1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) { 56 synchronize_rcu(); 57 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 58 } 59 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 60 } 61 62 /** 63 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 64 * @vsi: VSI that has netdev 65 * @q_vector: q_vector that has NAPI context 66 * @enable: true for enable, false for disable 67 */ 68 static void 69 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 70 bool enable) 71 { 72 if (!vsi->netdev || !q_vector) 73 return; 74 75 if (enable) 76 napi_enable(&q_vector->napi); 77 else 78 napi_disable(&q_vector->napi); 79 } 80 81 /** 82 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 83 * @vsi: the VSI that contains queue vector being un-configured 84 * @rx_ring: Rx ring that will have its IRQ disabled 85 * @q_vector: queue vector 86 */ 87 static void 88 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 89 struct ice_q_vector *q_vector) 90 { 91 struct ice_pf *pf = vsi->back; 92 struct ice_hw *hw = &pf->hw; 93 int base = vsi->base_vector; 94 u16 reg; 95 u32 val; 96 97 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 98 * here only QINT_RQCTL 99 */ 100 reg = rx_ring->reg_idx; 101 val = rd32(hw, QINT_RQCTL(reg)); 102 val &= ~QINT_RQCTL_CAUSE_ENA_M; 103 wr32(hw, QINT_RQCTL(reg), val); 104 105 if (q_vector) { 106 u16 v_idx = q_vector->v_idx; 107 108 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 109 ice_flush(hw); 110 synchronize_irq(pf->msix_entries[v_idx + base].vector); 111 } 112 } 113 114 /** 115 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 116 * @vsi: the VSI that contains queue vector 117 * @q_vector: queue vector 118 */ 119 static void 120 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 121 { 122 u16 reg_idx = q_vector->reg_idx; 123 struct ice_pf *pf = vsi->back; 124 struct ice_hw *hw = &pf->hw; 125 struct ice_tx_ring *tx_ring; 126 struct ice_rx_ring *rx_ring; 127 128 ice_cfg_itr(hw, q_vector); 129 130 ice_for_each_tx_ring(tx_ring, q_vector->tx) 131 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 132 q_vector->tx.itr_idx); 133 134 ice_for_each_rx_ring(rx_ring, q_vector->rx) 135 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 136 q_vector->rx.itr_idx); 137 138 ice_flush(hw); 139 } 140 141 /** 142 * ice_qvec_ena_irq - Enable IRQ for given queue vector 143 * @vsi: the VSI that contains queue vector 144 * @q_vector: queue vector 145 */ 146 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 147 { 148 struct ice_pf *pf = vsi->back; 149 struct ice_hw *hw = &pf->hw; 150 151 ice_irq_dynamic_ena(hw, vsi, q_vector); 152 153 ice_flush(hw); 154 } 155 156 /** 157 * ice_qp_dis - Disables a queue pair 158 * @vsi: VSI of interest 159 * @q_idx: ring index in array 160 * 161 * Returns 0 on success, negative on failure. 162 */ 163 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 164 { 165 struct ice_txq_meta txq_meta = { }; 166 struct ice_q_vector *q_vector; 167 struct ice_tx_ring *tx_ring; 168 struct ice_rx_ring *rx_ring; 169 int timeout = 50; 170 int err; 171 172 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 173 return -EINVAL; 174 175 tx_ring = vsi->tx_rings[q_idx]; 176 rx_ring = vsi->rx_rings[q_idx]; 177 q_vector = rx_ring->q_vector; 178 179 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 180 timeout--; 181 if (!timeout) 182 return -EBUSY; 183 usleep_range(1000, 2000); 184 } 185 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 186 187 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 188 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 189 if (err) 190 return err; 191 if (ice_is_xdp_ena_vsi(vsi)) { 192 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 193 194 memset(&txq_meta, 0, sizeof(txq_meta)); 195 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 196 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 197 &txq_meta); 198 if (err) 199 return err; 200 } 201 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 202 203 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 204 if (err) 205 return err; 206 207 ice_qvec_toggle_napi(vsi, q_vector, false); 208 ice_qp_clean_rings(vsi, q_idx); 209 ice_qp_reset_stats(vsi, q_idx); 210 211 return 0; 212 } 213 214 /** 215 * ice_qp_ena - Enables a queue pair 216 * @vsi: VSI of interest 217 * @q_idx: ring index in array 218 * 219 * Returns 0 on success, negative on failure. 