1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 /** 16 * ice_qp_reset_stats - Resets all stats for rings of given index 17 * @vsi: VSI that contains rings of interest 18 * @q_idx: ring index in array 19 */ 20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 21 { 22 memset(&vsi->rx_rings[q_idx]->rx_stats, 0, 23 sizeof(vsi->rx_rings[q_idx]->rx_stats)); 24 memset(&vsi->tx_rings[q_idx]->stats, 0, 25 sizeof(vsi->tx_rings[q_idx]->stats)); 26 if (ice_is_xdp_ena_vsi(vsi)) 27 memset(&vsi->xdp_rings[q_idx]->stats, 0, 28 sizeof(vsi->xdp_rings[q_idx]->stats)); 29 } 30 31 /** 32 * ice_qp_clean_rings - Cleans all the rings of a given index 33 * @vsi: VSI that contains rings of interest 34 * @q_idx: ring index in array 35 */ 36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 37 { 38 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 39 if (ice_is_xdp_ena_vsi(vsi)) 40 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 41 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 42 } 43 44 /** 45 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 46 * @vsi: VSI that has netdev 47 * @q_vector: q_vector that has NAPI context 48 * @enable: true for enable, false for disable 49 */ 50 static void 51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 52 bool enable) 53 { 54 if (!vsi->netdev || !q_vector) 55 return; 56 57 if (enable) 58 napi_enable(&q_vector->napi); 59 else 60 napi_disable(&q_vector->napi); 61 } 62 63 /** 64 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 65 * @vsi: the VSI that contains queue vector being un-configured 66 * @rx_ring: Rx ring that will have its IRQ disabled 67 * @q_vector: queue vector 68 */ 69 static void 70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring, 71 struct ice_q_vector *q_vector) 72 { 73 struct ice_pf *pf = vsi->back; 74 struct ice_hw *hw = &pf->hw; 75 int base = vsi->base_vector; 76 u16 reg; 77 u32 val; 78 79 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 80 * here only QINT_RQCTL 81 */ 82 reg = rx_ring->reg_idx; 83 val = rd32(hw, QINT_RQCTL(reg)); 84 val &= ~QINT_RQCTL_CAUSE_ENA_M; 85 wr32(hw, QINT_RQCTL(reg), val); 86 87 if (q_vector) { 88 u16 v_idx = q_vector->v_idx; 89 90 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 91 ice_flush(hw); 92 synchronize_irq(pf->msix_entries[v_idx + base].vector); 93 } 94 } 95 96 /** 97 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 98 * @vsi: the VSI that contains queue vector 99 * @q_vector: queue vector 100 */ 101 static void 102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 103 { 104 u16 reg_idx = q_vector->reg_idx; 105 struct ice_pf *pf = vsi->back; 106 struct ice_hw *hw = &pf->hw; 107 struct ice_ring *ring; 108 109 ice_cfg_itr(hw, q_vector); 110 111 wr32(hw, GLINT_RATE(reg_idx), 112 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran)); 113 114 ice_for_each_ring(ring, q_vector->tx) 115 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx, 116 q_vector->tx.itr_idx); 117 118 ice_for_each_ring(ring, q_vector->rx) 119 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx, 120 q_vector->rx.itr_idx); 121 122 ice_flush(hw); 123 } 124 125 /** 126 * ice_qvec_ena_irq - Enable IRQ for given queue vector 127 * @vsi: the VSI that contains queue vector 128 * @q_vector: queue vector 129 */ 130 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 131 { 132 struct ice_pf *pf = vsi->back; 133 struct ice_hw *hw = &pf->hw; 134 135 ice_irq_dynamic_ena(hw, vsi, q_vector); 136 137 ice_flush(hw); 138 } 139 140 /** 141 * ice_qp_dis - Disables a queue pair 142 * @vsi: VSI of interest 143 * @q_idx: ring index in array 144 * 145 * Returns 0 on success, negative on failure. 