1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vf_res_msg
364  * @vf: pointer to the VF info
365  * @msg: pointer to the msg buffer
366  *
367  * called from the VF to request its resources
368  */
369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
370 {
371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
372 	struct virtchnl_vf_resource *vfres = NULL;
373 	struct ice_hw *hw = &vf->pf->hw;
374 	struct ice_vsi *vsi;
375 	int len = 0;
376 	int ret;
377 
378 	if (ice_check_vf_init(vf)) {
379 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
380 		goto err;
381 	}
382 
383 	len = sizeof(struct virtchnl_vf_resource);
384 
385 	vfres = kzalloc(len, GFP_KERNEL);
386 	if (!vfres) {
387 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
388 		len = 0;
389 		goto err;
390 	}
391 	if (VF_IS_V11(&vf->vf_ver))
392 		vf->driver_caps = *(u32 *)msg;
393 	else
394 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
395 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
396 				  VIRTCHNL_VF_OFFLOAD_VLAN;
397 
398 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
399 	vsi = ice_get_vf_vsi(vf);
400 	if (!vsi) {
401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
402 		goto err;
403 	}
404 
405 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
406 		/* VLAN offloads based on current device configuration */
407 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
408 	} else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
409 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
410 		 * these two conditions, which amounts to guest VLAN filtering
411 		 * and offloads being based on the inner VLAN or the
412 		 * inner/single VLAN respectively and don't allow VF to
413 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
414 		 */
415 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
416 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
417 		} else if (!ice_is_dvm_ena(hw) &&
418 			   !ice_vf_is_port_vlan_ena(vf)) {
419 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
420 			/* configure backward compatible support for VFs that
421 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
422 			 * configured in SVM, and no port VLAN is configured
423 			 */
424 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
425 		} else if (ice_is_dvm_ena(hw)) {
426 			/* configure software offloaded VLAN support when DVM
427 			 * is enabled, but no port VLAN is enabled
428 			 */
429 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
430 		}
431 	}
432 
433 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
435 	} else {
436 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
437 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
438 		else
439 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
440 	}
441 
442 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
443 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
444 
445 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
446 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
447 
448 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
449 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
450 
451 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
452 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
453 
454 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
455 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
456 
457 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
458 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
459 
460 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
461 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
462 
463 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
464 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
465 
466 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
467 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
468 
469 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
470 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
471 
472 	vfres->num_vsis = 1;
473 	/* Tx and Rx queue are equal for VF */
474 	vfres->num_queue_pairs = vsi->num_txq;
475 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
476 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
477 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
478 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
479 
480 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
481 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
482 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
483 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
484 			vf->hw_lan_addr.addr);
485 
486 	/* match guest capabilities */
487 	vf->driver_caps = vfres->vf_cap_flags;
488 
489 	ice_vc_set_caps_allowlist(vf);
490 	ice_vc_set_working_allowlist(vf);
491 
492 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
493 
494 err:
495 	/* send the response back to the VF */
496 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
497 				    (u8 *)vfres, len);
498 
499 	kfree(vfres);
500 	return ret;
501 }
502 
503 /**
504  * ice_vc_reset_vf_msg
505  * @vf: pointer to the VF info
506  *
507  * called from the VF to reset itself,
508  * unlike other virtchnl messages, PF driver
509  * doesn't send the response back to the VF
510  */
511 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
512 {
513 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
514 		ice_reset_vf(vf, 0);
515 }
516 
517 /**
518  * ice_find_vsi_from_id
519  * @pf: the PF structure to search for the VSI
520  * @id: ID of the VSI it is searching for
521  *
522  * searches for the VSI with the given ID
523  */
524 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
525 {
526 	int i;
527 
528 	ice_for_each_vsi(pf, i)
529 		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
530 			return pf->vsi[i];
531 
532 	return NULL;
533 }
534 
535 /**
536  * ice_vc_isvalid_vsi_id
537  * @vf: pointer to the VF info
538  * @vsi_id: VF relative VSI ID
539  *
540  * check for the valid VSI ID
541  */
542 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
543 {
544 	struct ice_pf *pf = vf->pf;
545 	struct ice_vsi *vsi;
546 
547 	vsi = ice_find_vsi_from_id(pf, vsi_id);
548 
549 	return (vsi && (vsi->vf == vf));
550 }
551 
552 /**
553  * ice_vc_isvalid_q_id
554  * @vf: pointer to the VF info
555  * @vsi_id: VSI ID
556  * @qid: VSI relative queue ID
557  *
558  * check for the valid queue ID
559  */
560 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
561 {
562 	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
563 	/* allocated Tx and Rx queues should be always equal for VF VSI */
564 	return (vsi && (qid < vsi->alloc_txq));
565 }
566 
567 /**
568  * ice_vc_isvalid_ring_len
569  * @ring_len: length of ring
570  *
571  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
572  * or zero
573  */
574 static bool ice_vc_isvalid_ring_len(u16 ring_len)
575 {
576 	return ring_len == 0 ||
577 	       (ring_len >= ICE_MIN_NUM_DESC &&
578 		ring_len <= ICE_MAX_NUM_DESC &&
579 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
580 }
581 
582 /**
583  * ice_vc_validate_pattern
584  * @vf: pointer to the VF info
585  * @proto: virtchnl protocol headers
586  *
587  * validate the pattern is supported or not.
588  *
589  * Return: true on success, false on error.
590  */
591 bool
592 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
593 {
594 	bool is_ipv4 = false;
595 	bool is_ipv6 = false;
596 	bool is_udp = false;
597 	u16 ptype = -1;
598 	int i = 0;
599 
600 	while (i < proto->count &&
601 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
602 		switch (proto->proto_hdr[i].type) {
603 		case VIRTCHNL_PROTO_HDR_ETH:
604 			ptype = ICE_PTYPE_MAC_PAY;
605 			break;
606 		case VIRTCHNL_PROTO_HDR_IPV4:
607 			ptype = ICE_PTYPE_IPV4_PAY;
608 			is_ipv4 = true;
609 			break;
610 		case VIRTCHNL_PROTO_HDR_IPV6:
611 			ptype = ICE_PTYPE_IPV6_PAY;
612 			is_ipv6 = true;
613 			break;
614 		case VIRTCHNL_PROTO_HDR_UDP:
615 			if (is_ipv4)
616 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
617 			else if (is_ipv6)
618 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
619 			is_udp = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_TCP:
622 			if (is_ipv4)
623 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
624 			else if (is_ipv6)
625 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
626 			break;
627 		case VIRTCHNL_PROTO_HDR_SCTP:
628 			if (is_ipv4)
629 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
630 			else if (is_ipv6)
631 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
632 			break;
633 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
634 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
635 			if (is_ipv4)
636 				ptype = ICE_MAC_IPV4_GTPU;
637 			else if (is_ipv6)
638 				ptype = ICE_MAC_IPV6_GTPU;
639 			goto out;
640 		case VIRTCHNL_PROTO_HDR_L2TPV3:
641 			if (is_ipv4)
642 				ptype = ICE_MAC_IPV4_L2TPV3;
643 			else if (is_ipv6)
644 				ptype = ICE_MAC_IPV6_L2TPV3;
645 			goto out;
646 		case VIRTCHNL_PROTO_HDR_ESP:
647 			if (is_ipv4)
648 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
649 						ICE_MAC_IPV4_ESP;
650 			else if (is_ipv6)
651 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
652 						ICE_MAC_IPV6_ESP;
653 			goto out;
654 		case VIRTCHNL_PROTO_HDR_AH:
655 			if (is_ipv4)
656 				ptype = ICE_MAC_IPV4_AH;
657 			else if (is_ipv6)
658 				ptype = ICE_MAC_IPV6_AH;
659 			goto out;
660 		case VIRTCHNL_PROTO_HDR_PFCP:
661 			if (is_ipv4)
662 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
663 			else if (is_ipv6)
664 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
665 			goto out;
666 		default:
667 			break;
668 		}
669 		i++;
670 	}
671 
672 out:
673 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
674 }
675 
676 /**
677  * ice_vc_parse_rss_cfg - parses hash fields and headers from
678  * a specific virtchnl RSS cfg
679  * @hw: pointer to the hardware
680  * @rss_cfg: pointer to the virtchnl RSS cfg
681  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
682  * to configure
683  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
684  *
685  * Return true if all the protocol header and hash fields in the RSS cfg could
686  * be parsed, else return false
687  *
688  * This function parses the virtchnl RSS cfg to be the intended
689  * hash fields and the intended header for RSS configuration
690  */
691 static bool
692 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
693 		     u32 *addl_hdrs, u64 *hash_flds)
694 {
695 	const struct ice_vc_hash_field_match_type *hf_list;
696 	const struct ice_vc_hdr_match_type *hdr_list;
697 	int i, hf_list_len, hdr_list_len;
698 
699 	hf_list = ice_vc_hash_field_list;
700 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
701 	hdr_list = ice_vc_hdr_list;
702 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
703 
704 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
705 		struct virtchnl_proto_hdr *proto_hdr =
706 					&rss_cfg->proto_hdrs.proto_hdr[i];
707 		bool hdr_found = false;
708 		int j;
709 
710 		/* Find matched ice headers according to virtchnl headers. */
711 		for (j = 0; j < hdr_list_len; j++) {
712 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
713 
714 			if (proto_hdr->type == hdr_map.vc_hdr) {
715 				*addl_hdrs |= hdr_map.ice_hdr;
716 				hdr_found = true;
717 			}
718 		}
719 
720 		if (!hdr_found)
721 			return false;
722 
723 		/* Find matched ice hash fields according to
724 		 * virtchnl hash fields.