220 */ 221 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 222 { 223 struct ice_aqc_add_tx_qgrp *qg_buf; 224 struct ice_q_vector *q_vector; 225 struct ice_tx_ring *tx_ring; 226 struct ice_rx_ring *rx_ring; 227 u16 size; 228 int err; 229 230 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 231 return -EINVAL; 232 233 size = struct_size(qg_buf, txqs, 1); 234 qg_buf = kzalloc(size, GFP_KERNEL); 235 if (!qg_buf) 236 return -ENOMEM; 237 238 qg_buf->num_txqs = 1; 239 240 tx_ring = vsi->tx_rings[q_idx]; 241 rx_ring = vsi->rx_rings[q_idx]; 242 q_vector = rx_ring->q_vector; 243 244 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 245 if (err) 246 goto free_buf; 247 248 if (ice_is_xdp_ena_vsi(vsi)) { 249 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 250 251 memset(qg_buf, 0, size); 252 qg_buf->num_txqs = 1; 253 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 254 if (err) 255 goto free_buf; 256 ice_set_ring_xdp(xdp_ring); 257 ice_tx_xsk_pool(vsi, q_idx); 258 } 259 260 err = ice_vsi_cfg_rxq(rx_ring); 261 if (err) 262 goto free_buf; 263 264 ice_qvec_cfg_msix(vsi, q_vector); 265 266 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 267 if (err) 268 goto free_buf; 269 270 clear_bit(ICE_CFG_BUSY, vsi->state); 271 ice_qvec_toggle_napi(vsi, q_vector, true); 272 ice_qvec_ena_irq(vsi, q_vector); 273 274 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 275 free_buf: 276 kfree(qg_buf); 277 return err; 278 } 279 280 /** 281 * ice_xsk_pool_disable - disable a buffer pool region 282 * @vsi: Current VSI 283 * @qid: queue ID 284 * 285 * Returns 0 on success, negative on failure 286 */ 287 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 288 { 289 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 290 291 if (!pool) 292 return -EINVAL; 293 294 clear_bit(qid, vsi->af_xdp_zc_qps); 295 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 296 297 return 0; 298 } 299 300 /** 301 * ice_xsk_pool_enable - enable a buffer pool region 302 * @vsi: Current VSI 303 * @pool: pointer to a requested buffer pool region 304 * @qid: queue ID 305 * 306 * Returns 0 on success, negative on failure 307 */ 308 static int 309 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 310 { 311 int err; 312 313 if (vsi->type != ICE_VSI_PF) 314 return -EINVAL; 315 316 if (qid >= vsi->netdev->real_num_rx_queues || 317 qid >= vsi->netdev->real_num_tx_queues) 318 return -EINVAL; 319 320 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 321 ICE_RX_DMA_ATTR); 322 if (err) 323 return err; 324 325 set_bit(qid, vsi->af_xdp_zc_qps); 326 327 return 0; 328 } 329 330 /** 331 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 332 * @rx_ring: Rx ring 333 * @pool_present: is pool for XSK present 334 * 335 * Try allocating memory and return ENOMEM, if failed to allocate. 336 * If allocation was successful, substitute buffer with allocated one. 337 * Returns 0 on success, negative on failure 338 */ 339 static int 340 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 341 { 342 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 343 sizeof(*rx_ring->rx_buf); 344 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 345 346 if (!sw_ring) 347 return -ENOMEM; 348 349 if (pool_present) { 350 kfree(rx_ring->rx_buf); 351 rx_ring->rx_buf = NULL; 352 rx_ring->xdp_buf = sw_ring; 353 } else { 354 kfree(rx_ring->xdp_buf); 355 rx_ring->xdp_buf = NULL; 356 rx_ring->rx_buf = sw_ring; 357 } 358 359 return 0; 360 } 361 362 /** 363 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 364 * @vsi: Current VSI 365 * @zc: is zero copy set 366 * 367 * Reallocate buffer for rx_rings that might be used by XSK. 368 * XDP requires more memory, than rx_buf provides. 