1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) { 45 synchronize_rcu(); 46 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 47 } 48 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 49 } 50 51 /** 52 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 53 * @vsi: VSI that has netdev 54 * @q_vector: q_vector that has NAPI context 55 * @enable: true for enable, false for disable 56 */ 57 static void 58 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 59 bool enable) 60 { 61 if (!vsi->netdev || !q_vector) 62 return; 63 64 if (enable) 65 napi_enable(&q_vector->napi); 66 else 67 napi_disable(&q_vector->napi); 68 } 69 70 /** 71 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 72 * @vsi: the VSI that contains queue vector being un-configured 73 * @rx_ring: Rx ring that will have its IRQ disabled 74 * @q_vector: queue vector 75 */ 76 static void 77 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 78 struct ice_q_vector *q_vector) 79 { 80 struct ice_pf *pf = vsi->back; 81 struct ice_hw *hw = &pf->hw; 82 int base = vsi->base_vector; 83 u16 reg; 84 u32 val; 85 86 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 87 * here only QINT_RQCTL 88 */ 89 reg = rx_ring->reg_idx; 90 val = rd32(hw, QINT_RQCTL(reg)); 91 val &= ~QINT_RQCTL_CAUSE_ENA_M; 92 wr32(hw, QINT_RQCTL(reg), val); 93 94 if (q_vector) { 95 u16 v_idx = q_vector->v_idx; 96 97 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 98 ice_flush(hw); 99 synchronize_irq(pf->msix_entries[v_idx + base].vector); 100 } 101 } 102 103 /** 104 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 105 * @vsi: the VSI that contains queue vector 106 * @q_vector: queue vector 107 */ 108 static void 109 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 110 { 111 u16 reg_idx = q_vector->reg_idx; 112 struct ice_pf *pf = vsi->back; 113 struct ice_hw *hw = &pf->hw; 114 struct ice_tx_ring *tx_ring; 115 struct ice_rx_ring *rx_ring; 116 117 ice_cfg_itr(hw, q_vector); 118 119 ice_for_each_tx_ring(tx_ring, q_vector->tx) 120 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 121 q_vector->tx.itr_idx); 122 123 ice_for_each_rx_ring(rx_ring, q_vector->rx) 124 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 125 q_vector->rx.itr_idx); 126 127 ice_flush(hw); 128 } 129 130 /** 131 * ice_qvec_ena_irq - Enable IRQ for given queue vector 132 * @vsi: the VSI that contains queue vector 133 * @q_vector: queue vector 134 */ 135 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 136 { 137 struct ice_pf *pf = vsi->back; 138 struct ice_hw *hw = &pf->hw; 139 140 ice_irq_dynamic_ena(hw, vsi, q_vector); 141 142 ice_flush(hw); 143 } 144 145 /** 146 * ice_qp_dis - Disables a queue pair 147 * @vsi: VSI of interest 148 * @q_idx: ring index in array 149 * 150 * Returns 0 on success, negative on failure. 151 */ 152 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 153 { 154 struct ice_txq_meta txq_meta = { }; 155 struct ice_q_vector *q_vector; 156 struct ice_tx_ring *tx_ring; 157 struct ice_rx_ring *rx_ring; 158 int timeout = 50; 159 int err; 160 161 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 162 return -EINVAL; 163 164 tx_ring = vsi->tx_rings[q_idx]; 165 rx_ring = vsi->rx_rings[q_idx]; 166 q_vector = rx_ring->q_vector; 167 168 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 169 timeout--; 170 if (!timeout) 171 return -EBUSY; 172 usleep_range(1000, 2000); 173 } 174 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 175 176 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 177 178 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 179 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 180 if (err) 181 return err; 182 if (ice_is_xdp_ena_vsi(vsi)) { 183 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 184 185 memset(&txq_meta, 0, sizeof(txq_meta)); 186 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 187 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 188 &txq_meta); 189 if (err) 190 return err; 191 } 192 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 193 if (err) 194 return err; 195 196 ice_qvec_toggle_napi(vsi, q_vector, false); 197 ice_qp_clean_rings(vsi, q_idx); 198 ice_qp_reset_stats(vsi, q_idx); 199 200 return 0; 201 } 202 203 /** 204 * ice_qp_ena - Enables a queue pair 205 * @vsi: VSI of interest 206 * @q_idx: ring index in array 207 * 208 * Returns 0 on success, negative on failure. 