1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 28 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 29 memset(&vsi->tx_rings[q_idx]->stats, 0, 30 sizeof(vsi->tx_rings[q_idx]->stats)); 31 if (ice_is_xdp_ena_vsi(vsi)) 32 memset(&vsi->xdp_rings[q_idx]->stats, 0, 33 sizeof(vsi->xdp_rings[q_idx]->stats)); 34 } 35 36 /** 37 * ice_qp_clean_rings - Cleans all the rings of a given index 38 * @vsi: VSI that contains rings of interest 39 * @q_idx: ring index in array 40 */ 41 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 42 { 43 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 44 if (ice_is_xdp_ena_vsi(vsi)) 45 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 46 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 47 } 48 49 /** 50 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 51 * @vsi: VSI that has netdev 52 * @q_vector: q_vector that has NAPI context 53 * @enable: true for enable, false for disable 54 */ 55 static void 56 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 57 bool enable) 58 { 59 if (!vsi->netdev || !q_vector) 60 return; 61 62 if (enable) 63 napi_enable(&q_vector->napi); 64 else 65 napi_disable(&q_vector->napi); 66 } 67 68 /** 69 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 70 * @vsi: the VSI that contains queue vector being un-configured 71 * @rx_ring: Rx ring that will have its IRQ disabled 72 * @q_vector: queue vector 73 */ 74 static void 75 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 76 struct ice_q_vector *q_vector) 77 { 78 struct ice_pf *pf = vsi->back; 79 struct ice_hw *hw = &pf->hw; 80 int base = vsi->base_vector; 81 u16 reg; 82 u32 val; 83 84 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 85 * here only QINT_RQCTL 86 */ 87 reg = rx_ring->reg_idx; 88 val = rd32(hw, QINT_RQCTL(reg)); 89 val &= ~QINT_RQCTL_CAUSE_ENA_M; 90 wr32(hw, QINT_RQCTL(reg), val); 91 92 if (q_vector) { 93 u16 v_idx = q_vector->v_idx; 94 95 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 96 ice_flush(hw); 97 synchronize_irq(pf->msix_entries[v_idx + base].vector); 98 } 99 } 100 101 /** 102 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 103 * @vsi: the VSI that contains queue vector 104 * @q_vector: queue vector 105 */ 106 static void 107 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 108 { 109 u16 reg_idx = q_vector->reg_idx; 110 struct ice_pf *pf = vsi->back; 111 struct ice_hw *hw = &pf->hw; 112 struct ice_tx_ring *tx_ring; 113 struct ice_rx_ring *rx_ring; 114 115 ice_cfg_itr(hw, q_vector); 116 117 ice_for_each_tx_ring(tx_ring, q_vector->tx) 118 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 119 q_vector->tx.itr_idx); 120 121 ice_for_each_rx_ring(rx_ring, q_vector->rx) 122 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 123 q_vector->rx.itr_idx); 124 125 ice_flush(hw); 126 } 127 128 /** 129 * ice_qvec_ena_irq - Enable IRQ for given queue vector 130 * @vsi: the VSI that contains queue vector 131 * @q_vector: queue vector 132 */ 133 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 134 { 135 struct ice_pf *pf = vsi->back; 136 struct ice_hw *hw = &pf->hw; 137 138 ice_irq_dynamic_ena(hw, vsi, q_vector); 139 140 ice_flush(hw); 141 } 142 143 /** 144 * ice_qp_dis - Disables a queue pair 145 * @vsi: VSI of interest 146 * @q_idx: ring index in array 147 * 148 * Returns 0 on success, negative on failure. 149 */ 150 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 151 { 152 struct ice_txq_meta txq_meta = { }; 153 struct ice_q_vector *q_vector; 154 struct ice_tx_ring *tx_ring; 155 struct ice_rx_ring *rx_ring; 156 int timeout = 50; 157 int err; 158 159 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 160 return -EINVAL; 161 162 tx_ring = vsi->tx_rings[q_idx]; 163 rx_ring = vsi->rx_rings[q_idx]; 164 q_vector = rx_ring->q_vector; 165 166 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 167 timeout--; 168 if (!timeout) 169 return -EBUSY; 170 usleep_range(1000, 2000); 171 } 172 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 173 174 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 175 176 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 177 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 178 if (err) 179 return err; 180 if (ice_is_xdp_ena_vsi(vsi)) { 181 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 182 183 memset(&txq_meta, 0, sizeof(txq_meta)); 184 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 185 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 186 &txq_meta); 187 if (err) 188 return err; 189 } 190 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 191 if (err) 192 return err; 193 194 ice_qvec_toggle_napi(vsi, q_vector, false); 195 ice_qp_clean_rings(vsi, q_idx); 196 ice_qp_reset_stats(vsi, q_idx); 197 198 return 0; 199 } 200 201 /** 202 * ice_qp_ena - Enables a queue pair 203 * @vsi: VSI of interest 204 * @q_idx: ring index in array 205 * 206 * Returns 0 on success, negative on failure. 