector
138  * @vsi: the VSI that contains queue vector
139  * @q_vector: queue vector
140  */
141 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
142 {
143 	struct ice_pf *pf = vsi->back;
144 	struct ice_hw *hw = &pf->hw;
145 
146 	ice_irq_dynamic_ena(hw, vsi, q_vector);
147 
148 	ice_flush(hw);
149 }
150 
151 /**
152  * ice_qp_dis - Disables a queue pair
153  * @vsi: VSI of interest
154  * @q_idx: ring index in array
155  *
156  * Returns 0 on success, negative on failure.
157  */
158 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
159 {
160 	struct ice_txq_meta txq_meta = { };
161 	struct ice_q_vector *q_vector;
162 	struct ice_tx_ring *tx_ring;
163 	struct ice_rx_ring *rx_ring;
164 	int timeout = 50;
165 	int err;
166 
167 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
168 		return -EINVAL;
169 
170 	tx_ring = vsi->tx_rings[q_idx];
171 	rx_ring = vsi->rx_rings[q_idx];
172 	q_vector = rx_ring->q_vector;
173 
174 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
175 		timeout--;
176 		if (!timeout)
177 			return -EBUSY;
178 		usleep_range(1000, 2000);
179 	}
180 
181 	synchronize_net();
182 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
183 
184 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
185 	ice_qvec_toggle_napi(vsi, q_vector, false);
186 
187 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
188 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
189 	if (err)
190 		return err;
191 	if (ice_is_xdp_ena_vsi(vsi)) {
192 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
193 
194 		memset(&txq_meta, 0, sizeof(txq_meta));
195 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
196 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
197 					   &txq_meta);
198 		if (err)
199 			return err;
200 	}
201 
202 	ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
203 	ice_qp_clean_rings(vsi, q_idx);
204 	ice_qp_reset_stats(vsi, q_idx);
205 
206 	return 0;
207 }
208 
209 /**
210  * ice_qp_ena - Enables a queue pair
211  * @vsi: VSI of interest
212  * @q_idx: ring index in array
213  *
214  * Returns 0 on success, negative on failure.
215  */
216 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
217 {
218 	struct ice_aqc_add_tx_qgrp *qg_buf;
219 	struct ice_q_vector *q_vector;
220 	struct ice_tx_ring *tx_ring;
221 	struct ice_rx_ring *rx_ring;
222 	u16 size;
223 	int err;
224 
225 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
226 		return -EINVAL;
227 
228 	size = struct_size(qg_buf, txqs, 1);
229 	qg_buf = kzalloc(size, GFP_KERNEL);
230 	if (!qg_buf)
231 		return -ENOMEM;
232 
233 	qg_buf->num_txqs = 1;
234 
235 	tx_ring = vsi->tx_rings[q_idx];
236 	rx_ring = vsi->rx_rings[q_idx];
237 	q_vector = rx_ring->q_vector;
238 
239 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
240 	if (err)
241 		goto free_buf;
242 
243 	if (ice_is_xdp_ena_vsi(vsi)) {
244 		struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
245 
246 		memset(qg_buf, 0, size);
247 		qg_buf->num_txqs = 1;
248 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
249 		if (err)
250 			goto free_buf;
251 		ice_set_ring_xdp(xdp_ring);
252 		ice_tx_xsk_pool(vsi, q_idx);
253 	}
254 
255 	err = ice_vsi_cfg_rxq(rx_ring);
256 	if (err)
257 		goto free_buf;
258 
259 	ice_qvec_cfg_msix(vsi, q_vector);
260 
261 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
262 	if (err)
263 		goto free_buf;
264 
265 	ice_qvec_toggle_napi(vsi, q_vector, true);
266 	ice_qvec_ena_irq(vsi, q_vector);
267 
268 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
269 	clear_bit(ICE_CFG_BUSY, vsi->state);
270 free_buf:
271 	kfree(qg_buf);
272 	return err;
273 }
274 
275 /**
276  * ice_xsk_pool_disable - disable a buffer pool region
277  * @vsi: Current VSI
278  * @qid: queue ID
279  *
280  * Returns 0 on success, negative on failure
281  */
282 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
283 {
284 	struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
285 
286 	if (!pool)
287 		return -EINVAL;
288 
289 	xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
290 
291 	return 0;
292 }
293 
294 /**
295  * ice_xsk_pool_enable - enable a buffer pool region
296  * @vsi: Current VSI
297  * @pool: pointer to a requested buffer pool region
298  * @qid: queue ID
299  *
300  * Returns 0 on success, negative on failure
301  */
302 static int
303 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
304 {
305 	int err;
306 
307 	if (vsi->type != ICE_VSI_PF)
308 		return -EINVAL;
309 
310 	if (qid >= vsi->netdev->real_num_rx_queues ||
311 	    qid >= vsi->netdev->real_num_tx_queues)
312 		return -EINVAL;
313 
314 	err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
315 			       ICE_RX_DMA_ATTR);
316 	if (err)
317 		return err;
318 
319 	return 0;
320 }
321 
322 /**
323  * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
324  * @rx_ring: Rx ring
325  * @pool_present: is pool for XSK present
326  *
327  * Try allocating memory and return ENOMEM, if failed to allocate.