725 		 */
726 		for (j = 0; j < hf_list_len; j++) {
727 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
728 
729 			if (proto_hdr->type == hf_map.vc_hdr &&
730 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
731 				*hash_flds |= hf_map.ice_hash_field;
732 				break;
733 			}
734 		}
735 	}
736 
737 	return true;
738 }
739 
740 /**
741  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
742  * RSS offloads
743  * @caps: VF driver negotiated capabilities
744  *
745  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
746  * else return false
747  */
748 static bool ice_vf_adv_rss_offload_ena(u32 caps)
749 {
750 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
751 }
752 
753 /**
754  * ice_vc_handle_rss_cfg
755  * @vf: pointer to the VF info
756  * @msg: pointer to the message buffer
757  * @add: add a RSS config if true, otherwise delete a RSS config
758  *
759  * This function adds/deletes a RSS config
760  */
761 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
762 {
763 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
764 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
765 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
766 	struct device *dev = ice_pf_to_dev(vf->pf);
767 	struct ice_hw *hw = &vf->pf->hw;
768 	struct ice_vsi *vsi;
769 
770 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
771 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
772 			vf->vf_id);
773 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
774 		goto error_param;
775 	}
776 
777 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
778 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
779 			vf->vf_id);
780 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
781 		goto error_param;
782 	}
783 
784 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
785 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786 		goto error_param;
787 	}
788 
789 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
790 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
791 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
792 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
793 			vf->vf_id);
794 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795 		goto error_param;
796 	}
797 
798 	vsi = ice_get_vf_vsi(vf);
799 	if (!vsi) {
800 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
801 		goto error_param;
802 	}
803 
804 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
810 		struct ice_vsi_ctx *ctx;
811 		u8 lut_type, hash_type;
812 		int status;
813 
814 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
815 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
816 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
817 
818 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
819 		if (!ctx) {
820 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
821 			goto error_param;
822 		}
823 
824 		ctx->info.q_opt_rss = ((lut_type <<
825 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
826 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
827 				       (hash_type &
828 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
829 
830 		/* Preserve existing queueing option setting */
831 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
832 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
833 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
834 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
835 
836 		ctx->info.valid_sections =
837 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
838 
839 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
840 		if (status) {
841 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
842 				status, ice_aq_str(hw->adminq.sq_last_status));
843 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
844 		} else {
845 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
846 		}
847 
848 		kfree(ctx);
849 	} else {
850 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
851 		u64 hash_flds = ICE_HASH_INVALID;
852 
853 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
854 					  &hash_flds)) {
855 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
856 			goto error_param;
857 		}
858 
859 		if (add) {
860 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
861 					    addl_hdrs)) {
862 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
863 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
864 					vsi->vsi_num, v_ret);
865 			}
866 		} else {
867 			int status;
868 
869 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
870 						 addl_hdrs);
871 			/* We just ignore -ENOENT, because if two configurations
872 			 * share the same profile remove one of them actually
873 			 * removes both, since the profile is deleted.
874 			 */
875 			if (status && status != -ENOENT) {
876 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
877 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
878 					vf->vf_id, status);
879 			}
880 		}
881 	}
882 
883 error_param:
884 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
885 }
886 
887 /**
888  * ice_vc_config_rss_key
889  * @vf: pointer to the VF info
890  * @msg: pointer to the msg buffer
891  *
892  * Configure the VF's RSS key
893  */
894 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
895 {
896 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
897 	struct virtchnl_rss_key *vrk =
898 		(struct virtchnl_rss_key *)msg;
899 	struct ice_vsi *vsi;
900 
901 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
902 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
903 		goto error_param;
904 	}
905 
906 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
907 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
908 		goto error_param;
909 	}
910 
911 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
912 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
913 		goto error_param;
914 	}
915 
916 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
917 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 		goto error_param;
919 	}
920 
921 	vsi = ice_get_vf_vsi(vf);
922 	if (!vsi) {
923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 		goto error_param;
925 	}
926 
927 	if (ice_set_rss_key(vsi, vrk->key))
928 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
929 error_param:
930 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
931 				     NULL, 0);
932 }
933 
934 /**
935  * ice_vc_config_rss_lut
936  * @vf: pointer to the VF info
937  * @msg: pointer to the msg buffer
938  *
939  * Configure the VF's RSS LUT
940  */
941 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
942 {
943 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
944 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
945 	struct ice_vsi *vsi;
946 
947 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
948 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
949 		goto error_param;
950 	}
951 
952 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
953 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
954 		goto error_param;
955 	}
956 
957 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
958 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
959 		goto error_param;
960 	}
961 
962 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 		goto error_param;
965 	}
966 
967 	vsi = ice_get_vf_vsi(vf);
968 	if (!vsi) {
969 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 		goto error_param;
971 	}
972 
973 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
974 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
975 error_param:
976 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
977 				     NULL, 0);
978 }
979 
980 /**
981  * ice_vc_cfg_promiscuous_mode_msg
982  * @vf: pointer to the VF info
983  * @msg: pointer to the msg buffer
984  *
985  * called from the VF to configure VF VSIs promiscuous mode
986  */
987 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
988 {
989 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
990 	bool rm_promisc, alluni = false, allmulti = false;
991 	struct virtchnl_promisc_info *info =
992 	    (struct virtchnl_promisc_info *)msg;
993 	struct ice_vsi_vlan_ops *vlan_ops;
994 	int mcast_err = 0, ucast_err = 0;
995 	struct ice_pf *pf = vf->pf;
996 	struct ice_vsi *vsi;
997 	struct device *dev;
998 	int ret = 0;
999 
1000 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1001 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1002 		goto error_param;
1003 	}
1004 
1005 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1006 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1007 		goto error_param;
1008 	}
1009 
1010 	vsi = ice_get_vf_vsi(vf);
1011 	if (!vsi) {
1012 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013 		goto error_param;
1014 	}
1015 
1016 	dev = ice_pf_to_dev(pf);
1017 	if (!ice_is_vf_trusted(vf)) {
1018 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1019 			vf->vf_id);
1020 		/* Leave v_ret alone, lie to the VF on purpose. */
1021 		goto error_param;
1022 	}
1023 
1024 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1025 		alluni = true;
1026 
1027 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1028 		allmulti = true;
1029 
1030 	rm_promisc = !allmulti && !alluni;
1031 
1032 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1033 	if (rm_promisc)
1034 		ret = vlan_ops->ena_rx_filtering(vsi);
1035 	else
1036 		ret = vlan_ops->dis_rx_filtering(vsi);
1037 	if (ret) {
1038 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1039 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1040 		goto error_param;
1041 	}
1042 
1043 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1044 		bool set_dflt_vsi = alluni || allmulti;
1045 
1046 		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
1047 			/* only attempt to set the default forwarding VSI if
1048 			 * it's not currently set
1049 			 */
1050 			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
1051 		else if (!set_dflt_vsi &&
1052 			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
1053 			/* only attempt to free the default forwarding VSI if we
1054 			 * are the owner
1055 			 */
1056 			ret = ice_clear_dflt_vsi(pf->first_sw);
1057 
1058 		if (ret) {
1059 			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
1060 				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
1061 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1062 			goto error_param;
1063 		}
1064 	} else {
1065 		u8 mcast_m, ucast_m;
1066 
1067 		if (ice_vf_is_port_vlan_ena(vf) ||
1068 		    ice_vsi_has_non_zero_vlans(vsi)) {
1069 			mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
1070 			ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
1071 		} else {
1072 			mcast_m = ICE_MCAST_PROMISC_BITS;
1073 			ucast_m = ICE_UCAST_PROMISC_BITS;
1074 		}
1075 
1076 		if (alluni)
1077 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1078 		else
1079 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1080 
1081 		if (allmulti)
1082 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1083 		else
1084 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1085 
1086 		if (ucast_err || mcast_err)
1087 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1088 	}
1089 
1090 	if (!mcast_err) {
1091 		if (allmulti &&
1092 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1093 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1094 				 vf->vf_id);
1095 		else if (!allmulti &&
1096 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1097 					    vf->vf_states))
1098 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1099 				 vf->vf_id);
1100 	}
1101 
1102 	if (!ucast_err) {
1103 		if (alluni &&
1104 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1105 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1106 				 vf->vf_id);
1107 		else if (!alluni &&
1108 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1109 					    vf->vf_states))
1110 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1111 				 vf->vf_id);
1112 	}
1113 
1114 error_param:
1115 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1116 				     v_ret, NULL, 0);
1117 }
1118 
1119 /**
1120  * ice_vc_get_stats_msg
1121  * @vf: pointer to the VF info
1122  * @msg: pointer to the msg buffer
1123  *
1124  * called from the VF to get VSI stats
1125  */
1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1127 {
1128 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1129 	struct virtchnl_queue_select *vqs =
1130 		(struct virtchnl_queue_select *)msg;
1131 	struct ice_eth_stats stats = { 0 };
1132 	struct ice_vsi *vsi;
1133 
1134 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1135 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 		goto error_param;
1137 	}
1138 
1139 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1140 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1141 		goto error_param;
1142 	}
1143 
1144 	vsi = ice_get_vf_vsi(vf);
1145 	if (!vsi) {
1146 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1147 		goto error_param;
1148 	}
1149 
1150 	ice_update_eth_stats(vsi);
1151 
1152 	stats = vsi->eth_stats;
1153 
1154 error_param:
1155 	/* send the response to the VF */
1156 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1157 				     (u8 *)&stats, sizeof(stats));
1158 }
1159 
1160 /**
1161  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1162  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1163  *
1164  * Return true on successful validation, else false
1165  */
1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1167 {
1168 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1169 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1170 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1171 		return false;
1172 
1173 	return true;
1174 }
1175 
1176 /**
1177  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1178  * @vsi: VSI of the VF to configure
1179  * @q_idx: VF queue index used to determine the queue in the PF's space
1180  */
1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1182 {
1183 	struct ice_hw *hw = &vsi->back->hw;
1184 	u32 pfq = vsi->txq_map[q_idx];
1185 	u32 reg;
1186 
1187 	reg = rd32(hw, QINT_TQCTL(pfq));
1188 
1189 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1190 	 * this is most likely a poll mode VF driver, so don't enable an
1191 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1192 	 */
1193 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1194 		return;
1195 
1196 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1197 }
1198 
1199 /**
1200  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1201  * @vsi: VSI of the VF to configure
1202  * @q_idx: VF queue index used to determine the queue in the PF's space
1203  */
1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1205 {
1206 	struct ice_hw *hw = &vsi->back->hw;
1207 	u32 pfq = vsi->rxq_map[q_idx];
1208 	u32 reg;
1209 
1210 	reg = rd32(hw, QINT_RQCTL(pfq));
1211 
1212 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1213 	 * this is most likely a poll mode VF driver, so don't enable an
1214 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1215 	 */
1216 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1217 		return;
1218 
1219 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1220 }
1221 
1222 /**
1223  * ice_vc_ena_qs_msg
1224  * @vf: pointer to the VF info
1225  * @msg: pointer to the msg buffer
1226  *
1227  * called from the VF to enable all or specific queue(s)
1228  */
1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1230 {
1231 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1232 	struct virtchnl_queue_select *vqs =
1233 	    (struct virtchnl_queue_select *)msg;
1234 	struct ice_vsi *vsi;
1235 	unsigned long q_map;
1236 	u16 vf_q_id;
1237 
1238 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1239 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1240 		goto error_param;
1241 	}
1242 
1243 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1244 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1245 		goto error_param;
1246 	}
1247 
1248 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1249 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1250 		goto error_param;
1251 	}
1252 
1253 	vsi = ice_get_vf_vsi(vf);
1254 	if (!vsi) {
1255 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256 		goto error_param;
1257 	}
1258 
1259 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1260 	 * Tx queue group list was configured and the context bits were
1261 	 * programmed using ice_vsi_cfg_txqs
1262 	 */
1263 	q_map = vqs->rx_queues;
1264 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1265 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1266 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1267 			goto error_param;
1268 		}
1269 
1270 		/* Skip queue if enabled */
1271 		if (test_bit(vf_q_id, vf->rxq_ena))
1272 			continue;
1273 
1274 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1275 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1276 				vf_q_id, vsi->vsi_num);
1277 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1278 			goto error_param;
1279 		}
1280 
1281 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1282 		set_bit(vf_q_id, vf->rxq_ena);
1283 	}
1284 
1285 	q_map = vqs->tx_queues;
1286 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1287 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1288 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289 			goto error_param;
1290 		}
1291 
1292 		/* Skip queue if enabled */
1293 		if (test_bit(vf_q_id, vf->txq_ena))
1294 			continue;
1295 
1296 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1297 		set_bit(vf_q_id, vf->txq_ena);
1298 	}
1299 
1300 	/* Set flag to indicate that queues are enabled */
1301 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1302 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1303 
1304 error_param:
1305 	/* send the response to the VF */
1306 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1307 				     NULL, 0);
1308 }
1309 
1310 /**
1311  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1312  * @vf: VF to disable queue for
1313  * @vsi: VSI for the VF
1314  * @q_id: VF relative (0-based) queue ID
1315  *
1316  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1317  * disabled then clear q_id bit in the enabled queues bitmap and return
1318  * success. Otherwise return error.