207 */ 208 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 209 { 210 struct ice_aqc_add_tx_qgrp *qg_buf; 211 struct ice_q_vector *q_vector; 212 struct ice_tx_ring *tx_ring; 213 struct ice_rx_ring *rx_ring; 214 u16 size; 215 int err; 216 217 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 218 return -EINVAL; 219 220 size = struct_size(qg_buf, txqs, 1); 221 qg_buf = kzalloc(size, GFP_KERNEL); 222 if (!qg_buf) 223 return -ENOMEM; 224 225 qg_buf->num_txqs = 1; 226 227 tx_ring = vsi->tx_rings[q_idx]; 228 rx_ring = vsi->rx_rings[q_idx]; 229 q_vector = rx_ring->q_vector; 230 231 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 232 if (err) 233 goto free_buf; 234 235 if (ice_is_xdp_ena_vsi(vsi)) { 236 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 237 238 memset(qg_buf, 0, size); 239 qg_buf->num_txqs = 1; 240 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 241 if (err) 242 goto free_buf; 243 ice_set_ring_xdp(xdp_ring); 244 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 245 } 246 247 err = ice_vsi_cfg_rxq(rx_ring); 248 if (err) 249 goto free_buf; 250 251 ice_qvec_cfg_msix(vsi, q_vector); 252 253 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 254 if (err) 255 goto free_buf; 256 257 clear_bit(ICE_CFG_BUSY, vsi->state); 258 ice_qvec_toggle_napi(vsi, q_vector, true); 259 ice_qvec_ena_irq(vsi, q_vector); 260 261 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 262 free_buf: 263 kfree(qg_buf); 264 return err; 265 } 266 267 /** 268 * ice_xsk_pool_disable - disable a buffer pool region 269 * @vsi: Current VSI 270 * @qid: queue ID 271 * 272 * Returns 0 on success, negative on failure 273 */ 274 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 275 { 276 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 277 278 if (!pool) 279 return -EINVAL; 280 281 clear_bit(qid, vsi->af_xdp_zc_qps); 282 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 283 284 return 0; 285 } 286 287 /** 288 * ice_xsk_pool_enable - enable a buffer pool region 289 * @vsi: Current VSI 290 * @pool: pointer to a requested buffer pool region 291 * @qid: queue ID 292 * 293 * Returns 0 on success, negative on failure 294 */ 295 static int 296 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 297 { 298 int err; 299 300 if (vsi->type != ICE_VSI_PF) 301 return -EINVAL; 302 303 if (qid >= vsi->netdev->real_num_rx_queues || 304 qid >= vsi->netdev->real_num_tx_queues) 305 return -EINVAL; 306 307 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 308 ICE_RX_DMA_ATTR); 309 if (err) 310 return err; 311 312 set_bit(qid, vsi->af_xdp_zc_qps); 313 314 return 0; 315 } 316 317 /** 318 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 319 * @vsi: Current VSI 320 * @pool: buffer pool to enable/associate to a ring, NULL to disable 321 * @qid: queue ID 322 * 323 * Returns 0 on success, negative on failure 324 */ 325 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 326 { 327 bool if_running, pool_present = !!pool; 328 int ret = 0, pool_failure = 0; 329 330 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 331 332 if (if_running) { 333 ret = ice_qp_dis(vsi, qid); 334 if (ret) { 335 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 336 goto xsk_pool_if_up; 337 } 338 } 339 340 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 341 ice_xsk_pool_disable(vsi, qid); 342 343 xsk_pool_if_up: 344 if (if_running) { 345 ret = ice_qp_ena(vsi, qid); 346 if (!ret && pool_present) 347 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 348 else if (ret) 349 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 350 } 351 352 if (pool_failure) { 353 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 354 pool_present ? "en" : "dis", pool_failure); 355 return pool_failure; 356 } 357 358 return ret; 359 } 360 361 /** 362 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 363 * @rx_ring: Rx ring 364 * @count: The number of buffers to allocate 365 * 366 * This function allocates a number of Rx buffers from the fill ring 367 * or the internal recycle mechanism and places them on the Rx ring. 368 * 369 * Returns true if all allocations were successful, false if any fail. 370 */ 371 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 372 { 373 union ice_32b_rx_flex_desc *rx_desc; 374 u16 ntu = rx_ring->next_to_use; 375 struct xdp_buff **xdp; 376 u32 nb_buffs, i; 377 dma_addr_t dma; 378 379 rx_desc = ICE_RX_DESC(rx_ring, ntu); 380 xdp = ice_xdp_buf(rx_ring, ntu); 381 382 nb_buffs = min_t(u16, count, rx_ring->count - ntu); 383 nb_buffs = xsk_buff_alloc_batch(rx_ring->xsk_pool, xdp, nb_buffs); 384 if (!nb_buffs) 385 return false; 386 387 i = nb_buffs; 388 while (i--) { 389 dma = xsk_buff_xdp_get_dma(*xdp); 390 rx_desc->read.pkt_addr = cpu_to_le64(dma); 391 rx_desc->wb.status_error0 = 0; 392 393 rx_desc++; 394 xdp++; 395 } 396 397 ntu += nb_buffs; 398 if (ntu == rx_ring->count) 399 ntu = 0; 400 401 ice_release_rx_desc(rx_ring, ntu); 402 403 return count == nb_buffs; 404 } 405 406 /** 407 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 408 * @rx_ring: Rx ring 409 */ 410 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 411 { 412 int ntc = rx_ring->next_to_clean + 1; 413 414 ntc = (ntc < rx_ring->count) ? ntc : 0; 415 rx_ring->next_to_clean = ntc; 416 prefetch(ICE_RX_DESC(rx_ring, ntc)); 417 } 418 419 /** 420 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 421 * @rx_ring: Rx ring 422 * @xdp: Pointer to XDP buffer 423 * 424 * This function allocates a new skb from a zero-copy Rx buffer. 425 * 426 * Returns the skb on success, NULL on failure. 427 */ 428 static struct sk_buff * 429 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 430 { 431 unsigned int datasize_hard = xdp->data_end - xdp->data_hard_start; 432 unsigned int metasize = xdp->data - xdp->data_meta; 433 unsigned int datasize = xdp->data_end - xdp->data; 434 struct sk_buff *skb; 435 436 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, 437 GFP_ATOMIC | __GFP_NOWARN); 438 if (unlikely(!skb)) 439 return NULL; 440 441 skb_reserve(skb, xdp->data - xdp->data_hard_start); 442 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 443 if (metasize) 444 skb_metadata_set(skb, metasize); 445 446 xsk_buff_free(xdp); 447 return skb; 448 } 449 450 /** 451 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 452 * @rx_ring: Rx ring 453 * @xdp: xdp_buff used as input to the XDP program 454 * @xdp_prog: XDP program to run 455 * @xdp_ring: ring to be used for XDP_TX action 456 * 457 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 458 */ 459 static int 460 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 461 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 462 { 463 int err, result = ICE_XDP_PASS; 464 u32 act; 465 466 act = bpf_prog_run_xdp(xdp_prog, xdp); 467 468 if (likely(act == XDP_REDIRECT)) { 469 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 470 if (err) 471 goto out_failure; 472 return ICE_XDP_REDIR; 473 } 474 475 switch (act) { 476 case XDP_PASS: 477 break; 478 case XDP_TX: 479 result = ice_xmit_xdp_buff(xdp, xdp_ring); 480 if (result == ICE_XDP_CONSUMED) 481 goto out_failure; 482 break; 483 default: 484 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 485 fallthrough; 486 case XDP_ABORTED: 487 out_failure: 488 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 489 fallthrough; 490 case XDP_DROP: 491 result = ICE_XDP_CONSUMED; 492 break; 493 } 494 495 return result; 496 } 497 498 /** 499 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 500 * @rx_ring: AF_XDP Rx ring 501 * @budget: NAPI budget 502 * 503 * Returns number of processed packets on success, remaining budget on failure. 