1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 /**
16  * ice_qp_reset_stats - Resets all stats for rings of given index
17  * @vsi: VSI that contains rings of interest
18  * @q_idx: ring index in array
19  */
20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21 {
22 	memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 	       sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 	memset(&vsi->tx_rings[q_idx]->stats, 0,
25 	       sizeof(vsi->tx_rings[q_idx]->stats));
26 	if (ice_is_xdp_ena_vsi(vsi))
27 		memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 		       sizeof(vsi->xdp_rings[q_idx]->stats));
29 }
30 
31 /**
32  * ice_qp_clean_rings - Cleans all the rings of a given index
33  * @vsi: VSI that contains rings of interest
34  * @q_idx: ring index in array
35  */
36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37 {
38 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 	if (ice_is_xdp_ena_vsi(vsi))
40 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42 }
43 
44 /**
45  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46  * @vsi: VSI that has netdev
47  * @q_vector: q_vector that has NAPI context
48  * @enable: true for enable, false for disable
49  */
50 static void
51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 		     bool enable)
53 {
54 	if (!vsi->netdev || !q_vector)
55 		return;
56 
57 	if (enable)
58 		napi_enable(&q_vector->napi);
59 	else
60 		napi_disable(&q_vector->napi);
61 }
62 
63 /**
64  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65  * @vsi: the VSI that contains queue vector being un-configured
66  * @rx_ring: Rx ring that will have its IRQ disabled
67  * @q_vector: queue vector
68  */
69 static void
70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 		 struct ice_q_vector *q_vector)
72 {
73 	struct ice_pf *pf = vsi->back;
74 	struct ice_hw *hw = &pf->hw;
75 	int base = vsi->base_vector;
76 	u16 reg;
77 	u32 val;
78 
79 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 	 * here only QINT_RQCTL
81 	 */
82 	reg = rx_ring->reg_idx;
83 	val = rd32(hw, QINT_RQCTL(reg));
84 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 	wr32(hw, QINT_RQCTL(reg), val);
86 
87 	if (q_vector) {
88 		u16 v_idx = q_vector->v_idx;
89 
90 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 		ice_flush(hw);
92 		synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 	}
94 }
95 
96 /**
97  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98  * @vsi: the VSI that contains queue vector
99  * @q_vector: queue vector
100  */
101 static void
102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103 {
104 	u16 reg_idx = q_vector->reg_idx;
105 	struct ice_pf *pf = vsi->back;
106 	struct ice_hw *hw = &pf->hw;
107 	struct ice_ring *ring;
108 
109 	ice_cfg_itr(hw, q_vector);
110 
111 	wr32(hw, GLINT_RATE(reg_idx),
112 	     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113 
114 	ice_for_each_ring(ring, q_vector->tx)
115 		ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116 				      q_vector->tx.itr_idx);
117 
118 	ice_for_each_ring(ring, q_vector->rx)
119 		ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120 				      q_vector->rx.itr_idx);
121 
122 	ice_flush(hw);
123 }
124 
125 /**
126  * ice_qvec_ena_irq - Enable IRQ for given queue vector
127  * @vsi: the VSI that contains queue vector
128  * @q_vector: queue vector
129  */
130 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131 {
132 	struct ice_pf *pf = vsi->back;
133 	struct ice_hw *hw = &pf->hw;
134 
135 	ice_irq_dynamic_ena(hw, vsi, q_vector);
136 
137 	ice_flush(hw);
138 }
139 
140 /**
141  * ice_qp_dis - Disables a queue pair
142  * @vsi: VSI of interest
143  * @q_idx: ring index in array
144  *
145  * Returns 0 on success, negative on failure.