209 */ 210 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 211 { 212 struct ice_aqc_add_tx_qgrp *qg_buf; 213 struct ice_q_vector *q_vector; 214 struct ice_tx_ring *tx_ring; 215 struct ice_rx_ring *rx_ring; 216 u16 size; 217 int err; 218 219 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 220 return -EINVAL; 221 222 size = struct_size(qg_buf, txqs, 1); 223 qg_buf = kzalloc(size, GFP_KERNEL); 224 if (!qg_buf) 225 return -ENOMEM; 226 227 qg_buf->num_txqs = 1; 228 229 tx_ring = vsi->tx_rings[q_idx]; 230 rx_ring = vsi->rx_rings[q_idx]; 231 q_vector = rx_ring->q_vector; 232 233 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 234 if (err) 235 goto free_buf; 236 237 if (ice_is_xdp_ena_vsi(vsi)) { 238 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 239 240 memset(qg_buf, 0, size); 241 qg_buf->num_txqs = 1; 242 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 243 if (err) 244 goto free_buf; 245 ice_set_ring_xdp(xdp_ring); 246 ice_tx_xsk_pool(vsi, q_idx); 247 } 248 249 err = ice_vsi_cfg_rxq(rx_ring); 250 if (err) 251 goto free_buf; 252 253 ice_qvec_cfg_msix(vsi, q_vector); 254 255 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 256 if (err) 257 goto free_buf; 258 259 clear_bit(ICE_CFG_BUSY, vsi->state); 260 ice_qvec_toggle_napi(vsi, q_vector, true); 261 ice_qvec_ena_irq(vsi, q_vector); 262 263 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 264 free_buf: 265 kfree(qg_buf); 266 return err; 267 } 268 269 /** 270 * ice_xsk_pool_disable - disable a buffer pool region 271 * @vsi: Current VSI 272 * @qid: queue ID 273 * 274 * Returns 0 on success, negative on failure 275 */ 276 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 277 { 278 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 279 280 if (!pool) 281 return -EINVAL; 282 283 clear_bit(qid, vsi->af_xdp_zc_qps); 284 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 285 286 return 0; 287 } 288 289 /** 290 * ice_xsk_pool_enable - enable a buffer pool region 291 * @vsi: Current VSI 292 * @pool: pointer to a requested buffer pool region 293 * @qid: queue ID 294 * 295 * Returns 0 on success, negative on failure 296 */ 297 static int 298 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 299 { 300 int err; 301 302 if (vsi->type != ICE_VSI_PF) 303 return -EINVAL; 304 305 if (qid >= vsi->netdev->real_num_rx_queues || 306 qid >= vsi->netdev->real_num_tx_queues) 307 return -EINVAL; 308 309 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 310 ICE_RX_DMA_ATTR); 311 if (err) 312 return err; 313 314 set_bit(qid, vsi->af_xdp_zc_qps); 315 316 return 0; 317 } 318 319 /** 320 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 321 * @vsi: Current VSI 322 * @pool: buffer pool to enable/associate to a ring, NULL to disable 323 * @qid: queue ID 324 * 325 * Returns 0 on success, negative on failure 326 */ 327 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 328 { 329 bool if_running, pool_present = !!pool; 330 int ret = 0, pool_failure = 0; 331 332 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 333 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 334 pool_failure = -EINVAL; 335 goto failure; 336 } 337 338 if (!is_power_of_2(vsi->rx_rings[qid]->count) || 339 !is_power_of_2(vsi->tx_rings[qid]->count)) { 340 netdev_err(vsi->netdev, "Please align ring sizes to power of 2\n"); 341 pool_failure = -EINVAL; 342 goto failure; 343 } 344 345 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 346 347 if (if_running) { 348 ret = ice_qp_dis(vsi, qid); 349 if (ret) { 350 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 351 goto xsk_pool_if_up; 352 } 353 } 354 355 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 356 ice_xsk_pool_disable(vsi, qid); 357 358 xsk_pool_if_up: 359 if (if_running) { 360 ret = ice_qp_ena(vsi, qid); 361 if (!ret && pool_present) 362 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 363 else if (ret) 364 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 365 } 366 367 failure: 368 if (pool_failure) { 369 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 370 pool_present ? "en" : "dis", pool_failure); 371 return pool_failure; 372 } 373 374 return ret; 375 } 376 377 /** 378 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 379 * @pool: XSK Buffer pool to pull the buffers from 380 * @xdp: SW ring of xdp_buff that will hold the buffers 381 * @rx_desc: Pointer to Rx descriptors that will be filled 382 * @count: The number of buffers to allocate 383 * 384 * This function allocates a number of Rx buffers from the fill ring 385 * or the internal recycle mechanism and places them on the Rx ring. 386 * 387 * Note that ring wrap should be handled by caller of this function. 