1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14 
15 /**
16  * ice_qp_reset_stats - Resets all stats for rings of given index
17  * @vsi: VSI that contains rings of interest
18  * @q_idx: ring index in array
19  */
20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21 {
22 	memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23 	       sizeof(vsi->rx_rings[q_idx]->rx_stats));
24 	memset(&vsi->tx_rings[q_idx]->stats, 0,
25 	       sizeof(vsi->tx_rings[q_idx]->stats));
26 	if (ice_is_xdp_ena_vsi(vsi))
27 		memset(&vsi->xdp_rings[q_idx]->stats, 0,
28 		       sizeof(vsi->xdp_rings[q_idx]->stats));
29 }
30 
31 /**
32  * ice_qp_clean_rings - Cleans all the rings of a given index
33  * @vsi: VSI that contains rings of interest
34  * @q_idx: ring index in array
35  */
36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37 {
38 	ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39 	if (ice_is_xdp_ena_vsi(vsi))
40 		ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41 	ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42 }
43 
44 /**
45  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46  * @vsi: VSI that has netdev
47  * @q_vector: q_vector that has NAPI context
48  * @enable: true for enable, false for disable
49  */
50 static void
51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52 		     bool enable)
53 {
54 	if (!vsi->netdev || !q_vector)
55 		return;
56 
57 	if (enable)
58 		napi_enable(&q_vector->napi);
59 	else
60 		napi_disable(&q_vector->napi);
61 }
62 
63 /**
64  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65  * @vsi: the VSI that contains queue vector being un-configured
66  * @rx_ring: Rx ring that will have its IRQ disabled
67  * @q_vector: queue vector
68  */
69 static void
70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71 		 struct ice_q_vector *q_vector)
72 {
73 	struct ice_pf *pf = vsi->back;
74 	struct ice_hw *hw = &pf->hw;
75 	int base = vsi->base_vector;
76 	u16 reg;
77 	u32 val;
78 
79 	/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80 	 * here only QINT_RQCTL
81 	 */
82 	reg = rx_ring->reg_idx;
83 	val = rd32(hw, QINT_RQCTL(reg));
84 	val &= ~QINT_RQCTL_CAUSE_ENA_M;
85 	wr32(hw, QINT_RQCTL(reg), val);
86 
87 	if (q_vector) {
88 		u16 v_idx = q_vector->v_idx;
89 
90 		wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91 		ice_flush(hw);
92 		synchronize_irq(pf->msix_entries[v_idx + base].vector);
93 	}
94 }
95 
96 /**
97  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98  * @vsi: the VSI that contains queue vector
99  * @q_vector: queue vector
100  */
101 static void
102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103 {
104 	u16 reg_idx = q_vector->reg_idx;
105 	struct ice_pf *pf = vsi->back;
106 	struct ice_hw *hw = &pf->hw;
107 	struct ice_ring *ring;
108 
109 	ice_cfg_itr(hw, q_vector);
110 
111 	wr32(hw, GLINT_RATE(reg_idx),
112 	     ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113 
114 	ice_for_each_ring(ring, q_vector->tx)
115 		ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116 				      q_vector->tx.itr_idx);
117 
118 	ice_for_each_ring(ring, q_vector->rx)
119 		ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120 				      q_vector->rx.itr_idx);
121 
122 	ice_flush(hw);
123 }
124 
125 /**
126  * ice_qvec_ena_irq - Enable IRQ for given queue vector
127  * @vsi: the VSI that contains queue vector
128  * @q_vector: queue vector
129  */
130 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131 {
132 	struct ice_pf *pf = vsi->back;
133 	struct ice_hw *hw = &pf->hw;
134 
135 	ice_irq_dynamic_ena(hw, vsi, q_vector);
136 
137 	ice_flush(hw);
138 }
139 
140 /**
141  * ice_qp_dis - Disables a queue pair
142  * @vsi: VSI of interest
143  * @q_idx: ring index in array
144  *
145  * Returns 0 on success, negative on failure.