146  */
147 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148 {
149 	struct ice_txq_meta txq_meta = { };
150 	struct ice_ring *tx_ring, *rx_ring;
151 	struct ice_q_vector *q_vector;
152 	int timeout = 50;
153 	int err;
154 
155 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156 		return -EINVAL;
157 
158 	tx_ring = vsi->tx_rings[q_idx];
159 	rx_ring = vsi->rx_rings[q_idx];
160 	q_vector = rx_ring->q_vector;
161 
162 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163 		timeout--;
164 		if (!timeout)
165 			return -EBUSY;
166 		usleep_range(1000, 2000);
167 	}
168 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169 
170 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171 
172 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174 	if (err)
175 		return err;
176 	if (ice_is_xdp_ena_vsi(vsi)) {
177 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178 
179 		memset(&txq_meta, 0, sizeof(txq_meta));
180 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182 					   &txq_meta);
183 		if (err)
184 			return err;
185 	}
186 	err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx);
187 	if (err)
188 		return err;
189 
190 	ice_qvec_toggle_napi(vsi, q_vector, false);
191 	ice_qp_clean_rings(vsi, q_idx);
192 	ice_qp_reset_stats(vsi, q_idx);
193 
194 	return 0;
195 }
196 
197 /**
198  * ice_qp_ena - Enables a queue pair
199  * @vsi: VSI of interest
200  * @q_idx: ring index in array
201  *
202  * Returns 0 on success, negative on failure.
203  */
204 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205 {
206 	struct ice_aqc_add_tx_qgrp *qg_buf;
207 	struct ice_ring *tx_ring, *rx_ring;
208 	struct ice_q_vector *q_vector;
209 	int err;
210 
211 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
212 		return -EINVAL;
213 
214 	qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
215 	if (!qg_buf)
216 		return -ENOMEM;
217 
218 	qg_buf->num_txqs = 1;
219 
220 	tx_ring = vsi->tx_rings[q_idx];
221 	rx_ring = vsi->rx_rings[q_idx];
222 	q_vector = rx_ring->q_vector;
223 
224 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
225 	if (err)
226 		goto free_buf;
227 
228 	if (ice_is_xdp_ena_vsi(vsi)) {
229 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
230 
231 		memset(qg_buf, 0, sizeof(*qg_buf));
232 		qg_buf->num_txqs = 1;
233 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
234 		if (err)
235 			goto free_buf;
236 		ice_set_ring_xdp(xdp_ring);
237 		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
238 	}
239 
240 	err = ice_setup_rx_ctx(rx_ring);
241 	if (err)
242 		goto free_buf;
243 
244 	ice_qvec_cfg_msix(vsi, q_vector);
245 
246 	err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx);
247 	if (err)
248 		goto free_buf;
249 
250 	clear_bit(__ICE_CFG_BUSY, vsi->state);
251 	ice_qvec_toggle_napi(vsi, q_vector, true);
252 	ice_qvec_ena_irq(vsi, q_vector);
253 
254 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
255 free_buf:
256 	kfree(qg_buf);
257 	return err;
258 }
259 
260 /**
261  * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
262  * @vsi: VSI to allocate the UMEM on
263  *
264  * Returns 0 on success, negative on error
265  */
266 static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
267 {
268 	if (vsi->xsk_umems)
269 		return 0;
270 
271 	vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
272 				 GFP_KERNEL);
273 
274 	if (!vsi->xsk_umems) {
275 		vsi->num_xsk_umems = 0;
276 		return -ENOMEM;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * ice_xsk_add_umem - add a UMEM region for XDP sockets
284  * @vsi: VSI to which the UMEM will be added
285  * @umem: pointer to a requested UMEM region
286  * @qid: queue ID
287  *
288  * Returns 0 on success, negative on error
289  */
290 static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
291 {
292 	int err;
293 
294 	err = ice_xsk_alloc_umems(vsi);
295 	if (err)
296 		return err;
297 
298 	vsi->xsk_umems[qid] = umem;
299 	vsi->num_xsk_umems_used++;
300 
301 	return 0;
302 }
303 
304 /**
305  * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
306  * @vsi: VSI from which the VSI will be removed