328  * If allocation was successful, substitute buffer with allocated one.
329  * Returns 0 on success, negative on failure
330  */
331 static int
332 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
333 {
334 	size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
335 					  sizeof(*rx_ring->rx_buf);
336 	void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
337 
338 	if (!sw_ring)
339 		return -ENOMEM;
340 
341 	if (pool_present) {
342 		kfree(rx_ring->rx_buf);
343 		rx_ring->rx_buf = NULL;
344 		rx_ring->xdp_buf = sw_ring;
345 	} else {
346 		kfree(rx_ring->xdp_buf);
347 		rx_ring->xdp_buf = NULL;
348 		rx_ring->rx_buf = sw_ring;
349 	}
350 
351 	return 0;
352 }
353 
354 /**
355  * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
356  * @vsi: Current VSI
357  * @zc: is zero copy set
358  *
359  * Reallocate buffer for rx_rings that might be used by XSK.
360  * XDP requires more memory, than rx_buf provides.
361  * Returns 0 on success, negative on failure
362  */
363 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
364 {
365 	struct ice_rx_ring *rx_ring;
366 	uint i;
367 
368 	ice_for_each_rxq(vsi, i) {
369 		rx_ring = vsi->rx_rings[i];
370 		if (!rx_ring->xsk_pool)
371 			continue;
372 
373 		if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
374 			return -ENOMEM;
375 	}
376 
377 	return 0;
378 }
379 
380 /**
381  * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
382  * @vsi: Current VSI
383  * @pool: buffer pool to enable/associate to a ring, NULL to disable
384  * @qid: queue ID
385  *
386  * Returns 0 on success, negative on failure
387  */
388 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
389 {
390 	bool if_running, pool_present = !!pool;
391 	int ret = 0, pool_failure = 0;
392 
393 	if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
394 		netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
395 		pool_failure = -EINVAL;
396 		goto failure;
397 	}
398 
399 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
400 
401 	if (if_running) {
402 		struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
403 
404 		ret = ice_qp_dis(vsi, qid);
405 		if (ret) {
406 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
407 			goto xsk_pool_if_up;
408 		}
409 
410 		ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
411 		if (ret)
412 			goto xsk_pool_if_up;
413 	}
414 
415 	pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
416 				      ice_xsk_pool_disable(vsi, qid);
417 
418 xsk_pool_if_up:
419 	if (if_running) {
420 		ret = ice_qp_ena(vsi, qid);
421 		if (!ret && pool_present)
422 			napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
423 		else if (ret)
424 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
425 	}
426 
427 failure:
428 	if (pool_failure) {
429 		netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
430 			   pool_present ? "en" : "dis", pool_failure);
431 		return pool_failure;
432 	}
433 
434 	return ret;
435 }
436 
437 /**
438  * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
439  * @pool: XSK Buffer pool to pull the buffers from
440  * @xdp: SW ring of xdp_buff that will hold the buffers
441  * @rx_desc: Pointer to Rx descriptors that will be filled
442  * @count: The number of buffers to allocate
443  *
444  * This function allocates a number of Rx buffers from the fill ring
445  * or the internal recycle mechanism and places them on the Rx ring.
446  *
447  * Note that ring wrap should be handled by caller of this function.