369 * Returns 0 on success, negative on failure 370 */ 371 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 372 { 373 struct ice_rx_ring *rx_ring; 374 unsigned long q; 375 376 for_each_set_bit(q, vsi->af_xdp_zc_qps, 377 max_t(int, vsi->alloc_txq, vsi->alloc_rxq)) { 378 rx_ring = vsi->rx_rings[q]; 379 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 380 return -ENOMEM; 381 } 382 383 return 0; 384 } 385 386 /** 387 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 388 * @vsi: Current VSI 389 * @pool: buffer pool to enable/associate to a ring, NULL to disable 390 * @qid: queue ID 391 * 392 * Returns 0 on success, negative on failure 393 */ 394 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 395 { 396 bool if_running, pool_present = !!pool; 397 int ret = 0, pool_failure = 0; 398 399 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 400 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 401 pool_failure = -EINVAL; 402 goto failure; 403 } 404 405 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 406 407 if (if_running) { 408 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 409 410 ret = ice_qp_dis(vsi, qid); 411 if (ret) { 412 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 413 goto xsk_pool_if_up; 414 } 415 416 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 417 if (ret) 418 goto xsk_pool_if_up; 419 } 420 421 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 422 ice_xsk_pool_disable(vsi, qid); 423 424 xsk_pool_if_up: 425 if (if_running) { 426 ret = ice_qp_ena(vsi, qid); 427 if (!ret && pool_present) 428 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 429 else if (ret) 430 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 431 } 432 433 failure: 434 if (pool_failure) { 435 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 436 pool_present ? "en" : "dis", pool_failure); 437 return pool_failure; 438 } 439 440 return ret; 441 } 442 443 /** 444 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 445 * @pool: XSK Buffer pool to pull the buffers from 446 * @xdp: SW ring of xdp_buff that will hold the buffers 447 * @rx_desc: Pointer to Rx descriptors that will be filled 448 * @count: The number of buffers to allocate 449 * 450 * This function allocates a number of Rx buffers from the fill ring 451 * or the internal recycle mechanism and places them on the Rx ring. 452 * 453 * Note that ring wrap should be handled by caller of this function. 454 * 455 * Returns the amount of allocated Rx descriptors 456 */ 457 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 458 union ice_32b_rx_flex_desc *rx_desc, u16 count) 459 { 460 dma_addr_t dma; 461 u16 buffs; 462 int i; 463 464 buffs = xsk_buff_alloc_batch(pool, xdp, count); 465 for (i = 0; i < buffs; i++) { 466 dma = xsk_buff_xdp_get_dma(*xdp); 467 rx_desc->read.pkt_addr = cpu_to_le64(dma); 468 rx_desc->wb.status_error0 = 0; 469 470 rx_desc++; 471 xdp++; 472 } 473 474 return buffs; 475 } 476 477 /** 478 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 479 * @rx_ring: Rx ring 480 * @count: The number of buffers to allocate 481 * 482 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 483 * for case where space from next_to_use up to the end of ring is less 484 * than @count. Finally do a tail bump. 485 * 486 * Returns true if all allocations were successful, false if any fail. 487 */ 488 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 489 { 490 u32 nb_buffs_extra = 0, nb_buffs = 0; 491 union ice_32b_rx_flex_desc *rx_desc; 492 u16 ntu = rx_ring->next_to_use; 493 u16 total_count = count; 494 struct xdp_buff **xdp; 495 496 rx_desc = ICE_RX_DESC(rx_ring, ntu); 497 xdp = ice_xdp_buf(rx_ring, ntu); 498 499 if (ntu + count >= rx_ring->count) { 500 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 501 rx_desc, 502 rx_ring->count - ntu); 503 if (nb_buffs_extra != rx_ring->count - ntu) { 504 ntu += nb_buffs_extra; 505 goto exit; 506 } 507 rx_desc = ICE_RX_DESC(rx_ring, 0); 508 xdp = ice_xdp_buf(rx_ring, 0); 509 ntu = 0; 510 count -= nb_buffs_extra; 511 ice_release_rx_desc(rx_ring, 0); 512 } 513 514 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 515 516 ntu += nb_buffs; 517 if (ntu == rx_ring->count) 518 ntu = 0; 519 520 exit: 521 if (rx_ring->next_to_use != ntu) 522 ice_release_rx_desc(rx_ring, ntu); 523 524 return