1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include <linux/bpf_trace.h> 5 #include <net/xdp_sock_drv.h> 6 #include <net/xdp.h> 7 #include "ice.h" 8 #include "ice_base.h" 9 #include "ice_type.h" 10 #include "ice_xsk.h" 11 #include "ice_txrx.h" 12 #include "ice_txrx_lib.h" 13 #include "ice_lib.h" 14 15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx) 16 { 17 return &rx_ring->xdp_buf[idx]; 18 } 19 20 /** 21 * ice_qp_reset_stats - Resets all stats for rings of given index 22 * @vsi: VSI that contains rings of interest 23 * @q_idx: ring index in array 24 */ 25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx) 26 { 27 struct ice_vsi_stats *vsi_stat; 28 struct ice_pf *pf; 29 30 pf = vsi->back; 31 if (!pf->vsi_stats) 32 return; 33 34 vsi_stat = pf->vsi_stats[vsi->idx]; 35 if (!vsi_stat) 36 return; 37 38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0, 39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats)); 40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0, 41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats)); 42 if (ice_is_xdp_ena_vsi(vsi)) 43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0, 44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats)); 45 } 46 47 /** 48 * ice_qp_clean_rings - Cleans all the rings of a given index 49 * @vsi: VSI that contains rings of interest 50 * @q_idx: ring index in array 51 */ 52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx) 53 { 54 ice_clean_tx_ring(vsi->tx_rings[q_idx]); 55 if (ice_is_xdp_ena_vsi(vsi)) 56 ice_clean_tx_ring(vsi->xdp_rings[q_idx]); 57 ice_clean_rx_ring(vsi->rx_rings[q_idx]); 58 } 59 60 /** 61 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector 62 * @vsi: VSI that has netdev 63 * @q_vector: q_vector that has NAPI context 64 * @enable: true for enable, false for disable 65 */ 66 static void 67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector, 68 bool enable) 69 { 70 if (!vsi->netdev || !q_vector) 71 return; 72 73 if (enable) 74 napi_enable(&q_vector->napi); 75 else 76 napi_disable(&q_vector->napi); 77 } 78 79 /** 80 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring 81 * @vsi: the VSI that contains queue vector being un-configured 82 * @rx_ring: Rx ring that will have its IRQ disabled 83 * @q_vector: queue vector 84 */ 85 static void 86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring, 87 struct ice_q_vector *q_vector) 88 { 89 struct ice_pf *pf = vsi->back; 90 struct ice_hw *hw = &pf->hw; 91 u16 reg; 92 u32 val; 93 94 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle 95 * here only QINT_RQCTL 96 */ 97 reg = rx_ring->reg_idx; 98 val = rd32(hw, QINT_RQCTL(reg)); 99 val &= ~QINT_RQCTL_CAUSE_ENA_M; 100 wr32(hw, QINT_RQCTL(reg), val); 101 102 if (q_vector) { 103 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0); 104 ice_flush(hw); 105 synchronize_irq(q_vector->irq.virq); 106 } 107 } 108 109 /** 110 * ice_qvec_cfg_msix - Enable IRQ for given queue vector 111 * @vsi: the VSI that contains queue vector 112 * @q_vector: queue vector 113 */ 114 static void 115 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 116 { 117 u16 reg_idx = q_vector->reg_idx; 118 struct ice_pf *pf = vsi->back; 119 struct ice_hw *hw = &pf->hw; 120 struct ice_tx_ring *tx_ring; 121 struct ice_rx_ring *rx_ring; 122 123 ice_cfg_itr(hw, q_vector); 124 125 ice_for_each_tx_ring(tx_ring, q_vector->tx) 126 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx, 127 q_vector->tx.itr_idx); 128 129 ice_for_each_rx_ring(rx_ring, q_vector->rx) 130 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx, 131 q_vector->rx.itr_idx); 132 133 ice_flush(hw); 134 } 135 136 /** 137 * ice_qvec_ena_irq - Enable IRQ for given queue vector 138 * @vsi: the VSI that contains queue vector 139 * @q_vector: queue vector 140 */ 141 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector) 142 { 143 struct ice_pf *pf = vsi->back; 144 struct ice_hw *hw = &pf->hw; 145 146 ice_irq_dynamic_ena(hw, vsi, q_vector); 147 148 ice_flush(hw); 149 } 150 151 /** 152 * ice_qp_dis - Disables a queue pair 153 * @vsi: VSI of interest 154 * @q_idx: ring index in array 155 * 156 * Returns 0 on success, negative on failure. 