504 */ 505 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 506 { 507 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 508 struct ice_tx_ring *xdp_ring; 509 unsigned int xdp_xmit = 0; 510 struct bpf_prog *xdp_prog; 511 bool failure = false; 512 513 /* ZC patch is enabled only when XDP program is set, 514 * so here it can not be NULL 515 */ 516 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 517 xdp_ring = rx_ring->xdp_ring; 518 519 while (likely(total_rx_packets < (unsigned int)budget)) { 520 union ice_32b_rx_flex_desc *rx_desc; 521 unsigned int size, xdp_res = 0; 522 struct xdp_buff *xdp; 523 struct sk_buff *skb; 524 u16 stat_err_bits; 525 u16 vlan_tag = 0; 526 u16 rx_ptype; 527 528 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 529 530 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 531 if (!ice_test_staterr(rx_desc, stat_err_bits)) 532 break; 533 534 /* This memory barrier is needed to keep us from reading 535 * any other fields out of the rx_desc until we have 536 * verified the descriptor has been written back. 537 */ 538 dma_rmb(); 539 540 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 541 542 size = le16_to_cpu(rx_desc->wb.pkt_len) & 543 ICE_RX_FLX_DESC_PKT_LEN_M; 544 if (!size) { 545 xdp->data = NULL; 546 xdp->data_end = NULL; 547 xdp->data_hard_start = NULL; 548 xdp->data_meta = NULL; 549 goto construct_skb; 550 } 551 552 xsk_buff_set_size(xdp, size); 553 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 554 555 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 556 if (xdp_res) { 557 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 558 xdp_xmit |= xdp_res; 559 else 560 xsk_buff_free(xdp); 561 562 total_rx_bytes += size; 563 total_rx_packets++; 564 565 ice_bump_ntc(rx_ring); 566 continue; 567 } 568 construct_skb: 569 /* XDP_PASS path */ 570 skb = ice_construct_skb_zc(rx_ring, xdp); 571 if (!skb) { 572 rx_ring->rx_stats.alloc_buf_failed++; 573 break; 574 } 575 576 ice_bump_ntc(rx_ring); 577 578 if (eth_skb_pad(skb)) { 579 skb = NULL; 580 continue; 581 } 582 583 total_rx_bytes += skb->len; 584 total_rx_packets++; 585 586 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 587 if (ice_test_staterr(rx_desc, stat_err_bits)) 588 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 589 590 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 591 ICE_RX_FLEX_DESC_PTYPE_M; 592 593 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 594 ice_receive_skb(rx_ring, skb, vlan_tag); 595 } 596 597 failure = !ice_alloc_rx_bufs_zc(rx_ring, ICE_DESC_UNUSED(rx_ring)); 598 599 ice_finalize_xdp_rx(xdp_ring, xdp_xmit); 600 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 601 602 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 603 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 604 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 605 else 606 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 607 608 return (int)total_rx_packets; 609 } 610 611 return failure ? budget : (int)total_rx_packets; 612 } 613 614 /** 615 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 616 * @xdp_ring: XDP Tx ring 617 * @budget: max number of frames to xmit 618 * 619 * Returns true if cleanup/transmission is done. 620 */ 621 static bool ice_xmit_zc(struct ice_tx_ring *xdp_ring, int budget) 622 { 623 struct ice_tx_desc *tx_desc = NULL; 624 bool work_done = true; 625 struct xdp_desc desc; 626 dma_addr_t dma; 627 628 while (likely(budget-- > 0)) { 629 struct ice_tx_buf *tx_buf; 630 631 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 632 xdp_ring->tx_stats.tx_busy++; 633 work_done = false; 634 break; 635 } 636 637 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 638 639 if (!xsk_tx_peek_desc(xdp_ring->xsk_pool, &desc)) 640 break; 641 642 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc.addr); 643 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, 644 desc.len); 645 646 tx_buf->bytecount = desc.len; 647 648 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 649 tx_desc->buf_addr = cpu_to_le64(dma); 650 tx_desc->cmd_type_offset_bsz = 651 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 652 653 xdp_ring->next_to_use++; 654 if (xdp_ring->next_to_use == xdp_ring->count) 655 xdp_ring->next_to_use = 0; 656 } 657 658 if (tx_desc) { 659 ice_xdp_ring_update_tail(xdp_ring); 660 xsk_tx_release(xdp_ring->xsk_pool); 661 } 662 663 return budget > 0 && work_done; 664 } 665 666 /** 667 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 668 * @xdp_ring: XDP Tx ring 669 * @tx_buf: Tx buffer to clean 670 */ 671 static void 672 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf) 673 { 674 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 675 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 676 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 677 dma_unmap_len_set(tx_buf, len, 0); 678 } 679 680 /** 681 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 682 * @xdp_ring: XDP Tx ring 683 * @budget: NAPI budget 684 * 685 * Returns true if cleanup/tranmission is done. 686 */ 687 bool ice_clean_tx_irq_zc(struct ice_tx_ring *xdp_ring, int budget) 688 { 689 int total_packets = 0, total_bytes = 0; 690 s16 ntc = xdp_ring->next_to_clean; 691 struct ice_tx_desc *tx_desc; 692 struct ice_tx_buf *tx_buf; 693 u32 xsk_frames = 0; 694 bool xmit_done; 695 696 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 697 tx_buf = &xdp_ring->tx_buf[ntc]; 698 ntc -= xdp_ring->count; 699 700 do { 701 if (!