448  *
449  * Returns the amount of allocated Rx descriptors
450  */
451 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
452 			     union ice_32b_rx_flex_desc *rx_desc, u16 count)
453 {
454 	dma_addr_t dma;
455 	u16 buffs;
456 	int i;
457 
458 	buffs = xsk_buff_alloc_batch(pool, xdp, count);
459 	for (i = 0; i < buffs; i++) {
460 		dma = xsk_buff_xdp_get_dma(*xdp);
461 		rx_desc->read.pkt_addr = cpu_to_le64(dma);
462 		rx_desc->wb.status_error0 = 0;
463 
464 		rx_desc++;
465 		xdp++;
466 	}
467 
468 	return buffs;
469 }
470 
471 /**
472  * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
473  * @rx_ring: Rx ring
474  * @count: The number of buffers to allocate
475  *
476  * Place the @count of descriptors onto Rx ring. Handle the ring wrap
477  * for case where space from next_to_use up to the end of ring is less
478  * than @count. Finally do a tail bump.
479  *
480  * Returns true if all allocations were successful, false if any fail.
481  */
482 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
483 {
484 	u32 nb_buffs_extra = 0, nb_buffs = 0;
485 	union ice_32b_rx_flex_desc *rx_desc;
486 	u16 ntu = rx_ring->next_to_use;
487 	u16 total_count = count;
488 	struct xdp_buff **xdp;
489 
490 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
491 	xdp = ice_xdp_buf(rx_ring, ntu);
492 
493 	if (ntu + count >= rx_ring->count) {
494 		nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
495 						   rx_desc,
496 						   rx_ring->count - ntu);
497 		if (nb_buffs_extra != rx_ring->count - ntu) {
498 			ntu += nb_buffs_extra;
499 			goto exit;
500 		}
501 		rx_desc = ICE_RX_DESC(rx_ring, 0);
502 		xdp = ice_xdp_buf(rx_ring, 0);
503 		ntu = 0;
504 		count -= nb_buffs_extra;
505 		ice_release_rx_desc(rx_ring, 0);
506 	}
507 
508 	nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
509 
510 	ntu += nb_buffs;
511 	if (ntu == rx_ring->count)
512 		ntu = 0;
513 
514 exit:
515 	if (rx_ring->next_to_use != ntu)
516 		ice_release_rx_desc(rx_ring, ntu);
517 
518 	return total_count == (nb_buffs_extra + nb_buffs);
519 }
520 
521 /**
522  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
523  * @rx_ring: Rx ring
524  * @count: The number of buffers to allocate
525  *
526  * Wrapper for internal allocation routine; figure out how many tail
527  * bumps should take place based on the given threshold
528  *
529  * Returns true if all calls to internal alloc routine succeeded
530  */
531 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
532 {
533 	u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
534 	u16 leftover, i, tail_bumps;
535 
536 	tail_bumps = count / rx_thresh;
537 	leftover = count - (tail_bumps * rx_thresh);
538 
539 	for (i = 0; i < tail_bumps; i++)
540 		if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
541 			return false;
542 	return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
543 }
544 
545 /**
546  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
547  * @rx_ring: Rx ring
548  * @xdp: Pointer to XDP buffer
549  *
550  * This function allocates a new skb from a zero-copy Rx buffer.
551  *
552  * Returns the skb on success, NULL on failure.
553  */
554 static struct sk_buff *
555 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
556 {
557 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
558 	unsigned int metasize = xdp->data - xdp->data_meta;
559 	struct skb_shared_info *sinfo = NULL;
560 	struct sk_buff *skb;
561 	u32 nr_frags = 0;
562 
563 	if (unlikely(xdp_buff_has_frags(xdp))) {
564 		sinfo = xdp_get_shared_info_from_buff(xdp);
565 		nr_frags = sinfo->nr_frags;
566 	}
567 	net_prefetch(xdp->data_meta);
568 
569 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
570 			       GFP_ATOMIC | __GFP_NOWARN);
571 	if (unlikely(!skb))
572 		return NULL;
573 
574 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
575 	       ALIGN(totalsize, sizeof(long)));
576 
577 	if (metasize) {
578 		skb_metadata_set(skb, metasize);
579 		__skb_pull(skb, metasize);
580 	}
581 
582 	if (likely(!xdp_buff_has_frags(xdp)))
583 		goto out;
584 
585 	for (int i = 0; i < nr_frags; i++) {
586 		struct skb_shared_info *skinfo = skb_shinfo(skb);
587 		skb_frag_t *frag = &sinfo->frags[i];