157 */ 158 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx) 159 { 160 struct ice_txq_meta txq_meta = { }; 161 struct ice_q_vector *q_vector; 162 struct ice_tx_ring *tx_ring; 163 struct ice_rx_ring *rx_ring; 164 int timeout = 50; 165 int err; 166 167 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 168 return -EINVAL; 169 170 tx_ring = vsi->tx_rings[q_idx]; 171 rx_ring = vsi->rx_rings[q_idx]; 172 q_vector = rx_ring->q_vector; 173 174 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) { 175 timeout--; 176 if (!timeout) 177 return -EBUSY; 178 usleep_range(1000, 2000); 179 } 180 181 synchronize_net(); 182 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 183 184 ice_qvec_dis_irq(vsi, rx_ring, q_vector); 185 ice_qvec_toggle_napi(vsi, q_vector, false); 186 187 ice_fill_txq_meta(vsi, tx_ring, &txq_meta); 188 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta); 189 if (err) 190 return err; 191 if (ice_is_xdp_ena_vsi(vsi)) { 192 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 193 194 memset(&txq_meta, 0, sizeof(txq_meta)); 195 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta); 196 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring, 197 &txq_meta); 198 if (err) 199 return err; 200 } 201 202 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false); 203 ice_qp_clean_rings(vsi, q_idx); 204 ice_qp_reset_stats(vsi, q_idx); 205 206 return 0; 207 } 208 209 /** 210 * ice_qp_ena - Enables a queue pair 211 * @vsi: VSI of interest 212 * @q_idx: ring index in array 213 * 214 * Returns 0 on success, negative on failure. 215 */ 216 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx) 217 { 218 struct ice_aqc_add_tx_qgrp *qg_buf; 219 struct ice_q_vector *q_vector; 220 struct ice_tx_ring *tx_ring; 221 struct ice_rx_ring *rx_ring; 222 u16 size; 223 int err; 224 225 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq) 226 return -EINVAL; 227 228 size = struct_size(qg_buf, txqs, 1); 229 qg_buf = kzalloc(size, GFP_KERNEL); 230 if (!qg_buf) 231 return -ENOMEM; 232 233 qg_buf->num_txqs = 1; 234 235 tx_ring = vsi->tx_rings[q_idx]; 236 rx_ring = vsi->rx_rings[q_idx]; 237 q_vector = rx_ring->q_vector; 238 239 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf); 240 if (err) 241 goto free_buf; 242 243 if (ice_is_xdp_ena_vsi(vsi)) { 244 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx]; 245 246 memset(qg_buf, 0, size); 247 qg_buf->num_txqs = 1; 248 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf); 249 if (err) 250 goto free_buf; 251 ice_set_ring_xdp(xdp_ring); 252 ice_tx_xsk_pool(vsi, q_idx); 253 } 254 255 err = ice_vsi_cfg_rxq(rx_ring); 256 if (err) 257 goto free_buf; 258 259 ice_qvec_cfg_msix(vsi, q_vector); 260 261 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true); 262 if (err) 263 goto free_buf; 264 265 ice_qvec_toggle_napi(vsi, q_vector, true); 266 ice_qvec_ena_irq(vsi, q_vector); 267 268 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx)); 269 clear_bit(ICE_CFG_BUSY, vsi->state); 270 free_buf: 271 kfree(qg_buf); 272 return err; 273 } 274 275 /** 276 * ice_xsk_pool_disable - disable a buffer pool region 277 * @vsi: Current VSI 278 * @qid: queue ID 279 * 280 * Returns 0 on success, negative on failure 281 */ 282 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid) 283 { 284 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid); 285 286 if (!pool) 287 return -EINVAL; 288 289 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR); 290 291 return 0; 292 } 293 294 /** 295 * ice_xsk_pool_enable - enable a buffer pool region 296 * @vsi: Current VSI 297 * @pool: pointer to a requested buffer pool region 298 * @qid: queue ID 299 * 300 * Returns 0 on success, negative on failure 301 */ 302 static int 303 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 304 { 305 int err; 306 307 if (vsi->type != ICE_VSI_PF) 308 return -EINVAL; 309 310 if (qid >= vsi->netdev->real_num_rx_queues || 311 qid >= vsi->netdev->real_num_tx_queues) 312 return -EINVAL; 313 314 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back), 315 ICE_RX_DMA_ATTR); 316 if (err) 317 return err; 318 319 return 0; 320 } 321 322 /** 323 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer 324 * @rx_ring: Rx ring 325 * @pool_present: is pool for XSK present 326 * 327 * Try allocating memory and return ENOMEM, if failed to allocate. 