1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 466 467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 469 470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 472 473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 475 476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 478 479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 481 482 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 483 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 484 485 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 486 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 487 488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 490 491 vfres->num_vsis = 1; 492 /* Tx and Rx queue are equal for VF */ 493 vfres->num_queue_pairs = vsi->num_txq; 494 vfres->max_vectors = vf->pf->vfs.num_msix_per; 495 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 496 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 497 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 498 499 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 500 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 501 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 502 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 503 vf->hw_lan_addr); 504 505 /* match guest capabilities */ 506 vf->driver_caps = vfres->vf_cap_flags; 507 508 ice_vc_set_caps_allowlist(vf); 509 ice_vc_set_working_allowlist(vf); 510 511 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 512 513 err: 514 /* send the response back to the VF */ 515 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 516 (u8 *)vfres, len); 517 518 kfree(vfres); 519 return ret; 520 } 521 522 /** 523 * ice_vc_reset_vf_msg 524 * @vf: pointer to the VF info 525 * 526 * called from the VF to reset itself, 527 * unlike other virtchnl messages, PF driver 528 * doesn't send the response back to the VF 529 */ 530 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 531 { 532 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 533 ice_reset_vf(vf, 0); 534 } 535 536 /** 537 * ice_vc_isvalid_vsi_id 538 * @vf: pointer to the VF info 539 * @vsi_id: VF relative VSI ID 540 * 541 * check for the valid VSI ID 542 */ 543 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 544 { 545 return vsi_id == ICE_VF_VSI_ID; 546 } 547 548 /** 549 * ice_vc_isvalid_q_id 550 * @vf: pointer to the VF info 551 * @vsi_id: VSI ID 552 * @qid: VSI relative queue ID 553 * 554 * check for the valid queue ID 555 */ 556 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 557 { 558 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 559 /* allocated Tx and Rx queues should be always equal for VF VSI */ 560 return (vsi && (qid < vsi->alloc_txq)); 561 } 562 563 /** 564 * ice_vc_isvalid_ring_len 565 * @ring_len: length of ring 566 * 567 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 568 * or zero 569 */ 570 static bool ice_vc_isvalid_ring_len(u16 ring_len) 571 { 572 return ring_len == 0 || 573 (ring_len >= ICE_MIN_NUM_DESC && 574 ring_len <= ICE_MAX_NUM_DESC && 575 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 576 } 577 578 /** 579 * ice_vc_validate_pattern 580 * @vf: pointer to the VF info 581 * @proto: virtchnl protocol headers 582 * 583 * validate the pattern is supported or not. 584 * 585 * Return: true on success, false on error. 586 */ 587 bool 588 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 589 { 590 bool is_ipv4 = false; 591 bool is_ipv6 = false; 592 bool is_udp = false; 593 u16 ptype = -1; 594 int i = 0; 595 596 while (i < proto->count && 597 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 598 switch (proto->proto_hdr[i].type) { 599 case VIRTCHNL_PROTO_HDR_ETH: 600 ptype = ICE_PTYPE_MAC_PAY; 601 break; 602 case VIRTCHNL_PROTO_HDR_IPV4: 603 ptype = ICE_PTYPE_IPV4_PAY; 604 is_ipv4 = true; 605 break; 606 case VIRTCHNL_PROTO_HDR_IPV6: 607 ptype = ICE_PTYPE_IPV6_PAY; 608 is_ipv6 = true; 609 break; 610 case VIRTCHNL_PROTO_HDR_UDP: 611 if (is_ipv4) 612 ptype = ICE_PTYPE_IPV4_UDP_PAY; 613 else if (is_ipv6) 614 ptype = ICE_PTYPE_IPV6_UDP_PAY; 615 is_udp = true; 616 break; 617 case VIRTCHNL_PROTO_HDR_TCP: 618 if (is_ipv4) 619 ptype = ICE_PTYPE_IPV4_TCP_PAY; 620 else if (is_ipv6) 621 ptype = ICE_PTYPE_IPV6_TCP_PAY; 622 break; 623 case VIRTCHNL_PROTO_HDR_SCTP: 624 if (is_ipv4) 625 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 626 else if (is_ipv6) 627 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 628 break; 629 case VIRTCHNL_PROTO_HDR_GTPU_IP: 630 case VIRTCHNL_PROTO_HDR_GTPU_EH: 631 if (is_ipv4) 632 ptype = ICE_MAC_IPV4_GTPU; 633 else if (is_ipv6) 634 ptype = ICE_MAC_IPV6_GTPU; 635 goto out; 636 case VIRTCHNL_PROTO_HDR_L2TPV3: 637 if (is_ipv4) 638 ptype = ICE_MAC_IPV4_L2TPV3; 639 else if (is_ipv6) 640 ptype = ICE_MAC_IPV6_L2TPV3; 641 goto out; 642 case VIRTCHNL_PROTO_HDR_ESP: 643 if (is_ipv4) 644 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 645 ICE_MAC_IPV4_ESP; 646 else if (is_ipv6) 647 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 648 ICE_MAC_IPV6_ESP; 649 goto out; 650 case VIRTCHNL_PROTO_HDR_AH: 651 if (is_ipv4) 652 ptype = ICE_MAC_IPV4_AH; 653 else if (is_ipv6) 654 ptype = ICE_MAC_IPV6_AH; 655 goto out; 656 case VIRTCHNL_PROTO_HDR_PFCP: 657 if (is_ipv4) 658 ptype = ICE_MAC_IPV4_PFCP_SESSION; 659 else if (is_ipv6) 660 ptype = ICE_MAC_IPV6_PFCP_SESSION; 661 goto out; 662 default: 663 break; 664 } 665 i++; 666 } 667 668 out: 669 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 670 } 671 672 /** 673 * ice_vc_parse_rss_cfg - parses hash fields and headers from 674 * a specific virtchnl RSS cfg 675 * @hw: pointer to the hardware 676 * @rss_cfg: pointer to the virtchnl RSS cfg 677 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 678 * to configure 679 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 680 * 681 * Return true if all the protocol header and hash fields in the RSS cfg could 682 * be parsed, else return false 683 * 684 * This function parses the virtchnl RSS cfg to be the intended 685 * hash fields and the intended header for RSS configuration 686 */ 687 static bool 688 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 689 u32 *addl_hdrs, u64 *hash_flds) 690 { 691 const struct ice_vc_hash_field_match_type *hf_list; 692 const struct ice_vc_hdr_match_type *hdr_list; 693 int i, hf_list_len, hdr_list_len; 694 695 hf_list = ice_vc_hash_field_list; 696 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 697 hdr_list = ice_vc_hdr_list; 698 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 699 700 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 701 struct virtchnl_proto_hdr *proto_hdr = 702 &rss_cfg->proto_hdrs.proto_hdr[i]; 703 bool hdr_found = false; 704 int j; 705 706 /* Find matched ice headers according to virtchnl headers. */ 707 for (j = 0; j < hdr_list_len; j++) { 708 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 709 710 if (proto_hdr->type == hdr_map.vc_hdr) { 711 *addl_hdrs |= hdr_map.ice_hdr; 712 hdr_found = true; 713 } 714 } 715 716 if (!hdr_found) 717 return false; 718 719 /* Find matched ice hash fields according to 720 * virtchnl hash fields. 