146  */
147 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148 {
149 	struct ice_txq_meta txq_meta = { };
150 	struct ice_ring *tx_ring, *rx_ring;
151 	struct ice_q_vector *q_vector;
152 	int timeout = 50;
153 	int err;
154 
155 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156 		return -EINVAL;
157 
158 	tx_ring = vsi->tx_rings[q_idx];
159 	rx_ring = vsi->rx_rings[q_idx];
160 	q_vector = rx_ring->q_vector;
161 
162 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163 		timeout--;
164 		if (!timeout)
165 			return -EBUSY;
166 		usleep_range(1000, 2000);
167 	}
168 	netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169 
170 	ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171 
172 	ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174 	if (err)
175 		return err;
176 	if (ice_is_xdp_ena_vsi(vsi)) {
177 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178 
179 		memset(&txq_meta, 0, sizeof(txq_meta));
180 		ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181 		err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182 					   &txq_meta);
183 		if (err)
184 			return err;
185 	}
186 	err = ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, true);
187 	if (err)
188 		return err;
189 
190 	ice_qvec_toggle_napi(vsi, q_vector, false);
191 	ice_qp_clean_rings(vsi, q_idx);
192 	ice_qp_reset_stats(vsi, q_idx);
193 
194 	return 0;
195 }
196 
197 /**
198  * ice_qp_ena - Enables a queue pair
199  * @vsi: VSI of interest
200  * @q_idx: ring index in array
201  *
202  * Returns 0 on success, negative on failure.
203  */
204 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205 {
206 	struct ice_aqc_add_tx_qgrp *qg_buf;
207 	struct ice_ring *tx_ring, *rx_ring;
208 	struct ice_q_vector *q_vector;
209 	int err;
210 
211 	if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
212 		return -EINVAL;
213 
214 	qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
215 	if (!qg_buf)
216 		return -ENOMEM;
217 
218 	qg_buf->num_txqs = 1;
219 
220 	tx_ring = vsi->tx_rings[q_idx];
221 	rx_ring = vsi->rx_rings[q_idx];
222 	q_vector = rx_ring->q_vector;
223 
224 	err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
225 	if (err)
226 		goto free_buf;
227 
228 	if (ice_is_xdp_ena_vsi(vsi)) {
229 		struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
230 
231 		memset(qg_buf, 0, sizeof(*qg_buf));
232 		qg_buf->num_txqs = 1;
233 		err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
234 		if (err)
235 			goto free_buf;
236 		ice_set_ring_xdp(xdp_ring);
237 		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
238 	}
239 
240 	err = ice_setup_rx_ctx(rx_ring);
241 	if (err)
242 		goto free_buf;
243 
244 	ice_qvec_cfg_msix(vsi, q_vector);
245 
246 	err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
247 	if (err)
248 		goto free_buf;
249 
250 	clear_bit(__ICE_CFG_BUSY, vsi->state);
251 	ice_qvec_toggle_napi(vsi, q_vector, true);
252 	ice_qvec_ena_irq(vsi, q_vector);
253 
254 	netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
255 free_buf:
256 	kfree(qg_buf);
257 	return err;
258 }
259 
260 /**
261  * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
262  * @vsi: VSI to allocate the UMEM on
263  *
264  * Returns 0 on success, negative on error
265  */
266 static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
267 {
268 	if (vsi->xsk_umems)
269 		return 0;
270 
271 	vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
272 				 GFP_KERNEL);
273 
274 	if (!vsi->xsk_umems) {
275 		vsi->num_xsk_umems = 0;
276 		return -ENOMEM;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * ice_xsk_add_umem - add a UMEM region for XDP sockets
284  * @vsi: VSI to which the UMEM will be added
285  * @umem: pointer to a requested UMEM region
286  * @qid: queue ID
287  *
288  * Returns 0 on success, negative on error
289  */
290 static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
291 {
292 	int err;
293 
294 	err = ice_xsk_alloc_umems(vsi);
295 	if (err)
296 		return err;
297 
298 	vsi->xsk_umems[qid] = umem;
299 	vsi->num_xsk_umems_used++;
300 
301 	return 0;
302 }
303 
304 /**
305  * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