1319  */
1320 static int
1321 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1322 {
1323 	struct ice_txq_meta txq_meta = { 0 };
1324 	struct ice_tx_ring *ring;
1325 	int err;
1326 
1327 	if (!test_bit(q_id, vf->txq_ena))
1328 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1329 			q_id, vsi->vsi_num);
1330 
1331 	ring = vsi->tx_rings[q_id];
1332 	if (!ring)
1333 		return -EINVAL;
1334 
1335 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1336 
1337 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1338 	if (err) {
1339 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1340 			q_id, vsi->vsi_num);
1341 		return err;
1342 	}
1343 
1344 	/* Clear enabled queues flag */
1345 	clear_bit(q_id, vf->txq_ena);
1346 
1347 	return 0;
1348 }
1349 
1350 /**
1351  * ice_vc_dis_qs_msg
1352  * @vf: pointer to the VF info
1353  * @msg: pointer to the msg buffer
1354  *
1355  * called from the VF to disable all or specific queue(s)
1356  */
1357 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1358 {
1359 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1360 	struct virtchnl_queue_select *vqs =
1361 	    (struct virtchnl_queue_select *)msg;
1362 	struct ice_vsi *vsi;
1363 	unsigned long q_map;
1364 	u16 vf_q_id;
1365 
1366 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1367 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1368 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1369 		goto error_param;
1370 	}
1371 
1372 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1373 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1374 		goto error_param;
1375 	}
1376 
1377 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1378 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1379 		goto error_param;
1380 	}
1381 
1382 	vsi = ice_get_vf_vsi(vf);
1383 	if (!vsi) {
1384 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1385 		goto error_param;
1386 	}
1387 
1388 	if (vqs->tx_queues) {
1389 		q_map = vqs->tx_queues;
1390 
1391 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1392 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1393 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 				goto error_param;
1395 			}
1396 
1397 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1398 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1399 				goto error_param;
1400 			}
1401 		}
1402 	}
1403 
1404 	q_map = vqs->rx_queues;
1405 	/* speed up Rx queue disable by batching them if possible */
1406 	if (q_map &&
1407 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1408 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1409 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1410 				vsi->vsi_num);
1411 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1412 			goto error_param;
1413 		}
1414 
1415 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1416 	} else if (q_map) {
1417 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1418 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1419 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1420 				goto error_param;
1421 			}
1422 
1423 			/* Skip queue if not enabled */
1424 			if (!test_bit(vf_q_id, vf->rxq_ena))
1425 				continue;
1426 
1427 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1428 						     true)) {
1429 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1430 					vf_q_id, vsi->vsi_num);
1431 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 				goto error_param;
1433 			}
1434 
1435 			/* Clear enabled queues flag */
1436 			clear_bit(vf_q_id, vf->rxq_ena);
1437 		}
1438 	}
1439 
1440 	/* Clear enabled queues flag */
1441 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1442 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1443 
1444 error_param:
1445 	/* send the response to the VF */
1446 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1447 				     NULL, 0);
1448 }
1449 
1450 /**
1451  * ice_cfg_interrupt
1452  * @vf: pointer to the VF info
1453  * @vsi: the VSI being configured
1454  * @vector_id: vector ID
1455  * @map: vector map for mapping vectors to queues
1456  * @q_vector: structure for interrupt vector
1457  * configure the IRQ to queue map
1458  */
1459 static int
1460 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1461 		  struct virtchnl_vector_map *map,
1462 		  struct ice_q_vector *q_vector)
1463 {
1464 	u16 vsi_q_id, vsi_q_id_idx;
1465 	unsigned long qmap;
1466 
1467 	q_vector->num_ring_rx = 0;
1468 	q_vector->num_ring_tx = 0;
1469 
1470 	qmap = map->rxq_map;
1471 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1472 		vsi_q_id = vsi_q_id_idx;
1473 
1474 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1475 			return VIRTCHNL_STATUS_ERR_PARAM;
1476 
1477 		q_vector->num_ring_rx++;
1478 		q_vector->rx.itr_idx = map->rxitr_idx;
1479 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1480 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1481 				      q_vector->rx.itr_idx);
1482 	}
1483 
1484 	qmap = map->txq_map;
1485 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1486 		vsi_q_id = vsi_q_id_idx;
1487 
1488 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1489 			return VIRTCHNL_STATUS_ERR_PARAM;
1490 
1491 		q_vector->num_ring_tx++;
1492 		q_vector->tx.itr_idx = map->txitr_idx;
1493 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1494 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1495 				      q_vector->tx.itr_idx);
1496 	}
1497 
1498 	return VIRTCHNL_STATUS_SUCCESS;
1499 }
1500 
1501 /**
1502  * ice_vc_cfg_irq_map_msg
1503  * @vf: pointer to the VF info
1504  * @msg: pointer to the msg buffer
1505  *
1506  * called from the VF to configure the IRQ to queue map
1507  */
1508 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1509 {
1510 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1511 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1512 	struct virtchnl_irq_map_info *irqmap_info;
1513 	struct virtchnl_vector_map *map;
1514 	struct ice_pf *pf = vf->pf;
1515 	struct ice_vsi *vsi;
1516 	int i;
1517 
1518 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1519 	num_q_vectors_mapped = irqmap_info->num_vectors;
1520 
1521 	/* Check to make sure number of VF vectors mapped is not greater than
1522 	 * number of VF vectors originally allocated, and check that
1523 	 * there is actually at least a single VF queue vector mapped
1524 	 */
1525 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1526 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1527 	    !num_q_vectors_mapped) {
1528 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1529 		goto error_param;
1530 	}
1531 
1532 	vsi = ice_get_vf_vsi(vf);
1533 	if (!vsi) {
1534 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 		goto error_param;
1536 	}
1537 
1538 	for (i = 0; i < num_q_vectors_mapped; i++) {
1539 		struct ice_q_vector *q_vector;
1540 
1541 		map = &irqmap_info->vecmap[i];
1542 
1543 		vector_id = map->vector_id;
1544 		vsi_id = map->vsi_id;
1545 		/* vector_id is always 0-based for each VF, and can never be
1546 		 * larger than or equal to the max allowed interrupts per VF
1547 		 */
1548 		if (!(vector_id < pf->vfs.num_msix_per) ||
1549 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1550 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1551 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1552 			goto error_param;
1553 		}
1554 
1555 		/* No need to map VF miscellaneous or rogue vector */
1556 		if (!vector_id)
1557 			continue;
1558 
1559 		/* Subtract non queue vector from vector_id passed by VF
1560 		 * to get actual number of VSI queue vector array index
1561 		 */
1562 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1563 		if (!q_vector) {
1564 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1565 			goto error_param;
1566 		}
1567 
1568 		/* lookout for the invalid queue index */
1569 		v_ret = (enum virtchnl_status_code)
1570 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1571 		if (v_ret)
1572 			goto error_param;
1573 	}
1574 
1575 error_param:
1576 	/* send the response to the VF */
1577 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1578 				     NULL, 0);
1579 }
1580 
1581 /**
1582  * ice_vc_cfg_qs_msg
1583  * @vf: pointer to the VF info
1584  * @msg: pointer to the msg buffer
1585  *
1586  * called from the VF to configure the Rx/Tx queues
1587  */
1588 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1589 {
1590 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1591 	struct virtchnl_vsi_queue_config_info *qci =
1592 	    (struct virtchnl_vsi_queue_config_info *)msg;
1593 	struct virtchnl_queue_pair_info *qpi;
1594 	struct ice_pf *pf = vf->pf;
1595 	struct ice_vsi *vsi;
1596 	int i, q_idx;
1597 
1598 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1599 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1600 		goto error_param;
1601 	}
1602 
1603 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
1604 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1605 		goto error_param;
1606 	}
1607 
1608 	vsi = ice_get_vf_vsi(vf);
1609 	if (!vsi) {
1610 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1611 		goto error_param;
1612 	}
1613 
1614 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1615 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1616 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1617 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1618 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1619 		goto error_param;
1620 	}
1621 
1622 	for (i = 0; i < qci->num_queue_pairs; i++) {
1623 		qpi = &qci->qpair[i];
1624 		if (qpi->txq.vsi_id != qci->vsi_id ||
1625 		    qpi->rxq.vsi_id != qci->vsi_id ||
1626 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1627 		    qpi->txq.headwb_enabled ||
1628 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1629 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1630 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1631 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1632 			goto error_param;
1633 		}
1634 
1635 		q_idx = qpi->rxq.queue_id;
1636 
1637 		/* make sure selected "q_idx" is in valid range of queues
1638 		 * for selected "vsi"
1639 		 */
1640 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1641 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1642 			goto error_param;
1643 		}
1644 
1645 		/* copy Tx queue info from VF into VSI */
1646 		if (qpi->txq.ring_len > 0) {
1647 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1648 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1649 
1650 			/* Disable any existing queue first */
1651 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) {
1652 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1653 				goto error_param;
1654 			}
1655 
1656 			/* Configure a queue with the requested settings */
1657 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1658 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1659 				goto error_param;
1660 			}
1661 		}
1662 
1663 		/* copy Rx queue info from VF into VSI */
1664 		if (qpi->rxq.ring_len > 0) {
1665 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1666 
1667 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1668 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1669 
1670 			if (qpi->rxq.databuffer_size != 0 &&
1671 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1672 			     qpi->rxq.databuffer_size < 1024)) {
1673 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1674 				goto error_param;
1675 			}
1676 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1677 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1678 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1679 			    qpi->rxq.max_pkt_size < 64) {
1680 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1681 				goto error_param;
1682 			}
1683 
1684 			vsi->max_frame = qpi->rxq.max_pkt_size;
1685 			/* add space for the port VLAN since the VF driver is
1686 			 * not expected to account for it in the MTU
1687 			 * calculation
1688 			 */
1689 			if (ice_vf_is_port_vlan_ena(vf))
1690 				vsi->max_frame += VLAN_HLEN;
1691 
1692 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1693 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1694 				goto error_param;
1695 			}
1696 		}
1697 	}
1698 
1699 error_param:
1700 	/* send the response to the VF */
1701 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
1702 				     NULL, 0);
1703 }
1704 
1705 /**
1706  * ice_can_vf_change_mac
1707  * @vf: pointer to the VF info
1708  *
1709  * Return true if the VF is allowed to change its MAC filters, false otherwise
1710  */
1711 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1712 {
1713 	/* If the VF MAC address has been set administratively (via the
1714 	 * ndo_set_vf_mac command), then deny permission to the VF to
1715 	 * add/delete unicast MAC addresses, unless the VF is trusted
1716 	 */
1717 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1718 		return false;
1719 
1720 	return true;
1721 }
1722 
1723 /**
1724  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1725  * @vc_ether_addr: used to extract the type