588 		struct page *page;
589 		void *addr;
590 
591 		page = dev_alloc_page();
592 		if (!page) {
593 			dev_kfree_skb(skb);
594 			return NULL;
595 		}
596 		addr = page_to_virt(page);
597 
598 		memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
599 
600 		__skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
601 					   addr, 0, skb_frag_size(frag));
602 	}
603 
604 out:
605 	xsk_buff_free(xdp);
606 	return skb;
607 }
608 
609 /**
610  * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
611  * @xdp_ring: XDP Tx ring
612  */
613 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
614 {
615 	u16 ntc = xdp_ring->next_to_clean;
616 	struct ice_tx_desc *tx_desc;
617 	u16 cnt = xdp_ring->count;
618 	struct ice_tx_buf *tx_buf;
619 	u16 completed_frames = 0;
620 	u16 xsk_frames = 0;
621 	u16 last_rs;
622 	int i;
623 
624 	last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
625 	tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
626 	if (tx_desc->cmd_type_offset_bsz &
627 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
628 		if (last_rs >= ntc)
629 			completed_frames = last_rs - ntc + 1;
630 		else
631 			completed_frames = last_rs + cnt - ntc + 1;
632 	}
633 
634 	if (!completed_frames)
635 		return 0;
636 
637 	if (likely(!xdp_ring->xdp_tx_active)) {
638 		xsk_frames = completed_frames;
639 		goto skip;
640 	}
641 
642 	ntc = xdp_ring->next_to_clean;
643 	for (i = 0; i < completed_frames; i++) {
644 		tx_buf = &xdp_ring->tx_buf[ntc];
645 
646 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
647 			tx_buf->type = ICE_TX_BUF_EMPTY;
648 			xsk_buff_free(tx_buf->xdp);
649 			xdp_ring->xdp_tx_active--;
650 		} else {
651 			xsk_frames++;
652 		}
653 
654 		ntc++;
655 		if (ntc >= xdp_ring->count)
656 			ntc = 0;
657 	}
658 skip:
659 	tx_desc->cmd_type_offset_bsz = 0;
660 	xdp_ring->next_to_clean += completed_frames;
661 	if (xdp_ring->next_to_clean >= cnt)
662 		xdp_ring->next_to_clean -= cnt;
663 	if (xsk_frames)
664 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
665 
666 	return completed_frames;
667 }
668 
669 /**
670  * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
671  * @xdp: XDP buffer to xmit
672  * @xdp_ring: XDP ring to produce descriptor onto
673  *
674  * note that this function works directly on xdp_buff, no need to convert
675  * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
676  * side will be able to xsk_buff_free() it.
677  *
678  * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
679  * was not enough space on XDP ring
680  */
681 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
682 			      struct ice_tx_ring *xdp_ring)
683 {
684 	struct skb_shared_info *sinfo = NULL;
685 	u32 size = xdp->data_end - xdp->data;
686 	u32 ntu = xdp_ring->next_to_use;
687 	struct ice_tx_desc *tx_desc;
688 	struct ice_tx_buf *tx_buf;
689 	struct xdp_buff *head;
690 	u32 nr_frags = 0;
691 	u32 free_space;
692 	u32 frag = 0;
693 
694 	free_space = ICE_DESC_UNUSED(xdp_ring);
695 	if (free_space < ICE_RING_QUARTER(xdp_ring))
696 		free_space += ice_clean_xdp_irq_zc(xdp_ring);
697 
698 	if (unlikely(!free_space))
699 		goto busy;
700 
701 	if (unlikely(xdp_buff_has_frags(xdp))) {
702 		sinfo = xdp_get_shared_info_from_buff(xdp);
703 		nr_frags = sinfo->nr_frags;
704 		if (free_space < nr_frags + 1)
705 			goto busy;
706 	}
707 
708 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
709 	tx_buf = &xdp_ring->tx_buf[ntu];
710 	head = xdp;
711 
712 	for (;;) {
713 		dma_addr_t dma;
714 
715 		dma = xsk_buff_xdp_get_dma(xdp);
716 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
717 
718 		tx_buf->xdp = xdp;
719 		tx_buf->type = ICE_TX_BUF_XSK_TX;
720 		tx_desc->buf_addr = cpu_to_le64(dma);
721 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
722 		/* account for each xdp_buff from xsk_buff_pool */
723 		xdp_ring->xdp_tx_active++;
724 
725 		if (++ntu == xdp_ring->count)
726 			ntu = 0;
727 
728 		if (frag == nr_frags)
729 			break;
730 
731 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
732 		tx_buf = &xdp_ring->tx_buf[ntu];
733 
734 		xdp = xsk_buff_get_frag(head);
735 		size = skb_frag_size(&sinfo->frags[frag]);
