1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) { 45 synchronize_rcu(); 46 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 47 } 48 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 49 } 50 51 /** 52 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 53 * @vsi: VSI that has netdev 54 * @q_vector: q_vector that has NAPI context 55 * @enable: true for enable, false for disable 56 */ 57 static void 58 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 59 bool enable) 60 { 61 if (!vsi->netdev || !q_vector) 62 return; 63 64 if (enable) 65 napi_enable(&q_vector->napi); 66 else 67 napi_disable(&q_vector->napi); 68 } 69 70 /** 71 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 72 * @vsi: the VSI that contains queue vector being un-configured 73 * @rx_ring: Rx ring that will have its IRQ disabled 74 * @q_vector: queue vector 75 */ 76 static void 77 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 78 struct ice_q_vector *q_vector) 79 { 80 struct ice_pf *pf = vsi->back; 81 struct ice_hw *hw = &pf->hw; 82 int base = vsi->base_vector; 83 u16 reg; 84 u32 val; 85 86 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 87 * here only QINT_RQCTL 88 */ 89 reg = rx_ring->reg_idx; 90 val = rd32(hw, QINT_RQCTL(reg)); 91 val &= ~QINT_RQCTL_CAUSE_ENA_M; 92 wr32(hw, QINT_RQCTL(reg), val); 93 94 if (q_vector) { 95 u16 v_idx = q_vector->v_idx; 96 97 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 98 ice_flush(hw); 99 synchronize_irq(pf->msix_entries[v_idx + base].vector); 100 } 101 } 102 103 /** 104 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 105 * @vsi: the VSI that contains queue vector 106 * @q_vector: queue vector 107 */ 108 static void 109 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 110 { 111 u16 reg_idx = q_vector->reg_idx; 112 struct ice_pf *pf = vsi->back; 113 struct ice_hw *hw = &pf->hw; 114 struct ice_tx_ring *tx_ring; 115 struct ice_rx_ring *rx_ring; 116 117 ice_cfg_itr(hw, q_vector); 118 119 ice_for_each_tx_ring(tx_ring, q_vector->tx) 120 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 121 q_vector->tx.itr_idx); 122 123 ice_for_each_rx_ring(rx_ring, q_vector->rx) 124 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 125 q_vector->rx.itr_idx); 126 127 ice_flush(hw); 128 } 129 130 /** 131 * ice_qvec_ena_irq - Enable IRQ for given queue vector 132 * @vsi: the VSI that contains queue vector 133 * @q_vector: queue vector 134 */ 135 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 136 { 137 struct ice_pf *pf = vsi->back; 138 struct ice_hw *hw = &pf->hw; 139 140 ice_irq_dynamic_ena(hw, vsi, q_vector); 141 142 ice_flush(hw); 143 } 144 145 /** 146 * ice_qp_dis - Disables a queue pair 147 * @vsi: VSI of interest 148 * @q_idx: ring index in array 149 * 150 * Returns 0 on success, negative on failure. 151 */ 152 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 153 { 154 struct ice_txq_meta txq_meta = { }; 155 struct ice_q_vector *q_vector; 156 struct ice_tx_ring *tx_ring; 157 struct ice_rx_ring *rx_ring; 158 int timeout = 50; 159 int err; 160 161 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 162 return -EINVAL; 163 164 tx_ring = vsi->tx_rings[q_idx]; 165 rx_ring = vsi->rx_rings[q_idx]; 166 q_vector = rx_ring->q_vector; 167 168 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 169 timeout--; 170 if (!timeout) 171 return -EBUSY; 172 usleep_range(1000, 2000); 173 } 174 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 175 176 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 177 178 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 179 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 180 if (err) 181 return err; 182 if (ice_is_xdp_ena_vsi(vsi)) { 183 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 184 185 memset(&txq_meta, 0, sizeof(txq_meta)); 186 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 187 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 188 &txq_meta); 189 if (err) 190 return err; 191 } 192 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 193 if (err) 194 return err; 195 196 ice_qvec_toggle_napi(vsi, q_vector, false); 197 ice_qp_clean_rings(vsi, q_idx); 198 ice_qp_reset_stats(vsi, q_idx); 199 200 return 0; 201 } 202 203 /** 204 * ice_qp_ena - Enables a queue pair 205 * @vsi: VSI of interest 206 * @q_idx: ring index in array 207 * 208 * Returns 0 on success, negative on failure. 