1726  */
1727 static u8
1728 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1729 {
1730 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1731 }
1732 
1733 /**
1734  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1735  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1736  */
1737 static bool
1738 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1739 {
1740 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1741 
1742 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1743 }
1744 
1745 /**
1746  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1747  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1748  *
1749  * This function should only be called when the MAC address in
1750  * virtchnl_ether_addr is a valid unicast MAC
1751  */
1752 static bool
1753 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1754 {
1755 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1756 
1757 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1758 }
1759 
1760 /**
1761  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1762  * @vf: VF to update
1763  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1764  */
1765 static void
1766 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1767 {
1768 	u8 *mac_addr = vc_ether_addr->addr;
1769 
1770 	if (!is_valid_ether_addr(mac_addr))
1771 		return;
1772 
1773 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1774 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1775 	 * was correctly specified over VIRTCHNL
1776 	 */
1777 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1778 	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1779 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1780 		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1781 		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1782 	}
1783 
1784 	/* hardware and device MACs are already set, but its possible that the
1785 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1786 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1787 	 * away for the legacy VF driver case as it will be updated in the
1788 	 * delete flow for this case
1789 	 */
1790 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1791 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1792 				mac_addr);
1793 		vf->legacy_last_added_umac.time_modified = jiffies;
1794 	}
1795 }
1796 
1797 /**
1798  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1799  * @vf: pointer to the VF info
1800  * @vsi: pointer to the VF's VSI
1801  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1802  */
1803 static int
1804 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1805 		    struct virtchnl_ether_addr *vc_ether_addr)
1806 {
1807 	struct device *dev = ice_pf_to_dev(vf->pf);
1808 	u8 *mac_addr = vc_ether_addr->addr;
1809 	int ret;
1810 
1811 	/* device MAC already added */
1812 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1813 		return 0;
1814 
1815 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1816 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1817 		return -EPERM;
1818 	}
1819 
1820 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1821 	if (ret == -EEXIST) {
1822 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1823 			vf->vf_id);
1824 		/* don't return since we might need to update
1825 		 * the primary MAC in ice_vfhw_mac_add() below
1826 		 */
1827 	} else if (ret) {
1828 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1829 			mac_addr, vf->vf_id, ret);
1830 		return ret;
1831 	} else {
1832 		vf->num_mac++;
1833 	}
1834 
1835 	ice_vfhw_mac_add(vf, vc_ether_addr);
1836 
1837 	return ret;
1838 }
1839 
1840 /**
1841  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1842  * @last_added_umac: structure used to check expiration
1843  */
1844 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1845 {
1846 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1847 	return time_is_before_jiffies(last_added_umac->time_modified +
1848 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1849 }
1850 
1851 /**
1852  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1853  * @vf: VF to update
1854  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1855  *
1856  * only update cached hardware MAC for legacy VF drivers on delete
1857  * because we cannot guarantee order/type of MAC from the VF driver
1858  */
1859 static void
1860 ice_update_legacy_cached_mac(struct ice_vf *vf,
1861 			     struct virtchnl_ether_addr *vc_ether_addr)
1862 {
1863 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1864 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1865 		return;
1866 
1867 	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1868 	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1869 }
1870 
1871 /**
1872  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1873  * @vf: VF to update
1874  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1875  */
1876 static void
1877 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1878 {
1879 	u8 *mac_addr = vc_ether_addr->addr;
1880 
1881 	if (!is_valid_ether_addr(mac_addr) ||
1882 	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1883 		return;
1884 
1885 	/* allow the device MAC to be repopulated in the add flow and don't
1886 	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1887 	 * to be persistent on VM reboot and across driver unload/load, which
1888 	 * won't work if we clear the hardware MAC here
1889 	 */
1890 	eth_zero_addr(vf->dev_lan_addr.addr);
1891 
1892 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1893 }
1894 
1895 /**
1896  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1897  * @vf: pointer to the VF info
1898  * @vsi: pointer to the VF's VSI
1899  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1900  */
1901 static int
1902 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1903 		    struct virtchnl_ether_addr *vc_ether_addr)
1904 {
1905 	struct device *dev = ice_pf_to_dev(vf->pf);
1906 	u8 *mac_addr = vc_ether_addr->addr;
1907 	int status;
1908 
1909 	if (!ice_can_vf_change_mac(vf) &&
1910 	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1911 		return 0;
1912 
1913 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1914 	if (status == -ENOENT) {
1915 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1916 			vf->vf_id);
1917 		return -ENOENT;
1918 	} else if (status) {
1919 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1920 			mac_addr, vf->vf_id, status);
1921 		return -EIO;
1922 	}
1923 
1924 	ice_vfhw_mac_del(vf, vc_ether_addr);
1925 
1926 	vf->num_mac--;
1927 
1928 	return 0;
1929 }
1930 
1931 /**
1932  * ice_vc_handle_mac_addr_msg
1933  * @vf: pointer to the VF info
1934  * @msg: pointer to the msg buffer
1935  * @set: true if MAC filters are being set, false otherwise
1936  *
1937  * add guest MAC address filter
1938  */
1939 static int
1940 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1941 {
1942 	int (*ice_vc_cfg_mac)
1943 		(struct ice_vf *vf, struct ice_vsi *vsi,
1944 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1945 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1946 	struct virtchnl_ether_addr_list *al =
1947 	    (struct virtchnl_ether_addr_list *)msg;
1948 	struct ice_pf *pf = vf->pf;
1949 	enum virtchnl_ops vc_op;
1950 	struct ice_vsi *vsi;
1951 	int i;
1952 
1953 	if (set) {
1954 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1955 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
1956 	} else {
1957 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1958 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
1959 	}
1960 
1961 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1962 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1964 		goto handle_mac_exit;
1965 	}
1966 
1967 	/* If this VF is not privileged, then we can't add more than a
1968 	 * limited number of addresses. Check to make sure that the
1969 	 * additions do not push us over the limit.
1970 	 */
1971 	if (set && !ice_is_vf_trusted(vf) &&
1972 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
1973 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
1974 			vf->vf_id);
1975 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1976 		goto handle_mac_exit;
1977 	}
1978 
1979 	vsi = ice_get_vf_vsi(vf);
1980 	if (!vsi) {
1981 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1982 		goto handle_mac_exit;
1983 	}
1984 
1985 	for (i = 0; i < al->num_elements; i++) {
1986 		u8 *mac_addr = al->list[i].addr;
1987 		int result;
1988 
1989 		if (is_broadcast_ether_addr(mac_addr) ||
1990 		    is_zero_ether_addr(mac_addr))
1991 			continue;
1992 
1993 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
1994 		if (result == -EEXIST || result == -ENOENT) {
1995 			continue;
1996 		} else if (result) {
1997 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1998 			goto handle_mac_exit;
1999 		}
2000 	}
2001 
2002 handle_mac_exit:
2003 	/* send the response to the VF */
2004 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2005 }
2006 
2007 /**
2008  * ice_vc_add_mac_addr_msg
2009  * @vf: pointer to the VF info
2010  * @msg: pointer to the msg buffer
2011  *
2012  * add guest MAC address filter
2013  */
2014 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2015 {
2016 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2017 }
2018 
2019 /**
2020  * ice_vc_del_mac_addr_msg
2021  * @vf: pointer to the VF info
2022  * @msg: pointer to the msg buffer
2023  *
2024  * remove guest MAC address filter
2025  */
2026 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2027 {
2028 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2029 }
2030 
2031 /**
2032  * ice_vc_request_qs_msg
2033  * @vf: pointer to the VF info
2034  * @msg: pointer to the msg buffer
2035  *
2036  * VFs get a default number of queues but can use this message to request a
2037  * different number. If the request is successful, PF will reset the VF and
2038  * return 0. If unsuccessful, PF will send message informing VF of number of
2039  * available queue pairs via virtchnl message response to VF.
2040  */
2041 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2042 {
2043 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2044 	struct virtchnl_vf_res_request *vfres =
2045 		(struct virtchnl_vf_res_request *)msg;
2046 	u16 req_queues = vfres->num_queue_pairs;
2047 	struct ice_pf *pf = vf->pf;
2048 	u16 max_allowed_vf_queues;
2049 	u16 tx_rx_queue_left;
2050 	struct device *dev;
2051 	u16 cur_queues;
2052 
2053 	dev = ice_pf_to_dev(pf);
2054 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2055 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2056 		goto error_param;
2057 	}
2058 
2059 	cur_queues = vf->num_vf_qs;
2060 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2061 				 ice_get_avail_rxq_count(pf));
2062 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2063 	if (!req_queues) {
2064 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2065 			vf->vf_id);
2066 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2067 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2068 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2069 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2070 	} else if (req_queues > cur_queues &&
2071 		   req_queues - cur_queues > tx_rx_queue_left) {
2072 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2073 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2074 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2075 					       ICE_MAX_RSS_QS_PER_VF);
2076 	} else {
2077 		/* request is successful, then reset VF */
2078 		vf->num_req_qs = req_queues;
2079 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2080 		dev_info(dev, "VF %d granted request of %u queues.\n",
2081 			 vf->vf_id, req_queues);
2082 		return 0;
2083 	}
2084 
2085 error_param:
2086 	/* send the response to the VF */
2087 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2088 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2089 }
2090 
2091 /**
2092  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2093  * @caps: VF driver negotiated capabilities
2094  *
2095  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2096  */
2097 static bool ice_vf_vlan_offload_ena(u32 caps)
2098 {
2099 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2100 }
2101 
2102 /**
2103  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2104  * @vf: VF used to determine if VLAN promiscuous config is allowed
2105  */
2106 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2107 {
2108 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2109 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2110 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2111 		return true;
2112 
2113 	return false;
2114 }
2115 
2116 /**
2117  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2118  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2119  * @vlan: VLAN used to enable VLAN promiscuous
2120  *
2121  * This function should only be called if VLAN promiscuous mode is allowed,
2122  * which can be determined via ice_is_vlan_promisc_allowed().