307  * @qid: Ring/qid associated with the UMEM
308  */
309 static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
310 {
311 	vsi->xsk_umems[qid] = NULL;
312 	vsi->num_xsk_umems_used--;
313 
314 	if (vsi->num_xsk_umems_used == 0) {
315 		kfree(vsi->xsk_umems);
316 		vsi->xsk_umems = NULL;
317 		vsi->num_xsk_umems = 0;
318 	}
319 }
320 
321 /**
322  * ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
323  * @vsi: VSI to map the UMEM region
324  * @umem: UMEM to map
325  *
326  * Returns 0 on success, negative on error
327  */
328 static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
329 {
330 	struct ice_pf *pf = vsi->back;
331 	struct device *dev;
332 	unsigned int i;
333 
334 	dev = &pf->pdev->dev;
335 	for (i = 0; i < umem->npgs; i++) {
336 		dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
337 						    PAGE_SIZE,
338 						    DMA_BIDIRECTIONAL,
339 						    ICE_RX_DMA_ATTR);
340 		if (dma_mapping_error(dev, dma)) {
341 			dev_dbg(dev,
342 				"XSK UMEM DMA mapping error on page num %d", i);
343 			goto out_unmap;
344 		}
345 
346 		umem->pages[i].dma = dma;
347 	}
348 
349 	return 0;
350 
351 out_unmap:
352 	for (; i > 0; i--) {
353 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
354 				     DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
355 		umem->pages[i].dma = 0;
356 	}
357 
358 	return -EFAULT;
359 }
360 
361 /**
362  * ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
363  * @vsi: VSI from which the UMEM will be unmapped
364  * @umem: UMEM to unmap
365  */
366 static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
367 {
368 	struct ice_pf *pf = vsi->back;
369 	struct device *dev;
370 	unsigned int i;
371 
372 	dev = &pf->pdev->dev;
373 	for (i = 0; i < umem->npgs; i++) {
374 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
375 				     DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
376 
377 		umem->pages[i].dma = 0;
378 	}
379 }
380 
381 /**
382  * ice_xsk_umem_disable - disable a UMEM region
383  * @vsi: Current VSI
384  * @qid: queue ID
385  *
386  * Returns 0 on success, negative on failure
387  */
388 static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
389 {
390 	if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
391 	    !vsi->xsk_umems[qid])
392 		return -EINVAL;
393 
394 	ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
395 	ice_xsk_remove_umem(vsi, qid);
396 
397 	return 0;
398 }
399 
400 /**
401  * ice_xsk_umem_enable - enable a UMEM region
402  * @vsi: Current VSI
403  * @umem: pointer to a requested UMEM region
404  * @qid: queue ID
405  *
406  * Returns 0 on success, negative on failure
407  */
408 static int
409 ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
410 {
411 	struct xdp_umem_fq_reuse *reuseq;
412 	int err;
413 
414 	if (vsi->type != ICE_VSI_PF)
415 		return -EINVAL;
416 
417 	vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
418 	if (qid >= vsi->num_xsk_umems)
419 		return -EINVAL;
420 
421 	if (vsi->xsk_umems && vsi->xsk_umems[qid])
422 		return -EBUSY;
423 
424 	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
425 	if (!reuseq)
426 		return -ENOMEM;
427 
428 	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
429 
430 	err = ice_xsk_umem_dma_map(vsi, umem);
431 	if (err)
432 		return err;
433 
434 	err = ice_xsk_add_umem(vsi, umem, qid);
435 	if (err)
436 		return err;
437 
438 	return 0;
439 }
440 
441 /**
442  * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
443  * @vsi: Current VSI
444  * @umem: UMEM to enable/associate to a ring, NULL to disable
445  * @qid: queue ID
446  *
447  * Returns 0 on success, negative on failure
448  */
449 int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
450 {
451 	bool if_running, umem_present = !!umem;
452 	int ret = 0, umem_failure = 0;
453 
454 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
455 
456 	if (if_running) {
457 		ret = ice_qp_dis(vsi, qid);
458 		if (ret) {
459 			netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret);
460 			goto xsk_umem_if_up;
461 		}
462 	}
463 
464 	umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