146 */ 147 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 148 { 149 struct ice_txq_meta txq_meta = { }; 150 struct ice_ring *tx_ring, *rx_ring; 151 struct ice_q_vector *q_vector; 152 int timeout = 50; 153 int err; 154 155 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 156 return -EINVAL; 157 158 tx_ring = vsi->tx_rings[q_idx]; 159 rx_ring = vsi->rx_rings[q_idx]; 160 q_vector = rx_ring->q_vector; 161 162 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) { 163 timeout--; 164 if (!timeout) 165 return -EBUSY; 166 usleep_range(1000, 2000); 167 } 168 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 169 170 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 171 172 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 173 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 174 if (err) 175 return err; 176 if (ice_is_xdp_ena_vsi(vsi)) { 177 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 178 179 memset(&txq_meta, 0, sizeof(txq_meta)); 180 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 181 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 182 &txq_meta); 183 if (err) 184 return err; 185 } 186 err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true); 187 if (err) 188 return err; 189 190 ice_qvec_toggle_napi(vsi, q_vector, false); 191 ice_qp_clean_rings(vsi, q_idx); 192 ice_qp_reset_stats(vsi, q_idx); 193 194 return 0; 195 } 196 197 /** 198 * ice_qp_ena - Enables a queue pair 199 * @vsi: VSI of interest 200 * @q_idx: ring index in array 201 * 202 * Returns 0 on success, negative on failure. 203 */ 204 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 205 { 206 struct ice_aqc_add_tx_qgrp *qg_buf; 207 struct ice_ring *tx_ring, *rx_ring; 208 struct ice_q_vector *q_vector; 209 u16 size; 210 int err; 211 212 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 213 return -EINVAL; 214 215 size = struct_size(qg_buf, txqs, 1); 216 qg_buf = kzalloc(size, GFP_KERNEL); 217 if (!qg_buf) 218 return -ENOMEM; 219 220 qg_buf->num_txqs = 1; 221 222 tx_ring = vsi->tx_rings[q_idx]; 223 rx_ring = vsi->rx_rings[q_idx]; 224 q_vector = rx_ring->q_vector; 225 226 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 227 if (err) 228 goto free_buf; 229 230 if (ice_is_xdp_ena_vsi(vsi)) { 231 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx]; 232 233 memset(qg_buf, 0, size); 234 qg_buf->num_txqs = 1; 235 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 236 if (err) 237 goto free_buf; 238 ice_set_ring_xdp(xdp_ring); 239 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 240 } 241 242 err = ice_setup_rx_ctx(rx_ring); 243 if (err) 244 goto free_buf; 245 246 ice_qvec_cfg_msix(vsi, q_vector); 247 248 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 249 if (err) 250 goto free_buf; 251 252 clear_bit(__ICE_CFG_BUSY, vsi->state); 253 ice_qvec_toggle_napi(vsi, q_vector, true); 254 ice_qvec_ena_irq(vsi, q_vector); 255 256 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 257 free_buf: 258 kfree(qg_buf); 259 return err; 260 } 261 262 /** 263 * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket 264 * @vsi: VSI to allocate the UMEM on 265 * 266 * Returns 0 on success, negative on error 267 */ 268 static int ice_xsk_alloc_umems(struct ice_vsi *vsi) 269 { 270 if (vsi->xsk_umems) 271 return 0; 272 273 vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems), 274 GFP_KERNEL); 275 276 if (!vsi->xsk_umems) { 277 vsi->num_xsk_umems = 0; 278 return -ENOMEM; 279 } 280 281 return 0; 282 } 283 284 /** 285 * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid 286 * @vsi: VSI from which the VSI will be removed 287 * @qid: Ring/qid associated with the UMEM 288 */ 289 static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid) 290 { 291 vsi->xsk_umems[qid] = NULL; 292 vsi->num_xsk_umems_used--; 293 294 if (vsi->num_xsk_umems_used == 0) { 295 kfree(vsi->xsk_umems); 296 vsi->xsk_umems = NULL; 297 vsi->num_xsk_umems = 0; 298 } 299 } 300 301 /** 302 * ice_xsk_umem_disable - disable a UMEM region 303 * @vsi: Current VSI 304 * @qid: queue ID 305 * 306 * Returns 0 on success, negative on failure 307 */ 308 