2123  */
2124 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2125 {
2126 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2127 	int status;
2128 
2129 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2130 					  vlan->vid);
2131 	if (status && status != -EEXIST)
2132 		return status;
2133 
2134 	return 0;
2135 }
2136 
2137 /**
2138  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2139  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2140  * @vlan: VLAN used to disable VLAN promiscuous
2141  *
2142  * This function should only be called if VLAN promiscuous mode is allowed,
2143  * which can be determined via ice_is_vlan_promisc_allowed().
2144  */
2145 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2146 {
2147 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2148 	int status;
2149 
2150 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2151 					    vlan->vid);
2152 	if (status && status != -ENOENT)
2153 		return status;
2154 
2155 	return 0;
2156 }
2157 
2158 /**
2159  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2160  * @vf: VF to check against
2161  * @vsi: VF's VSI
2162  *
2163  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2164  * wants to, so return false.
2165  *
2166  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2167  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2168  */
2169 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2170 {
2171 	if (ice_is_vf_trusted(vf))
2172 		return false;
2173 
2174 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2175 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2176 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2177 }
2178 
2179 /**
2180  * ice_vc_process_vlan_msg
2181  * @vf: pointer to the VF info
2182  * @msg: pointer to the msg buffer
2183  * @add_v: Add VLAN if true, otherwise delete VLAN
2184  *
2185  * Process virtchnl op to add or remove programmed guest VLAN ID
2186  */
2187 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2188 {
2189 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2190 	struct virtchnl_vlan_filter_list *vfl =
2191 	    (struct virtchnl_vlan_filter_list *)msg;
2192 	struct ice_pf *pf = vf->pf;
2193 	bool vlan_promisc = false;
2194 	struct ice_vsi *vsi;
2195 	struct device *dev;
2196 	int status = 0;
2197 	int i;
2198 
2199 	dev = ice_pf_to_dev(pf);
2200 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2201 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2202 		goto error_param;
2203 	}
2204 
2205 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2206 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2207 		goto error_param;
2208 	}
2209 
2210 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2211 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2212 		goto error_param;
2213 	}
2214 
2215 	for (i = 0; i < vfl->num_elements; i++) {
2216 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2217 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2218 			dev_err(dev, "invalid VF VLAN id %d\n",
2219 				vfl->vlan_id[i]);
2220 			goto error_param;
2221 		}
2222 	}
2223 
2224 	vsi = ice_get_vf_vsi(vf);
2225 	if (!vsi) {
2226 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2227 		goto error_param;
2228 	}
2229 
2230 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2231 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2232 			 vf->vf_id);
2233 		/* There is no need to let VF know about being not trusted,
2234 		 * so we can just return success message here
2235 		 */
2236 		goto error_param;
2237 	}
2238 
2239 	/* in DVM a VF can add/delete inner VLAN filters when
2240 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2241 	 */
2242 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2243 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2244 		goto error_param;
2245 	}
2246 
2247 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2248 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2249 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2250 	 */
2251 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2252 		!ice_is_dvm_ena(&pf->hw) &&
2253 		!ice_vf_is_port_vlan_ena(vf);
2254 
2255 	if (add_v) {
2256 		for (i = 0; i < vfl->num_elements; i++) {
2257 			u16 vid = vfl->vlan_id[i];
2258 			struct ice_vlan vlan;
2259 
2260 			if (ice_vf_has_max_vlans(vf, vsi)) {
2261 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2262 					 vf->vf_id);
2263 				/* There is no need to let VF know about being
2264 				 * not trusted, so we can just return success
2265 				 * message here as well.
2266 				 */
2267 				goto error_param;
2268 			}
2269 
2270 			/* we add VLAN 0 by default for each VF so we can enable
2271 			 * Tx VLAN anti-spoof without triggering MDD events so
2272 			 * we don't need to add it again here
2273 			 */
2274 			if (!vid)
2275 				continue;
2276 
2277 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2278 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2279 			if (status) {
2280 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2281 				goto error_param;
2282 			}
2283 
2284 			/* Enable VLAN filtering on first non-zero VLAN */
2285 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2286 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2287 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2288 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2289 						vid, status);
2290 					goto error_param;
2291 				}
2292 			} else if (vlan_promisc) {
2293 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2294 				if (status) {
2295 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2296 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2297 						vid, status);
2298 				}
2299 			}
2300 		}
2301 	} else {
2302 		/* In case of non_trusted VF, number of VLAN elements passed
2303 		 * to PF for removal might be greater than number of VLANs
2304 		 * filter programmed for that VF - So, use actual number of
2305 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2306 		 * removing VLAN that doesn't exist, which result to sending
2307 		 * erroneous failed message back to the VF
2308 		 */
2309 		int num_vf_vlan;
2310 
2311 		num_vf_vlan = vsi->num_vlan;
2312 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2313 			u16 vid = vfl->vlan_id[i];
2314 			struct ice_vlan vlan;
2315 
2316 			/* we add VLAN 0 by default for each VF so we can enable
2317 			 * Tx VLAN anti-spoof without triggering MDD events so
2318 			 * we don't want a VIRTCHNL request to remove it
2319 			 */
2320 			if (!vid)
2321 				continue;
2322 
2323 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2324 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2325 			if (status) {
2326 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2327 				goto error_param;
2328 			}
2329 
2330 			/* Disable VLAN filtering when only VLAN 0 is left */
2331 			if (!ice_vsi_has_non_zero_vlans(vsi))
2332 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2333 
2334 			if (vlan_promisc)
2335 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2336 		}
2337 	}
2338 
2339 error_param:
2340 	/* send the response to the VF */
2341 	if (add_v)
2342 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2343 					     NULL, 0);
2344 	else
2345 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2346 					     NULL, 0);
2347 }
2348 
2349 /**
2350  * ice_vc_add_vlan_msg
2351  * @vf: pointer to the VF info
2352  * @msg: pointer to the msg buffer
2353  *
2354  * Add and program guest VLAN ID
2355  */
2356 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2357 {
2358 	return ice_vc_process_vlan_msg(vf, msg, true);
2359 }
2360 
2361 /**
2362  * ice_vc_remove_vlan_msg
2363  * @vf: pointer to the VF info
2364  * @msg: pointer to the msg buffer
2365  *
2366  * remove programmed guest VLAN ID
2367  */
2368 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2369 {
2370 	return ice_vc_process_vlan_msg(vf, msg, false);
2371 }
2372 
2373 /**
2374  * ice_vc_ena_vlan_stripping
2375  * @vf: pointer to the VF info
2376  *
2377  * Enable VLAN header stripping for a given VF
2378  */
2379 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2380 {
2381 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2382 	struct ice_vsi *vsi;
2383 
2384 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2385 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2386 		goto error_param;
2387 	}
2388 
2389 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2390 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2391 		goto error_param;
2392 	}
2393 
2394 	vsi = ice_get_vf_vsi(vf);
2395 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2396 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2397 
2398 error_param:
2399 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2400 				     v_ret, NULL, 0);
2401 }
2402 
2403 /**
2404  * ice_vc_dis_vlan_stripping
2405  * @vf: pointer to the VF info
2406  *
2407  * Disable VLAN header stripping for a given VF
2408  */
2409 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2410 {
2411 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2412 	struct ice_vsi *vsi;
2413 
2414 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2415 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2416 		goto error_param;
2417 	}
2418 
2419 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2420 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2421 		goto error_param;
2422 	}
2423 
2424 	vsi = ice_get_vf_vsi(vf);
2425 	if (!vsi) {
2426 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2427 		goto error_param;
2428 	}
2429 
2430 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2431 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2432 
2433 error_param:
2434 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2435 				     v_ret, NULL, 0);
2436 }
2437 
2438 /**
2439  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2440  * @vf: VF to enable/disable VLAN stripping for on initialization
2441  *
2442  * Set the default for VLAN stripping based on whether a port VLAN is configured
2443  * and the current VLAN mode of the device.
2444  */
2445 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2446 {
2447 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2448 
2449 	if (!vsi)
2450 		return -EINVAL;
2451 
2452 	/* don't modify stripping if port VLAN is configured in SVM since the
2453 	 * port VLAN is based on the inner/single VLAN in SVM
2454 	 */
2455 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2456 		return 0;
2457 
2458 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2459 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2460 	else
2461 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2462 }
2463 
2464 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2465 {
2466 	if (vf->trusted)
2467 		return VLAN_N_VID;
2468 	else
2469 		return ICE_MAX_VLAN_PER_VF;
2470 }
2471 
2472 /**
2473  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2474  * @vf: VF that being checked for
2475  *
2476  * When the device is in double VLAN mode, check whether or not the outer VLAN
2477  * is allowed.
2478  */
2479 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2480 {
2481 	if (ice_vf_is_port_vlan_ena(vf))
2482 		return true;
2483 
2484 	return false;
2485 }
2486 
2487 /**
2488  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2489  * @vf: VF that capabilities are being set for
2490  * @caps: VLAN capabilities to populate
2491  *
2492  * Determine VLAN capabilities support based on whether a port VLAN is
2493  * configured. If a port VLAN is configured then the VF should use the inner
2494  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2495  * capabilies.
2496  */
2497 static void
2498 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2499 {
2500 	struct virtchnl_vlan_supported_caps *supported_caps;
2501 
2502 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2503 		/* until support for inner VLAN filtering is added when a port
2504 		 * VLAN is configured, only support software offloaded inner
2505 		 * VLANs when a port VLAN is confgured in DVM
2506 		 */
2507 		supported_caps = &caps->filtering.filtering_support;
2508 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2509 
2510 		supported_caps = &caps->offloads.stripping_support;
2511 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2512 					VIRTCHNL_VLAN_TOGGLE |
2513 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2514 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2515 
2516 		supported_caps = &caps->offloads.insertion_support;
2517 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2518 					VIRTCHNL_VLAN_TOGGLE |
2519 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2520 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2521 
2522 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2523 		caps->offloads.ethertype_match =
2524 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2525 	} else {
2526 		supported_caps = &caps->filtering.filtering_support;
2527 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2528 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2529 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2530 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2531 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2532 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2533 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2534 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2535 
2536 		supported_caps = &caps->offloads.stripping_support;
2537 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2538 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2539 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2540 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2541 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2542 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2543 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2544 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2545 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2546 
2547 		supported_caps = &caps->offloads.insertion_support;
2548 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2549 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2550 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2551 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2552 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2553 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2554 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2555 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2556 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2557 
2558 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2559 
2560 		caps->offloads.ethertype_match =
2561 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2562 	}
2563 
2564 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2565 }
2566 
2567 /**
2568  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2569  * @vf: VF that capabilities are being set for
2570  * @caps: VLAN capabilities to populate
2571  *
2572  * Determine VLAN capabilities support based on whether a port VLAN is
2573  * configured. If a port VLAN is configured then the VF does not have any VLAN
2574  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2575  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2576  * VLAN fitlering and offload capabilities.