721 */ 722 for (j = 0; j < hf_list_len; j++) { 723 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 724 725 if (proto_hdr->type == hf_map.vc_hdr && 726 proto_hdr->field_selector == hf_map.vc_hash_field) { 727 *hash_flds |= hf_map.ice_hash_field; 728 break; 729 } 730 } 731 } 732 733 return true; 734 } 735 736 /** 737 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 738 * RSS offloads 739 * @caps: VF driver negotiated capabilities 740 * 741 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 742 * else return false 743 */ 744 static bool ice_vf_adv_rss_offload_ena(u32 caps) 745 { 746 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 747 } 748 749 /** 750 * ice_vc_handle_rss_cfg 751 * @vf: pointer to the VF info 752 * @msg: pointer to the message buffer 753 * @add: add a RSS config if true, otherwise delete a RSS config 754 * 755 * This function adds/deletes a RSS config 756 */ 757 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 758 { 759 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 760 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 761 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 762 struct device *dev = ice_pf_to_dev(vf->pf); 763 struct ice_hw *hw = &vf->pf->hw; 764 struct ice_vsi *vsi; 765 766 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 767 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 768 vf->vf_id); 769 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 770 goto error_param; 771 } 772 773 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 774 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 775 vf->vf_id); 776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 777 goto error_param; 778 } 779 780 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 781 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 782 goto error_param; 783 } 784 785 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 786 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 787 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 788 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 789 vf->vf_id); 790 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 791 goto error_param; 792 } 793 794 vsi = ice_get_vf_vsi(vf); 795 if (!vsi) { 796 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 797 goto error_param; 798 } 799 800 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 801 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 802 goto error_param; 803 } 804 805 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 806 struct ice_vsi_ctx *ctx; 807 u8 lut_type, hash_type; 808 int status; 809 810 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 811 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 812 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 813 814 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 815 if (!ctx) { 816 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 817 goto error_param; 818 } 819 820 ctx->info.q_opt_rss = 821 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 822 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 823 824 /* Preserve existing queueing option setting */ 825 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 826 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 827 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 828 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 829 830 ctx->info.valid_sections = 831 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 832 833 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 834 if (status) { 835 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 836 status, ice_aq_str(hw->adminq.sq_last_status)); 837 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 838 } else { 839 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 840 } 841 842 kfree(ctx); 843 } else { 844 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 845 u64 hash_flds = ICE_HASH_INVALID; 846 847 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 848 &hash_flds)) { 849 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 850 goto error_param; 851 } 852 853 if (add) { 854 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 855 addl_hdrs)) { 856 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 857 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 858 vsi->vsi_num, v_ret); 859 } 860 } else { 861 int status; 862 863 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 864 addl_hdrs); 865 /* We just ignore -ENOENT, because if two configurations 866 * share the same profile remove one of them actually 867 * removes both, since the profile is deleted. 868 */ 869 if (status && status != -ENOENT) { 870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 871 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 872 vf->vf_id, status); 873 } 874 } 875 } 876 877 error_param: 878 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 879 } 880 881 /** 882 * ice_vc_config_rss_key 883 * @vf: pointer to the VF info 884 * @msg: pointer to the msg buffer 885 * 886 * Configure the VF's RSS key 887 */ 888 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 889 { 890 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 891 struct virtchnl_rss_key *vrk = 892 (struct virtchnl_rss_key *)msg; 893 struct ice_vsi *vsi; 894 895 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 896 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 897 goto error_param; 898 } 899 900 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 901 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 902 goto error_param; 903 } 904 905 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 906 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 907 goto error_param; 908 } 909 910 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 912 goto error_param; 913 } 914 915 vsi = ice_get_vf_vsi(vf); 916 if (!vsi) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 if (ice_set_rss_key(vsi, vrk->key)) 922 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 923 error_param: 924 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 925 NULL, 0); 926 } 927 928 /** 929 * ice_vc_config_rss_lut 930 * @vf: pointer to the VF info 931 * @msg: pointer to the msg buffer 932 * 933 * Configure the VF's RSS LUT 934 */ 935 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 936 { 937 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 938 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 939 struct ice_vsi *vsi; 940 941 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 942 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 943 goto error_param; 944 } 945 946 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 947 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 948 goto error_param; 949 } 950 951 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 952 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 953 goto error_param; 954 } 955 956 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 957 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 958 goto error_param; 959 } 960 961 vsi = ice_get_vf_vsi(vf); 962 if (!vsi) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 968 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 969 error_param: 970 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 971 NULL, 0); 972 } 973 974 /** 975 * ice_vc_cfg_promiscuous_mode_msg 976 * @vf: pointer to the VF info 977 * @msg: pointer to the msg buffer 978 * 979 * called from the VF to configure VF VSIs promiscuous mode 980 */ 981 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 982 { 983 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 984 bool rm_promisc, alluni = false, allmulti = false; 985 struct virtchnl_promisc_info *info = 986 (struct virtchnl_promisc_info *)msg; 987 struct ice_vsi_vlan_ops *vlan_ops; 988 int mcast_err = 0, ucast_err = 0; 989 struct ice_pf *pf = vf->pf; 990 struct ice_vsi *vsi; 991 u8 mcast_m, ucast_m; 992 struct device *dev; 993 int ret = 0; 994 995 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 996 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 997 goto error_param; 998 } 999 1000 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1001 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1002 goto error_param; 1003 } 1004 1005 vsi = ice_get_vf_vsi(vf); 1006 if (!vsi) { 1007 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1008 goto error_param; 1009 } 1010 1011 dev = ice_pf_to_dev(pf); 1012 if (!ice_is_vf_trusted(vf)) { 1013 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1014 vf->vf_id); 1015 /* Leave v_ret alone, lie to the VF on purpose. */ 1016 goto error_param; 1017 } 1018 1019 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1020 alluni = true; 1021 1022 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1023 allmulti = true; 1024 1025 rm_promisc = !allmulti && !alluni; 1026 1027 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1028 