total_count == (nb_buffs_extra + nb_buffs); 525 } 526 527 /** 528 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 529 * @rx_ring: Rx ring 530 * @count: The number of buffers to allocate 531 * 532 * Wrapper for internal allocation routine; figure out how many tail 533 * bumps should take place based on the given threshold 534 * 535 * Returns true if all calls to internal alloc routine succeeded 536 */ 537 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 538 { 539 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 540 u16 leftover, i, tail_bumps; 541 542 tail_bumps = count / rx_thresh; 543 leftover = count - (tail_bumps * rx_thresh); 544 545 for (i = 0; i < tail_bumps; i++) 546 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 547 return false; 548 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 549 } 550 551 /** 552 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 553 * @rx_ring: Rx ring 554 */ 555 static void ice_bump_ntc(struct ice_rx_ring *rx_ring) 556 { 557 int ntc = rx_ring->next_to_clean + 1; 558 559 ntc = (ntc < rx_ring->count) ? ntc : 0; 560 rx_ring->next_to_clean = ntc; 561 prefetch(ICE_RX_DESC(rx_ring, ntc)); 562 } 563 564 /** 565 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 566 * @rx_ring: Rx ring 567 * @xdp: Pointer to XDP buffer 568 * 569 * This function allocates a new skb from a zero-copy Rx buffer. 570 * 571 * Returns the skb on success, NULL on failure. 572 */ 573 static struct sk_buff * 574 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 575 { 576 unsigned int totalsize = xdp->data_end - xdp->data_meta; 577 unsigned int metasize = xdp->data - xdp->data_meta; 578 struct sk_buff *skb; 579 580 net_prefetch(xdp->data_meta); 581 582 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 583 GFP_ATOMIC | __GFP_NOWARN); 584 if (unlikely(!skb)) 585 return NULL; 586 587 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 588 ALIGN(totalsize, sizeof(long))); 589 590 if (metasize) { 591 skb_metadata_set(skb, metasize); 592 __skb_pull(skb, metasize); 593 } 594 595 xsk_buff_free(xdp); 596 return skb; 597 } 598 599 /** 600 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 601 * @xdp_ring: XDP Tx ring 602 */ 603 static void ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 604 { 605 u16 ntc = xdp_ring->next_to_clean; 606 struct ice_tx_desc *tx_desc; 607 u16 cnt = xdp_ring->count; 608 struct ice_tx_buf *tx_buf; 609 u16 completed_frames = 0; 610 u16 xsk_frames = 0; 611 u16 last_rs; 612 int i; 613 614 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 615 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 616 if (tx_desc->cmd_type_offset_bsz & 617 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 618 if (last_rs >= ntc) 619 completed_frames = last_rs - ntc + 1; 620 else 621 completed_frames = last_rs + cnt - ntc + 1; 622 } 623 624 if (!completed_frames) 625 return; 626 627 if (likely(!xdp_ring->xdp_tx_active)) { 628 xsk_frames = completed_frames; 629 goto skip; 630 } 631 632 ntc = xdp_ring->next_to_clean; 633 for (i = 0; i < completed_frames; i++) { 634 tx_buf = &xdp_ring->tx_buf[ntc]; 635 636 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 637 tx_buf->type = ICE_TX_BUF_EMPTY; 638 xsk_buff_free(tx_buf->xdp); 639 xdp_ring->xdp_tx_active--; 640 } else { 641 xsk_frames++; 642 } 643 644 ntc++; 645 if (ntc >= xdp_ring->count) 646 ntc = 0; 647 } 648 skip: 649 tx_desc->cmd_type_offset_bsz = 0; 650 xdp_ring->next_to_clean += completed_frames; 651 if (xdp_ring->next_to_clean >= cnt) 652 xdp_ring->next_to_clean -= cnt; 653 if (xsk_frames) 654 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 655 } 656 657 /** 658 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 659 * @xdp: XDP buffer to xmit 660 * @xdp_ring: XDP ring to produce descriptor onto 661 * 662 * note that this function works directly on xdp_buff, no need to convert 663 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 664 * side will be able to xsk_buff_free() it. 665 * 666 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 667 * was not enough space on XDP ring 668 */ 669 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 