306  * @vsi: VSI from which the VSI will be removed
307  * @qid: Ring/qid associated with the UMEM
308  */
309 static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
310 {
311 	vsi->xsk_umems[qid] = NULL;
312 	vsi->num_xsk_umems_used--;
313 
314 	if (vsi->num_xsk_umems_used == 0) {
315 		kfree(vsi->xsk_umems);
316 		vsi->xsk_umems = NULL;
317 		vsi->num_xsk_umems = 0;
318 	}
319 }
320 
321 /**
322  * ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
323  * @vsi: VSI to map the UMEM region
324  * @umem: UMEM to map
325  *
326  * Returns 0 on success, negative on error
327  */
328 static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
329 {
330 	struct ice_pf *pf = vsi->back;
331 	struct device *dev;
332 	unsigned int i;
333 
334 	dev = ice_pf_to_dev(pf);
335 	for (i = 0; i < umem->npgs; i++) {
336 		dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
337 						    PAGE_SIZE,
338 						    DMA_BIDIRECTIONAL,
339 						    ICE_RX_DMA_ATTR);
340 		if (dma_mapping_error(dev, dma)) {
341 			dev_dbg(dev, "XSK UMEM DMA mapping error on page num %d\n",
342 				i);
343 			goto out_unmap;
344 		}
345 
346 		umem->pages[i].dma = dma;
347 	}
348 
349 	return 0;
350 
351 out_unmap:
352 	for (; i > 0; i--) {
353 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
354 				     DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
355 		umem->pages[i].dma = 0;
356 	}
357 
358 	return -EFAULT;
359 }
360 
361 /**
362  * ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
363  * @vsi: VSI from which the UMEM will be unmapped
364  * @umem: UMEM to unmap
365  */
366 static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
367 {
368 	struct ice_pf *pf = vsi->back;
369 	struct device *dev;
370 	unsigned int i;
371 
372 	dev = ice_pf_to_dev(pf);
373 	for (i = 0; i < umem->npgs; i++) {
374 		dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
375 				     DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
376 
377 		umem->pages[i].dma = 0;
378 	}
379 }
380 
381 /**
382  * ice_xsk_umem_disable - disable a UMEM region
383  * @vsi: Current VSI
384  * @qid: queue ID
385  *
386  * Returns 0 on success, negative on failure
387  */
388 static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
389 {
390 	if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
391 	    !vsi->xsk_umems[qid])
392 		return -EINVAL;
393 
394 	ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
395 	ice_xsk_remove_umem(vsi, qid);
396 
397 	return 0;
398 }
399 
400 /**
401  * ice_xsk_umem_enable - enable a UMEM region
402  * @vsi: Current VSI
403  * @umem: pointer to a requested UMEM region
404  * @qid: queue ID
405  *
406  * Returns 0 on success, negative on failure
407  */
408 static int
409 ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
410 {
411 	struct xdp_umem_fq_reuse *reuseq;
412 	int err;
413 
414 	if (vsi->type != ICE_VSI_PF)
415 		return -EINVAL;
416 
417 	if (!vsi->num_xsk_umems)
418 		vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
419 	if (qid >= vsi->num_xsk_umems)
420 		return -EINVAL;
421 
422 	if (vsi->xsk_umems && vsi->xsk_umems[qid])
423 		return -EBUSY;
424 
425 	reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
426 	if (!reuseq)
427 		return -ENOMEM;
428 
429 	xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
430 
431 	err = ice_xsk_umem_dma_map(vsi, umem);
432 	if (err)
433 		return err;
434 
435 	err = ice_xsk_add_umem(vsi, umem, qid);
436 	if (err)
437 		return err;
438 
439 	return 0;
440 }
441 
442 /**
443  * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
444  * @vsi: Current VSI
445  * @umem: UMEM to enable/associate to a ring, NULL to disable
446  * @qid: queue ID
447  *
448  * Returns 0 on success, negative on failure
449  */
450 int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
451 {
452 	bool if_running, umem_present = !!umem;
453 	int ret = 0, umem_failure = 0;
454 
455 	if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
456 
457 	if (if_running) {
458 		ret = ice_qp_dis(vsi, qid);
459 		if (ret) {
460 			netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
461 			goto xsk_umem_if_up;
462 		}
463 	}
464 
465 	umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