209 */ 210 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 211 { 212 struct ice_aqc_add_tx_qgrp *qg_buf; 213 struct ice_q_vector *q_vector; 214 struct ice_tx_ring *tx_ring; 215 struct ice_rx_ring *rx_ring; 216 u16 size; 217 int err; 218 219 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 220 return -EINVAL; 221 222 size = struct_size(qg_buf, txqs, 1); 223 qg_buf = kzalloc(size, GFP_KERNEL); 224 if (!qg_buf) 225 return -ENOMEM; 226 227 qg_buf->num_txqs = 1; 228 229 tx_ring = vsi->tx_rings[q_idx]; 230 rx_ring = vsi->rx_rings[q_idx]; 231 q_vector = rx_ring->q_vector; 232 233 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 234 if (err) 235 goto free_buf; 236 237 if (ice_is_xdp_ena_vsi(vsi)) { 238 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 239 240 memset(qg_buf, 0, size); 241 qg_buf->num_txqs = 1; 242 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 243 if (err) 244 goto free_buf; 245 ice_set_ring_xdp(xdp_ring); 246 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 247 } 248 249 err = ice_vsi_cfg_rxq(rx_ring); 250 if (err) 251 goto free_buf; 252 253 ice_qvec_cfg_msix(vsi, q_vector); 254 255 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 256 if (err) 257 goto free_buf; 258 259 clear_bit(ICE_CFG_BUSY, vsi->state); 260 ice_qvec_toggle_napi(vsi, q_vector, true); 261 ice_qvec_ena_irq(vsi, q_vector); 262 263 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 264 free_buf: 265 kfree(qg_buf); 266 return err; 267 } 268 269 /** 270 * ice_xsk_pool_disable - disable a buffer pool region 271 * @vsi: Current VSI 272 * @qid: queue ID 273 * 274 * Returns 0 on success, negative on failure 275 */ 276 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 277 { 278 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 279 280 if (!pool) 281 return -EINVAL; 282 283 clear_bit(qid, vsi->af_xdp_zc_qps); 284 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 285 286 return 0; 287 } 288 289 /** 290 * ice_xsk_pool_enable - enable a buffer pool region 291 * @vsi: Current VSI 292 * @pool: pointer to a requested buffer pool region 293 * @qid: queue ID 294 * 295 * Returns 0 on success, negative on failure 296 */ 297 static int 298 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 299 { 300 int err; 301 302 if (vsi->type != ICE_VSI_PF) 303 return -EINVAL; 304 305 if (qid >= vsi->netdev->real_num_rx_queues || 306 qid >= vsi->netdev->real_num_tx_queues) 307 return -EINVAL; 308 309 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 310 ICE_RX_DMA_ATTR); 311 if (err) 312 return err; 313 314 set_bit(qid, vsi->af_xdp_zc_qps); 315 316 return 0; 317 } 318 319 /** 320 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 321 * @vsi: Current VSI 322 * @pool: buffer pool to enable/associate to a ring, NULL to disable 323 * @qid: queue ID 324 * 325 * Returns 0 on success, negative on failure 326 */ 327 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 328 { 329 bool if_running, pool_present = !!pool; 330 int ret = 0, pool_failure = 0; 331 332 if (!is_power_of_2(vsi->rx_rings[qid]->count) || 333 !is_power_of_2(vsi->tx_rings[qid]->count)) { 334 netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n"); 335 pool_failure = -EINVAL; 336 goto failure; 337 } 338 339 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 340 341 if (if_running) { 342 ret = ice_qp_dis(vsi, qid); 343 if (ret) { 344 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 345 goto xsk_pool_if_up; 346 } 347 } 348 349 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 350 ice_xsk_pool_disable(vsi, qid); 351 352 xsk_pool_if_up: 353 if (if_running) { 354 ret = ice_qp_ena(vsi, qid); 355 if (!ret && pool_present) 356 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 357 else if (ret) 358 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 359 } 360 361 failure: 362 if (pool_failure) { 363 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 364 pool_present ? "en" : "dis", pool_failure); 365 return pool_failure; 366 } 367 368 return ret; 369 } 370 371 /** 372 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 373 * @pool: XSK Buffer pool to pull the buffers from 374 * @xdp: SW ring of xdp_buff that will hold the buffers 375 * @rx_desc: Pointer to Rx descriptors that will be filled 376 * @count: The number of buffers to allocate 377 * 378 * This function allocates a number of Rx buffers from the fill ring 379 * or the internal recycle mechanism and places them on the Rx ring. 380 * 381 * Note that ring wrap should be handled by caller of this function. 