670 struct ice_tx_ring *xdp_ring) 671 { 672 u32 size = xdp->data_end - xdp->data; 673 u32 ntu = xdp_ring->next_to_use; 674 struct ice_tx_desc *tx_desc; 675 struct ice_tx_buf *tx_buf; 676 dma_addr_t dma; 677 678 if (ICE_DESC_UNUSED(xdp_ring) < ICE_RING_QUARTER(xdp_ring)) { 679 ice_clean_xdp_irq_zc(xdp_ring); 680 if (!ICE_DESC_UNUSED(xdp_ring)) { 681 xdp_ring->ring_stats->tx_stats.tx_busy++; 682 return ICE_XDP_CONSUMED; 683 } 684 } 685 686 dma = xsk_buff_xdp_get_dma(xdp); 687 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 688 689 tx_buf = &xdp_ring->tx_buf[ntu]; 690 tx_buf->xdp = xdp; 691 tx_buf->type = ICE_TX_BUF_XSK_TX; 692 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 693 tx_desc->buf_addr = cpu_to_le64(dma); 694 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 695 0, size, 0); 696 xdp_ring->xdp_tx_active++; 697 698 if (++ntu == xdp_ring->count) 699 ntu = 0; 700 xdp_ring->next_to_use = ntu; 701 702 return ICE_XDP_TX; 703 } 704 705 /** 706 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 707 * @rx_ring: Rx ring 708 * @xdp: xdp_buff used as input to the XDP program 709 * @xdp_prog: XDP program to run 710 * @xdp_ring: ring to be used for XDP_TX action 711 * 712 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 713 */ 714 static int 715 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 716 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 717 { 718 int err, result = ICE_XDP_PASS; 719 u32 act; 720 721 act = bpf_prog_run_xdp(xdp_prog, xdp); 722 723 if (likely(act == XDP_REDIRECT)) { 724 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 725 if (!err) 726 return ICE_XDP_REDIR; 727 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 728 result = ICE_XDP_EXIT; 729 else 730 result = ICE_XDP_CONSUMED; 731 goto out_failure; 732 } 733 734 switch (act) { 735 case XDP_PASS: 736 break; 737 case XDP_TX: 738 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 739 if (result == ICE_XDP_CONSUMED) 740 goto out_failure; 741 break; 742 case XDP_DROP: 743 result = ICE_XDP_CONSUMED; 744 break; 745 default: 746 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 747 fallthrough; 748 case XDP_ABORTED: 749 result = ICE_XDP_CONSUMED; 750 out_failure: 751 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 752 break; 753 } 754 755 return result; 756 } 757 758 /** 759 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 760 * @rx_ring: AF_XDP Rx ring 761 * @budget: NAPI budget 762 * 763 * Returns number of processed packets on success, remaining budget on failure. 764 */ 765 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 766 { 767 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 768 struct ice_tx_ring *xdp_ring; 769 unsigned int xdp_xmit = 0; 770 struct bpf_prog *xdp_prog; 771 bool failure = false; 772 int entries_to_alloc; 773 774 /* ZC patch is enabled only when XDP program is set, 775 * so here it can not be NULL 776 */ 777 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 778 xdp_ring = rx_ring->xdp_ring; 779 780 while (likely(total_rx_packets < (unsigned int)budget)) { 781 union ice_32b_rx_flex_desc *rx_desc; 782 unsigned int size, xdp_res = 0; 783 struct xdp_buff *xdp; 784 struct sk_buff *skb; 785 u16 stat_err_bits; 786 u16 vlan_tag = 0; 787 u16 rx_ptype; 788 789 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 790 791 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 792 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 793 break; 794 795 /* This memory barrier is needed to keep us from reading 796 * any other fields out of the rx_desc until we have 797 * verified the descriptor has been written back. 798 */ 799 dma_rmb(); 800 801 if (unlikely(rx_ring->next_to_clean == rx_ring->next_to_use)) 802 break; 803 804 xdp = *ice_xdp_buf(rx_ring, rx_ring->next_to_clean); 805 806 size = le16_to_cpu(rx_desc->wb.pkt_len) & 807 ICE_RX_FLX_DESC_PKT_LEN_M; 808 if (!size) { 809 xdp->data = NULL; 810 xdp->data_end = NULL; 811 xdp->data_hard_start = NULL; 812 xdp->data_meta = NULL; 813 goto construct_skb; 814 } 815 816 xsk_buff_set_size(xdp, size); 817 xsk_buff_dma_sync_for_cpu(xdp, rx_ring->xsk_pool); 