if (rm_promisc) 1029 ret = vlan_ops->ena_rx_filtering(vsi); 1030 else 1031 ret = vlan_ops->dis_rx_filtering(vsi); 1032 if (ret) { 1033 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1034 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1035 goto error_param; 1036 } 1037 1038 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1039 1040 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1041 if (alluni) { 1042 /* in this case we're turning on promiscuous mode */ 1043 ret = ice_set_dflt_vsi(vsi); 1044 } else { 1045 /* in this case we're turning off promiscuous mode */ 1046 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1047 ret = ice_clear_dflt_vsi(vsi); 1048 } 1049 1050 /* in this case we're turning on/off only 1051 * allmulticast 1052 */ 1053 if (allmulti) 1054 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1055 else 1056 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1057 1058 if (ret) { 1059 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1060 vf->vf_id, ret); 1061 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1062 goto error_param; 1063 } 1064 } else { 1065 if (alluni) 1066 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1067 else 1068 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1069 1070 if (allmulti) 1071 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1072 else 1073 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1074 1075 if (ucast_err || mcast_err) 1076 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1077 } 1078 1079 if (!mcast_err) { 1080 if (allmulti && 1081 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1082 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1083 vf->vf_id); 1084 else if (!allmulti && 1085 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1086 vf->vf_states)) 1087 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1088 vf->vf_id); 1089 } else { 1090 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1091 vf->vf_id, mcast_err); 1092 } 1093 1094 if (!ucast_err) { 1095 if (alluni && 1096 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1097 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1098 vf->vf_id); 1099 else if (!alluni && 1100 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1101 vf->vf_states)) 1102 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1103 vf->vf_id); 1104 } else { 1105 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1106 vf->vf_id, ucast_err); 1107 } 1108 1109 error_param: 1110 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1111 v_ret, NULL, 0); 1112 } 1113 1114 /** 1115 * ice_vc_get_stats_msg 1116 * @vf: pointer to the VF info 1117 * @msg: pointer to the msg buffer 1118 * 1119 * called from the VF to get VSI stats 1120 */ 1121 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1122 { 1123 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1124 struct virtchnl_queue_select *vqs = 1125 (struct virtchnl_queue_select *)msg; 1126 struct ice_eth_stats stats = { 0 }; 1127 struct ice_vsi *vsi; 1128 1129 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1130 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1131 goto error_param; 1132 } 1133 1134 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1136 goto error_param; 1137 } 1138 1139 vsi = ice_get_vf_vsi(vf); 1140 if (!vsi) { 1141 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1142 goto error_param; 1143 } 1144 1145 ice_update_eth_stats(vsi); 1146 1147 stats = vsi->eth_stats; 1148 1149 error_param: 1150 /* send the response to the VF */ 1151 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1152 (u8 *)&stats, sizeof(stats)); 1153 } 1154 1155 /** 1156 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1157 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1158 * 1159 * Return true on successful validation, else false 1160 */ 1161 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1162 { 1163 if ((!vqs->rx_queues && !vqs->tx_queues) || 1164 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1165 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1166 return false; 1167 1168 return true; 1169 } 1170 1171 /** 1172 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1173 * @vsi: VSI of the VF to configure 1174 * @q_idx: VF queue index used to determine the queue in the PF's space 1175 */ 1176 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1177 { 1178 struct ice_hw *hw = &vsi->back->hw; 1179 u32 pfq = vsi->txq_map[q_idx]; 1180 u32 reg; 1181 1182 reg = rd32(hw, QINT_TQCTL(pfq)); 1183 1184 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1185 * this is most likely a poll mode VF driver, so don't enable an 1186 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1187 */ 1188 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1189 return; 1190 1191 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1192 } 1193 1194 /** 1195 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1196 * @vsi: VSI of the VF to configure 1197 * @q_idx: VF queue index used to determine the queue in the PF's space 1198 */ 1199 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1200 { 1201 struct ice_hw *hw = &vsi->back->hw; 1202 u32 pfq = vsi->rxq_map[q_idx]; 1203 u32 reg; 1204 1205 reg = rd32(hw, QINT_RQCTL(pfq)); 1206 1207 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1208 * this is most likely a poll mode VF driver, so don't enable an 1209 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1210 */ 1211 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1212 return; 1213 1214 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1215 } 1216 1217 /** 1218 * ice_vc_ena_qs_msg 1219 * @vf: pointer to the VF info 1220 * @msg: pointer to the msg buffer 1221 * 1222 * called from the VF to enable all or specific queue(s) 1223 */ 1224 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1225 { 1226 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1227 struct virtchnl_queue_select *vqs = 1228 (struct virtchnl_queue_select *)msg; 1229 struct ice_vsi *vsi; 1230 unsigned long q_map; 1231 u16 vf_q_id; 1232 1233 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1234 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1235 goto error_param; 1236 } 1237 1238 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1239 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1240 goto error_param; 1241 } 1242 1243 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1245 goto error_param; 1246 } 1247 1248 vsi = ice_get_vf_vsi(vf); 1249 if (!vsi) { 1250 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1251 goto error_param; 1252 } 1253 1254 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1255 * Tx queue group list was configured and the context bits were 1256 * programmed using ice_vsi_cfg_txqs 1257 */ 1258 q_map = vqs->rx_queues; 1259 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1260 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 /* Skip queue if enabled */ 1266 if (test_bit(vf_q_id, vf->rxq_ena)) 1267 continue; 1268 1269 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1270 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1271 vf_q_id, vsi->vsi_num); 1272 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1273 goto error_param; 1274 } 1275 1276 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1277 set_bit(vf_q_id, vf->rxq_ena); 1278 } 1279 1280 q_map = vqs->tx_queues; 1281 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1282 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1284 goto error_param; 1285 } 1286 1287 /* Skip queue if enabled */ 1288 if (test_bit(vf_q_id, vf->txq_ena)) 1289 continue; 1290 1291 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1292 set_bit(vf_q_id, vf->txq_ena); 1293 } 1294 1295 /* Set flag to indicate that queues are enabled */ 1296 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1297 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1298 1299 error_param: 1300 /* send the response to the VF */ 1301 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1302 NULL, 0); 1303 } 1304 1305 /** 1306 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1307 * @vf: VF to disable queue for 1308 * @vsi: VSI for the VF 1309 * @q_id: VF relative (0-based) queue ID 1310 * 1311 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1312 * disabled then clear q_id bit in the enabled queues bitmap and return 1313 * success. Otherwise return error. 