465 				      ice_xsk_umem_disable(vsi, qid);
466 
467 xsk_umem_if_up:
468 	if (if_running) {
469 		ret = ice_qp_ena(vsi, qid);
470 		if (!ret && umem_present)
471 			napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
472 		else if (ret)
473 			netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret);
474 	}
475 
476 	if (umem_failure) {
477 		netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d",
478 			   umem_present ? "en" : "dis", umem_failure);
479 		return umem_failure;
480 	}
481 
482 	return ret;
483 }
484 
485 /**
486  * ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
487  * @zca: zero-cpoy allocator
488  * @handle: Buffer handle
489  */
490 void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
491 {
492 	struct ice_rx_buf *rx_buf;
493 	struct ice_ring *rx_ring;
494 	struct xdp_umem *umem;
495 	u64 hr, mask;
496 	u16 nta;
497 
498 	rx_ring = container_of(zca, struct ice_ring, zca);
499 	umem = rx_ring->xsk_umem;
500 	hr = umem->headroom + XDP_PACKET_HEADROOM;
501 
502 	mask = umem->chunk_mask;
503 
504 	nta = rx_ring->next_to_alloc;
505 	rx_buf = &rx_ring->rx_buf[nta];
506 
507 	nta++;
508 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
509 
510 	handle &= mask;
511 
512 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
513 	rx_buf->dma += hr;
514 
515 	rx_buf->addr = xdp_umem_get_data(umem, handle);
516 	rx_buf->addr += hr;
517 
518 	rx_buf->handle = (u64)handle + umem->headroom;
519 }
520 
521 /**
522  * ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
523  * @rx_ring: ring with an xdp_umem bound to it
524  * @rx_buf: buffer to which xsk page address will be assigned
525  *
526  * This function allocates an Rx buffer in the hot path.
527  * The buffer can come from fill queue or recycle queue.
528  *
529  * Returns true if an assignment was successful, false if not.
530  */
531 static __always_inline bool
532 ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
533 {
534 	struct xdp_umem *umem = rx_ring->xsk_umem;
535 	void *addr = rx_buf->addr;
536 	u64 handle, hr;
537 
538 	if (addr) {
539 		rx_ring->rx_stats.page_reuse_count++;
540 		return true;
541 	}
542 
543 	if (!xsk_umem_peek_addr(umem, &handle)) {
544 		rx_ring->rx_stats.alloc_page_failed++;
545 		return false;
546 	}
547 
548 	hr = umem->headroom + XDP_PACKET_HEADROOM;
549 
550 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
551 	rx_buf->dma += hr;
552 
553 	rx_buf->addr = xdp_umem_get_data(umem, handle);
554 	rx_buf->addr += hr;
555 
556 	rx_buf->handle = handle + umem->headroom;
557 
558 	xsk_umem_discard_addr(umem);
559 	return true;
560 }
561 
562 /**
563  * ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
564  * @rx_ring: ring with an xdp_umem bound to it
565  * @rx_buf: buffer to which xsk page address will be assigned
566  *
567  * This function allocates an Rx buffer in the slow path.
568  * The buffer can come from fill queue or recycle queue.
569  *
570  * Returns true if an assignment was successful, false if not.
571  */
572 static __always_inline bool
573 ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
574 {
575 	struct xdp_umem *umem = rx_ring->xsk_umem;
576 	u64 handle, headroom;
577 
578 	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
579 		rx_ring->rx_stats.alloc_page_failed++;
580 		return false;
581 	}
582 
583 	handle &= umem->chunk_mask;
584 	headroom = umem->headroom + XDP_PACKET_HEADROOM;
585 
586 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
587 	rx_buf->dma += headroom;
588 
589 	rx_buf->addr = xdp_umem_get_data(umem, handle);
590 	rx_buf->addr += headroom;
591 
592 	rx_buf->handle = handle + umem->headroom;
593 
594 	xsk_umem_discard_addr_rq(umem);
595 	return true;
596 }
597 
598 /**
599  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
600  * @rx_ring: Rx ring
601  * @count: The number of buffers to allocate
602  * @alloc: the function pointer to call for allocation
603  *
604  * This function allocates a number of Rx buffers from the fill ring
605  * or the internal recycle mechanism and places them on the Rx ring.