2577  */
2578 static void
2579 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2580 {
2581 	struct virtchnl_vlan_supported_caps *supported_caps;
2582 
2583 	if (ice_vf_is_port_vlan_ena(vf)) {
2584 		supported_caps = &caps->filtering.filtering_support;
2585 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2586 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2587 
2588 		supported_caps = &caps->offloads.stripping_support;
2589 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2590 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2591 
2592 		supported_caps = &caps->offloads.insertion_support;
2593 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2594 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2595 
2596 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2597 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2598 		caps->filtering.max_filters = 0;
2599 	} else {
2600 		supported_caps = &caps->filtering.filtering_support;
2601 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2602 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2603 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2604 
2605 		supported_caps = &caps->offloads.stripping_support;
2606 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2607 					VIRTCHNL_VLAN_TOGGLE |
2608 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2609 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2610 
2611 		supported_caps = &caps->offloads.insertion_support;
2612 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2613 					VIRTCHNL_VLAN_TOGGLE |
2614 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2615 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2616 
2617 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2618 		caps->offloads.ethertype_match =
2619 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2620 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2621 	}
2622 }
2623 
2624 /**
2625  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2626  * @vf: VF to determine VLAN capabilities for
2627  *
2628  * This will only be called if the VF and PF successfully negotiated
2629  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2630  *
2631  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2632  * is configured or not.
2633  */
2634 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2635 {
2636 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2637 	struct virtchnl_vlan_caps *caps = NULL;
2638 	int err, len = 0;
2639 
2640 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2641 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2642 		goto out;
2643 	}
2644 
2645 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2646 	if (!caps) {
2647 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2648 		goto out;
2649 	}
2650 	len = sizeof(*caps);
2651 
2652 	if (ice_is_dvm_ena(&vf->pf->hw))
2653 		ice_vc_set_dvm_caps(vf, caps);
2654 	else
2655 		ice_vc_set_svm_caps(vf, caps);
2656 
2657 	/* store negotiated caps to prevent invalid VF messages */
2658 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2659 
2660 out:
2661 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2662 				    v_ret, (u8 *)caps, len);
2663 	kfree(caps);
2664 	return err;
2665 }
2666 
2667 /**
2668  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2669  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2670  * @tpid: VLAN TPID used for validation
2671  *
2672  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2673  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2674  */
2675 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2676 {
2677 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2678 
2679 	switch (tpid) {
2680 	case ETH_P_8021Q:
2681 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2682 		break;
2683 	case ETH_P_8021AD:
2684 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2685 		break;
2686 	case ETH_P_QINQ1:
2687 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2688 		break;
2689 	}
2690 
2691 	if (!(filtering_caps & vlan_ethertype))
2692 		return false;
2693 
2694 	return true;
2695 }
2696 
2697 /**
2698  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2699  * @vc_vlan: virtchnl_vlan to validate
2700  *
2701  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2702  * false. Otherwise return true.
2703  */
2704 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2705 {
2706 	if (!vc_vlan->tci || !vc_vlan->tpid)
2707 		return false;
2708 
2709 	return true;
2710 }
2711 
2712 /**
2713  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2714  * @vfc: negotiated/supported VLAN filtering capabilities
2715  * @vfl: VLAN filter list from VF to validate
2716  *
2717  * Validate all of the filters in the VLAN filter list from the VF. If any of
2718  * the checks fail then return false. Otherwise return true.
2719  */
2720 static bool
2721 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2722 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2723 {
2724 	u16 i;
2725 
2726 	if (!vfl->num_elements)
2727 		return false;
2728 
2729 	for (i = 0; i < vfl->num_elements; i++) {
2730 		struct virtchnl_vlan_supported_caps *filtering_support =
2731 			&vfc->filtering_support;
2732 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2733 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2734 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2735 
2736 		if ((ice_vc_is_valid_vlan(outer) &&
2737 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2738 		    (ice_vc_is_valid_vlan(inner) &&
2739 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2740 			return false;
2741 
2742 		if ((outer->tci_mask &&
2743 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2744 		    (inner->tci_mask &&
2745 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2746 			return false;
2747 
2748 		if (((outer->tci & VLAN_PRIO_MASK) &&
2749 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2750 		    ((inner->tci & VLAN_PRIO_MASK) &&
2751 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2752 			return false;
2753 
2754 		if ((ice_vc_is_valid_vlan(outer) &&
2755 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2756 						outer->tpid)) ||
2757 		    (ice_vc_is_valid_vlan(inner) &&
2758 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2759 						inner->tpid)))
2760 			return false;
2761 	}
2762 
2763 	return true;
2764 }
2765 
2766 /**
2767  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2768  * @vc_vlan: struct virtchnl_vlan to transform
2769  */
2770 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2771 {
2772 	struct ice_vlan vlan = { 0 };
2773 
2774 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2775 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2776 	vlan.tpid = vc_vlan->tpid;
2777 
2778 	return vlan;
2779 }
2780 
2781 /**
2782  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2783  * @vsi: VF's VSI used to perform the action
2784  * @vlan_action: function to perform the action with (i.e. add/del)
2785  * @vlan: VLAN filter to perform the action with
2786  */
2787 static int
2788 ice_vc_vlan_action(struct ice_vsi *vsi,
2789 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2790 		   struct ice_vlan *vlan)
2791 {
2792 	int err;
2793 
2794 	err = vlan_action(vsi, vlan);
2795 	if (err)
2796 		return err;
2797 
2798 	return 0;
2799 }
2800 
2801 /**
2802  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
2803  * @vf: VF used to delete the VLAN(s)
2804  * @vsi: VF's VSI used to delete the VLAN(s)
2805  * @vfl: virthchnl filter list used to delete the filters
2806  */
2807 static int
2808 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2809 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2810 {
2811 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2812 	int err;
2813 	u16 i;
2814 
2815 	for (i = 0; i < vfl->num_elements; i++) {
2816 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2817 		struct virtchnl_vlan *vc_vlan;
2818 
2819 		vc_vlan = &vlan_fltr->outer;
2820 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2821 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2822 
2823 			err = ice_vc_vlan_action(vsi,
2824 						 vsi->outer_vlan_ops.del_vlan,
2825 						 &vlan);
2826 			if (err)
2827 				return err;
2828 
2829 			if (vlan_promisc)
2830 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2831 		}
2832 
2833 		vc_vlan = &vlan_fltr->inner;
2834 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2835 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2836 
2837 			err = ice_vc_vlan_action(vsi,
2838 						 vsi->inner_vlan_ops.del_vlan,
2839 						 &vlan);
2840 			if (err)
2841 				return err;
2842 
2843 			/* no support for VLAN promiscuous on inner VLAN unless
2844 			 * we are in Single VLAN Mode (SVM)
2845 			 */
2846 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
2847 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2848 		}
2849 	}
2850 
2851 	return 0;
2852 }
2853 
2854 /**
2855  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
2856  * @vf: VF the message was received from
2857  * @msg: message received from the VF
2858  */
2859 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2860 {
2861 	struct virtchnl_vlan_filter_list_v2 *vfl =
2862 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2863 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2864 	struct ice_vsi *vsi;
2865 
2866 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
2867 					      vfl)) {
2868 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2869 		goto out;
2870 	}
2871 
2872 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2873 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2874 		goto out;
2875 	}
2876 
2877 	vsi = ice_get_vf_vsi(vf);
2878 	if (!vsi) {
2879 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2880 		goto out;
2881 	}
2882 
2883 	if (ice_vc_del_vlans(vf, vsi, vfl))
2884 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2885 
2886 out:
2887 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
2888 				     0);
2889 }
2890 
2891 /**
2892  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
2893  * @vf: VF used to add the VLAN(s)
2894  * @vsi: VF's VSI used to add the VLAN(s)
2895  * @vfl: virthchnl filter list used to add the filters
2896  */
2897 static int
2898 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2899 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2900 {
2901 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2902 	int err;
2903 	u16 i;
2904 
2905 	for (i = 0; i < vfl->num_elements; i++) {
2906 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2907 		struct virtchnl_vlan *vc_vlan;
2908 
2909 		vc_vlan = &vlan_fltr->outer;
2910 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2911 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2912 
2913 			err = ice_vc_vlan_action(vsi,
2914 						 vsi->outer_vlan_ops.add_vlan,
2915 						 &vlan);
2916 			if (err)
2917 				return err;
2918 
2919 			if (vlan_promisc) {
2920 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2921 				if (err)
2922 					return err;
2923 			}
2924 		}
2925 
2926 		vc_vlan = &vlan_fltr->inner;
2927 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2928 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2929 
2930 			err = ice_vc_vlan_action(vsi,
2931 						 vsi->inner_vlan_ops.add_vlan,
2932 						 &vlan);
2933 			if (err)
2934 				return err;
2935 
2936 			/* no support for VLAN promiscuous on inner VLAN unless
2937 			 * we are in Single VLAN Mode (SVM)
2938 			 */
2939 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
2940 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2941 				if (err)
2942 					return err;
2943 			}
2944 		}
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 /**
2951  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
2952  * @vsi: VF VSI used to get number of existing VLAN filters
2953  * @vfc: negotiated/supported VLAN filtering capabilities
2954  * @vfl: VLAN filter list from VF to validate
2955  *
2956  * Validate all of the filters in the VLAN filter list from the VF during the
2957  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
2958  * Otherwise return true.