466 				      ice_xsk_umem_disable(vsi, qid);
467 
468 xsk_umem_if_up:
469 	if (if_running) {
470 		ret = ice_qp_ena(vsi, qid);
471 		if (!ret && umem_present)
472 			napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
473 		else if (ret)
474 			netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
475 	}
476 
477 	if (umem_failure) {
478 		netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d\n",
479 			   umem_present ? "en" : "dis", umem_failure);
480 		return umem_failure;
481 	}
482 
483 	return ret;
484 }
485 
486 /**
487  * ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
488  * @zca: zero-cpoy allocator
489  * @handle: Buffer handle
490  */
491 void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
492 {
493 	struct ice_rx_buf *rx_buf;
494 	struct ice_ring *rx_ring;
495 	struct xdp_umem *umem;
496 	u64 hr, mask;
497 	u16 nta;
498 
499 	rx_ring = container_of(zca, struct ice_ring, zca);
500 	umem = rx_ring->xsk_umem;
501 	hr = umem->headroom + XDP_PACKET_HEADROOM;
502 
503 	mask = umem->chunk_mask;
504 
505 	nta = rx_ring->next_to_alloc;
506 	rx_buf = &rx_ring->rx_buf[nta];
507 
508 	nta++;
509 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
510 
511 	handle &= mask;
512 
513 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
514 	rx_buf->dma += hr;
515 
516 	rx_buf->addr = xdp_umem_get_data(umem, handle);
517 	rx_buf->addr += hr;
518 
519 	rx_buf->handle = (u64)handle + umem->headroom;
520 }
521 
522 /**
523  * ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
524  * @rx_ring: ring with an xdp_umem bound to it
525  * @rx_buf: buffer to which xsk page address will be assigned
526  *
527  * This function allocates an Rx buffer in the hot path.
528  * The buffer can come from fill queue or recycle queue.
529  *
530  * Returns true if an assignment was successful, false if not.
531  */
532 static __always_inline bool
533 ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
534 {
535 	struct xdp_umem *umem = rx_ring->xsk_umem;
536 	void *addr = rx_buf->addr;
537 	u64 handle, hr;
538 
539 	if (addr) {
540 		rx_ring->rx_stats.page_reuse_count++;
541 		return true;
542 	}
543 
544 	if (!xsk_umem_peek_addr(umem, &handle)) {
545 		rx_ring->rx_stats.alloc_page_failed++;
546 		return false;
547 	}
548 
549 	hr = umem->headroom + XDP_PACKET_HEADROOM;
550 
551 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
552 	rx_buf->dma += hr;
553 
554 	rx_buf->addr = xdp_umem_get_data(umem, handle);
555 	rx_buf->addr += hr;
556 
557 	rx_buf->handle = handle + umem->headroom;
558 
559 	xsk_umem_release_addr(umem);
560 	return true;
561 }
562 
563 /**
564  * ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
565  * @rx_ring: ring with an xdp_umem bound to it
566  * @rx_buf: buffer to which xsk page address will be assigned
567  *
568  * This function allocates an Rx buffer in the slow path.
569  * The buffer can come from fill queue or recycle queue.
570  *
571  * Returns true if an assignment was successful, false if not.
572  */
573 static __always_inline bool
574 ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
575 {
576 	struct xdp_umem *umem = rx_ring->xsk_umem;
577 	u64 handle, headroom;
578 
579 	if (!xsk_umem_peek_addr_rq(umem, &handle)) {
580 		rx_ring->rx_stats.alloc_page_failed++;
581 		return false;
582 	}
583 
584 	handle &= umem->chunk_mask;
585 	headroom = umem->headroom + XDP_PACKET_HEADROOM;
586 
587 	rx_buf->dma = xdp_umem_get_dma(umem, handle);
588 	rx_buf->dma += headroom;
589 
590 	rx_buf->addr = xdp_umem_get_data(umem, handle);
591 	rx_buf->addr += headroom;
592 
593 	rx_buf->handle = handle + umem->headroom;
594 
595 	xsk_umem_release_addr_rq(umem);
596 	return true;
597 }
598 
599 /**
600  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
601  * @rx_ring: Rx ring
602  * @count: The number of buffers to allocate
603  * @alloc: the function pointer to call for allocation
604  *
605  * This function allocates a number of Rx buffers from the fill ring
606  * or the internal recycle mechanism and places them on the Rx ring.
607  *
608  * Returns false if all allocations were successful, true if any fail.