static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid) 309 { 310 if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems || 311 !vsi->xsk_umems[qid]) 312 return -EINVAL; 313 314 xsk_buff_dma_unmap(vsi->xsk_umems[qid], ICE_RX_DMA_ATTR); 315 ice_xsk_remove_umem(vsi, qid); 316 317 return 0; 318 } 319 320 /** 321 * ice_xsk_umem_enable - enable a UMEM region 322 * @vsi: Current VSI 323 * @umem: pointer to a requested UMEM region 324 * @qid: queue ID 325 * 326 * Returns 0 on success, negative on failure 327 */ 328 static int 329 ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) 330 { 331 int err; 332 333 if (vsi->type != ICE_VSI_PF) 334 return -EINVAL; 335 336 if (!vsi->num_xsk_umems) 337 vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq); 338 if (qid >= vsi->num_xsk_umems) 339 return -EINVAL; 340 341 err = ice_xsk_alloc_umems(vsi); 342 if (err) 343 return err; 344 345 if (vsi->xsk_umems && vsi->xsk_umems[qid]) 346 return -EBUSY; 347 348 vsi->xsk_umems[qid] = umem; 349 vsi->num_xsk_umems_used++; 350 351 err = xsk_buff_dma_map(vsi->xsk_umems[qid], ice_pf_to_dev(vsi->back), 352 ICE_RX_DMA_ATTR); 353 if (err) 354 return err; 355 356 return 0; 357 } 358 359 /** 360 * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state 361 * @vsi: Current VSI 362 * @umem: UMEM to enable/associate to a ring, NULL to disable 363 * @qid: queue ID 364 * 365 * Returns 0 on success, negative on failure 366 */ 367 int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid) 368 { 369 bool if_running, umem_present = !!umem; 370 int ret = 0, umem_failure = 0; 371 372 if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi); 373 374 if (if_running) { 375 ret = ice_qp_dis(vsi, qid); 376 if (ret) { 377 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 378 goto xsk_umem_if_up; 379 } 380 } 381 382 umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) : 383 ice_xsk_umem_disable(vsi, qid); 384 385 xsk_umem_if_up: 386 if (if_running) { 387 ret = ice_qp_ena(vsi, qid); 388 if (!ret && umem_present) 389 napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi); 390 else if (ret) 391 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 392 } 393 394 if (umem_failure) { 395 netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n", 396 umem_present ? "en" : "dis", umem_failure); 397 return umem_failure; 398 } 399 400 return ret; 401 } 402 403 /** 404 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 405 * @rx_ring: Rx ring 406 * @count: The number of buffers to allocate 407 * 408 * This function allocates a number of Rx buffers from the fill ring 409 * or the internal recycle mechanism and places them on the Rx ring. 410 * 411 * Returns false if all allocations were successful, true if any fail. 412 */ 413 bool ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, u16 count) 414 { 415 union ice_32b_rx_flex_desc *rx_desc; 416 u16 ntu = rx_ring->next_to_use; 417 struct ice_rx_buf *rx_buf; 418 bool ret = false; 419 dma_addr_t dma; 420 421 if (!count) 422 return false; 423 424 rx_desc = ICE_RX_DESC(rx_ring, ntu); 425 rx_buf = &rx_ring->rx_buf[ntu]; 426 427 do { 428 rx_buf->xdp = xsk_buff_alloc(rx_ring->xsk_umem); 429 if (!rx_buf->xdp) { 430 ret = true; 431 break; 432 } 433 434 dma = xsk_buff_xdp_get_dma(rx_buf->xdp); 435 rx_desc->read.pkt_addr = cpu_to_le64(dma); 436 rx_desc->wb.status_error0 = 0; 437 438 rx_desc++; 439 rx_buf++; 440 ntu++; 441 442 if (unlikely(ntu == rx_ring->count)) { 443 rx_desc = ICE_RX_DESC(rx_ring, 0); 444 rx_buf = rx_ring->rx_buf; 445 ntu = 0; 446 } 447 } while (--count); 448 449 if (rx_ring->next_to_use != ntu) 450 ice_release_rx_desc(rx_ring, ntu); 451 452 return ret; 453 } 454 455 /** 456 * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring 457 * @rx_ring: Rx ring 458 */ 459 static void ice_bump_ntc(struct ice_ring *rx_ring) 460 { 461 int ntc = rx_ring->next_to_clean + 1; 462 463 ntc = (ntc < rx_ring->count) ? ntc : 0; 464 rx_ring->next_to_clean = ntc; 465 prefetch(ICE_RX_DESC(rx_ring, ntc)); 466 } 467 468 /** 469 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 470 * @rx_ring: Rx ring 471 * @rx_buf: zero-copy Rx buffer 472 * 473 * This function allocates a new skb from a zero-copy Rx buffer. 