328 * If allocation was successful, substitute buffer with allocated one. 329 * Returns 0 on success, negative on failure 330 */ 331 static int 332 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present) 333 { 334 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) : 335 sizeof(*rx_ring->rx_buf); 336 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL); 337 338 if (!sw_ring) 339 return -ENOMEM; 340 341 if (pool_present) { 342 kfree(rx_ring->rx_buf); 343 rx_ring->rx_buf = NULL; 344 rx_ring->xdp_buf = sw_ring; 345 } else { 346 kfree(rx_ring->xdp_buf); 347 rx_ring->xdp_buf = NULL; 348 rx_ring->rx_buf = sw_ring; 349 } 350 351 return 0; 352 } 353 354 /** 355 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs 356 * @vsi: Current VSI 357 * @zc: is zero copy set 358 * 359 * Reallocate buffer for rx_rings that might be used by XSK. 360 * XDP requires more memory, than rx_buf provides. 361 * Returns 0 on success, negative on failure 362 */ 363 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc) 364 { 365 struct ice_rx_ring *rx_ring; 366 uint i; 367 368 ice_for_each_rxq(vsi, i) { 369 rx_ring = vsi->rx_rings[i]; 370 if (!rx_ring->xsk_pool) 371 continue; 372 373 if (ice_realloc_rx_xdp_bufs(rx_ring, zc)) 374 return -ENOMEM; 375 } 376 377 return 0; 378 } 379 380 /** 381 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state 382 * @vsi: Current VSI 383 * @pool: buffer pool to enable/associate to a ring, NULL to disable 384 * @qid: queue ID 385 * 386 * Returns 0 on success, negative on failure 387 */ 388 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid) 389 { 390 bool if_running, pool_present = !!pool; 391 int ret = 0, pool_failure = 0; 392 393 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) { 394 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n"); 395 pool_failure = -EINVAL; 396 goto failure; 397 } 398 399 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) && 400 ice_is_xdp_ena_vsi(vsi); 401 402 if (if_running) { 403 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid]; 404 405 ret = ice_qp_dis(vsi, qid); 406 if (ret) { 407 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret); 408 goto xsk_pool_if_up; 409 } 410 411 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present); 412 if (ret) 413 goto xsk_pool_if_up; 414 } 415 416 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) : 417 ice_xsk_pool_disable(vsi, qid); 418 419 xsk_pool_if_up: 420 if (if_running) { 421 ret = ice_qp_ena(vsi, qid); 422 if (!ret && pool_present) 423 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi); 424 else if (ret) 425 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret); 426 } 427 428 failure: 429 if (pool_failure) { 430 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n", 431 pool_present ? "en" : "dis", pool_failure); 432 return pool_failure; 433 } 434 435 return ret; 436 } 437 438 /** 439 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it 440 * @pool: XSK Buffer pool to pull the buffers from 441 * @xdp: SW ring of xdp_buff that will hold the buffers 442 * @rx_desc: Pointer to Rx descriptors that will be filled 443 * @count: The number of buffers to allocate 444 * 445 * This function allocates a number of Rx buffers from the fill ring 446 * or the internal recycle mechanism and places them on the Rx ring. 447 * 448 * Note that ring wrap should be handled by caller of this function. 