382 * 383 * Returns the amount of allocated Rx descriptors 384 */ 385 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 386 union ice_32b_rx_flex_desc *rx_desc, u16 count) 387 { 388 dma_addr_t dma; 389 u16 buffs; 390 int i; 391 392 buffs = xsk_buff_alloc_batch(pool, xdp, count); 393 for (i = 0; i < buffs; i++) { 394 dma = xsk_buff_xdp_get_dma(*xdp); 395 rx_desc->read.pkt_addr = cpu_to_le64(dma); 396 rx_desc->wb.status_error0 = 0; 397 398 rx_desc++; 399 xdp++; 400 } 401 402 return buffs; 403 } 404 405 /** 406 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 407 * @rx_ring: Rx ring 408 * @count: The number of buffers to allocate 409 * 410 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 411 * for case where space from next_to_use up to the end of ring is less 412 * than @count. Finally do a tail bump. 413 * 414 * Returns true if all allocations were successful, false if any fail. 415 */ 416 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 417 { 418 u32 nb_buffs_extra = 0, nb_buffs = 0; 419 union ice_32b_rx_flex_desc *rx_desc; 420 u16 ntu = rx_ring->next_to_use; 421 u16 total_count = count; 422 struct xdp_buff **xdp; 423 424 rx_desc = ICE_RX_DESC(rx_ring, ntu); 425 xdp = ice_xdp_buf(rx_ring, ntu); 426 427 if (ntu + count >= rx_ring->count) { 428 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 429 rx_desc, 430 rx_ring->count - ntu); 431 if (nb_buffs_extra != rx_ring->count - ntu) { 432 ntu += nb_buffs_extra; 433 goto exit; 434 } 435 rx_desc = ICE_RX_DESC(rx_ring, 0); 436 xdp = ice_xdp_buf(rx_ring, 0); 437 ntu = 0; 438 count -= nb_buffs_extra; 439 ice_release_rx_desc(rx_ring, 0); 440 } 441 442 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 443 444 ntu += nb_buffs; 445 if (ntu == rx_ring->count) 446 ntu = 0; 447 448 exit: 449 if (rx_ring->next_to_use != ntu) 450 ice_release_rx_desc(rx_ring, ntu); 451 452 return total_count == (nb_buffs_extra + nb_buffs); 453 } 454 455 /** 456 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 457 * @rx_ring: Rx ring 458 * @count: The number of buffers to allocate 459 * 460 * Wrapper for internal allocation routine; figure out how many tail 461 * bumps should take place based on the given threshold 462 * 463 * Returns true if all calls to internal alloc routine succeeded 464 */ 465 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 466 { 467 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 468 u16 batched, leftover, i, tail_bumps; 469 470 batched = ALIGN_DOWN(count, rx_thresh); 471 tail_bumps = batched / rx_thresh; 472 leftover = count & (rx_thresh - 1); 473 474 for (i = 0; i < tail_bumps; i++) 475 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 476 return false; 477 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 478 } 479 480 /** 481 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 482 * @rx_ring: Rx ring 483 */ 484 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 485 { 486 int ntc = rx_ring->next_to_clean + 1; 487 488 ntc = (ntc < rx_ring->count) ? ntc : 0; 489 rx_ring->next_to_clean = ntc; 490 prefetch(ICE_RX_DESC(rx_ring, ntc)); 491 } 492 493 /** 494 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 495 * @rx_ring: Rx ring 496 * @xdp: Pointer to XDP buffer 497 * 498 * This function allocates a new skb from a zero-copy Rx buffer. 499 * 500 * Returns the skb on success, NULL on failure. 501 */ 502 static struct sk_buff * 503 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 504 { 505 unsigned int totalsize = xdp->data_end - xdp->data_meta; 506 unsigned int metasize = xdp->data - xdp->data_meta; 507 struct sk_buff *skb; 508 509 net_prefetch(xdp->data_meta); 510 511 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 512 GFP_ATOMIC | __GFP_NOWARN); 513 if (unlikely(!skb)) 514 return NULL; 515 516 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 517 ALIGN(totalsize, sizeof(long))); 518 519 if (metasize) { 520 skb_metadata_set(skb, metasize); 521 __skb_pull(skb, metasize); 522 } 523 524 xsk_buff_free(xdp); 525 return skb; 526 } 527 528 /** 529 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 530 * @rx_ring: Rx ring 531 * @xdp: xdp_buff used as input to the XDP program 532 * @xdp_prog: XDP program to run 533 * @xdp_ring: ring to be used for XDP_TX action 534 * 535 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 536 */ 537 static int 538 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 539 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 540 { 541 int err, result = ICE_XDP_PASS; 542 u32 act; 543 544 act = bpf_prog_run_xdp(xdp_prog, xdp); 545 546 if (likely(act == XDP_REDIRECT)) { 547 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 548 if (!err) 549 return ICE_XDP_REDIR; 550 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 551 result = ICE_XDP_EXIT; 552 else 553 result = ICE_XDP_CONSUMED; 554 goto