818 819 xdp_res = ice_run_xdp_zc(rx_ring, xdp, xdp_prog, xdp_ring); 820 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 821 xdp_xmit |= xdp_res; 822 } else if (xdp_res == ICE_XDP_EXIT) { 823 failure = true; 824 break; 825 } else if (xdp_res == ICE_XDP_CONSUMED) { 826 xsk_buff_free(xdp); 827 } else if (xdp_res == ICE_XDP_PASS) { 828 goto construct_skb; 829 } 830 831 total_rx_bytes += size; 832 total_rx_packets++; 833 834 ice_bump_ntc(rx_ring); 835 continue; 836 837 construct_skb: 838 /* XDP_PASS path */ 839 skb = ice_construct_skb_zc(rx_ring, xdp); 840 if (!skb) { 841 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 842 break; 843 } 844 845 ice_bump_ntc(rx_ring); 846 847 if (eth_skb_pad(skb)) { 848 skb = NULL; 849 continue; 850 } 851 852 total_rx_bytes += skb->len; 853 total_rx_packets++; 854 855 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 856 857 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 858 ICE_RX_FLEX_DESC_PTYPE_M; 859 860 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 861 ice_receive_skb(rx_ring, skb, vlan_tag); 862 } 863 864 entries_to_alloc = ICE_DESC_UNUSED(rx_ring); 865 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 866 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 867 868 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 869 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 870 871 if (xsk_uses_need_wakeup(rx_ring->xsk_pool)) { 872 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 873 xsk_set_rx_need_wakeup(rx_ring->xsk_pool); 874 else 875 xsk_clear_rx_need_wakeup(rx_ring->xsk_pool); 876 877 return (int)total_rx_packets; 878 } 879 880 return failure ? budget : (int)total_rx_packets; 881 } 882 883 /** 884 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 885 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 886 * @desc: AF_XDP descriptor to pull the DMA address and length from 887 * @total_bytes: bytes accumulator that will be used for stats update 888 */ 889 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 890 unsigned int *total_bytes) 891 { 892 struct ice_tx_desc *tx_desc; 893 dma_addr_t dma; 894 895 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 896 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 897 898 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 899 tx_desc->buf_addr = cpu_to_le64(dma); 900 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 901 0, desc->len, 0); 902 903 *total_bytes += desc->len; 904 } 905 906 /** 907 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 908 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 909 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 910 * @total_bytes: bytes accumulator that will be used for stats update 911 */ 912 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 913 unsigned int *total_bytes) 914 { 915 u16 ntu = xdp_ring->next_to_use; 916 struct ice_tx_desc *tx_desc; 917 u32 i; 918 919 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 920 dma_addr_t dma; 921 922 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 923 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 924 925 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 926 tx_desc->buf_addr = cpu_to_le64(dma); 927 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 928 0, descs[i].len, 0); 929 930 *total_bytes += descs[i].len; 931 } 932 933 xdp_ring->next_to_use = ntu; 934 } 935 936 /** 937 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 938 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 939 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 940 * @nb_pkts: count of packets to be send 941 * @total_bytes: bytes accumulator that will be used for stats update 942 */ 943 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 944 u32 nb_pkts, unsigned int *total_bytes) 945 { 946 u32 batched, leftover, i; 947 948 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 949 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 950 for (i = 0; i < batched; i += PKTS_PER_BATCH) 951 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 952 for (; i < batched + leftover; i++) 953 