609  */
610 static bool
611 ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
612 		     bool (*alloc)(struct ice_ring *, struct ice_rx_buf *))
613 {
614 	union ice_32b_rx_flex_desc *rx_desc;
615 	u16 ntu = rx_ring->next_to_use;
616 	struct ice_rx_buf *rx_buf;
617 	bool ret = false;
618 
619 	if (!count)
620 		return false;
621 
622 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
623 	rx_buf = &rx_ring->rx_buf[ntu];
624 
625 	do {
626 		if (!alloc(rx_ring, rx_buf)) {
627 			ret = true;
628 			break;
629 		}
630 
631 		dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
632 						 rx_ring->rx_buf_len,
633 						 DMA_BIDIRECTIONAL);
634 
635 		rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
636 		rx_desc->wb.status_error0 = 0;
637 
638 		rx_desc++;
639 		rx_buf++;
640 		ntu++;
641 
642 		if (unlikely(ntu == rx_ring->count)) {
643 			rx_desc = ICE_RX_DESC(rx_ring, 0);
644 			rx_buf = rx_ring->rx_buf;
645 			ntu = 0;
646 		}
647 	} while (--count);
648 
649 	if (rx_ring->next_to_use != ntu)
650 		ice_release_rx_desc(rx_ring, ntu);
651 
652 	return ret;
653 }
654 
655 /**
656  * ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
657  * @rx_ring: Rx ring
658  * @count: number of bufs to allocate
659  *
660  * Returns false on success, true on failure.
661  */
662 static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
663 {
664 	return ice_alloc_rx_bufs_zc(rx_ring, count,
665 				    ice_alloc_buf_fast_zc);
666 }
667 
668 /**
669  * ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
670  * @rx_ring: Rx ring
671  * @count: number of bufs to allocate
672  *
673  * Returns false on success, true on failure.
674  */
675 bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
676 {
677 	return ice_alloc_rx_bufs_zc(rx_ring, count,
678 				    ice_alloc_buf_slow_zc);
679 }
680 
681 /**
682  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
683  * @rx_ring: Rx ring
684  */
685 static void ice_bump_ntc(struct ice_ring *rx_ring)
686 {
687 	int ntc = rx_ring->next_to_clean + 1;
688 
689 	ntc = (ntc < rx_ring->count) ? ntc : 0;
690 	rx_ring->next_to_clean = ntc;
691 	prefetch(ICE_RX_DESC(rx_ring, ntc));
692 }
693 
694 /**
695  * ice_get_rx_buf_zc - Fetch the current Rx buffer
696  * @rx_ring: Rx ring
697  * @size: size of a buffer
698  *
699  * This function returns the current, received Rx buffer and does
700  * DMA synchronization.
701  *
702  * Returns a pointer to the received Rx buffer.
703  */
704 static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
705 {
706 	struct ice_rx_buf *rx_buf;
707 
708 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
709 
710 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
711 				      size, DMA_BIDIRECTIONAL);
712 
713 	return rx_buf;
714 }
715 
716 /**
717  * ice_reuse_rx_buf_zc - reuse an Rx buffer
718  * @rx_ring: Rx ring
719  * @old_buf: The buffer to recycle
720  *
721  * This function recycles a finished Rx buffer, and places it on the recycle
722  * queue (next_to_alloc).
723  */
724 static void
725 ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
726 {
727 	unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
728 	u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
729 	u16 nta = rx_ring->next_to_alloc;
730 	struct ice_rx_buf *new_buf;
731 
732 	new_buf = &rx_ring->rx_buf[nta++];
733 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
734 
735 	new_buf->dma = old_buf->dma & mask;
736 	new_buf->dma += hr;
737 
738 	new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
739 	new_buf->addr += hr;
740 
741 	new_buf->handle = old_buf->handle & mask;
742 	new_buf->handle += rx_ring->xsk_umem->headroom;
743 
744 	old_buf->addr = NULL;
745 }
746 
747 /**
748  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
749  * @rx_ring: Rx ring
750  * @rx_buf: zero-copy Rx buffer
751  * @xdp: XDP buffer
752  *
753  * This function allocates a new skb from a zero-copy Rx buffer.
754  *
755  * Returns the skb on success, NULL on failure.