out_failure; 555 } 556 557 switch (act) { 558 case XDP_PASS: 559 break; 560 case XDP_TX: 561 result = ice_xmit_xdp_buff(xdp, xdp_ring); 562 if (result == ICE_XDP_CONSUMED) 563 goto out_failure; 564 break; 565 case XDP_DROP: 566 result = ICE_XDP_CONSUMED; 567 break; 568 default: 569 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 570 fallthrough; 571 case XDP_ABORTED: 572 result = ICE_XDP_CONSUMED; 573 out_failure: 574 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 575 break; 576 } 577 578 return result; 579 } 580 581 /** 582 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 583 * @rx_ring: AF_XDP Rx ring 584 * @budget: NAPI budget 585 * 586 * Returns number of processed packets on success, remaining budget on failure. 587 */ 588 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 589 { 590 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 591 struct ice_tx_ring *xdp_ring; 592 unsigned int xdp_xmit = 0; 593 struct bpf_prog *xdp_prog; 594 bool failure = false; 595 int entries_to_alloc; 596 597 /* ZC patch is enabled only when XDP program is set, 598 * so here it can not be NULL 599 */ 600 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 601 xdp_ring = rx_ring->xdp_ring; 602 603 while (likely(total_rx_packets < (unsigned int)budget)) { 604 union ice_32b_rx_flex_desc *rx_desc; 605 unsigned int size, xdp_res = 0; 606 struct xdp_buff *xdp; 607 struct sk_buff *skb; 608 u16 stat_err_bits; 609 u16 vlan_tag = 0; 610 u16 rx_ptype; 611 612 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 613 614 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 615 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 616 break; 617 618 /* This memory barrier is needed to keep us from reading 619 * any other fields out of the rx_desc until we have 620 * verified the descriptor has been written back. 621 */ 622 dma_rmb(); 623 624 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 625 break; 626 627 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 628 629 size = le16_to_cpu(rx_desc->wb.pkt_len) & 630 ICE_RX_FLX_DESC_PKT_LEN_M; 631 if (!size) { 632 xdp->data = NULL; 633 xdp->data_end = NULL; 634 xdp->data_hard_start = NULL; 635 xdp->data_meta = NULL; 636 goto construct_skb; 637 } 638 639 xsk_buff_set_size(xdp, size); 640 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 641 642 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 643 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 644 xdp_xmit |= xdp_res; 645 } else if (xdp_res == ICE_XDP_EXIT) { 646 failure = true; 647 break; 648 } else if (xdp_res == ICE_XDP_CONSUMED) { 649 xsk_buff_free(xdp); 650 } else if (xdp_res == ICE_XDP_PASS) { 651 goto construct_skb; 652 } 653 654 total_rx_bytes += size; 655 total_rx_packets++; 656 657 ice_bump_ntc(rx_ring); 658 continue; 659 660 construct_skb: 661 /* XDP_PASS path */ 662 skb = ice_construct_skb_zc(rx_ring, xdp); 663 if (!skb) { 664 rx_ring->rx_stats.alloc_buf_failed++; 665 break; 666 } 667 668 ice_bump_ntc(rx_ring); 669 670 if (eth_skb_pad(skb)) { 671 skb = NULL; 672 continue; 673 } 674 675 total_rx_bytes += skb->len; 676 total_rx_packets++; 677 678 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 679 680 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 681 ICE_RX_FLEX_DESC_PTYPE_M; 682 683 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 684 ice_receive_skb(rx_ring, skb, vlan_tag); 685 } 686 687 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 688 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 689 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 690 691 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 692 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 693 694 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 695 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 696 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 697 else 698 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 699 700 return (int)total_rx_packets; 701 } 702 703 return failure ? budget : (int)total_rx_packets; 704 } 705 706 /** 707 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 708 * @xdp_ring: XDP Tx ring 709 * @tx_buf: Tx buffer to clean 710 */ 711 static void 712 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 713 { 714 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 715 xdp_ring->xdp_tx_active--; 716 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 717 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 718 dma_unmap_len_set(tx_buf, len, 0); 719 } 720 721 /** 722 * ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring 723 * @xdp_ring: XDP ring to clean 724 * @napi_budget: amount of descriptors that NAPI allows us to clean 725 * 726 * Returns count of cleaned descriptors 727 */ 728 static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget) 729 { 730 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 731 int budget = napi_budget / tx_thresh; 732 u16 next_dd = xdp_ring->next_dd; 733 u16 ntc, cleared_dds = 0; 734 735 do { 736 struct ice_tx_desc *next_dd_desc; 737 u16 desc_cnt = xdp_ring->count; 738 struct ice_tx_buf *tx_buf; 739 u32 xsk_frames; 740 u16 i; 741 742 next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd); 743 if (!