474 * 475 * Returns the skb on success, NULL on failure. 476 */ 477 static struct sk_buff * 478 ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf) 479 { 480 unsigned int metasize = rx_buf->xdp->data - rx_buf->xdp->data_meta; 481 unsigned int datasize = rx_buf->xdp->data_end - rx_buf->xdp->data; 482 unsigned int datasize_hard = rx_buf->xdp->data_end - 483 rx_buf->xdp->data_hard_start; 484 struct sk_buff *skb; 485 486 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard, 487 GFP_ATOMIC | __GFP_NOWARN); 488 if (unlikely(!skb)) 489 return NULL; 490 491 skb_reserve(skb, rx_buf->xdp->data - rx_buf->xdp->data_hard_start); 492 memcpy(__skb_put(skb, datasize), rx_buf->xdp->data, datasize); 493 if (metasize) 494 skb_metadata_set(skb, metasize); 495 496 xsk_buff_free(rx_buf->xdp); 497 rx_buf->xdp = NULL; 498 return skb; 499 } 500 501 /** 502 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 503 * @rx_ring: Rx ring 504 * @xdp: xdp_buff used as input to the XDP program 505 * 506 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 507 */ 508 static int 509 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp) 510 { 511 int err, result = ICE_XDP_PASS; 512 struct bpf_prog *xdp_prog; 513 struct ice_ring *xdp_ring; 514 u32 act; 515 516 rcu_read_lock(); 517 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 518 if (!xdp_prog) { 519 rcu_read_unlock(); 520 return ICE_XDP_PASS; 521 } 522 523 act = bpf_prog_run_xdp(xdp_prog, xdp); 524 switch (act) { 525 case XDP_PASS: 526 break; 527 case XDP_TX: 528 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; 529 result = ice_xmit_xdp_buff(xdp, xdp_ring); 530 break; 531 case XDP_REDIRECT: 532 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 533 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED; 534 break; 535 default: 536 bpf_warn_invalid_xdp_action(act); 537 fallthrough; 538 case XDP_ABORTED: 539 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 540 fallthrough; 541 case XDP_DROP: 542 result = ICE_XDP_CONSUMED; 543 break; 544 } 545 546 rcu_read_unlock(); 547 return result; 548 } 549 550 /** 551 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 552 * @rx_ring: AF_XDP Rx ring 553 * @budget: NAPI budget 554 * 555 * Returns number of processed packets on success, remaining budget on failure. 556 */ 557 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget) 558 { 559 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 560 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); 561 unsigned int xdp_xmit = 0; 562 bool failure = false; 563 564 while (likely(total_rx_packets < (unsigned int)budget)) { 565 union ice_32b_rx_flex_desc *rx_desc; 566 unsigned int size, xdp_res = 0; 567 struct ice_rx_buf *rx_buf; 568 struct sk_buff *skb; 569 u16 stat_err_bits; 570 u16 vlan_tag = 0; 571 u8 rx_ptype; 572 573 if (cleaned_count >= ICE_RX_BUF_WRITE) { 574 failure |= ice_alloc_rx_bufs_zc(rx_ring, 575 cleaned_count); 576 cleaned_count = 0; 577 } 578 579 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); 580 581 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 582 if (!ice_test_staterr(rx_desc, stat_err_bits)) 583 break; 584 585 /* This memory barrier is needed to keep us from reading 586 * any other fields out of the rx_desc until we have 587 * verified the descriptor has been written back. 588 */ 589 dma_rmb(); 590 591 size = le16_to_cpu(rx_desc->wb.pkt_len) & 592 ICE_RX_FLX_DESC_PKT_LEN_M; 593 if (!size) 594 break; 595 596 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; 597 rx_buf->xdp->data_end = rx_buf->xdp->data + size; 598 