2959  */
2960 static bool
2961 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
2962 				     struct virtchnl_vlan_filtering_caps *vfc,
2963 				     struct virtchnl_vlan_filter_list_v2 *vfl)
2964 {
2965 	u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
2966 
2967 	if (num_requested_filters > vfc->max_filters)
2968 		return false;
2969 
2970 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
2971 }
2972 
2973 /**
2974  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
2975  * @vf: VF the message was received from
2976  * @msg: message received from the VF
2977  */
2978 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2979 {
2980 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2981 	struct virtchnl_vlan_filter_list_v2 *vfl =
2982 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2983 	struct ice_vsi *vsi;
2984 
2985 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2986 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2987 		goto out;
2988 	}
2989 
2990 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2991 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2992 		goto out;
2993 	}
2994 
2995 	vsi = ice_get_vf_vsi(vf);
2996 	if (!vsi) {
2997 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2998 		goto out;
2999 	}
3000 
3001 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3002 						  &vf->vlan_v2_caps.filtering,
3003 						  vfl)) {
3004 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3005 		goto out;
3006 	}
3007 
3008 	if (ice_vc_add_vlans(vf, vsi, vfl))
3009 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3010 
3011 out:
3012 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3013 				     0);
3014 }
3015 
3016 /**
3017  * ice_vc_valid_vlan_setting - validate VLAN setting
3018  * @negotiated_settings: negotiated VLAN settings during VF init
3019  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3020  */
3021 static bool
3022 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3023 {
3024 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3025 		return false;
3026 
3027 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3028 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3029 	 */
3030 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3031 	    hweight32(ethertype_setting) > 1)
3032 		return false;
3033 
3034 	/* ability to modify the VLAN setting was not negotiated */
3035 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3036 		return false;
3037 
3038 	return true;
3039 }
3040 
3041 /**
3042  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3043  * @caps: negotiated VLAN settings during VF init
3044  * @msg: message to validate
3045  *
3046  * Used to validate any VLAN virtchnl message sent as a
3047  * virtchnl_vlan_setting structure. Validates the message against the
3048  * negotiated/supported caps during VF driver init.
3049  */
3050 static bool
3051 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3052 			      struct virtchnl_vlan_setting *msg)
3053 {
3054 	if ((!msg->outer_ethertype_setting &&
3055 	     !msg->inner_ethertype_setting) ||
3056 	    (!caps->outer && !caps->inner))
3057 		return false;
3058 
3059 	if (msg->outer_ethertype_setting &&
3060 	    !ice_vc_valid_vlan_setting(caps->outer,
3061 				       msg->outer_ethertype_setting))
3062 		return false;
3063 
3064 	if (msg->inner_ethertype_setting &&
3065 	    !ice_vc_valid_vlan_setting(caps->inner,
3066 				       msg->inner_ethertype_setting))
3067 		return false;
3068 
3069 	return true;
3070 }
3071 
3072 /**
3073  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3074  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3075  * @tpid: VLAN TPID to populate
3076  */
3077 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3078 {
3079 	switch (ethertype_setting) {
3080 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3081 		*tpid = ETH_P_8021Q;
3082 		break;
3083 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3084 		*tpid = ETH_P_8021AD;
3085 		break;
3086 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3087 		*tpid = ETH_P_QINQ1;
3088 		break;
3089 	default:
3090 		*tpid = 0;
3091 		return -EINVAL;
3092 	}
3093 
3094 	return 0;
3095 }
3096 
3097 /**
3098  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3099  * @vsi: VF's VSI used to enable the VLAN offload
3100  * @ena_offload: function used to enable the VLAN offload
3101  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3102  */
3103 static int
3104 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3105 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3106 			u32 ethertype_setting)
3107 {
3108 	u16 tpid;
3109 	int err;
3110 
3111 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3112 	if (err)
3113 		return err;
3114 
3115 	err = ena_offload(vsi, tpid);
3116 	if (err)
3117 		return err;
3118 
3119 	return 0;
3120 }
3121 
3122 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3123 #define ICE_L2TSEL_BIT_OFFSET		23
3124 enum ice_l2tsel {
3125 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3126 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3127 };
3128 
3129 /**
3130  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3131  * @vsi: VSI used to update l2tsel on
3132  * @l2tsel: l2tsel setting requested
3133  *
3134  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3135  * This will modify which descriptor field the first offloaded VLAN will be
3136  * stripped into.
3137  */
3138 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3139 {
3140 	struct ice_hw *hw = &vsi->back->hw;
3141 	u32 l2tsel_bit;
3142 	int i;
3143 
3144 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3145 		l2tsel_bit = 0;
3146 	else
3147 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3148 
3149 	for (i = 0; i < vsi->alloc_rxq; i++) {
3150 		u16 pfq = vsi->rxq_map[i];
3151 		u32 qrx_context_offset;
3152 		u32 regval;
3153 
3154 		qrx_context_offset =
3155 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3156 
3157 		regval = rd32(hw, qrx_context_offset);
3158 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3159 		regval |= l2tsel_bit;
3160 		wr32(hw, qrx_context_offset, regval);
3161 	}
3162 }
3163 
3164 /**
3165  * ice_vc_ena_vlan_stripping_v2_msg
3166  * @vf: VF the message was received from
3167  * @msg: message received from the VF
3168  *
3169  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3170  */
3171 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3172 {
3173 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3174 	struct virtchnl_vlan_supported_caps *stripping_support;
3175 	struct virtchnl_vlan_setting *strip_msg =
3176 		(struct virtchnl_vlan_setting *)msg;
3177 	u32 ethertype_setting;
3178 	struct ice_vsi *vsi;
3179 
3180 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3181 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3182 		goto out;
3183 	}
3184 
3185 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3186 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3187 		goto out;
3188 	}
3189 
3190 	vsi = ice_get_vf_vsi(vf);
3191 	if (!vsi) {
3192 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3193 		goto out;
3194 	}
3195 
3196 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3197 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3198 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3199 		goto out;
3200 	}
3201 
3202 	ethertype_setting = strip_msg->outer_ethertype_setting;
3203 	if (ethertype_setting) {
3204 		if (ice_vc_ena_vlan_offload(vsi,
3205 					    vsi->outer_vlan_ops.ena_stripping,
3206 					    ethertype_setting)) {
3207 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3208 			goto out;
3209 		} else {
3210 			enum ice_l2tsel l2tsel =
3211 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3212 
3213 			/* PF tells the VF that the outer VLAN tag is always
3214 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3215 			 * inner is always extracted to
3216 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3217 			 * support outer stripping so the first tag always ends
3218 			 * up in L2TAG2_2ND and the second/inner tag, if
3219 			 * enabled, is extracted in L2TAG1.
3220 			 */
3221 			ice_vsi_update_l2tsel(vsi, l2tsel);
3222 		}
3223 	}
3224 
3225 	ethertype_setting = strip_msg->inner_ethertype_setting;
3226 	if (ethertype_setting &&
3227 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3228 				    ethertype_setting)) {
3229 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3230 		goto out;
3231 	}
3232 
3233 out:
3234 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3235 				     v_ret, NULL, 0);
3236 }
3237 
3238 /**
3239  * ice_vc_dis_vlan_stripping_v2_msg
3240  * @vf: VF the message was received from
3241  * @msg: message received from the VF
3242  *
3243  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3244  */
3245 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3246 {
3247 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3248 	struct virtchnl_vlan_supported_caps *stripping_support;
3249 	struct virtchnl_vlan_setting *strip_msg =
3250 		(struct virtchnl_vlan_setting *)msg;
3251 	u32 ethertype_setting;
3252 	struct ice_vsi *vsi;
3253 
3254 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3255 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3256 		goto out;
3257 	}
3258 
3259 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3260 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3261 		goto out;
3262 	}
3263 
3264 	vsi = ice_get_vf_vsi(vf);
3265 	if (!vsi) {
3266 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3267 		goto out;
3268 	}
3269 
3270 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3271 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3272 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3273 		goto out;
3274 	}
3275 
3276 	ethertype_setting = strip_msg->outer_ethertype_setting;
3277 	if (ethertype_setting) {
3278 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3279 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3280 			goto out;
3281 		} else {
3282 			enum ice_l2tsel l2tsel =
3283 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3284 
3285 			/* PF tells the VF that the outer VLAN tag is always
3286 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3287 			 * inner is always extracted to
3288 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3289 			 * support inner stripping while outer stripping is
3290 			 * disabled so that the first and only tag is extracted
3291 			 * in L2TAG1.
3292 			 */
3293 			ice_vsi_update_l2tsel(vsi, l2tsel);
3294 		}
3295 	}
3296 
3297 	ethertype_setting = strip_msg->inner_ethertype_setting;
3298 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3299 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3300 		goto out;
3301 	}
3302 
3303 out:
3304 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3305 				     v_ret, NULL, 0);
3306 }
3307 
3308 /**
3309  * ice_vc_ena_vlan_insertion_v2_msg
3310  * @vf: VF the message was received from
3311  * @msg: message received from the VF
3312  *
3313  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3314  */
3315 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3316 {
3317 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3318 	struct virtchnl_vlan_supported_caps *insertion_support;
3319 	struct virtchnl_vlan_setting *insertion_msg =
3320 		(struct virtchnl_vlan_setting *)msg;
3321 	u32 ethertype_setting;
3322 	struct ice_vsi *vsi;
3323 
3324 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3325 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3326 		goto out;
3327 	}
3328 
3329 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3330 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3331 		goto out;
3332 	}
3333 
3334 	vsi = ice_get_vf_vsi(vf);
3335 	if (!vsi) {
3336 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337 		goto out;
3338 	}
3339 
3340 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3341 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3342 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3343 		goto out;
3344 	}
3345 
3346 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3347 	if (ethertype_setting &&
3348 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3349 				    ethertype_setting)) {
3350 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3351 		goto out;
3352 	}
3353 
3354 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3355 	if (ethertype_setting &&
3356 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3357 				    ethertype_setting)) {
3358 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3359 		goto out;
3360 	}
3361 
3362 out:
3363 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3364 				     v_ret, NULL, 0);
3365 }
3366 
3367 /**
3368  * ice_vc_dis_vlan_insertion_v2_msg
3369  * @vf: VF the message was received from
3370  * @msg: message received from the VF
3371  *
3372  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3373  */
3374 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3375 {
3376 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3377 	struct virtchnl_vlan_supported_caps *insertion_support;
3378 	struct virtchnl_vlan_setting *insertion_msg =
3379 		(struct virtchnl_vlan_setting *)msg;
3380 	u32 ethertype_setting;
3381 	struct ice_vsi *vsi;
3382 
3383 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3384 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3385 		goto out;
3386 	}
3387 
3388 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3389 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3390 		goto out;
3391 	}
3392 
3393 	vsi = ice_get_vf_vsi(vf);
3394 	if (!vsi) {
3395 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3396 		goto out;
3397 	}
3398 
3399 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3400 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3402 		goto out;
3403 	}
3404 
3405 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3406 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3407 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3408 		goto out;
3409 	}
3410 
3411 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3412 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3413 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3414 		goto out;
3415 	}
3416 
3417 out:
3418 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3419 				     v_ret, NULL, 0);
3420 }
3421 
3422 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3423 	.get_ver_msg = ice_vc_get_ver_msg,
3424 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3425 	.reset_vf = ice_vc_reset_vf_msg,
3426 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3427 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3428 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3429 	.ena_qs_msg = ice_vc_ena_qs_msg,
3430 	.dis_qs_msg = ice_vc_dis_qs_msg,
3431 	.request_qs_msg = ice_vc_request_qs_msg,
3432 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3433 	.config_rss_key = ice_vc_config_rss_key,
3434 	.config_rss_lut = ice_vc_config_rss_lut,
3435 	.get_stats_msg = ice_vc_get_stats_msg,
3436 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3437 	.add_vlan_msg = ice_vc_add_vlan_msg,
3438 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3439 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3440 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3441 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3442 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3443 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3444 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3445 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3446 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3447 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3448 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3449 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3450 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3451 };
3452 
3453 /**
3454  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3455  * @vf: the VF to switch ops
3456  */
3457 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3458 {
3459 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3460 }
3461 
3462 /**
3463  * ice_vc_repr_add_mac
3464  * @vf: pointer to VF
3465  * @msg: virtchannel message
3466  *
3467  * When port representors are created, we do not add MAC rule
3468  * to firmware, we store it so that PF could report same
3469  * MAC as VF.