(next_dd_desc->cmd_type_offset_bsz & 744 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 745 break; 746 747 cleared_dds++; 748 xsk_frames = 0; 749 if (likely(!xdp_ring->xdp_tx_active)) { 750 xsk_frames = tx_thresh; 751 goto skip; 752 } 753 754 ntc = xdp_ring->next_to_clean; 755 756 for (i = 0; i < tx_thresh; i++) { 757 tx_buf = &xdp_ring->tx_buf[ntc]; 758 759 if (tx_buf->raw_buf) { 760 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 761 tx_buf->raw_buf = NULL; 762 } else { 763 xsk_frames++; 764 } 765 766 ntc++; 767 if (ntc >= xdp_ring->count) 768 ntc = 0; 769 } 770 skip: 771 xdp_ring->next_to_clean += tx_thresh; 772 if (xdp_ring->next_to_clean >= desc_cnt) 773 xdp_ring->next_to_clean -= desc_cnt; 774 if (xsk_frames) 775 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 776 next_dd_desc->cmd_type_offset_bsz = 0; 777 next_dd = next_dd + tx_thresh; 778 if (next_dd >= desc_cnt) 779 next_dd = tx_thresh - 1; 780 } while (--budget); 781 782 xdp_ring->next_dd = next_dd; 783 784 return cleared_dds * tx_thresh; 785 } 786 787 /** 788 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 789 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 790 * @desc: AF_XDP descriptor to pull the DMA address and length from 791 * @total_bytes: bytes accumulator that will be used for stats update 792 */ 793 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 794 unsigned int *total_bytes) 795 { 796 struct ice_tx_desc *tx_desc; 797 dma_addr_t dma; 798 799 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 800 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 801 802 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 803 tx_desc->buf_addr = cpu_to_le64(dma); 804 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 805 0, desc->len, 0); 806 807 *total_bytes += desc->len; 808 } 809 810 /** 811 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 812 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 813 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 814 * @total_bytes: bytes accumulator that will be used for stats update 815 */ 816 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 817 unsigned int *total_bytes) 818 { 819 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 820 u16 ntu = xdp_ring->next_to_use; 821 struct ice_tx_desc *tx_desc; 822 u32 i; 823 824 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 825 dma_addr_t dma; 826 827 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 828 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 829 830 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 831 tx_desc->buf_addr = cpu_to_le64(dma); 832 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 833 0, descs[i].len, 0); 834 835 *total_bytes += descs[i].len; 836 } 837 838 xdp_ring->next_to_use = ntu; 839 840 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 841 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 842 tx_desc->cmd_type_offset_bsz |= 843 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 844 xdp_ring->next_rs += tx_thresh; 845 } 846 } 847 848 /** 849 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 850 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 851 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 852 * @nb_pkts: count of packets to be send 853 * @total_bytes: bytes accumulator that will be used for stats update 854 */ 855 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 856 u32 nb_pkts, unsigned int *total_bytes) 857 { 858 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 859 u32 batched, leftover, i; 860 861 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 862 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 863 for (i = 0; i < batched; i += PKTS_PER_BATCH) 864 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 865 for (; i < batched + leftover; i++) 866 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 867 868 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 869 struct