449 * 450 * Returns the amount of allocated Rx descriptors 451 */ 452 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp, 453 union ice_32b_rx_flex_desc *rx_desc, u16 count) 454 { 455 dma_addr_t dma; 456 u16 buffs; 457 int i; 458 459 buffs = xsk_buff_alloc_batch(pool, xdp, count); 460 for (i = 0; i < buffs; i++) { 461 dma = xsk_buff_xdp_get_dma(*xdp); 462 rx_desc->read.pkt_addr = cpu_to_le64(dma); 463 rx_desc->wb.status_error0 = 0; 464 465 rx_desc++; 466 xdp++; 467 } 468 469 return buffs; 470 } 471 472 /** 473 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 474 * @rx_ring: Rx ring 475 * @count: The number of buffers to allocate 476 * 477 * Place the @count of descriptors onto Rx ring. Handle the ring wrap 478 * for case where space from next_to_use up to the end of ring is less 479 * than @count. Finally do a tail bump. 480 * 481 * Returns true if all allocations were successful, false if any fail. 482 */ 483 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 484 { 485 u32 nb_buffs_extra = 0, nb_buffs = 0; 486 union ice_32b_rx_flex_desc *rx_desc; 487 u16 ntu = rx_ring->next_to_use; 488 u16 total_count = count; 489 struct xdp_buff **xdp; 490 491 rx_desc = ICE_RX_DESC(rx_ring, ntu); 492 xdp = ice_xdp_buf(rx_ring, ntu); 493 494 if (ntu + count >= rx_ring->count) { 495 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, 496 rx_desc, 497 rx_ring->count - ntu); 498 if (nb_buffs_extra != rx_ring->count - ntu) { 499 ntu += nb_buffs_extra; 500 goto exit; 501 } 502 rx_desc = ICE_RX_DESC(rx_ring, 0); 503 xdp = ice_xdp_buf(rx_ring, 0); 504 ntu = 0; 505 count -= nb_buffs_extra; 506 ice_release_rx_desc(rx_ring, 0); 507 } 508 509 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count); 510 511 ntu += nb_buffs; 512 if (ntu == rx_ring->count) 513 ntu = 0; 514 515 exit: 516 if (rx_ring->next_to_use != ntu) 517 ice_release_rx_desc(rx_ring, ntu); 518 519 return total_count == (nb_buffs_extra + nb_buffs); 520 } 521 522 /** 523 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers 524 * @rx_ring: Rx ring 525 * @count: The number of buffers to allocate 526 * 527 * Wrapper for internal allocation routine; figure out how many tail 528 * bumps should take place based on the given threshold 529 * 530 * Returns true if all calls to internal alloc routine succeeded 531 */ 532 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count) 533 { 534 u16 rx_thresh = ICE_RING_QUARTER(rx_ring); 535 u16 leftover, i, tail_bumps; 536 537 tail_bumps = count / rx_thresh; 538 leftover = count - (tail_bumps * rx_thresh); 539 540 for (i = 0; i < tail_bumps; i++) 541 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh)) 542 return false; 543 return __ice_alloc_rx_bufs_zc(rx_ring, leftover); 544 } 545 546 /** 547 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer 548 * @rx_ring: Rx ring 549 * @xdp: Pointer to XDP buffer 550 * 551 * This function allocates a new skb from a zero-copy Rx buffer. 552 * 553 * Returns the skb on success, NULL on failure. 554 */ 555 static struct sk_buff * 556 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp) 557 { 558 unsigned int totalsize = xdp->data_end - xdp->data_meta; 559 unsigned int metasize = xdp->data - xdp->data_meta; 560 struct skb_shared_info *sinfo = NULL; 561 struct sk_buff *skb; 562 u32 nr_frags = 0; 563 564 if (unlikely(xdp_buff_has_frags(xdp))) { 565 sinfo = xdp_get_shared_info_from_buff(xdp); 566 nr_frags = sinfo->nr_frags; 567 } 568 net_prefetch(xdp->data_meta); 569 570 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize, 571 GFP_ATOMIC | __GFP_NOWARN); 572 if (unlikely(!skb)) 573 return NULL; 574 575 memcpy(__skb_put(skb, totalsize), xdp->data_meta, 576 ALIGN(totalsize, sizeof(long))); 577 578 if (metasize) { 579 skb_metadata_set(skb, metasize); 580 __skb_pull(skb, metasize); 581 } 582 583 if (likely(!xdp_buff_has_frags(xdp))) 584 goto out; 585 586 for (int i = 0; i < nr_frags; i++) { 587 struct skb_shared_info *skinfo = skb_shinfo(skb); 588 skb_frag_t *frag = &sinfo->frags[i]; 589 struct page *page; 590 void *addr; 591 592 page = dev_alloc_page(); 593 if (!page) { 594 dev_kfree_skb(skb); 595 return NULL; 596 } 597 addr = page_to_virt(page); 598 599 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag)); 600 601 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++, 602 addr, 0, skb_frag_size(frag)); 603 } 604 605 out: 606 xsk_buff_free(xdp); 607 return skb; 608 } 609 610 /** 611 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ 612 * @xdp_ring: XDP Tx ring 613 */ 614 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring) 615 { 616 u16 ntc = xdp_ring->next_to_clean; 617 struct ice_tx_desc *tx_desc; 618 u16 cnt = xdp_ring->count; 619 struct ice_tx_buf *tx_buf; 620 u16 completed_frames = 0; 621 u16 