606  *
607  * Returns false if all allocations were successful, true if any fail.
608  */
609 static bool
610 ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
611 		     bool alloc(struct ice_ring *, struct ice_rx_buf *))
612 {
613 	union ice_32b_rx_flex_desc *rx_desc;
614 	u16 ntu = rx_ring->next_to_use;
615 	struct ice_rx_buf *rx_buf;
616 	bool ret = false;
617 
618 	if (!count)
619 		return false;
620 
621 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
622 	rx_buf = &rx_ring->rx_buf[ntu];
623 
624 	do {
625 		if (!alloc(rx_ring, rx_buf)) {
626 			ret = true;
627 			break;
628 		}
629 
630 		dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
631 						 rx_ring->rx_buf_len,
632 						 DMA_BIDIRECTIONAL);
633 
634 		rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
635 		rx_desc->wb.status_error0 = 0;
636 
637 		rx_desc++;
638 		rx_buf++;
639 		ntu++;
640 
641 		if (unlikely(ntu == rx_ring->count)) {
642 			rx_desc = ICE_RX_DESC(rx_ring, 0);
643 			rx_buf = rx_ring->rx_buf;
644 			ntu = 0;
645 		}
646 	} while (--count);
647 
648 	if (rx_ring->next_to_use != ntu)
649 		ice_release_rx_desc(rx_ring, ntu);
650 
651 	return ret;
652 }
653 
654 /**
655  * ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
656  * @rx_ring: Rx ring
657  * @count: number of bufs to allocate
658  *
659  * Returns false on success, true on failure.
660  */
661 static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
662 {
663 	return ice_alloc_rx_bufs_zc(rx_ring, count,
664 				    ice_alloc_buf_fast_zc);
665 }
666 
667 /**
668  * ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
669  * @rx_ring: Rx ring
670  * @count: number of bufs to allocate
671  *
672  * Returns false on success, true on failure.
673  */
674 bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
675 {
676 	return ice_alloc_rx_bufs_zc(rx_ring, count,
677 				    ice_alloc_buf_slow_zc);
678 }
679 
680 /**
681  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
682  * @rx_ring: Rx ring
683  */
684 static void ice_bump_ntc(struct ice_ring *rx_ring)
685 {
686 	int ntc = rx_ring->next_to_clean + 1;
687 
688 	ntc = (ntc < rx_ring->count) ? ntc : 0;
689 	rx_ring->next_to_clean = ntc;
690 	prefetch(ICE_RX_DESC(rx_ring, ntc));
691 }
692 
693 /**
694  * ice_get_rx_buf_zc - Fetch the current Rx buffer
695  * @rx_ring: Rx ring
696  * @size: size of a buffer
697  *
698  * This function returns the current, received Rx buffer and does
699  * DMA synchronization.
700  *
701  * Returns a pointer to the received Rx buffer.
702  */
703 static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
704 {
705 	struct ice_rx_buf *rx_buf;
706 
707 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
708 
709 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
710 				      size, DMA_BIDIRECTIONAL);
711 
712 	return rx_buf;
713 }
714 
715 /**
716  * ice_reuse_rx_buf_zc - reuse an Rx buffer
717  * @rx_ring: Rx ring
718  * @old_buf: The buffer to recycle
719  *
720  * This function recycles a finished Rx buffer, and places it on the recycle
721  * queue (next_to_alloc).
722  */
723 static void
724 ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
725 {
726 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
727 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
728 	u16 nta = rx_ring->next_to_alloc;
729 	struct ice_rx_buf *new_buf;
730 
731 	new_buf = &rx_ring->rx_buf[nta++];
732 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
733 
734 	new_buf->dma = old_buf->dma & mask;
735 	new_buf->dma += hr;
736 
737 	new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
738 	new_buf->addr += hr;
739 
740 	new_buf->handle = old_buf->handle & mask;
741 	new_buf->handle += rx_ring->xsk_umem->headroom;
742 
743 	old_buf->addr = NULL;
744 }
745 
746 /**
747  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
748  * @rx_ring: Rx ring
749  * @rx_buf: zero-copy Rx buffer
750  * @xdp: XDP buffer
751  *
752  * This function allocates a new skb from a zero-copy Rx buffer.