1314 */ 1315 static int 1316 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1317 { 1318 struct ice_txq_meta txq_meta = { 0 }; 1319 struct ice_tx_ring *ring; 1320 int err; 1321 1322 if (!test_bit(q_id, vf->txq_ena)) 1323 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1324 q_id, vsi->vsi_num); 1325 1326 ring = vsi->tx_rings[q_id]; 1327 if (!ring) 1328 return -EINVAL; 1329 1330 ice_fill_txq_meta(vsi, ring, &txq_meta); 1331 1332 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1333 if (err) { 1334 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1335 q_id, vsi->vsi_num); 1336 return err; 1337 } 1338 1339 /* Clear enabled queues flag */ 1340 clear_bit(q_id, vf->txq_ena); 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * ice_vc_dis_qs_msg 1347 * @vf: pointer to the VF info 1348 * @msg: pointer to the msg buffer 1349 * 1350 * called from the VF to disable all or specific queue(s) 1351 */ 1352 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1353 { 1354 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1355 struct virtchnl_queue_select *vqs = 1356 (struct virtchnl_queue_select *)msg; 1357 struct ice_vsi *vsi; 1358 unsigned long q_map; 1359 u16 vf_q_id; 1360 1361 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1362 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1363 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1364 goto error_param; 1365 } 1366 1367 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1368 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1369 goto error_param; 1370 } 1371 1372 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1373 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1374 goto error_param; 1375 } 1376 1377 vsi = ice_get_vf_vsi(vf); 1378 if (!vsi) { 1379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1380 goto error_param; 1381 } 1382 1383 if (vqs->tx_queues) { 1384 q_map = vqs->tx_queues; 1385 1386 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1387 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1388 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1389 goto error_param; 1390 } 1391 1392 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 } 1397 } 1398 1399 q_map = vqs->rx_queues; 1400 /* speed up Rx queue disable by batching them if possible */ 1401 if (q_map && 1402 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1403 if (ice_vsi_stop_all_rx_rings(vsi)) { 1404 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1405 vsi->vsi_num); 1406 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1407 goto error_param; 1408 } 1409 1410 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1411 } else if (q_map) { 1412 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1413 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1414 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1415 goto error_param; 1416 } 1417 1418 /* Skip queue if not enabled */ 1419 if (!test_bit(vf_q_id, vf->rxq_ena)) 1420 continue; 1421 1422 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1423 true)) { 1424 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1425 vf_q_id, vsi->vsi_num); 1426 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1427 goto error_param; 1428 } 1429 1430 /* Clear enabled queues flag */ 1431 clear_bit(vf_q_id, vf->rxq_ena); 1432 } 1433 } 1434 1435 /* Clear enabled queues flag */ 1436 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1437 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1438 1439 error_param: 1440 /* send the response to the VF */ 1441 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1442 NULL, 0); 1443 } 1444 1445 /** 1446 * ice_cfg_interrupt 1447 * @vf: pointer to the VF info 1448 * @vsi: the VSI being configured 1449 * @vector_id: vector ID 1450 * @map: vector map for mapping vectors to queues 1451 * @q_vector: structure for interrupt vector 1452 * configure the IRQ to queue map 1453 */ 1454 static int 1455 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1456 struct virtchnl_vector_map *map, 1457 struct ice_q_vector *q_vector) 1458 { 1459 u16 vsi_q_id, vsi_q_id_idx; 1460 unsigned long qmap; 1461 1462 q_vector->num_ring_rx = 0; 1463 q_vector->num_ring_tx = 0; 1464 1465 qmap = map->rxq_map; 1466 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1467 vsi_q_id = vsi_q_id_idx; 1468 1469 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1470 return VIRTCHNL_STATUS_ERR_PARAM; 1471 1472 q_vector->num_ring_rx++; 1473 q_vector->rx.itr_idx = map->rxitr_idx; 1474 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1475 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1476 q_vector->rx.itr_idx); 1477 } 1478 1479 qmap = map->txq_map; 1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1481 vsi_q_id = vsi_q_id_idx; 1482 1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1484 return VIRTCHNL_STATUS_ERR_PARAM; 1485 1486 q_vector->num_ring_tx++; 1487 q_vector->tx.itr_idx = map->txitr_idx; 1488 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1489 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1490 q_vector->tx.itr_idx); 1491 } 1492 1493 return VIRTCHNL_STATUS_SUCCESS; 1494 } 1495 1496 /** 1497 * ice_vc_cfg_irq_map_msg 1498 * @vf: pointer to the VF info 1499 * @msg: pointer to the msg buffer 1500 * 1501 * called from the VF to configure the IRQ to queue map 1502 */ 1503 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1504 { 1505 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1506 u16 num_q_vectors_mapped, vsi_id, vector_id; 1507 struct virtchnl_irq_map_info *irqmap_info; 1508 struct virtchnl_vector_map *map; 1509 struct ice_pf *pf = vf->pf; 1510 struct ice_vsi *vsi; 1511 int i; 1512 1513 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1514 num_q_vectors_mapped = irqmap_info->num_vectors; 1515 1516 /* Check to make sure number of VF vectors mapped is not greater than 1517 * number of VF vectors originally allocated, and check that 1518 * there is actually at least a single VF queue vector mapped 1519 */ 1520 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1521 pf->vfs.num_msix_per < num_q_vectors_mapped || 1522 !num_q_vectors_mapped) { 1523 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1524 goto error_param; 1525 } 1526 1527 vsi = ice_get_vf_vsi(vf); 1528 if (!vsi) { 1529 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1530 goto error_param; 1531 } 1532 1533 for (i = 0; i < num_q_vectors_mapped; i++) { 1534 struct ice_q_vector *q_vector; 1535 1536 map = &irqmap_info->vecmap[i]; 1537 1538 vector_id = map->vector_id; 1539 vsi_id = map->vsi_id; 1540 /* vector_id is always 0-based for each VF, and can never be 1541 * larger than or equal to the max allowed interrupts per VF 1542 */ 1543 if (!