736 		frag++;
737 	}
738 
739 	xdp_ring->next_to_use = ntu;
740 	/* update last descriptor from a frame with EOP */
741 	tx_desc->cmd_type_offset_bsz |=
742 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
743 
744 	return ICE_XDP_TX;
745 
746 busy:
747 	xdp_ring->ring_stats->tx_stats.tx_busy++;
748 
749 	return ICE_XDP_CONSUMED;
750 }
751 
752 /**
753  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
754  * @rx_ring: Rx ring
755  * @xdp: xdp_buff used as input to the XDP program
756  * @xdp_prog: XDP program to run
757  * @xdp_ring: ring to be used for XDP_TX action
758  *
759  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
760  */
761 static int
762 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
763 	       struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
764 {
765 	int err, result = ICE_XDP_PASS;
766 	u32 act;
767 
768 	act = bpf_prog_run_xdp(xdp_prog, xdp);
769 
770 	if (likely(act == XDP_REDIRECT)) {
771 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
772 		if (!err)
773 			return ICE_XDP_REDIR;
774 		if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
775 			result = ICE_XDP_EXIT;
776 		else
777 			result = ICE_XDP_CONSUMED;
778 		goto out_failure;
779 	}
780 
781 	switch (act) {
782 	case XDP_PASS:
783 		break;
784 	case XDP_TX:
785 		result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
786 		if (result == ICE_XDP_CONSUMED)
787 			goto out_failure;
788 		break;
789 	case XDP_DROP:
790 		result = ICE_XDP_CONSUMED;
791 		break;
792 	default:
793 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
794 		fallthrough;
795 	case XDP_ABORTED:
796 		result = ICE_XDP_CONSUMED;
797 out_failure:
798 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
799 		break;
800 	}
801 
802 	return result;
803 }
804 
805 static int
806 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
807 		 struct xdp_buff *xdp, const unsigned int size)
808 {
809 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
810 
811 	if (!size)
812 		return 0;
813 
814 	if (!xdp_buff_has_frags(first)) {
815 		sinfo->nr_frags = 0;
816 		sinfo->xdp_frags_size = 0;
817 		xdp_buff_set_frags_flag(first);
818 	}
819 
820 	if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
821 		xsk_buff_free(first);
822 		return -ENOMEM;
823 	}
824 
825 	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
826 				   virt_to_page(xdp->data_hard_start),
827 				   XDP_PACKET_HEADROOM, size);
828 	sinfo->xdp_frags_size += size;
829 	xsk_buff_add_frag(xdp);
830 
831 	return 0;
832 }
833 
834 /**
835  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
836  * @rx_ring: AF_XDP Rx ring
837  * @budget: NAPI budget
838  *
839  * Returns number of processed packets on success, remaining budget on failure.
840  */
841 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
842 {
843 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
844 	struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
845 	u32 ntc = rx_ring->next_to_clean;
846 	u32 ntu = rx_ring->next_to_use;
847 	struct xdp_buff *first = NULL;
848 	struct ice_tx_ring *xdp_ring;
849 	unsigned int xdp_xmit = 0;
850 	struct bpf_prog *xdp_prog;
851 	u32 cnt = rx_ring->count;
852 	bool failure = false;
853 	int entries_to_alloc;
854 
855 	/* ZC patch is enabled only when XDP program is set,
856 	 * so here it can not be NULL
857 	 */
858 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
859 	xdp_ring = rx_ring->xdp_ring;
860 
861 	if (ntc != rx_ring->first_desc)
862 		first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
863 
864 	while (likely(total_rx_packets < (unsigned int)budget)) {
865 		union ice_32b_rx_flex_desc *rx_desc;
866 		unsigned int size, xdp_res = 0;
867 		struct xdp_buff *xdp;
868 		struct sk_buff *skb;
869 		u16 stat_err_bits;
870 		u16 vlan_tag = 0;
871 		u16 rx_ptype;
872 
873 		rx_desc = ICE_RX_DESC(rx_ring, ntc);
874 
875 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
876 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
877 			break;
878 
879 		/* This memory barrier is needed to keep us from reading
880 		 * any other fields out of the rx_desc until we have
881 		 * verified the descriptor has been written back.