753  *
754  * Returns the skb on success, NULL on failure.
755  */
756 static struct sk_buff *
757 ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
758 		     struct xdp_buff *xdp)
759 {
760 	unsigned int metasize = xdp->data - xdp->data_meta;
761 	unsigned int datasize = xdp->data_end - xdp->data;
762 	unsigned int datasize_hard = xdp->data_end -
763 				     xdp->data_hard_start;
764 	struct sk_buff *skb;
765 
766 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
767 			       GFP_ATOMIC | __GFP_NOWARN);
768 	if (unlikely(!skb))
769 		return NULL;
770 
771 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
772 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
773 	if (metasize)
774 		skb_metadata_set(skb, metasize);
775 
776 	ice_reuse_rx_buf_zc(rx_ring, rx_buf);
777 
778 	return skb;
779 }
780 
781 /**
782  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
783  * @rx_ring: Rx ring
784  * @xdp: xdp_buff used as input to the XDP program
785  *
786  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
787  */
788 static int
789 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
790 {
791 	int err, result = ICE_XDP_PASS;
792 	struct bpf_prog *xdp_prog;
793 	struct ice_ring *xdp_ring;
794 	u32 act;
795 
796 	rcu_read_lock();
797 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
798 	if (!xdp_prog) {
799 		rcu_read_unlock();
800 		return ICE_XDP_PASS;
801 	}
802 
803 	act = bpf_prog_run_xdp(xdp_prog, xdp);
804 	xdp->handle += xdp->data - xdp->data_hard_start;
805 	switch (act) {
806 	case XDP_PASS:
807 		break;
808 	case XDP_TX:
809 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
810 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
811 		break;
812 	case XDP_REDIRECT:
813 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
814 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
815 		break;
816 	default:
817 		bpf_warn_invalid_xdp_action(act);
818 		/* fallthrough -- not supported action */
819 	case XDP_ABORTED:
820 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
821 		/* fallthrough -- handle aborts by dropping frame */
822 	case XDP_DROP:
823 		result = ICE_XDP_CONSUMED;
824 		break;
825 	}
826 
827 	rcu_read_unlock();
828 	return result;
829 }
830 
831 /**
832  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
833  * @rx_ring: AF_XDP Rx ring
834  * @budget: NAPI budget
835  *
836  * Returns number of processed packets on success, remaining budget on failure.
837  */
838 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
839 {
840 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
841 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
842 	unsigned int xdp_xmit = 0;
843 	struct xdp_buff xdp;
844 	bool failure = 0;
845 
846 	xdp.rxq = &rx_ring->xdp_rxq;
847 
848 	while (likely(total_rx_packets < (unsigned int)budget)) {
849 		union ice_32b_rx_flex_desc *rx_desc;
850 		unsigned int size, xdp_res = 0;
851 		struct ice_rx_buf *rx_buf;
852 		struct sk_buff *skb;
853 		u16 stat_err_bits;
854 		u16 vlan_tag = 0;
855 		u8 rx_ptype;
856 
857 		if (cleaned_count >= ICE_RX_BUF_WRITE) {
858 			failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
859 							     cleaned_count);
860 			cleaned_count = 0;
861 		}
862 
863 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
864 
865 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
866 		if (!ice_test_staterr(rx_desc, stat_err_bits))
867 			break;
868 
869 		/* This memory barrier is needed to keep us from reading
870 		 * any other fields out of the rx_desc until we have
871 		 * verified the descriptor has been written back.