(vector_id < pf->vfs.num_msix_per) || 1544 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1545 (!vector_id && (map->rxq_map || map->txq_map))) { 1546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1547 goto error_param; 1548 } 1549 1550 /* No need to map VF miscellaneous or rogue vector */ 1551 if (!vector_id) 1552 continue; 1553 1554 /* Subtract non queue vector from vector_id passed by VF 1555 * to get actual number of VSI queue vector array index 1556 */ 1557 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1558 if (!q_vector) { 1559 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1560 goto error_param; 1561 } 1562 1563 /* lookout for the invalid queue index */ 1564 v_ret = (enum virtchnl_status_code) 1565 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1566 if (v_ret) 1567 goto error_param; 1568 } 1569 1570 error_param: 1571 /* send the response to the VF */ 1572 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1573 NULL, 0); 1574 } 1575 1576 /** 1577 * ice_vc_cfg_qs_msg 1578 * @vf: pointer to the VF info 1579 * @msg: pointer to the msg buffer 1580 * 1581 * called from the VF to configure the Rx/Tx queues 1582 */ 1583 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1584 { 1585 struct virtchnl_vsi_queue_config_info *qci = 1586 (struct virtchnl_vsi_queue_config_info *)msg; 1587 struct virtchnl_queue_pair_info *qpi; 1588 struct ice_pf *pf = vf->pf; 1589 struct ice_lag *lag; 1590 struct ice_vsi *vsi; 1591 u8 act_prt, pri_prt; 1592 int i = -1, q_idx; 1593 1594 lag = pf->lag; 1595 mutex_lock(&pf->lag_mutex); 1596 act_prt = ICE_LAG_INVALID_PORT; 1597 pri_prt = pf->hw.port_info->lport; 1598 if (lag && lag->bonded && lag->primary) { 1599 act_prt = lag->active_port; 1600 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1601 lag->upper_netdev) 1602 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1603 else 1604 act_prt = ICE_LAG_INVALID_PORT; 1605 } 1606 1607 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1608 goto error_param; 1609 1610 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1611 goto error_param; 1612 1613 vsi = ice_get_vf_vsi(vf); 1614 if (!vsi) 1615 goto error_param; 1616 1617 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1618 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1619 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1620 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1621 goto error_param; 1622 } 1623 1624 for (i = 0; i < qci->num_queue_pairs; i++) { 1625 qpi = &qci->qpair[i]; 1626 if (qpi->txq.vsi_id != qci->vsi_id || 1627 qpi->rxq.vsi_id != qci->vsi_id || 1628 qpi->rxq.queue_id != qpi->txq.queue_id || 1629 qpi->txq.headwb_enabled || 1630 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1631 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1632 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1633 goto error_param; 1634 } 1635 1636 q_idx = qpi->rxq.queue_id; 1637 1638 /* make sure selected "q_idx" is in valid range of queues 1639 * for selected "vsi" 1640 */ 1641 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1642 goto error_param; 1643 } 1644 1645 /* copy Tx queue info from VF into VSI */ 1646 if (qpi->txq.ring_len > 0) { 1647 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1648 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1649 1650 /* Disable any existing queue first */ 1651 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1652 goto error_param; 1653 1654 /* Configure a queue with the requested settings */ 1655 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1656 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1657 vf->vf_id, i); 1658 goto error_param; 1659 } 1660 } 1661 1662 /* copy Rx queue info from VF into VSI */ 1663 if (qpi->rxq.ring_len > 0) { 1664 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1665 u32 rxdid; 1666 1667 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1668 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1669 1670 if (qpi->rxq.databuffer_size != 0 && 1671 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1672 qpi->rxq.databuffer_size < 1024)) 1673 goto error_param; 1674 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1675 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1676 if (qpi->rxq.max_pkt_size > max_frame_size || 1677 qpi->rxq.max_pkt_size < 64) 1678 goto error_param; 1679 1680 vsi->max_frame = qpi->rxq.max_pkt_size; 1681 /* add space for the port VLAN since the VF driver is 1682 * not expected to account for it in the MTU 1683 * calculation 1684 */ 1685 if (ice_vf_is_port_vlan_ena(vf)) 1686 vsi->max_frame += VLAN_HLEN; 1687 1688 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1689 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1690 vf->vf_id, i); 1691 goto error_param; 1692 } 1693 1694 /* If Rx flex desc is supported, select RXDID for Rx 1695 * queues. Otherwise, use legacy 32byte descriptor 1696 * format. Legacy 16byte descriptor is not supported. 1697 * If this RXDID is selected, return error. 1698 */ 1699 if (vf->driver_caps & 1700 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1701 rxdid = qpi->rxq.rxdid; 1702 if (!(BIT(rxdid) & pf->supported_rxdids)) 1703 goto error_param; 1704 } else { 1705 rxdid = ICE_RXDID_LEGACY_1; 1706 } 1707 1708 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1709 vsi->rxq_map[q_idx], 1710 rxdid, 0x03, false); 1711 } 1712 } 1713 1714 if (lag && lag->bonded && lag->primary && 1715 act_prt != ICE_LAG_INVALID_PORT) 1716 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1717 mutex_unlock(&pf->lag_mutex); 1718 1719 /* send the response to the VF */ 1720 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1721 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1722 error_param: 1723 /* disable whatever we can */ 1724 for (; i >= 0; i--) { 1725 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1726 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1727 vf->vf_id, i); 1728 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1729 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1730 vf->vf_id, i); 1731 } 1732 1733 if (lag && lag->bonded && lag->primary && 1734 act_prt != ICE_LAG_INVALID_PORT) 1735 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1736 mutex_unlock(&pf->lag_mutex); 1737 1738 ice_lag_move_new_vf_nodes(vf); 1739 1740 /* send the response to the VF */ 1741 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1742 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1743 } 1744 1745 /** 1746 * ice_can_vf_change_mac 1747 * @vf: pointer to the VF info 1748 * 1749 * Return true if the VF is allowed to change its MAC filters, false otherwise 1750 */ 1751 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1752 { 1753 /* If the VF MAC address has been set administratively (via the 1754 * ndo_set_vf_mac command), then deny permission to the VF to 1755 * add/delete unicast MAC addresses, unless the VF is trusted 1756 */ 1757 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1758 return false; 1759 1760 return true; 1761 } 1762 1763 /** 1764 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1765 * @vc_ether_addr: used to extract the type 1766 */ 1767 static u8 1768 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1769 { 1770 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1771 } 1772 1773 /** 1774 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1775 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1776 */ 1777 static bool 1778 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1779 { 1780 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1781 1782 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1783 } 1784 1785 /** 1786 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1787 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1788 * 1789 * This function should only be called when the MAC address in 1790 * virtchnl_ether_addr is a valid unicast MAC 1791 */ 1792 static bool 1793 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1794 { 1795 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1796 1797 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1798 } 1799 1800 /** 1801 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1802 * @vf: VF to update 1803 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1804 */ 1805 static void 1806 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1807 { 1808 u8 *mac_addr = vc_ether_addr->addr; 1809 1810 if (!is_valid_ether_addr(mac_addr)) 1811 return; 1812 1813 /* only allow legacy VF drivers to set the device and hardware MAC if it 1814 * is zero and allow new VF drivers to set the hardware MAC if the type 1815 * was correctly specified over VIRTCHNL 1816 */ 1817 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1818 is_zero_ether_addr(vf->hw_lan_addr)) || 1819 ice_is_vc_addr_primary(vc_ether_addr)) { 1820 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1821 