882 		 */
883 		dma_rmb();
884 
885 		if (unlikely(ntc == ntu))
886 			break;
887 
888 		xdp = *ice_xdp_buf(rx_ring, ntc);
889 
890 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
891 				   ICE_RX_FLX_DESC_PKT_LEN_M;
892 
893 		xsk_buff_set_size(xdp, size);
894 		xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
895 
896 		if (!first) {
897 			first = xdp;
898 		} else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
899 			break;
900 		}
901 
902 		if (++ntc == cnt)
903 			ntc = 0;
904 
905 		if (ice_is_non_eop(rx_ring, rx_desc))
906 			continue;
907 
908 		xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
909 		if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
910 			xdp_xmit |= xdp_res;
911 		} else if (xdp_res == ICE_XDP_EXIT) {
912 			failure = true;
913 			first = NULL;
914 			rx_ring->first_desc = ntc;
915 			break;
916 		} else if (xdp_res == ICE_XDP_CONSUMED) {
917 			xsk_buff_free(first);
918 		} else if (xdp_res == ICE_XDP_PASS) {
919 			goto construct_skb;
920 		}
921 
922 		total_rx_bytes += xdp_get_buff_len(first);
923 		total_rx_packets++;
924 
925 		first = NULL;
926 		rx_ring->first_desc = ntc;
927 		continue;
928 
929 construct_skb:
930 		/* XDP_PASS path */
931 		skb = ice_construct_skb_zc(rx_ring, first);
932 		if (!skb) {
933 			rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
934 			break;
935 		}
936 
937 		first = NULL;
938 		rx_ring->first_desc = ntc;
939 
940 		if (eth_skb_pad(skb)) {
941 			skb = NULL;
942 			continue;
943 		}
944 
945 		total_rx_bytes += skb->len;
946 		total_rx_packets++;
947 
948 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
949 
950 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
951 				       ICE_RX_FLEX_DESC_PTYPE_M;
952 
953 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
954 		ice_receive_skb(rx_ring, skb, vlan_tag);
955 	}
956 
957 	rx_ring->next_to_clean = ntc;
958 	entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
959 	if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
960 		failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
961 
962 	ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
963 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
964 
965 	if (xsk_uses_need_wakeup(xsk_pool)) {
966 		/* ntu could have changed when allocating entries above, so
967 		 * use rx_ring value instead of stack based one
968 		 */
969 		if (failure || ntc == rx_ring->next_to_use)
970 			xsk_set_rx_need_wakeup(xsk_pool);
971 		else
972 			xsk_clear_rx_need_wakeup(xsk_pool);
973 
974 		return (int)total_rx_packets;
975 	}
976 
977 	return failure ? budget : (int)total_rx_packets;
978 }
979 
980 /**
981  * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
982  * @xdp_ring: XDP ring to produce the HW Tx descriptor on
983  * @desc: AF_XDP descriptor to pull the DMA address and length from
984  * @total_bytes: bytes accumulator that will be used for stats update
985  */
986 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
987 			 unsigned int *total_bytes)
988 {
989 	struct ice_tx_desc *tx_desc;
990 	dma_addr_t dma;
991 
992 	dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
993 	xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
994 
995 	tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
996 	tx_desc->buf_addr = cpu_to_le64(dma);
997 	tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
998 						      0, desc->len, 0);
999 
1000 	*total_bytes += desc->len;
1001 }
1002 
1003 /**
1004  * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1005  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1006  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1007  * @total_bytes: bytes accumulator that will be used for stats update
1008  */
1009 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1010 			       unsigned int *total_bytes)
1011 {
1012 	u16 ntu = xdp_ring->next_to_use;
1013 	struct ice_tx_desc *tx_desc;
1014 	u32 i;
1015 
1016 	loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1017 		dma_addr_t dma;
1018 
1019 		dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1020 		xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1021 
1022 		tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1023 		tx_desc->buf_addr = cpu_to_le64(dma);
1024 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1025 							      0, descs[i].len, 0);
1026 
1027 		*total_bytes += descs[i].len;
1028 	}
1029 
1030 	xdp_ring->next_to_use = ntu;
1031 }
1032 
1033 /**
1034  * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1035  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1036  * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1037  * @nb_pkts: count of packets to be send
1038  * @total_bytes: bytes accumulator that will be used for stats update
1039  */