xsk_frames = 0; 622 u16 last_rs; 623 int i; 624 625 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1; 626 tx_desc = ICE_TX_DESC(xdp_ring, last_rs); 627 if (tx_desc->cmd_type_offset_bsz & 628 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) { 629 if (last_rs >= ntc) 630 completed_frames = last_rs - ntc + 1; 631 else 632 completed_frames = last_rs + cnt - ntc + 1; 633 } 634 635 if (!completed_frames) 636 return 0; 637 638 if (likely(!xdp_ring->xdp_tx_active)) { 639 xsk_frames = completed_frames; 640 goto skip; 641 } 642 643 ntc = xdp_ring->next_to_clean; 644 for (i = 0; i < completed_frames; i++) { 645 tx_buf = &xdp_ring->tx_buf[ntc]; 646 647 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 648 tx_buf->type = ICE_TX_BUF_EMPTY; 649 xsk_buff_free(tx_buf->xdp); 650 xdp_ring->xdp_tx_active--; 651 } else { 652 xsk_frames++; 653 } 654 655 ntc++; 656 if (ntc >= xdp_ring->count) 657 ntc = 0; 658 } 659 skip: 660 tx_desc->cmd_type_offset_bsz = 0; 661 xdp_ring->next_to_clean += completed_frames; 662 if (xdp_ring->next_to_clean >= cnt) 663 xdp_ring->next_to_clean -= cnt; 664 if (xsk_frames) 665 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 666 667 return completed_frames; 668 } 669 670 /** 671 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX 672 * @xdp: XDP buffer to xmit 673 * @xdp_ring: XDP ring to produce descriptor onto 674 * 675 * note that this function works directly on xdp_buff, no need to convert 676 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning 677 * side will be able to xsk_buff_free() it. 678 * 679 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there 680 * was not enough space on XDP ring 681 */ 682 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp, 683 struct ice_tx_ring *xdp_ring) 684 { 685 struct skb_shared_info *sinfo = NULL; 686 u32 size = xdp->data_end - xdp->data; 687 u32 ntu = xdp_ring->next_to_use; 688 struct ice_tx_desc *tx_desc; 689 struct ice_tx_buf *tx_buf; 690 struct xdp_buff *head; 691 u32 nr_frags = 0; 692 u32 free_space; 693 u32 frag = 0; 694 695 free_space = ICE_DESC_UNUSED(xdp_ring); 696 if (free_space < ICE_RING_QUARTER(xdp_ring)) 697 free_space += ice_clean_xdp_irq_zc(xdp_ring); 698 699 if (unlikely(!free_space)) 700 goto busy; 701 702 if (unlikely(xdp_buff_has_frags(xdp))) { 703 sinfo = xdp_get_shared_info_from_buff(xdp); 704 nr_frags = sinfo->nr_frags; 705 if (free_space < nr_frags + 1) 706 goto busy; 707 } 708 709 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 710 tx_buf = &xdp_ring->tx_buf[ntu]; 711 head = xdp; 712 713 for (;;) { 714 dma_addr_t dma; 715 716 dma = xsk_buff_xdp_get_dma(xdp); 717 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size); 718 719 tx_buf->xdp = xdp; 720 tx_buf->type = ICE_TX_BUF_XSK_TX; 721 tx_desc->buf_addr = cpu_to_le64(dma); 722 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0); 723 /* account for each xdp_buff from xsk_buff_pool */ 724 xdp_ring->xdp_tx_active++; 725 726 if (++ntu == xdp_ring->count) 727 ntu = 0; 728 729 if (frag == nr_frags) 730 break; 731 732 tx_desc = ICE_TX_DESC(xdp_ring, ntu); 733 tx_buf = &xdp_ring->tx_buf[ntu]; 734 735 xdp = xsk_buff_get_frag(head); 736 size = skb_frag_size(&sinfo->frags[frag]); 737 frag++; 738 } 739 740 xdp_ring->next_to_use = ntu; 741 /* update last descriptor from a frame with EOP */ 742 tx_desc->cmd_type_offset_bsz |= 743 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S); 744 745 return ICE_XDP_TX; 746 747 busy: 748 xdp_ring->ring_stats->tx_stats.tx_busy++; 749 750 return ICE_XDP_CONSUMED; 751 } 752 753 /** 754 * ice_run_xdp_zc - Executes an XDP program in zero-copy path 755 * @rx_ring: Rx ring 756 * @xdp: xdp_buff used as input to the XDP program 757 * @xdp_prog: XDP program to run 758 * @xdp_ring: ring to be used for XDP_TX action 759 * 760 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR} 761 */ 762 static int 763 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp, 764 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring) 765 { 766 int err, result = ICE_XDP_PASS; 767 u32 act; 768 769 act = bpf_prog_run_xdp(xdp_prog, xdp); 770 771 if (likely(act == XDP_REDIRECT)) { 772 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); 