756  */
757 static struct sk_buff *
758 ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
759 		     struct xdp_buff *xdp)
760 {
761 	unsigned int metasize = xdp->data - xdp->data_meta;
762 	unsigned int datasize = xdp->data_end - xdp->data;
763 	unsigned int datasize_hard = xdp->data_end -
764 				     xdp->data_hard_start;
765 	struct sk_buff *skb;
766 
767 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
768 			       GFP_ATOMIC | __GFP_NOWARN);
769 	if (unlikely(!skb))
770 		return NULL;
771 
772 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
773 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
774 	if (metasize)
775 		skb_metadata_set(skb, metasize);
776 
777 	ice_reuse_rx_buf_zc(rx_ring, rx_buf);
778 
779 	return skb;
780 }
781 
782 /**
783  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
784  * @rx_ring: Rx ring
785  * @xdp: xdp_buff used as input to the XDP program
786  *
787  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
788  */
789 static int
790 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
791 {
792 	int err, result = ICE_XDP_PASS;
793 	struct bpf_prog *xdp_prog;
794 	struct ice_ring *xdp_ring;
795 	u32 act;
796 
797 	rcu_read_lock();
798 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
799 	if (!xdp_prog) {
800 		rcu_read_unlock();
801 		return ICE_XDP_PASS;
802 	}
803 
804 	act = bpf_prog_run_xdp(xdp_prog, xdp);
805 	xdp->handle += xdp->data - xdp->data_hard_start;
806 	switch (act) {
807 	case XDP_PASS:
808 		break;
809 	case XDP_TX:
810 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
811 		result = ice_xmit_xdp_buff(xdp, xdp_ring);
812 		break;
813 	case XDP_REDIRECT:
814 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
815 		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
816 		break;
817 	default:
818 		bpf_warn_invalid_xdp_action(act);
819 		fallthrough;
820 	case XDP_ABORTED:
821 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
822 		fallthrough;
823 	case XDP_DROP:
824 		result = ICE_XDP_CONSUMED;
825 		break;
826 	}
827 
828 	rcu_read_unlock();
829 	return result;
830 }
831 
832 /**
833  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
834  * @rx_ring: AF_XDP Rx ring
835  * @budget: NAPI budget
836  *
837  * Returns number of processed packets on success, remaining budget on failure.
838  */
839 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
840 {
841 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
842 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
843 	unsigned int xdp_xmit = 0;
844 	bool failure = false;
845 	struct xdp_buff xdp;
846 
847 	xdp.rxq = &rx_ring->xdp_rxq;
848 
849 	while (likely(total_rx_packets < (unsigned int)budget)) {
850 		union ice_32b_rx_flex_desc *rx_desc;
851 		unsigned int size, xdp_res = 0;
852 		struct ice_rx_buf *rx_buf;
853 		struct sk_buff *skb;
854 		u16 stat_err_bits;
855 		u16 vlan_tag = 0;
856 		u8 rx_ptype;
857 
858 		if (cleaned_count >= ICE_RX_BUF_WRITE) {
859 			failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
860 							     cleaned_count);
861 			cleaned_count = 0;
862 		}
863 
864 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
865 
866 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
867 		if (!ice_test_staterr(rx_desc, stat_err_bits))
868 			break;
869 
870 		/* This memory barrier is needed to keep us from reading
871 		 * any other fields out of the rx_desc until we have
872 		 * verified the descriptor has been written back.