1040 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1041 				u32 nb_pkts, unsigned int *total_bytes)
1042 {
1043 	u32 batched, leftover, i;
1044 
1045 	batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1046 	leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1047 	for (i = 0; i < batched; i += PKTS_PER_BATCH)
1048 		ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1049 	for (; i < batched + leftover; i++)
1050 		ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1051 }
1052 
1053 /**
1054  * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1055  * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1056  *
1057  * Returns true if there is no more work that needs to be done, false otherwise
1058  */
1059 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1060 {
1061 	struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1062 	u32 nb_pkts, nb_processed = 0;
1063 	unsigned int total_bytes = 0;
1064 	int budget;
1065 
1066 	ice_clean_xdp_irq_zc(xdp_ring);
1067 
1068 	if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1069 	    !netif_running(xdp_ring->vsi->netdev))
1070 		return true;
1071 
1072 	budget = ICE_DESC_UNUSED(xdp_ring);
1073 	budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1074 
1075 	nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1076 	if (!nb_pkts)
1077 		return true;
1078 
1079 	if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1080 		nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1081 		ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1082 		xdp_ring->next_to_use = 0;
1083 	}
1084 
1085 	ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1086 			    &total_bytes);
1087 
1088 	ice_set_rs_bit(xdp_ring);
1089 	ice_xdp_ring_update_tail(xdp_ring);
1090 	ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1091 
1092 	if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1093 		xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1094 
1095 	return nb_pkts < budget;
1096 }
1097 
1098 /**
1099  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1100  * @netdev: net_device
1101  * @queue_id: queue to wake up
1102  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1103  *
1104  * Returns negative on error, zero otherwise.
1105  */
1106 int
1107 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1108 	       u32 __always_unused flags)
1109 {
1110 	struct ice_netdev_priv *np = netdev_priv(netdev);
1111 	struct ice_q_vector *q_vector;
1112 	struct ice_vsi *vsi = np->vsi;
1113 	struct ice_tx_ring *ring;
1114 
1115 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1116 		return -ENETDOWN;
1117 
1118 	if (!ice_is_xdp_ena_vsi(vsi))
1119 		return -EINVAL;
1120 
1121 	if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1122 		return -EINVAL;
1123 
1124 	ring = vsi->rx_rings[queue_id]->xdp_ring;
1125 
1126 	if (!ring->xsk_pool)
1127 		return -EINVAL;
1128 
1129 	/* The idea here is that if NAPI is running, mark a miss, so
1130 	 * it will run again. If not, trigger an interrupt and
1131 	 * schedule the NAPI from interrupt context. If NAPI would be
1132 	 * scheduled here, the interrupt affinity would not be
1133 	 * honored.
1134 	 */
1135 	q_vector = ring->q_vector;
1136 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1137 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1144  * @vsi: VSI to be checked
1145  *
1146  * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1147  */
1148 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1149 {
1150 	int i;
1151 
1152 	ice_for_each_rxq(vsi, i) {
1153 		if (xsk_get_pool_from_qid(vsi->netdev, i))
1154 			return true;
1155 	}
1156 
1157 	return false;
1158 }
1159 
1160 /**
1161  * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1162  * @rx_ring: ring to be cleaned
1163  */
1164 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1165 {
1166 	u16 ntc = rx_ring->next_to_clean;
1167 	u16 ntu = rx_ring->next_to_use;
1168 
1169 	while (ntc != ntu) {
1170 		struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1171 
1172 		xsk_buff_free(xdp);
1173 		ntc++;
1174 		if (ntc >= rx_ring->count)
1175 			ntc = 0;
1176 	}
1177 }
1178 
1179 /**
1180  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1181  * @xdp_ring: XDP_Tx ring
1182  */
1183 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1184 {
1185 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1186 	u32 xsk_frames = 0;
1187 
1188 	while (ntc != ntu) {
1189 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1190 
1191 		if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1192 			tx_buf->type = ICE_TX_BUF_EMPTY;
1193 			xsk_buff_free(tx_buf->xdp);
1194 		} else {
1195 			xsk_frames++;
1196 		}
1197 
1198 		ntc++;
1199 		if (ntc >= xdp_ring->count)
1200 			ntc = 0;
1201 	}
1202 
1203 	if (xsk_frames)
1204 		xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1205 }
1206