388 * 389 * Returns the amount of allocated Rx descriptors 390 */ 391 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 392 union ice_32b_rx_flex_desc *rx_desc, u16 count) 393 { 394 dma_addr_t dma; 395 u16 buffs; 396 int i; 397 398 buffs = xsk_buff_alloc_batch(pool, xdp, count); 399 for (i = 0; i < buffs; i++) { 400 dma = xsk_buff_xdp_get_dma(*xdp); 401 rx_desc->read.pkt_addr = cpu_to_le64(dma); 402 rx_desc->wb.status_error0 = 0; 403 404 rx_desc++; 405 xdp++; 406 } 407 408 return buffs; 409 } 410 411 /** 412 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 413 * @rx_ring: Rx ring 414 * @count: The number of buffers to allocate 415 * 416 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 417 * for case where space from next_to_use up to the end of ring is less 418 * than @count. Finally do a tail bump. 419 * 420 * Returns true if all allocations were successful, false if any fail. 421 */ 422 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 423 { 424 u32 nb_buffs_extra = 0, nb_buffs = 0; 425 union ice_32b_rx_flex_desc *rx_desc; 426 u16 ntu = rx_ring->next_to_use; 427 u16 total_count = count; 428 struct xdp_buff **xdp; 429 430 rx_desc = ICE_RX_DESC(rx_ring, ntu); 431 xdp = ice_xdp_buf(rx_ring, ntu); 432 433 if (ntu + count >= rx_ring->count) { 434 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 435 rx_desc, 436 rx_ring->count - ntu); 437 if (nb_buffs_extra != rx_ring->count - ntu) { 438 ntu += nb_buffs_extra; 439 goto exit; 440 } 441 rx_desc = ICE_RX_DESC(rx_ring, 0); 442 xdp = ice_xdp_buf(rx_ring, 0); 443 ntu = 0; 444 count -= nb_buffs_extra; 445 ice_release_rx_desc(rx_ring, 0); 446 } 447 448 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 449 450 ntu += nb_buffs; 451 if (ntu == rx_ring->count) 452 ntu = 0; 453 454 exit: 455 if (rx_ring->next_to_use != ntu) 456 ice_release_rx_desc(rx_ring, ntu); 457 458 return total_count == (nb_buffs_extra + nb_buffs); 459 } 460 461 /** 462 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 463 * @rx_ring: Rx ring 464 * @count: The number of buffers to allocate 465 * 466 * Wrapper for internal allocation routine; figure out how many tail 467 * bumps should take place based on the given threshold 468 * 469 * Returns true if all calls to internal alloc routine succeeded 470 */ 471 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 472 { 473 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 474 u16 batched, leftover, i, tail_bumps; 475 476 batched = ALIGN_DOWN(count, rx_thresh); 477 tail_bumps = batched / rx_thresh; 478 leftover = count & (rx_thresh - 1); 479 480 for (i = 0; i < tail_bumps; i++) 481 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 482 return false; 483 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 484 } 485 486 /** 487 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 488 * @rx_ring: Rx ring 489 */ 490 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 491 { 492 int ntc = rx_ring->next_to_clean + 1; 493 494 ntc = (ntc < rx_ring->count) ? ntc : 0; 495 rx_ring->next_to_clean = ntc; 496 prefetch(ICE_RX_DESC(rx_ring, ntc)); 497 } 498 499 /** 500 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 501 * @rx_ring: Rx ring 502 * @xdp: Pointer to XDP buffer 503 * 504 * This function allocates a new skb from a zero-copy Rx buffer. 505 * 506 * Returns the skb on success, NULL on failure. 507 */ 508 static struct sk_buff * 509 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 510 { 511 unsigned int totalsize = xdp->data_end - xdp->data_meta; 512 unsigned int metasize = xdp->data - xdp->data_meta; 513 struct sk_buff *skb; 514 515 net_prefetch(xdp->data_meta); 516 517 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 518 GFP_ATOMIC | __GFP_NOWARN); 519 if (unlikely(!skb)) 520 return NULL; 521 522 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 523 ALIGN(totalsize, sizeof(long))); 524 525 if (metasize) { 526 skb_metadata_set(skb, metasize); 527 __skb_pull(skb, metasize); 528 } 529 530 xsk_buff_free(xdp); 531 return skb; 532 } 533 534 /** 535 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 536 * @rx_ring: Rx ring 537 * @xdp: xdp_buff used as input to the XDP program 538 * @xdp_prog: XDP program to run 539 * @xdp_ring: ring to be used for XDP_TX action 540 * 541 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 542 */ 543 static int 544 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 545 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 546 { 547 int err, result = ICE_XDP_PASS; 548 u32 act; 549 550 act = bpf_prog_run_xdp(xdp_prog, xdp); 551 552 if (likely(act == XDP_REDIRECT)) { 553 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 554 if (!err) 555 return ICE_XDP_REDIR; 556 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 557 result = ICE_XDP_EXIT; 558 else 