873 		 */
874 		dma_rmb();
875 
876 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
877 				   ICE_RX_FLX_DESC_PKT_LEN_M;
878 		if (!size)
879 			break;
880 
881 		rx_buf = ice_get_rx_buf_zc(rx_ring, size);
882 		if (!rx_buf->addr)
883 			break;
884 
885 		xdp.data = rx_buf->addr;
886 		xdp.data_meta = xdp.data;
887 		xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
888 		xdp.data_end = xdp.data + size;
889 		xdp.handle = rx_buf->handle;
890 
891 		xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
892 		if (xdp_res) {
893 			if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
894 				xdp_xmit |= xdp_res;
895 				rx_buf->addr = NULL;
896 			} else {
897 				ice_reuse_rx_buf_zc(rx_ring, rx_buf);
898 			}
899 
900 			total_rx_bytes += size;
901 			total_rx_packets++;
902 			cleaned_count++;
903 
904 			ice_bump_ntc(rx_ring);
905 			continue;
906 		}
907 
908 		/* XDP_PASS path */
909 		skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
910 		if (!skb) {
911 			rx_ring->rx_stats.alloc_buf_failed++;
912 			break;
913 		}
914 
915 		cleaned_count++;
916 		ice_bump_ntc(rx_ring);
917 
918 		if (eth_skb_pad(skb)) {
919 			skb = NULL;
920 			continue;
921 		}
922 
923 		total_rx_bytes += skb->len;
924 		total_rx_packets++;
925 
926 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
927 		if (ice_test_staterr(rx_desc, stat_err_bits))
928 			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
929 
930 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
931 				       ICE_RX_FLEX_DESC_PTYPE_M;
932 
933 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
934 		ice_receive_skb(rx_ring, skb, vlan_tag);
935 	}
936 
937 	ice_finalize_xdp_rx(rx_ring, xdp_xmit);
938 	ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
939 
940 	if (xsk_umem_uses_need_wakeup(rx_ring->xsk_umem)) {
941 		if (failure || rx_ring->next_to_clean == rx_ring->next_to_use)
942 			xsk_set_rx_need_wakeup(rx_ring->xsk_umem);
943 		else
944 			xsk_clear_rx_need_wakeup(rx_ring->xsk_umem);
945 
946 		return (int)total_rx_packets;
947 	}
948 
949 	return failure ? budget : (int)total_rx_packets;
950 }
951 
952 /**
953  * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
954  * @xdp_ring: XDP Tx ring
955  * @budget: max number of frames to xmit
956  *
957  * Returns true if cleanup/transmission is done.
958  */
959 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
960 {
961 	struct ice_tx_desc *tx_desc = NULL;
962 	bool work_done = true;
963 	struct xdp_desc desc;
964 	dma_addr_t dma;
965 
966 	while (likely(budget-- > 0)) {
967 		struct ice_tx_buf *tx_buf;
968 
969 		if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
970 			xdp_ring->tx_stats.tx_busy++;
971 			work_done = false;
972 			break;
973 		}
974 
975 		tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
976 
977 		if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
978 			break;
979 
980 		dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
981 
982 		dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
983 					   DMA_BIDIRECTIONAL);
984 
985 		tx_buf->bytecount = desc.len;
986 
987 		tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
988 		tx_desc->buf_addr = cpu_to_le64(dma);
989 		tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
990 							  0, desc.len, 0);
991 
992 		xdp_ring->next_to_use++;
993 		if (xdp_ring->next_to_use == xdp_ring->count)
994 			xdp_ring->next_to_use = 0;
995 	}
996 
997 	if (tx_desc) {
998 		ice_xdp_ring_update_tail(xdp_ring);
999 		xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
1000 		if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem))
1001 			xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem);
1002 	}
1003 
1004 	return budget > 0 && work_done;
1005 }
1006 
1007 /**
1008  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
1009  * @xdp_ring: XDP Tx ring
1010  * @tx_buf: Tx buffer to clean
1011  */
1012 static void
1013 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
1014 {
1015 	xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
1016 	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
1017 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
1018 	dma_unmap_len_set(tx_buf, len, 0);
1019 }
1020 
1021 /**
1022  * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
1023  * @xdp_ring: XDP Tx ring
1024  * @budget: NAPI budget
1025  *
1026  * Returns true if cleanup/tranmission is done.