(tx_desc->cmd_type_offset_bsz & 702 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 703 break; 704 705 total_bytes += tx_buf->bytecount; 706 total_packets++; 707 708 if (tx_buf->raw_buf) { 709 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 710 tx_buf->raw_buf = NULL; 711 } else { 712 xsk_frames++; 713 } 714 715 tx_desc->cmd_type_offset_bsz = 0; 716 tx_buf++; 717 tx_desc++; 718 ntc++; 719 720 if (unlikely(!ntc)) { 721 ntc -= xdp_ring->count; 722 tx_buf = xdp_ring->tx_buf; 723 tx_desc = ICE_TX_DESC(xdp_ring, 0); 724 } 725 726 prefetch(tx_desc); 727 728 } while (likely(--budget)); 729 730 ntc += xdp_ring->count; 731 xdp_ring->next_to_clean = ntc; 732 733 if (xsk_frames) 734 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 735 736 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 737 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 738 739 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 740 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 741 742 return budget > 0 && xmit_done; 743 } 744 745 /** 746 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 747 * @netdev: net_device 748 * @queue_id: queue to wake up 749 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 750 * 751 * Returns negative on error, zero otherwise. 752 */ 753 int 754 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 755 u32 __always_unused flags) 756 { 757 struct ice_netdev_priv *np = netdev_priv(netdev); 758 struct ice_q_vector *q_vector; 759 struct ice_vsi *vsi = np->vsi; 760 struct ice_tx_ring *ring; 761 762 if (test_bit(ICE_DOWN, vsi->state)) 763 return -ENETDOWN; 764 765 if (!ice_is_xdp_ena_vsi(vsi)) 766 return -ENXIO; 767 768 if (queue_id >= vsi->num_txq) 769 return -ENXIO; 770 771 if (!vsi->xdp_rings[queue_id]->xsk_pool) 772 return -ENXIO; 773 774 ring = vsi->xdp_rings[queue_id]; 775 776 /* The idea here is that if NAPI is running, mark a miss, so 777 * it will run again. If not, trigger an interrupt and 778 * schedule the NAPI from interrupt context. If NAPI would be 779 * scheduled here, the interrupt affinity would not be 780 * honored. 781 */ 782 q_vector = ring->q_vector; 783 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 784 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 785 786 return 0; 787 } 788 789 /** 790 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 791 * @vsi: VSI to be checked 792 * 793 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 794 */ 795 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 796 { 797 int i; 798 799 ice_for_each_rxq(vsi, i) { 800 if (xsk_get_pool_from_qid(vsi->netdev, i)) 801 return true; 802 } 803 804 return false; 805 } 806 807 /** 808 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 809 * @rx_ring: ring to be cleaned 810 */ 811 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 812 { 813 u16 count_mask = rx_ring->count - 1; 814 u16 ntc = rx_ring->next_to_clean; 815 u16 ntu = rx_ring->next_to_use; 816 817 for ( ; ntc != ntu; ntc = (ntc + 1) & count_mask) { 818 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 819 820 xsk_buff_free(xdp); 821 } 822 } 823 824 /** 825 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 826 * @xdp_ring: XDP_Tx ring 827 */ 828 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 829 { 830 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 831 u32 xsk_frames = 0; 832 833 while (ntc != ntu) { 834 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 835 836 if (tx_buf->raw_buf) 837 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 838 else 839 xsk_frames++; 840 841 tx_buf->raw_buf = NULL; 842 843 ntc++; 844 if (ntc >= xdp_ring->count) 845 ntc = 0; 846 } 847 848 if (xsk_frames) 849 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 850 } 851