559 result = ICE_XDP_CONSUMED; 560 goto out_failure; 561 } 562 563 switch (act) { 564 case XDP_PASS: 565 break; 566 case XDP_TX: 567 result = ice_xmit_xdp_buff(xdp, xdp_ring); 568 if (result == ICE_XDP_CONSUMED) 569 goto out_failure; 570 break; 571 case XDP_DROP: 572 result = ICE_XDP_CONSUMED; 573 break; 574 default: 575 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 576 fallthrough; 577 case XDP_ABORTED: 578 result = ICE_XDP_CONSUMED; 579 out_failure: 580 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 581 break; 582 } 583 584 return result; 585 } 586 587 /** 588 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 589 * @rx_ring: AF_XDP Rx ring 590 * @budget: NAPI budget 591 * 592 * Returns number of processed packets on success, remaining budget on failure. 593 */ 594 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 595 { 596 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 597 struct ice_tx_ring *xdp_ring; 598 unsigned int xdp_xmit = 0; 599 struct bpf_prog *xdp_prog; 600 bool failure = false; 601 int entries_to_alloc; 602 603 /* ZC patch is enabled only when XDP program is set, 604 * so here it can not be NULL 605 */ 606 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 607 xdp_ring = rx_ring->xdp_ring; 608 609 while (likely(total_rx_packets < (unsigned int)budget)) { 610 union ice_32b_rx_flex_desc *rx_desc; 611 unsigned int size, xdp_res = 0; 612 struct xdp_buff *xdp; 613 struct sk_buff *skb; 614 u16 stat_err_bits; 615 u16 vlan_tag = 0; 616 u16 rx_ptype; 617 618 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 619 620 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 621 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 622 break; 623 624 /* This memory barrier is needed to keep us from reading 625 * any other fields out of the rx_desc until we have 626 * verified the descriptor has been written back. 627 */ 628 dma_rmb(); 629 630 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 631 break; 632 633 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 634 635 size = le16_to_cpu(rx_desc->wb.pkt_len) & 636 ICE_RX_FLX_DESC_PKT_LEN_M; 637 if (!size) { 638 xdp->data = NULL; 639 xdp->data_end = NULL; 640 xdp->data_hard_start = NULL; 641 xdp->data_meta = NULL; 642 goto construct_skb; 643 } 644 645 xsk_buff_set_size(xdp, size); 646 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 647 648 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 649 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 650 xdp_xmit |= xdp_res; 651 } else if (xdp_res == ICE_XDP_EXIT) { 652 failure = true; 653 break; 654 } else if (xdp_res == ICE_XDP_CONSUMED) { 655 xsk_buff_free(xdp); 656 } else if (xdp_res == ICE_XDP_PASS) { 657 goto construct_skb; 658 } 659 660 total_rx_bytes += size; 661 total_rx_packets++; 662 663 ice_bump_ntc(rx_ring); 664 continue; 665 666 construct_skb: 667 /* XDP_PASS path */ 668 skb = ice_construct_skb_zc(rx_ring, xdp); 669 if (!skb) { 670 rx_ring->rx_stats.alloc_buf_failed++; 671 break; 672 } 673 674 ice_bump_ntc(rx_ring); 675 676 if (eth_skb_pad(skb)) { 677 skb = NULL; 678 continue; 679 } 680 681 total_rx_bytes += skb->len; 682 total_rx_packets++; 683 684 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 685 686 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 687 ICE_RX_FLEX_DESC_PTYPE_M; 688 689 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 690 ice_receive_skb(rx_ring, skb, vlan_tag); 691 } 692 693 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 694 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 695 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 696 697 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 698 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 699 700 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 701 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 702 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 703 else 704 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 705 706 return (int)total_rx_packets; 707 } 708 709 return failure ? budget : (int)total_rx_packets; 710 } 711 712 /** 713 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 714 * @xdp_ring: XDP Tx ring 715 * @tx_buf: Tx buffer to clean 716 */ 717 static void 718 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 719 { 720 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 721 xdp_ring->xdp_tx_active--; 722 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 723 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 724 dma_unmap_len_set(tx_buf, len, 0); 725 } 726 727 /** 728 * ice_clean_xdp_irq_zc - Reclaim resources after transmit completes on XDP ring 729 * @xdp_ring: XDP ring to clean 730 * @napi_budget: amount of descriptors that NAPI allows us to clean 731 * 732 * Returns count of cleaned descriptors 733 */ 734 static u16 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring, int napi_budget) 735 { 736 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 737 int budget = napi_budget / tx_thresh; 738 u16 next_dd = xdp_ring->next_dd; 739 u16 ntc, cleared_dds = 0; 740 741 do { 742 struct ice_tx_desc *next_dd_desc; 743 u16 desc_cnt = xdp_ring->count; 744 struct ice_tx_buf *tx_buf; 745 u32 xsk_frames; 746 u16 i; 747 748 next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd); 749 if (!