ice_tx_desc *tx_desc; 870 871 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 872 tx_desc->cmd_type_offset_bsz |= 873 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 874 xdp_ring->next_rs += tx_thresh; 875 } 876 } 877 878 /** 879 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 880 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 881 * @budget: number of free descriptors on HW Tx ring that can be used 882 * @napi_budget: amount of descriptors that NAPI allows us to clean 883 * 884 * Returns true if there is no more work that needs to be done, false otherwise 885 */ 886 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget) 887 { 888 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 889 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 890 u32 nb_pkts, nb_processed = 0; 891 unsigned int total_bytes = 0; 892 893 if (budget < tx_thresh) 894 budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget); 895 896 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 897 if (!nb_pkts) 898 return true; 899 900 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 901 struct ice_tx_desc *tx_desc; 902 903 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 904 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 905 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 906 tx_desc->cmd_type_offset_bsz |= 907 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 908 xdp_ring->next_rs = tx_thresh - 1; 909 xdp_ring->next_to_use = 0; 910 } 911 912 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 913 &total_bytes); 914 915 ice_xdp_ring_update_tail(xdp_ring); 916 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 917 918 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 919 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 920 921 return nb_pkts < budget; 922 } 923 924 /** 925 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 926 * @netdev: net_device 927 * @queue_id: queue to wake up 928 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 929 * 930 * Returns negative on error, zero otherwise. 931 */ 932 int 933 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 934 u32 __always_unused flags) 935 { 936 struct ice_netdev_priv *np = netdev_priv(netdev); 937 struct ice_q_vector *q_vector; 938 struct ice_vsi *vsi = np->vsi; 939 struct ice_tx_ring *ring; 940 941 if (test_bit(ICE_VSI_DOWN, vsi->state)) 942 return -ENETDOWN; 943 944 if (!ice_is_xdp_ena_vsi(vsi)) 945 return -EINVAL; 946 947 if (queue_id >= vsi->num_txq) 948 return -EINVAL; 949 950 if (!vsi->xdp_rings[queue_id]->xsk_pool) 951 return -EINVAL; 952 953 ring = vsi->xdp_rings[queue_id]; 954 955 /* The idea here is that if NAPI is running, mark a miss, so 956 * it will run again. If not, trigger an interrupt and 957 * schedule the NAPI from interrupt context. If NAPI would be 958 * scheduled here, the interrupt affinity would not be 959 * honored. 960 */ 961 q_vector = ring->q_vector; 962 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 963 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 964 965 return 0; 966 } 967 968 /** 969 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 970 * @vsi: VSI to be checked 971 * 972 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 973 */ 974 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 975 { 976 int i; 977 978 ice_for_each_rxq(vsi, i) { 979 if (xsk_get_pool_from_qid(vsi->netdev, i)) 980 return true; 981 } 982 983 return false; 984 } 985 986 /** 987 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 988 * @rx_ring: ring to be cleaned 989 */ 990 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 991 { 992 u16 count_mask = rx_ring->count - 1; 993 u16 ntc = rx_ring->next_to_clean; 994 u16 ntu = rx_ring->next_to_use; 995 996 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 997 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 998 999 xsk_buff_free(xdp); 1000 } 1001 } 1002 1003 /** 1004 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1005 * @xdp_ring: XDP_Tx ring 1006 */ 1007 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1008 { 1009 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1010 u32 xsk_frames = 0; 1011 1012 while (ntc != ntu) { 1013 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1014 1015 if (tx_buf->raw_buf) 1016 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 1017 else 1018 xsk_frames++; 1019 1020 tx_buf->raw_buf = NULL; 1021 1022 ntc++; 1023 if (ntc >= xdp_ring->count) 1024 ntc = 0; 1025 } 1026 1027 if (xsk_frames) 1028 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1029 } 1030