872 		 */
873 		dma_rmb();
874 
875 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
876 				   ICE_RX_FLX_DESC_PKT_LEN_M;
877 		if (!size)
878 			break;
879 
880 		rx_buf = ice_get_rx_buf_zc(rx_ring, size);
881 		if (!rx_buf->addr)
882 			break;
883 
884 		xdp.data = rx_buf->addr;
885 		xdp.data_meta = xdp.data;
886 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
887 		xdp.data_end = xdp.data + size;
888 		xdp.handle = rx_buf->handle;
889 
890 		xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
891 		if (xdp_res) {
892 			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
893 				xdp_xmit |= xdp_res;
894 				rx_buf->addr = NULL;
895 			} else {
896 				ice_reuse_rx_buf_zc(rx_ring, rx_buf);
897 			}
898 
899 			total_rx_bytes += size;
900 			total_rx_packets++;
901 			cleaned_count++;
902 
903 			ice_bump_ntc(rx_ring);
904 			continue;
905 		}
906 
907 		/* XDP_PASS path */
908 		skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
909 		if (!skb) {
910 			rx_ring->rx_stats.alloc_buf_failed++;
911 			break;
912 		}
913 
914 		cleaned_count++;
915 		ice_bump_ntc(rx_ring);
916 
917 		if (eth_skb_pad(skb)) {
918 			skb = NULL;
919 			continue;
920 		}
921 
922 		total_rx_bytes += skb->len;
923 		total_rx_packets++;
924 
925 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
926 		if (ice_test_staterr(rx_desc, stat_err_bits))
927 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
928 
929 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
930 				       ICE_RX_FLEX_DESC_PTYPE_M;
931 
932 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
933 		ice_receive_skb(rx_ring, skb, vlan_tag);
934 	}
935 
936 	ice_finalize_xdp_rx(rx_ring, xdp_xmit);
937 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
938 
939 	return failure ? budget : (int)total_rx_packets;
940 }
941 
942 /**
943  * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
944  * @xdp_ring: XDP Tx ring
945  * @budget: max number of frames to xmit
946  *
947  * Returns true if cleanup/transmission is done.
948  */
949 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
950 {
951 	struct ice_tx_desc *tx_desc = NULL;
952 	bool work_done = true;
953 	struct xdp_desc desc;
954 	dma_addr_t dma;
955 
956 	while (likely(budget-- > 0)) {
957 		struct ice_tx_buf *tx_buf;
958 
959 		if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
960 			xdp_ring->tx_stats.tx_busy++;
961 			work_done = false;
962 			break;
963 		}
964 
965 		tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
966 
967 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
968 			break;
969 
970 		dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
971 
972 		dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
973 					   DMA_BIDIRECTIONAL);
974 
975 		tx_buf->bytecount = desc.len;
976 
977 		tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
978 		tx_desc->buf_addr = cpu_to_le64(dma);
979 		tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
980 							  0, desc.len, 0);
981 
982 		xdp_ring->next_to_use++;
983 		if (xdp_ring->next_to_use == xdp_ring->count)
984 			xdp_ring->next_to_use = 0;
985 	}
986 
987 	if (tx_desc) {
988 		ice_xdp_ring_update_tail(xdp_ring);
989 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
990 	}
991 
992 	return budget > 0 && work_done;
993 }
994 
995 /**
996  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
997  * @xdp_ring: XDP Tx ring
998  * @tx_buf: Tx buffer to clean
999  */
1000 static void
1001 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
1002 {
1003 	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
1004 	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
1005 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
1006 	dma_unmap_len_set(tx_buf, len, 0);
1007 }
1008 
1009 /**
1010  * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
1011  * @xdp_ring: XDP Tx ring
1012  * @budget: NAPI budget
1013  *
1014  * Returns true if cleanup/tranmission is done.