(next_dd_desc->cmd_type_offset_bsz & 750 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 751 break; 752 753 cleared_dds++; 754 xsk_frames = 0; 755 if (likely(!xdp_ring->xdp_tx_active)) { 756 xsk_frames = tx_thresh; 757 goto skip; 758 } 759 760 ntc = xdp_ring->next_to_clean; 761 762 for (i = 0; i < tx_thresh; i++) { 763 tx_buf = &xdp_ring->tx_buf[ntc]; 764 765 if (tx_buf->raw_buf) { 766 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 767 tx_buf->raw_buf = NULL; 768 } else { 769 xsk_frames++; 770 } 771 772 ntc++; 773 if (ntc >= xdp_ring->count) 774 ntc = 0; 775 } 776 skip: 777 xdp_ring->next_to_clean += tx_thresh; 778 if (xdp_ring->next_to_clean >= desc_cnt) 779 xdp_ring->next_to_clean -= desc_cnt; 780 if (xsk_frames) 781 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 782 next_dd_desc->cmd_type_offset_bsz = 0; 783 next_dd = next_dd + tx_thresh; 784 if (next_dd >= desc_cnt) 785 next_dd = tx_thresh - 1; 786 } while (--budget); 787 788 xdp_ring->next_dd = next_dd; 789 790 return cleared_dds * tx_thresh; 791 } 792 793 /** 794 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 795 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 796 * @desc: AF_XDP descriptor to pull the DMA address and length from 797 * @total_bytes: bytes accumulator that will be used for stats update 798 */ 799 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 800 unsigned int *total_bytes) 801 { 802 struct ice_tx_desc *tx_desc; 803 dma_addr_t dma; 804 805 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 806 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 807 808 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 809 tx_desc->buf_addr = cpu_to_le64(dma); 810 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 811 0, desc->len, 0); 812 813 *total_bytes += desc->len; 814 } 815 816 /** 817 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 818 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 819 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 820 * @total_bytes: bytes accumulator that will be used for stats update 821 */ 822 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 823 unsigned int *total_bytes) 824 { 825 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 826 u16 ntu = xdp_ring->next_to_use; 827 struct ice_tx_desc *tx_desc; 828 u32 i; 829 830 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 831 dma_addr_t dma; 832 833 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 834 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 835 836 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 837 tx_desc->buf_addr = cpu_to_le64(dma); 838 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 839 0, descs[i].len, 0); 840 841 *total_bytes += descs[i].len; 842 } 843 844 xdp_ring->next_to_use = ntu; 845 846 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 847 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 848 tx_desc->cmd_type_offset_bsz |= 849 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 850 xdp_ring->next_rs += tx_thresh; 851 } 852 } 853 854 /** 855 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 856 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 857 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 858 * @nb_pkts: count of packets to be send 859 * @total_bytes: bytes accumulator that will be used for stats update 860 */ 861 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 862 u32 nb_pkts, unsigned int *total_bytes) 863 { 864 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 865 u32 batched, leftover, i; 866 867 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 868 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 869 for (i = 0; i < batched; i += PKTS_PER_BATCH) 870 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 871 for (; i < batched + leftover; i++) 872 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 873 874 if (xdp_ring->next_to_use > xdp_ring->next_rs) { 