1027  */
1028 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
1029 {
1030 	int total_packets = 0, total_bytes = 0;
1031 	s16 ntc = xdp_ring->next_to_clean;
1032 	struct ice_tx_desc *tx_desc;
1033 	struct ice_tx_buf *tx_buf;
1034 	u32 xsk_frames = 0;
1035 	bool xmit_done;
1036 
1037 	tx_desc = ICE_TX_DESC(xdp_ring, ntc);
1038 	tx_buf = &xdp_ring->tx_buf[ntc];
1039 	ntc -= xdp_ring->count;
1040 
1041 	do {
1042 		if (!(tx_desc->cmd_type_offset_bsz &
1043 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
1044 			break;
1045 
1046 		total_bytes += tx_buf->bytecount;
1047 		total_packets++;
1048 
1049 		if (tx_buf->raw_buf) {
1050 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1051 			tx_buf->raw_buf = NULL;
1052 		} else {
1053 			xsk_frames++;
1054 		}
1055 
1056 		tx_desc->cmd_type_offset_bsz = 0;
1057 		tx_buf++;
1058 		tx_desc++;
1059 		ntc++;
1060 
1061 		if (unlikely(!ntc)) {
1062 			ntc -= xdp_ring->count;
1063 			tx_buf = xdp_ring->tx_buf;
1064 			tx_desc = ICE_TX_DESC(xdp_ring, 0);
1065 		}
1066 
1067 		prefetch(tx_desc);
1068 
1069 	} while (likely(--budget));
1070 
1071 	ntc += xdp_ring->count;
1072 	xdp_ring->next_to_clean = ntc;
1073 
1074 	if (xsk_frames)
1075 		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1076 
1077 	if (xsk_umem_uses_need_wakeup(xdp_ring->xsk_umem)) {
1078 		if (xdp_ring->next_to_clean == xdp_ring->next_to_use)
1079 			xsk_set_tx_need_wakeup(xdp_ring->xsk_umem);
1080 		else
1081 			xsk_clear_tx_need_wakeup(xdp_ring->xsk_umem);
1082 	}
1083 
1084 	ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
1085 	xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
1086 
1087 	return budget > 0 && xmit_done;
1088 }
1089 
1090 /**
1091  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1092  * @netdev: net_device
1093  * @queue_id: queue to wake up
1094  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1095  *
1096  * Returns negative on error, zero otherwise.
1097  */
1098 int
1099 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1100 	       u32 __always_unused flags)
1101 {
1102 	struct ice_netdev_priv *np = netdev_priv(netdev);
1103 	struct ice_q_vector *q_vector;
1104 	struct ice_vsi *vsi = np->vsi;
1105 	struct ice_ring *ring;
1106 
1107 	if (test_bit(__ICE_DOWN, vsi->state))
1108 		return -ENETDOWN;
1109 
1110 	if (!ice_is_xdp_ena_vsi(vsi))
1111 		return -ENXIO;
1112 
1113 	if (queue_id >= vsi->num_txq)
1114 		return -ENXIO;
1115 
1116 	if (!vsi->xdp_rings[queue_id]->xsk_umem)
1117 		return -ENXIO;
1118 
1119 	ring = vsi->xdp_rings[queue_id];
1120 
1121 	/* The idea here is that if NAPI is running, mark a miss, so
1122 	 * it will run again. If not, trigger an interrupt and
1123 	 * schedule the NAPI from interrupt context. If NAPI would be
1124 	 * scheduled here, the interrupt affinity would not be
1125 	 * honored.
1126 	 */
1127 	q_vector = ring->q_vector;
1128 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1129 		ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1130 
1131 	return 0;
1132 }
1133 
1134 /**
1135  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
1136  * @vsi: VSI to be checked
1137  *
1138  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
1139  */
1140 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1141 {
1142 	int i;
1143 
1144 	if (!vsi->xsk_umems)
1145 		return false;
1146 
1147 	for (i = 0; i < vsi->num_xsk_umems; i++) {
1148 		if (vsi->xsk_umems[i])
1149 			return true;
1150 	}
1151 
1152 	return false;
1153 }
1154 
1155 /**
1156  * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
1157  * @rx_ring: ring to be cleaned
1158  */
1159 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
1160 {
1161 	u16 i;
1162 
1163 	for (i = 0; i < rx_ring->count; i++) {
1164 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
1165 
1166 		if (!rx_buf->addr)
1167 			continue;
1168 
1169 		xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
1170 		rx_buf->addr = NULL;
1171 	}
1172 }
1173 
1174 /**
1175  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
1176  * @xdp_ring: XDP_Tx ring
1177  */
1178 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
1179 {
1180 	u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1181 	u32 xsk_frames = 0;
1182 
1183 	while (ntc != ntu) {
1184 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1185 
1186 		if (tx_buf->raw_buf)
1187 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1188 		else
1189 			xsk_frames++;
1190 
1191 		tx_buf->raw_buf = NULL;
1192 
1193 		ntc++;
1194 		if (ntc >= xdp_ring->count)
1195 			ntc = 0;
1196 	}
1197 
1198 	if (xsk_frames)
1199 		xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1200 }
1201