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1822 } 1823 1824 /* hardware and device MACs are already set, but its possible that the 1825 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1826 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1827 * away for the legacy VF driver case as it will be updated in the 1828 * delete flow for this case 1829 */ 1830 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1831 ether_addr_copy(vf->legacy_last_added_umac.addr, 1832 mac_addr); 1833 vf->legacy_last_added_umac.time_modified = jiffies; 1834 } 1835 } 1836 1837 /** 1838 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1839 * @vf: pointer to the VF info 1840 * @vsi: pointer to the VF's VSI 1841 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1842 */ 1843 static int 1844 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1845 struct virtchnl_ether_addr *vc_ether_addr) 1846 { 1847 struct device *dev = ice_pf_to_dev(vf->pf); 1848 u8 *mac_addr = vc_ether_addr->addr; 1849 int ret; 1850 1851 /* device MAC already added */ 1852 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1853 return 0; 1854 1855 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1856 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1857 return -EPERM; 1858 } 1859 1860 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1861 if (ret == -EEXIST) { 1862 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1863 vf->vf_id); 1864 /* don't return since we might need to update 1865 * the primary MAC in ice_vfhw_mac_add() below 1866 */ 1867 } else if (ret) { 1868 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1869 mac_addr, vf->vf_id, ret); 1870 return ret; 1871 } else { 1872 vf->num_mac++; 1873 } 1874 1875 ice_vfhw_mac_add(vf, vc_ether_addr); 1876 1877 return ret; 1878 } 1879 1880 /** 1881 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1882 * @last_added_umac: structure used to check expiration 1883 */ 1884 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1885 { 1886 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1887 return time_is_before_jiffies(last_added_umac->time_modified + 1888 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1889 } 1890 1891 /** 1892 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1893 * @vf: VF to update 1894 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1895 * 1896 * only update cached hardware MAC for legacy VF drivers on delete 1897 * because we cannot guarantee order/type of MAC from the VF driver 1898 */ 1899 static void 1900 ice_update_legacy_cached_mac(struct ice_vf *vf, 1901 struct virtchnl_ether_addr *vc_ether_addr) 1902 { 1903 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1904 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1905 return; 1906 1907 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1908 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1909 } 1910 1911 /** 1912 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1913 * @vf: VF to update 1914 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1915 */ 1916 static void 1917 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1918 { 1919 u8 *mac_addr = vc_ether_addr->addr; 1920 1921 if (!is_valid_ether_addr(mac_addr) || 1922 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1923 return; 1924 1925 /* allow the device MAC to be repopulated in the add flow and don't 1926 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1927 * to be persistent on VM reboot and across driver unload/load, which 1928 * won't work if we clear the hardware MAC here 1929 */ 1930 eth_zero_addr(vf->dev_lan_addr); 1931 1932 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1933 } 1934 1935 /** 1936 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1937 * @vf: pointer to the VF info 1938 * @vsi: pointer to the VF's VSI 1939 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1940 */ 1941 static int 1942 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1943 struct virtchnl_ether_addr *vc_ether_addr) 1944 { 1945 struct device *dev = ice_pf_to_dev(vf->pf); 1946 u8 *mac_addr = vc_ether_addr->addr; 1947 int status; 1948 1949 if (!ice_can_vf_change_mac(vf) && 1950 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1951 return 0; 1952 1953 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1954 if (status == -ENOENT) { 1955 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1956 vf->vf_id); 1957 return -ENOENT; 1958 } else if (status) { 1959 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1960 mac_addr, vf->vf_id, status); 1961 return -EIO; 1962 } 1963 1964 ice_vfhw_mac_del(vf, vc_ether_addr); 1965 1966 vf->num_mac--; 1967 1968 return 0; 1969 } 1970 1971 /** 1972 * ice_vc_handle_mac_addr_msg 1973 * @vf: pointer to the VF info 1974 * @msg: pointer to the msg buffer 1975 * @set: true if MAC filters are being set, false otherwise 1976 * 1977 * add guest MAC address filter 1978 */ 1979 static int 1980 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1981 { 1982 int (*ice_vc_cfg_mac) 1983 (struct ice_vf *vf, struct ice_vsi *vsi, 1984 struct virtchnl_ether_addr *virtchnl_ether_addr); 1985 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1986 struct virtchnl_ether_addr_list *al = 1987 (struct virtchnl_ether_addr_list *)msg; 1988 struct ice_pf *pf = vf->pf; 1989 enum virtchnl_ops vc_op; 1990 struct ice_vsi *vsi; 1991 int i; 1992 1993 if (set) { 1994 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1995 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1996 } else { 1997 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1998 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1999 } 2000 2001 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2002 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2003 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2004 goto handle_mac_exit; 2005 } 2006 2007 /* If this VF is not privileged, then we can't add more than a 2008 * limited number of addresses. Check to make sure that the 2009 * additions do not push us over the limit. 2010 */ 2011 if (set && !ice_is_vf_trusted(vf) && 2012 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2013 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2014 vf->vf_id); 2015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2016 goto handle_mac_exit; 2017 } 2018 2019 vsi = ice_get_vf_vsi(vf); 2020 if (!vsi) { 2021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2022 goto handle_mac_exit; 2023 } 2024 2025 for (i = 0; i < al->num_elements; i++) { 2026 u8 *mac_addr = al->list[i].addr; 2027 int result; 2028 2029 if (is_broadcast_ether_addr(mac_addr) || 2030 is_zero_ether_addr(mac_addr)) 2031 continue; 2032 2033 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2034 if (result == -EEXIST || result == -ENOENT) { 2035 continue; 2036 } else if (result) { 2037 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2038 goto handle_mac_exit; 2039 } 2040 } 2041 2042 handle_mac_exit: 2043 /* send the response to the VF */ 2044 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2045 } 2046 2047 /** 2048 * ice_vc_add_mac_addr_msg 2049 * @vf: pointer to the VF info 2050 * @msg: pointer to the msg buffer 2051 * 2052 * add guest MAC address filter 2053 */ 2054 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2055 { 2056 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2057 } 2058 2059 /** 2060 * ice_vc_del_mac_addr_msg 2061 * @vf: pointer to the VF info 2062 * @msg: pointer to the msg buffer 2063 * 2064 * remove guest MAC address filter 2065 */ 2066 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2067 { 2068 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2069 } 2070 2071 /** 2072 * ice_vc_request_qs_msg 2073 * @vf: pointer to the VF info 2074 * @msg: pointer to the msg buffer 2075 * 2076 * VFs get a default number of queues but can use this message to request a 2077 * different number. If the request is successful, PF will reset the VF and 2078 * return 0. If unsuccessful, PF will send message informing VF of number of 2079 * available