773 if (!err) 774 return ICE_XDP_REDIR; 775 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS) 776 result = ICE_XDP_EXIT; 777 else 778 result = ICE_XDP_CONSUMED; 779 goto out_failure; 780 } 781 782 switch (act) { 783 case XDP_PASS: 784 break; 785 case XDP_TX: 786 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring); 787 if (result == ICE_XDP_CONSUMED) 788 goto out_failure; 789 break; 790 case XDP_DROP: 791 result = ICE_XDP_CONSUMED; 792 break; 793 default: 794 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 795 fallthrough; 796 case XDP_ABORTED: 797 result = ICE_XDP_CONSUMED; 798 out_failure: 799 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 800 break; 801 } 802 803 return result; 804 } 805 806 static int 807 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first, 808 struct xdp_buff *xdp, const unsigned int size) 809 { 810 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first); 811 812 if (!size) 813 return 0; 814 815 if (!xdp_buff_has_frags(first)) { 816 sinfo->nr_frags = 0; 817 sinfo->xdp_frags_size = 0; 818 xdp_buff_set_frags_flag(first); 819 } 820 821 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) { 822 xsk_buff_free(first); 823 return -ENOMEM; 824 } 825 826 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, 827 virt_to_page(xdp->data_hard_start), 828 XDP_PACKET_HEADROOM, size); 829 sinfo->xdp_frags_size += size; 830 xsk_buff_add_frag(xdp); 831 832 return 0; 833 } 834 835 /** 836 * ice_clean_rx_irq_zc - consumes packets from the hardware ring 837 * @rx_ring: AF_XDP Rx ring 838 * @budget: NAPI budget 839 * 840 * Returns number of processed packets on success, remaining budget on failure. 841 */ 842 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget) 843 { 844 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 845 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool; 846 u32 ntc = rx_ring->next_to_clean; 847 u32 ntu = rx_ring->next_to_use; 848 struct xdp_buff *first = NULL; 849 struct ice_tx_ring *xdp_ring; 850 unsigned int xdp_xmit = 0; 851 struct bpf_prog *xdp_prog; 852 u32 cnt = rx_ring->count; 853 bool failure = false; 854 int entries_to_alloc; 855 856 /* ZC patch is enabled only when XDP program is set, 857 * so here it can not be NULL 858 */ 859 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 860 xdp_ring = rx_ring->xdp_ring; 861 862 if (ntc != rx_ring->first_desc) 863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc); 864 865 while (likely(total_rx_packets < (unsigned int)budget)) { 866 union ice_32b_rx_flex_desc *rx_desc; 867 unsigned int size, xdp_res = 0; 868 struct xdp_buff *xdp; 869 struct sk_buff *skb; 870 u16 stat_err_bits; 871 u16 vlan_tag = 0; 872 u16 rx_ptype; 873 874 rx_desc = ICE_RX_DESC(rx_ring, ntc); 875 876 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); 877 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits)) 878 break; 879 880 /* This memory barrier is needed to keep us from reading 881 * any other fields out of the rx_desc until we have 882 * verified the descriptor has been written back. 883 */ 884 dma_rmb(); 885 886 if (unlikely(ntc == ntu)) 887 break; 888 889 xdp = *ice_xdp_buf(rx_ring, ntc); 890 891 size = le16_to_cpu(rx_desc->wb.pkt_len) & 892 ICE_RX_FLX_DESC_PKT_LEN_M; 893 894 xsk_buff_set_size(xdp, size); 895 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool); 896 897 if (!first) { 898 first = xdp; 899 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) { 900 break; 901 } 902 903 if (++ntc == cnt) 904 ntc = 0; 905 906 if (ice_is_non_eop(rx_ring, rx_desc)) 907 continue; 908 909 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring); 910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) { 911 xdp_xmit |= xdp_res; 912 } else if (xdp_res == ICE_XDP_EXIT) { 913 failure = true; 914 first = NULL; 915 rx_ring->first_desc = ntc; 916 break; 917 } else if (xdp_res == ICE_XDP_CONSUMED) { 918 xsk_buff_free(first); 919 } else if (xdp_res == ICE_XDP_PASS) { 920 goto construct_skb; 921 } 922 923 total_rx_bytes += xdp_get_buff_len(first); 924 total_rx_packets++; 925 926 first = NULL; 927 rx_ring->first_desc = ntc; 928 continue; 929 930 