3470  */
3471 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3472 {
3473 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3474 	struct virtchnl_ether_addr_list *al =
3475 	    (struct virtchnl_ether_addr_list *)msg;
3476 	struct ice_vsi *vsi;
3477 	struct ice_pf *pf;
3478 	int i;
3479 
3480 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3481 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3482 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3483 		goto handle_mac_exit;
3484 	}
3485 
3486 	pf = vf->pf;
3487 
3488 	vsi = ice_get_vf_vsi(vf);
3489 	if (!vsi) {
3490 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3491 		goto handle_mac_exit;
3492 	}
3493 
3494 	for (i = 0; i < al->num_elements; i++) {
3495 		u8 *mac_addr = al->list[i].addr;
3496 		int result;
3497 
3498 		if (!is_unicast_ether_addr(mac_addr) ||
3499 		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3500 			continue;
3501 
3502 		if (vf->pf_set_mac) {
3503 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3504 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3505 			goto handle_mac_exit;
3506 		}
3507 
3508 		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3509 		if (result) {
3510 			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3511 				mac_addr, vf->vf_id, result);
3512 			goto handle_mac_exit;
3513 		}
3514 
3515 		ice_vfhw_mac_add(vf, &al->list[i]);
3516 		vf->num_mac++;
3517 		break;
3518 	}
3519 
3520 handle_mac_exit:
3521 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3522 				     v_ret, NULL, 0);
3523 }
3524 
3525 /**
3526  * ice_vc_repr_del_mac - response with success for deleting MAC
3527  * @vf: pointer to VF
3528  * @msg: virtchannel message
3529  *
3530  * Respond with success to not break normal VF flow.
3531  * For legacy VF driver try to update cached MAC address.
3532  */
3533 static int
3534 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3535 {
3536 	struct virtchnl_ether_addr_list *al =
3537 		(struct virtchnl_ether_addr_list *)msg;
3538 
3539 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3540 
3541 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3542 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3543 }
3544 
3545 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3546 {
3547 	dev_dbg(ice_pf_to_dev(vf->pf),
3548 		"Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
3549 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
3550 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3551 }
3552 
3553 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3554 {
3555 	dev_dbg(ice_pf_to_dev(vf->pf),
3556 		"Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
3557 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
3558 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3559 }
3560 
3561 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
3562 {
3563 	dev_dbg(ice_pf_to_dev(vf->pf),
3564 		"Can't enable VLAN stripping in switchdev mode for VF %d\n",
3565 		vf->vf_id);
3566 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3567 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3568 				     NULL, 0);
3569 }
3570 
3571 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
3572 {
3573 	dev_dbg(ice_pf_to_dev(vf->pf),
3574 		"Can't disable VLAN stripping in switchdev mode for VF %d\n",
3575 		vf->vf_id);
3576 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3577 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3578 				     NULL, 0);
3579 }
3580 
3581 static int
3582 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3583 {
3584 	dev_dbg(ice_pf_to_dev(vf->pf),
3585 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3586 		vf->vf_id);
3587 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3588 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3589 				     NULL, 0);
3590 }
3591 
3592 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3593 	.get_ver_msg = ice_vc_get_ver_msg,
3594 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3595 	.reset_vf = ice_vc_reset_vf_msg,
3596 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3597 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3598 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3599 	.ena_qs_msg = ice_vc_ena_qs_msg,
3600 	.dis_qs_msg = ice_vc_dis_qs_msg,
3601 	.request_qs_msg = ice_vc_request_qs_msg,
3602 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3603 	.config_rss_key = ice_vc_config_rss_key,
3604 	.config_rss_lut = ice_vc_config_rss_lut,
3605 	.get_stats_msg = ice_vc_get_stats_msg,
3606 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3607 	.add_vlan_msg = ice_vc_repr_add_vlan,
3608 	.remove_vlan_msg = ice_vc_repr_del_vlan,
3609 	.ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
3610 	.dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
3611 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3612 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3613 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3614 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3615 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3616 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3617 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3618 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3619 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3620 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3621 };
3622 
3623 /**
3624  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3625  * @vf: the VF to switch ops
3626  */
3627 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3628 {
3629 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3630 }
3631 
3632 /**
3633  * ice_vc_process_vf_msg - Process request from VF
3634  * @pf: pointer to the PF structure
3635  * @event: pointer to the AQ event
3636  *
3637  * called from the common asq/arq handler to
3638  * process request from VF
3639  */
3640 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3641 {
3642 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3643 	s16 vf_id = le16_to_cpu(event->desc.retval);
3644 	const struct ice_virtchnl_ops *ops;
3645 	u16 msglen = event->msg_len;
3646 	u8 *msg = event->msg_buf;
3647 	struct ice_vf *vf = NULL;
3648 	struct device *dev;
3649 	int err = 0;
3650 
3651 	dev = ice_pf_to_dev(pf);
3652 
3653 	vf = ice_get_vf_by_id(pf, vf_id);
3654 	if (!vf) {
3655 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3656 			vf_id, v_opcode, msglen);
3657 		return;
3658 	}
3659 
3660 	mutex_lock(&vf->cfg_lock);
3661 
3662 	/* Check if VF is disabled. */
3663 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3664 		err = -EPERM;
3665 		goto error_handler;
3666 	}
3667 
3668 	ops = vf->virtchnl_ops;
3669 
3670 	/* Perform basic checks on the msg */
3671 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3672 	if (err) {
3673 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3674 			err = -EPERM;
3675 		else
3676 			err = -EINVAL;
3677 	}
3678 
3679 error_handler:
3680 	if (err) {
3681 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3682 				      NULL, 0);
3683 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3684 			vf_id, v_opcode, msglen, err);
3685 		goto finish;
3686 	}
3687 
3688 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3689 		ice_vc_send_msg_to_vf(vf, v_opcode,
3690 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3691 				      0);
3692 		goto finish;
3693 	}
3694 
3695 	switch (v_opcode) {
3696 	case VIRTCHNL_OP_VERSION:
3697 		err = ops->get_ver_msg(vf, msg);
3698 		break;
3699 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3700 		err = ops->get_vf_res_msg(vf, msg);
3701 		if (ice_vf_init_vlan_stripping(vf))
3702 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3703 				vf->vf_id);
3704 		ice_vc_notify_vf_link_state(vf);
3705 		break;
3706 	case VIRTCHNL_OP_RESET_VF:
3707 		ops->reset_vf(vf);
3708 		break;
3709 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3710 		err = ops->add_mac_addr_msg(vf, msg);
3711 		break;
3712 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3713 		err = ops->del_mac_addr_msg(vf, msg);
3714 		break;
3715 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3716 		err = ops->cfg_qs_msg(vf, msg);
3717 		break;
3718 	case VIRTCHNL_OP_ENABLE_QUEUES:
3719 		err = ops->ena_qs_msg(vf, msg);
3720 		ice_vc_notify_vf_link_state(vf);
3721 		break;
3722 	case VIRTCHNL_OP_DISABLE_QUEUES:
3723 		err = ops->dis_qs_msg(vf, msg);
3724 		break;
3725 	case VIRTCHNL_OP_REQUEST_QUEUES:
3726 		err = ops->request_qs_msg(vf, msg);
3727 		break;
3728 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3729 		err = ops->cfg_irq_map_msg(vf, msg);
3730 		break;
3731 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3732 		err = ops->config_rss_key(vf, msg);
3733 		break;
3734 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3735 		err = ops->config_rss_lut(vf, msg);
3736 		break;
3737 	case VIRTCHNL_OP_GET_STATS:
3738 		err = ops->get_stats_msg(vf, msg);
3739 		break;
3740 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3741 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
3742 		break;
3743 	case VIRTCHNL_OP_ADD_VLAN:
3744 		err = ops->add_vlan_msg(vf, msg);
3745 		break;
3746 	case VIRTCHNL_OP_DEL_VLAN:
3747 		err = ops->remove_vlan_msg(vf, msg);
3748 		break;
3749 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3750 		err = ops->ena_vlan_stripping(vf);
3751 		break;
3752 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3753 		err = ops->dis_vlan_stripping(vf);
3754 		break;
3755 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
3756 		err = ops->add_fdir_fltr_msg(vf, msg);
3757 		break;
3758 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
3759 		err = ops->del_fdir_fltr_msg(vf, msg);
3760 		break;
3761 	case VIRTCHNL_OP_ADD_RSS_CFG:
3762 		err = ops->handle_rss_cfg_msg(vf, msg, true);
3763 		break;
3764 	case VIRTCHNL_OP_DEL_RSS_CFG:
3765 		err = ops->handle_rss_cfg_msg(vf, msg, false);
3766 		break;
3767 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3768 		err = ops->get_offload_vlan_v2_caps(vf);
3769 		break;
3770 	case VIRTCHNL_OP_ADD_VLAN_V2:
3771 		err = ops->add_vlan_v2_msg(vf, msg);
3772 		break;
3773 	case VIRTCHNL_OP_DEL_VLAN_V2:
3774 		err = ops->remove_vlan_v2_msg(vf, msg);
3775 		break;
3776 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3777 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3778 		break;
3779 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3780 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3781 		break;
3782 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3783 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
3784 		break;
3785 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
3786 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
3787 		break;
3788 	case VIRTCHNL_OP_UNKNOWN:
3789 	default:
3790 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3791 			vf_id);
3792 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
3793 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3794 					    NULL, 0);
3795 		break;
3796 	}
3797 	if (err) {
3798 		/* Helper function cares less about error return values here
3799 		 * as it is busy with pending work.
3800 		 */
3801 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3802 			 vf_id, v_opcode, err);
3803 	}
3804 
3805 finish:
3806 	mutex_unlock(&vf->cfg_lock);
3807 	ice_put_vf(vf);
3808 }
3809