queue pairs via virtchnl message response to VF. 2080 */ 2081 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2082 { 2083 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2084 struct virtchnl_vf_res_request *vfres = 2085 (struct virtchnl_vf_res_request *)msg; 2086 u16 req_queues = vfres->num_queue_pairs; 2087 struct ice_pf *pf = vf->pf; 2088 u16 max_allowed_vf_queues; 2089 u16 tx_rx_queue_left; 2090 struct device *dev; 2091 u16 cur_queues; 2092 2093 dev = ice_pf_to_dev(pf); 2094 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2095 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2096 goto error_param; 2097 } 2098 2099 cur_queues = vf->num_vf_qs; 2100 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2101 ice_get_avail_rxq_count(pf)); 2102 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2103 if (!req_queues) { 2104 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2105 vf->vf_id); 2106 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2107 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2108 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2109 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2110 } else if (req_queues > cur_queues && 2111 req_queues - cur_queues > tx_rx_queue_left) { 2112 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2113 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2114 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2115 ICE_MAX_RSS_QS_PER_VF); 2116 } else { 2117 /* request is successful, then reset VF */ 2118 vf->num_req_qs = req_queues; 2119 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2120 dev_info(dev, "VF %d granted request of %u queues.\n", 2121 vf->vf_id, req_queues); 2122 return 0; 2123 } 2124 2125 error_param: 2126 /* send the response to the VF */ 2127 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2128 v_ret, (u8 *)vfres, sizeof(*vfres)); 2129 } 2130 2131 /** 2132 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2133 * @caps: VF driver negotiated capabilities 2134 * 2135 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2136 */ 2137 static bool ice_vf_vlan_offload_ena(u32 caps) 2138 { 2139 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2140 } 2141 2142 /** 2143 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2144 * @vf: VF used to determine if VLAN promiscuous config is allowed 2145 */ 2146 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2147 { 2148 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2149 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2150 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2151 return true; 2152 2153 return false; 2154 } 2155 2156 /** 2157 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2158 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2159 * @vlan: VLAN used to enable VLAN promiscuous 2160 * 2161 * This function should only be called if VLAN promiscuous mode is allowed, 2162 * which can be determined via ice_is_vlan_promisc_allowed(). 2163 */ 2164 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2165 { 2166 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2167 int status; 2168 2169 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2170 vlan->vid); 2171 if (status && status != -EEXIST) 2172 return status; 2173 2174 return 0; 2175 } 2176 2177 /** 2178 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2179 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2180 * @vlan: VLAN used to disable VLAN promiscuous 2181 * 2182 * This function should only be called if VLAN promiscuous mode is allowed, 2183 * which can be determined via ice_is_vlan_promisc_allowed(). 2184 */ 2185 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2186 { 2187 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2188 int status; 2189 2190 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2191 vlan->vid); 2192 if (status && status != -ENOENT) 2193 return status; 2194 2195 return 0; 2196 } 2197 2198 /** 2199 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2200 * @vf: VF to check against 2201 * @vsi: VF's VSI 2202 * 2203 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2204 * wants to, so return false. 2205 * 2206 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2207 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2208 */ 2209 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2210 { 2211 if (ice_is_vf_trusted(vf)) 2212 return false; 2213 2214 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2215 return ((ice_vsi_num_non_zero_vlans(vsi) + 2216 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2217 } 2218 2219 /** 2220 * ice_vc_process_vlan_msg 2221 * @vf: pointer to the VF info 2222 * @msg: pointer to the msg buffer 2223 * @add_v: Add VLAN if true, otherwise delete VLAN 2224 * 2225 * Process virtchnl op to add or remove programmed guest VLAN ID 2226 */ 2227 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2228 { 2229 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2230 struct virtchnl_vlan_filter_list *vfl = 2231 (struct virtchnl_vlan_filter_list *)msg; 2232 struct ice_pf *pf = vf->pf; 2233 bool vlan_promisc = false; 2234 struct ice_vsi *vsi; 2235 struct device *dev; 2236 int status = 0; 2237 int i; 2238 2239 dev = ice_pf_to_dev(pf); 2240 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2241 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2242 goto error_param; 2243 } 2244 2245 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2246 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2247 goto error_param; 2248 } 2249 2250 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2252 goto error_param; 2253 } 2254 2255 for (i = 0; i < vfl->num_elements; i++) { 2256 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2257 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2258 dev_err(dev, "invalid VF VLAN id %d\n", 2259 vfl->vlan_id[i]); 2260 goto error_param; 2261 } 2262 } 2263 2264 vsi = ice_get_vf_vsi(vf); 2265 if (!vsi) { 2266 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2267 goto error_param; 2268 } 2269 2270 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2271 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2272 vf->vf_id); 2273 /* There is no need to let VF know about being not trusted, 2274 * so we can just return success message here 2275 */ 2276 goto error_param; 2277 } 2278 2279 /* in DVM a VF can add/delete inner VLAN filters when 2280 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2281 */ 2282 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2284 goto error_param; 2285 } 2286 2287 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2288 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2289 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2290 */ 2291 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2292 !ice_is_dvm_ena(&pf->hw) && 2293 !ice_vf_is_port_vlan_ena(vf); 2294 2295 if (add_v) { 2296 for (i = 0; i < vfl->num_elements; i++) { 2297 u16 vid = vfl->vlan_id[i]; 2298 struct ice_vlan vlan; 2299 2300 if (ice_vf_has_max_vlans(vf, vsi)) { 2301 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2302 vf->vf_id); 2303 /* There is no need to let VF know about being 2304 * not trusted, so we can just return success 2305 * message here as well. 2306 */ 2307 goto error_param; 2308 } 2309 2310 /* we add VLAN 0 by default for each VF so we can enable 2311 * Tx VLAN anti-spoof without triggering MDD events so 2312 * we don't need to add it again here 2313 */ 2314 if (!vid) 2315 continue; 2316 2317 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2318 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2319 if (status) { 2320 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2321 goto error_param; 2322 } 2323 2324 /* Enable VLAN filtering on first non-zero VLAN */ 2325 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2326 if (vf->spoofchk) { 2327 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2328 if (status) { 2329 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2330 