875 struct ice_tx_desc *tx_desc; 876 877 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 878 tx_desc->cmd_type_offset_bsz |= 879 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 880 xdp_ring->next_rs += tx_thresh; 881 } 882 } 883 884 /** 885 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 886 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 887 * @budget: number of free descriptors on HW Tx ring that can be used 888 * @napi_budget: amount of descriptors that NAPI allows us to clean 889 * 890 * Returns true if there is no more work that needs to be done, false otherwise 891 */ 892 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, u32 budget, int napi_budget) 893 { 894 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 895 u16 tx_thresh = ICE_RING_QUARTER(xdp_ring); 896 u32 nb_pkts, nb_processed = 0; 897 unsigned int total_bytes = 0; 898 899 if (budget < tx_thresh) 900 budget += ice_clean_xdp_irq_zc(xdp_ring, napi_budget); 901 902 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 903 if (!nb_pkts) 904 return true; 905 906 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 907 struct ice_tx_desc *tx_desc; 908 909 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 910 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 911 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 912 tx_desc->cmd_type_offset_bsz |= 913 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 914 xdp_ring->next_rs = tx_thresh - 1; 915 xdp_ring->next_to_use = 0; 916 } 917 918 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 919 &total_bytes); 920 921 ice_xdp_ring_update_tail(xdp_ring); 922 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 923 924 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 925 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 926 927 return nb_pkts < budget; 928 } 929 930 /** 931 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 932 * @netdev: net_device 933 * @queue_id: queue to wake up 934 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 935 * 936 * Returns negative on error, zero otherwise. 937 */ 938 int 939 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 940 u32 __always_unused flags) 941 { 942 struct ice_netdev_priv *np = netdev_priv(netdev); 943 struct ice_q_vector *q_vector; 944 struct ice_vsi *vsi = np->vsi; 945 struct ice_tx_ring *ring; 946 947 if (test_bit(ICE_VSI_DOWN, vsi->state)) 948 return -ENETDOWN; 949 950 if (!ice_is_xdp_ena_vsi(vsi)) 951 return -EINVAL; 952 953 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 954 return -EINVAL; 955 956 ring = vsi->rx_rings[queue_id]->xdp_ring; 957 958 if (!ring->xsk_pool) 959 return -EINVAL; 960 961 /* The idea here is that if NAPI is running, mark a miss, so 962 * it will run again. If not, trigger an interrupt and 963 * schedule the NAPI from interrupt context. If NAPI would be 964 * scheduled here, the interrupt affinity would not be 965 * honored. 966 */ 967 q_vector = ring->q_vector; 968 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 969 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 970 971 return 0; 972 } 973 974 /** 975 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 976 * @vsi: VSI to be checked 977 * 978 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 979 */ 980 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 981 { 982 int i; 983 984 ice_for_each_rxq(vsi, i) { 985 if (xsk_get_pool_from_qid(vsi->netdev, i)) 986 return true; 987 } 988 989 return false; 990 } 991 992 /** 993 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 994 * @rx_ring: ring to be cleaned 995 */ 996 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 997 { 998 u16 count_mask = rx_ring->count - 1; 999 u16 ntc = rx_ring->next_to_clean; 1000 u16 ntu = rx_ring->next_to_use; 1001 1002 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 1003 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1004 1005 xsk_buff_free(xdp); 1006 } 1007 } 1008 1009 /** 1010 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1011 * @xdp_ring: XDP_Tx ring 1012 */ 1013 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1014 { 1015 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1016 u32 xsk_frames = 0; 1017 1018 while (ntc != ntu) { 1019 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1020 1021 if (tx_buf->raw_buf) 1022 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 1023 else 1024 xsk_frames++; 1025 1026 tx_buf->raw_buf = NULL; 1027 1028 ntc++; 1029 if (ntc >= xdp_ring->count) 1030 ntc = 0; 1031 } 1032 1033 if (xsk_frames) 1034 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1035 } 1036