construct_skb: 931 /* XDP_PASS path */ 932 skb = ice_construct_skb_zc(rx_ring, first); 933 if (!skb) { 934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++; 935 break; 936 } 937 938 first = NULL; 939 rx_ring->first_desc = ntc; 940 941 if (eth_skb_pad(skb)) { 942 skb = NULL; 943 continue; 944 } 945 946 total_rx_bytes += skb->len; 947 total_rx_packets++; 948 949 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc); 950 951 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & 952 ICE_RX_FLEX_DESC_PTYPE_M; 953 954 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); 955 ice_receive_skb(rx_ring, skb, vlan_tag); 956 } 957 958 rx_ring->next_to_clean = ntc; 959 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring); 960 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring)) 961 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc); 962 963 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0); 964 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes); 965 966 if (xsk_uses_need_wakeup(xsk_pool)) { 967 /* ntu could have changed when allocating entries above, so 968 * use rx_ring value instead of stack based one 969 */ 970 if (failure || ntc == rx_ring->next_to_use) 971 xsk_set_rx_need_wakeup(xsk_pool); 972 else 973 xsk_clear_rx_need_wakeup(xsk_pool); 974 975 return (int)total_rx_packets; 976 } 977 978 return failure ? budget : (int)total_rx_packets; 979 } 980 981 /** 982 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor 983 * @xdp_ring: XDP ring to produce the HW Tx descriptor on 984 * @desc: AF_XDP descriptor to pull the DMA address and length from 985 * @total_bytes: bytes accumulator that will be used for stats update 986 */ 987 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc, 988 unsigned int *total_bytes) 989 { 990 struct ice_tx_desc *tx_desc; 991 dma_addr_t dma; 992 993 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr); 994 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len); 995 996 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++); 997 tx_desc->buf_addr = cpu_to_le64(dma); 998 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc), 999 0, desc->len, 0); 1000 1001 *total_bytes += desc->len; 1002 } 1003 1004 /** 1005 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors 1006 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1007 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1008 * @total_bytes: bytes accumulator that will be used for stats update 1009 */ 1010 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1011 unsigned int *total_bytes) 1012 { 1013 u16 ntu = xdp_ring->next_to_use; 1014 struct ice_tx_desc *tx_desc; 1015 u32 i; 1016 1017 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) { 1018 dma_addr_t dma; 1019 1020 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr); 1021 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len); 1022 1023 tx_desc = ICE_TX_DESC(xdp_ring, ntu++); 1024 tx_desc->buf_addr = cpu_to_le64(dma); 1025 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]), 1026 0, descs[i].len, 0); 1027 1028 *total_bytes += descs[i].len; 1029 } 1030 1031 xdp_ring->next_to_use = ntu; 1032 } 1033 1034 /** 1035 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring 1036 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1037 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from 1038 * @nb_pkts: count of packets to be send 1039 * @total_bytes: bytes accumulator that will be used for stats update 1040 */ 1041 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs, 1042 u32 nb_pkts, unsigned int *total_bytes) 1043 { 1044 u32 batched, leftover, i; 1045 1046 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH); 1047 leftover = nb_pkts & (PKTS_PER_BATCH - 1); 1048 for (i = 0; i < batched; i += PKTS_PER_BATCH) 1049 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes); 1050 for (; i < batched + leftover; i++) 1051 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes); 1052 } 1053 1054 /** 1055 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring 1056 * @xdp_ring: XDP ring to produce the HW Tx descriptors on 1057 * 1058 * Returns true if there is no more work that needs to