xsk_buff_dma_sync_for_cpu(rx_buf->xdp); 599 600 xdp_res = ice_run_xdp_zc(rx_ring, rx_buf->xdp); 601 if (xdp_res) { 602 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) 603 xdp_xmit |= xdp_res; 604 else 605 xsk_buff_free(rx_buf->xdp); 606 607 rx_buf->xdp = NULL; 608 total_rx_bytes += size; 609 total_rx_packets++; 610 cleaned_count++; 611 612 ice_bump_ntc(rx_ring); 613 continue; 614 } 615 616 /* XDP_PASS path */ 617 skb = ice_construct_skb_zc(rx_ring, rx_buf); 618 if (!skb) { 619 rx_ring->rx_stats.alloc_buf_failed++; 620 break; 621 } 622 623 cleaned_count++; 624 ice_bump_ntc(rx_ring); 625 626 if (eth_skb_pad(skb)) { 627 skb = NULL; 628 continue; 629 } 630 631 total_rx_bytes += skb->len; 632 total_rx_packets++; 633 634 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); 635 if (ice_test_staterr(rx_desc, stat_err_bits)) 636 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); 637 638 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 639 ICE_RX_FLEX_DESC_PTYPE_M; 640 641 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 642 ice_receive_skb(rx_ring, skb, vlan_tag); 643 } 644 645 ice_finalize_xdp_rx(rx_ring, xdp_xmit); 646 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 647 648 if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) { 649 if (failure || rx_ring->next_to_clean == rx_ring->next_to_use) 650 xsk_set_rx_need_wakeup(rx_ring->xsk_umem); 651 else 652 xsk_clear_rx_need_wakeup(rx_ring->xsk_umem); 653 654 return (int)total_rx_packets; 655 } 656 657 return failure ? budget : (int)total_rx_packets; 658 } 659 660 /** 661 * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries 662 * @xdp_ring: XDP Tx ring 663 * @budget: max number of frames to xmit 664 * 665 * Returns true if cleanup/transmission is done. 666 */ 667 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget) 668 { 669 struct ice_tx_desc *tx_desc = NULL; 670 bool work_done = true; 671 struct xdp_desc desc; 672 dma_addr_t dma; 673 674 while (likely(budget-- > 0)) { 675 struct ice_tx_buf *tx_buf; 676 677 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) { 678 xdp_ring->tx_stats.tx_busy++; 679 work_done = false; 680 break; 681 } 682 683 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use]; 684 685 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc)) 686 break; 687 688 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_umem, desc.addr); 689 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_umem, dma, 690 desc.len); 691 692 tx_buf->bytecount = desc.len; 693 694 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use); 695 tx_desc->buf_addr = cpu_to_le64(dma); 696 tx_desc->cmd_type_offset_bsz = 697 ice_build_ctob(ICE_TXD_LAST_DESC_CMD, 0, desc.len, 0); 698 699 xdp_ring->next_to_use++; 700 if (xdp_ring->next_to_use == xdp_ring->count) 701 xdp_ring->next_to_use = 0; 702 } 703 704 if (tx_desc) { 705 ice_xdp_ring_update_tail(xdp_ring); 706 xsk_umem_consume_tx_done(xdp_ring->xsk_umem); 707 } 708 709 return budget > 0 && work_done; 710 } 711 712 /** 713 * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer 714 * @xdp_ring: XDP Tx ring 715 * @tx_buf: Tx buffer to clean 716 */ 717 static void 718 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf) 719 { 720 xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf); 721 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 722 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 723 dma_unmap_len_set(tx_buf, len, 0); 724 } 725 726 /** 727 * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries 728 * @xdp_ring: XDP Tx ring 729 * @budget: NAPI budget 730 * 731 * Returns true if cleanup/tranmission is done. 732 */ 733 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget) 734 { 735 int total_packets = 0, total_bytes = 0; 736 s16 ntc = xdp_ring->next_to_clean; 737 struct ice_tx_desc *tx_desc; 738 struct ice_tx_buf *tx_buf; 739 u32 xsk_frames = 0; 740 bool xmit_done; 741 742 tx_desc = ICE_TX_DESC(xdp_ring, ntc); 743 tx_buf = &xdp_ring->tx_buf[ntc]; 744 ntc -= xdp_ring->count; 745 746 do { 747 if (!