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 954 } 955 956 /** 957 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 958 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 959 * 960 * Returns true if there is no more work that needs to be done, false otherwise 961 */ 962 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 963 { 964 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 965 u32 nb_pkts, nb_processed = 0; 966 unsigned int total_bytes = 0; 967 int budget; 968 969 ice_clean_xdp_irq_zc(xdp_ring); 970 971 budget = ICE_DESC_UNUSED(xdp_ring); 972 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 973 974 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 975 if (!nb_pkts) 976 return true; 977 978 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 979 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 980 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 981 xdp_ring->next_to_use = 0; 982 } 983 984 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 985 &total_bytes); 986 987 ice_set_rs_bit(xdp_ring); 988 ice_xdp_ring_update_tail(xdp_ring); 989 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 990 991 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 992 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 993 994 return nb_pkts < budget; 995 } 996 997 /** 998 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 999 * @netdev: net_device 1000 * @queue_id: queue to wake up 1001 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1002 * 1003 * Returns negative on error, zero otherwise. 1004 */ 1005 int 1006 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1007 u32 __always_unused flags) 1008 { 1009 struct ice_netdev_priv *np = netdev_priv(netdev); 1010 struct ice_q_vector *q_vector; 1011 struct ice_vsi *vsi = np->vsi; 1012 struct ice_tx_ring *ring; 1013 1014 if (test_bit(ICE_VSI_DOWN, vsi->state)) 1015 return -ENETDOWN; 1016 1017 if (!ice_is_xdp_ena_vsi(vsi)) 1018 return -EINVAL; 1019 1020 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1021 return -EINVAL; 1022 1023 ring = vsi->rx_rings[queue_id]->xdp_ring; 1024 1025 if (!ring->xsk_pool) 1026 return -EINVAL; 1027 1028 /* The idea here is that if NAPI is running, mark a miss, so 1029 * it will run again. If not, trigger an interrupt and 1030 * schedule the NAPI from interrupt context. If NAPI would be 1031 * scheduled here, the interrupt affinity would not be 1032 * honored. 1033 */ 1034 q_vector = ring->q_vector; 1035 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1036 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1037 1038 return 0; 1039 } 1040 1041 /** 1042 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1043 * @vsi: VSI to be checked 1044 * 1045 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1046 */ 1047 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1048 { 1049 int i; 1050 1051 ice_for_each_rxq(vsi, i) { 1052 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1053 return true; 1054 } 1055 1056 return false; 1057 } 1058 1059 /** 1060 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1061 * @rx_ring: ring to be cleaned 1062 */ 1063 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1064 { 1065 u16 ntc = rx_ring->next_to_clean; 1066 u16 ntu = rx_ring->next_to_use; 1067 1068 while (ntc != ntu) { 1069 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1070 1071 xsk_buff_free(xdp); 1072 ntc++; 1073 if (ntc >= rx_ring->count) 1074 ntc = 0; 1075 } 1076 } 1077 1078 /** 1079 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1080 * @xdp_ring: XDP_Tx ring 1081 */ 1082 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1083 { 1084 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1085 u32 xsk_frames = 0; 1086 1087 while (ntc != ntu) { 1088 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1089 1090 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1091 tx_buf->type = ICE_TX_BUF_EMPTY; 1092 xsk_buff_free(tx_buf->xdp); 1093 } else { 1094 xsk_frames++; 1095 } 1096 1097 ntc++; 1098 if (ntc >= xdp_ring->count) 1099 ntc = 0; 1100 } 1101 1102 if (xsk_frames) 1103 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1104 } 1105