be done, false otherwise 1059 */ 1060 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring) 1061 { 1062 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs; 1063 u32 nb_pkts, nb_processed = 0; 1064 unsigned int total_bytes = 0; 1065 int budget; 1066 1067 ice_clean_xdp_irq_zc(xdp_ring); 1068 1069 if (!netif_carrier_ok(xdp_ring->vsi->netdev) || 1070 !netif_running(xdp_ring->vsi->netdev)) 1071 return true; 1072 1073 budget = ICE_DESC_UNUSED(xdp_ring); 1074 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring)); 1075 1076 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget); 1077 if (!nb_pkts) 1078 return true; 1079 1080 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) { 1081 nb_processed = xdp_ring->count - xdp_ring->next_to_use; 1082 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes); 1083 xdp_ring->next_to_use = 0; 1084 } 1085 1086 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed, 1087 &total_bytes); 1088 1089 ice_set_rs_bit(xdp_ring); 1090 ice_xdp_ring_update_tail(xdp_ring); 1091 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes); 1092 1093 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool)) 1094 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool); 1095 1096 return nb_pkts < budget; 1097 } 1098 1099 /** 1100 * ice_xsk_wakeup - Implements ndo_xsk_wakeup 1101 * @netdev: net_device 1102 * @queue_id: queue to wake up 1103 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI 1104 * 1105 * Returns negative on error, zero otherwise. 1106 */ 1107 int 1108 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, 1109 u32 __always_unused flags) 1110 { 1111 struct ice_netdev_priv *np = netdev_priv(netdev); 1112 struct ice_q_vector *q_vector; 1113 struct ice_vsi *vsi = np->vsi; 1114 struct ice_tx_ring *ring; 1115 1116 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev)) 1117 return -ENETDOWN; 1118 1119 if (!ice_is_xdp_ena_vsi(vsi)) 1120 return -EINVAL; 1121 1122 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq) 1123 return -EINVAL; 1124 1125 ring = vsi->rx_rings[queue_id]->xdp_ring; 1126 1127 if (!ring->xsk_pool) 1128 return -EINVAL; 1129 1130 /* The idea here is that if NAPI is running, mark a miss, so 1131 * it will run again. If not, trigger an interrupt and 1132 * schedule the NAPI from interrupt context. If NAPI would be 1133 * scheduled here, the interrupt affinity would not be 1134 * honored. 1135 */ 1136 q_vector = ring->q_vector; 1137 if (!napi_if_scheduled_mark_missed(&q_vector->napi)) 1138 ice_trigger_sw_intr(&vsi->back->hw, q_vector); 1139 1140 return 0; 1141 } 1142 1143 /** 1144 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached 1145 * @vsi: VSI to be checked 1146 * 1147 * Returns true if any of the Rx rings has an AF_XDP buff pool attached 1148 */ 1149 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi) 1150 { 1151 int i; 1152 1153 ice_for_each_rxq(vsi, i) { 1154 if (xsk_get_pool_from_qid(vsi->netdev, i)) 1155 return true; 1156 } 1157 1158 return false; 1159 } 1160 1161 /** 1162 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring 1163 * @rx_ring: ring to be cleaned 1164 */ 1165 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring) 1166 { 1167 u16 ntc = rx_ring->next_to_clean; 1168 u16 ntu = rx_ring->next_to_use; 1169 1170 while (ntc != ntu) { 1171 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc); 1172 1173 xsk_buff_free(xdp); 1174 ntc++; 1175 if (ntc >= rx_ring->count) 1176 ntc = 0; 1177 } 1178 } 1179 1180 /** 1181 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues 1182 * @xdp_ring: XDP_Tx ring 1183 */ 1184 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring) 1185 { 1186 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use; 1187 u32 xsk_frames = 0; 1188 1189 while (ntc != ntu) { 1190 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc]; 1191 1192 if (tx_buf->type == ICE_TX_BUF_XSK_TX) { 1193 tx_buf->type = ICE_TX_BUF_EMPTY; 1194 xsk_buff_free(tx_buf->xdp); 1195 } else { 1196 xsk_frames++; 1197 } 1198 1199 ntc++; 1200 if (ntc >= xdp_ring->count) 1201 ntc = 0; 1202 } 1203 1204 if (xsk_frames) 1205 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames); 1206 } 1207