1015  */
1016 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
1017 {
1018 	int total_packets = 0, total_bytes = 0;
1019 	s16 ntc = xdp_ring->next_to_clean;
1020 	struct ice_tx_desc *tx_desc;
1021 	struct ice_tx_buf *tx_buf;
1022 	bool xmit_done = true;
1023 	u32 xsk_frames = 0;
1024 
1025 	tx_desc = ICE_TX_DESC(xdp_ring, ntc);
1026 	tx_buf = &xdp_ring->tx_buf[ntc];
1027 	ntc -= xdp_ring->count;
1028 
1029 	do {
1030 		if (!(tx_desc->cmd_type_offset_bsz &
1031 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
1032 			break;
1033 
1034 		total_bytes += tx_buf->bytecount;
1035 		total_packets++;
1036 
1037 		if (tx_buf->raw_buf) {
1038 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1039 			tx_buf->raw_buf = NULL;
1040 		} else {
1041 			xsk_frames++;
1042 		}
1043 
1044 		tx_desc->cmd_type_offset_bsz = 0;
1045 		tx_buf++;
1046 		tx_desc++;
1047 		ntc++;
1048 
1049 		if (unlikely(!ntc)) {
1050 			ntc -= xdp_ring->count;
1051 			tx_buf = xdp_ring->tx_buf;
1052 			tx_desc = ICE_TX_DESC(xdp_ring, 0);
1053 		}
1054 
1055 		prefetch(tx_desc);
1056 
1057 	} while (likely(--budget));
1058 
1059 	ntc += xdp_ring->count;
1060 	xdp_ring->next_to_clean = ntc;
1061 
1062 	if (xsk_frames)
1063 		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1064 
1065 	ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
1066 	xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
1067 
1068 	return budget > 0 && xmit_done;
1069 }
1070 
1071 /**
1072  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1073  * @netdev: net_device
1074  * @queue_id: queue to wake up
1075  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1076  *
1077  * Returns negative on error, zero otherwise.
1078  */
1079 int
1080 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1081 	       u32 __always_unused flags)
1082 {
1083 	struct ice_netdev_priv *np = netdev_priv(netdev);
1084 	struct ice_q_vector *q_vector;
1085 	struct ice_vsi *vsi = np->vsi;
1086 	struct ice_ring *ring;
1087 
1088 	if (test_bit(__ICE_DOWN, vsi->state))
1089 		return -ENETDOWN;
1090 
1091 	if (!ice_is_xdp_ena_vsi(vsi))
1092 		return -ENXIO;
1093 
1094 	if (queue_id >= vsi->num_txq)
1095 		return -ENXIO;
1096 
1097 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
1098 		return -ENXIO;
1099 
1100 	ring = vsi->xdp_rings[queue_id];
1101 
1102 	/* The idea here is that if NAPI is running, mark a miss, so
1103 	 * it will run again. If not, trigger an interrupt and
1104 	 * schedule the NAPI from interrupt context. If NAPI would be
1105 	 * scheduled here, the interrupt affinity would not be
1106 	 * honored.
1107 	 */
1108 	q_vector = ring->q_vector;
1109 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1110 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1111 
1112 	return 0;
1113 }
1114 
1115 /**
1116  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
1117  * @vsi: VSI to be checked
1118  *
1119  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
1120  */
1121 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1122 {
1123 	int i;
1124 
1125 	if (!vsi->xsk_umems)
1126 		return false;
1127 
1128 	for (i = 0; i < vsi->num_xsk_umems; i++) {
1129 		if (vsi->xsk_umems[i])
1130 			return true;
1131 	}
1132 
1133 	return false;
1134 }
1135 
1136 /**
1137  * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
1138  * @rx_ring: ring to be cleaned
1139  */
1140 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
1141 {
1142 	u16 i;
1143 
1144 	for (i = 0; i < rx_ring->count; i++) {
1145 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
1146 
1147 		if (!rx_buf->addr)
1148 			continue;
1149 
1150 		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
1151 		rx_buf->addr = NULL;
1152 	}
1153 }
1154 
1155 /**
1156  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
1157  * @xdp_ring: XDP_Tx ring
1158  */
1159 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
1160 {
1161 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1162 	u32 xsk_frames = 0;
1163 
1164 	while (ntc != ntu) {
1165 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1166 
1167 		if (tx_buf->raw_buf)
1168 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1169 		else
1170 			xsk_frames++;
1171 
1172 		tx_buf->raw_buf = NULL;
1173 
1174 		ntc++;
1175 		if (ntc >= xdp_ring->count)
1176 			ntc = 0;
1177 	}
1178 
1179 	if (xsk_frames)
1180 		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1181 }
1182