(tx_desc->cmd_type_offset_bsz & 748 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 749 break; 750 751 total_bytes += tx_buf->bytecount; 752 total_packets++; 753 754 if (tx_buf->raw_buf) { 755 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 756 tx_buf->raw_buf = NULL; 757 } else { 758 xsk_frames++; 759 } 760 761 tx_desc->cmd_type_offset_bsz = 0; 762 tx_buf++; 763 tx_desc++; 764 ntc++; 765 766 if (unlikely(!ntc)) { 767 ntc -= xdp_ring->count; 768 tx_buf = xdp_ring->tx_buf; 769 tx_desc = ICE_TX_DESC(xdp_ring, 0); 770 } 771 772 prefetch(tx_desc); 773 774 } while (likely(--budget)); 775 776 ntc += xdp_ring->count; 777 xdp_ring->next_to_clean = ntc; 778 779 if (xsk_frames) 780 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); 781 782 if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem)) 783 xsk_set_tx_need_wakeup(xdp_ring->xsk_umem); 784 785 ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes); 786 xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK); 787 788 return budget > 0 && xmit_done; 789 } 790 791 /** 792 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 793 * @netdev: net_device 794 * @queue_id: queue to wake up 795 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 796 * 797 * Returns negative on error, zero otherwise. 798 */ 799 int 800 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 801 u32 __always_unused flags) 802 { 803 struct ice_netdev_priv *np = netdev_priv(netdev); 804 struct ice_q_vector *q_vector; 805 struct ice_vsi *vsi = np->vsi; 806 struct ice_ring *ring; 807 808 if (test_bit(__ICE_DOWN, vsi->state)) 809 return -ENETDOWN; 810 811 if (!ice_is_xdp_ena_vsi(vsi)) 812 return -ENXIO; 813 814 if (queue_id >= vsi->num_txq) 815 return -ENXIO; 816 817 if (!vsi->xdp_rings[queue_id]->xsk_umem) 818 return -ENXIO; 819 820 ring = vsi->xdp_rings[queue_id]; 821 822 /* The idea here is that if NAPI is running, mark a miss, so 823 * it will run again. If not, trigger an interrupt and 824 * schedule the NAPI from interrupt context. If NAPI would be 825 * scheduled here, the interrupt affinity would not be 826 * honored. 827 */ 828 q_vector = ring->q_vector; 829 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 830 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 831 832 return 0; 833 } 834 835 /** 836 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached 837 * @vsi: VSI to be checked 838 * 839 * Returns true if any of the Rx rings has an AF_XDP UMEM attached 840 */ 841 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 842 { 843 int i; 844 845 if (!vsi->xsk_umems) 846 return false; 847 848 for (i = 0; i < vsi->num_xsk_umems; i++) { 849 if (vsi->xsk_umems[i]) 850 return true; 851 } 852 853 return false; 854 } 855 856 /** 857 * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring 858 * @rx_ring: ring to be cleaned 859 */ 860 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring) 861 { 862 u16 i; 863 864 for (i = 0; i < rx_ring->count; i++) { 865 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; 866 867 if (!rx_buf->xdp) 868 continue; 869 870 rx_buf->xdp = NULL; 871 } 872 } 873 874 /** 875 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues 876 * @xdp_ring: XDP_Tx ring 877 */ 878 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring) 879 { 880 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 881 u32 xsk_frames = 0; 882 883 while (ntc != ntu) { 884 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 885 886 if (tx_buf->raw_buf) 887 ice_clean_xdp_tx_buf(xdp_ring, tx_buf); 888 else 889 xsk_frames++; 890 891 tx_buf->raw_buf = NULL; 892 893 ntc++; 894 if (ntc >= xdp_ring->count) 895 ntc = 0; 896 } 897 898 if (xsk_frames) 899 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames); 900 } 901