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2331 vid, status); 2332 goto error_param; 2333 } 2334 } 2335 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2336 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2337 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2338 vid, status); 2339 goto error_param; 2340 } 2341 } else if (vlan_promisc) { 2342 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2343 if (status) { 2344 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2345 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2346 vid, status); 2347 } 2348 } 2349 } 2350 } else { 2351 /* In case of non_trusted VF, number of VLAN elements passed 2352 * to PF for removal might be greater than number of VLANs 2353 * filter programmed for that VF - So, use actual number of 2354 * VLANS added earlier with add VLAN opcode. In order to avoid 2355 * removing VLAN that doesn't exist, which result to sending 2356 * erroneous failed message back to the VF 2357 */ 2358 int num_vf_vlan; 2359 2360 num_vf_vlan = vsi->num_vlan; 2361 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2362 u16 vid = vfl->vlan_id[i]; 2363 struct ice_vlan vlan; 2364 2365 /* we add VLAN 0 by default for each VF so we can enable 2366 * Tx VLAN anti-spoof without triggering MDD events so 2367 * we don't want a VIRTCHNL request to remove it 2368 */ 2369 if (!vid) 2370 continue; 2371 2372 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2373 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2374 if (status) { 2375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2376 goto error_param; 2377 } 2378 2379 /* Disable VLAN filtering when only VLAN 0 is left */ 2380 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2381 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2382 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2383 } 2384 2385 if (vlan_promisc) 2386 ice_vf_dis_vlan_promisc(vsi, &vlan); 2387 } 2388 } 2389 2390 error_param: 2391 /* send the response to the VF */ 2392 if (add_v) 2393 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2394 NULL, 0); 2395 else 2396 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2397 NULL, 0); 2398 } 2399 2400 /** 2401 * ice_vc_add_vlan_msg 2402 * @vf: pointer to the VF info 2403 * @msg: pointer to the msg buffer 2404 * 2405 * Add and program guest VLAN ID 2406 */ 2407 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2408 { 2409 return ice_vc_process_vlan_msg(vf, msg, true); 2410 } 2411 2412 /** 2413 * ice_vc_remove_vlan_msg 2414 * @vf: pointer to the VF info 2415 * @msg: pointer to the msg buffer 2416 * 2417 * remove programmed guest VLAN ID 2418 */ 2419 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2420 { 2421 return ice_vc_process_vlan_msg(vf, msg, false); 2422 } 2423 2424 /** 2425 * ice_vc_ena_vlan_stripping 2426 * @vf: pointer to the VF info 2427 * 2428 * Enable VLAN header stripping for a given VF 2429 */ 2430 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2431 { 2432 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2433 struct ice_vsi *vsi; 2434 2435 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2436 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2437 goto error_param; 2438 } 2439 2440 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2442 goto error_param; 2443 } 2444 2445 vsi = ice_get_vf_vsi(vf); 2446 if (!vsi) { 2447 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2448 goto error_param; 2449 } 2450 2451 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2452 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2453 2454 error_param: 2455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2456 v_ret, NULL, 0); 2457 } 2458 2459 /** 2460 * ice_vc_dis_vlan_stripping 2461 * @vf: pointer to the VF info 2462 * 2463 * Disable VLAN header stripping for a given VF 2464 */ 2465 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2466 { 2467 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2468 struct ice_vsi *vsi; 2469 2470 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2471 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2472 goto error_param; 2473 } 2474 2475 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2477 goto error_param; 2478 } 2479 2480 vsi = ice_get_vf_vsi(vf); 2481 if (!vsi) { 2482 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2483 goto error_param; 2484 } 2485 2486 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2487 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2488 2489 error_param: 2490 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2491 v_ret, NULL, 0); 2492 } 2493 2494 /** 2495 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2496 * @vf: pointer to the VF info 2497 */ 2498 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2499 { 2500 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2501 struct virtchnl_rss_hena *vrh = NULL; 2502 int len = 0, ret; 2503 2504 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2505 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2506 goto err; 2507 } 2508 2509 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2510 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2511 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2512 goto err; 2513 } 2514 2515 len = sizeof(struct virtchnl_rss_hena); 2516 vrh = kzalloc(len, GFP_KERNEL); 2517 if (!vrh) { 2518 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2519 len = 0; 2520 goto err; 2521 } 2522 2523 vrh->hena = ICE_DEFAULT_RSS_HENA; 2524 err: 2525 /* send the response back to the VF */ 2526 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2527 (u8 *)vrh, len); 2528 kfree(vrh); 2529 return ret; 2530 } 2531 2532 /** 2533 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2534 * @vf: pointer to the VF info 2535 * @msg: pointer to the msg buffer 2536 */ 2537 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2538 { 2539 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2540 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2541 struct ice_pf *pf = vf->pf; 2542 struct ice_vsi *vsi; 2543 struct device *dev; 2544 int status; 2545 2546 dev = ice_pf_to_dev(pf); 2547 2548 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2549 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2550 goto err; 2551 } 2552 2553 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2554 dev_err(dev, "RSS not supported by PF\n"); 2555 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2556 goto err; 2557 } 2558 2559 vsi = ice_get_vf_vsi(vf); 2560 if (!vsi) { 2561 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2562 goto err; 2563 } 2564 2565 /* clear all previously programmed RSS configuration to allow VF drivers 2566 * the ability to customize the RSS configuration and/or completely 2567 * disable RSS 2568 */ 2569 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2570 if (status && !vrh->hena) { 2571 /* only report failure to clear the current RSS configuration if 2572 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2573 */ 2574 v_ret = ice_err_to_virt_err(status); 2575 goto err; 2576 } else if (status) { 2577 /* allow the VF to update the RSS configuration even on failure 2578 * to clear the current RSS confguration in an attempt to keep 2579 * RSS in a working state 2580 */ 2581 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2582 vf->vf_id); 2583 } 2584 2585 if (vrh->hena) { 2586 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2587 v_ret = ice_err_to_virt_err(status); 2588 } 2589 2590 /* send the response to the VF */ 2591 err: 2592 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2593 NULL, 0); 2594 } 2595 2596 /** 2597 * ice_vc_query_rxdid - query RXDID supported by DDP package 2598 * @vf: pointer to VF info 2599 * 2600 * Called from VF to query a bitmap of supported flexible 2601 * descriptor RXDIDs of a DDP package. 2602 */ 2603 static int ice_vc_query_rxdid(struct ice_vf *vf) 2604 { 2605 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2606 struct virtchnl_supported_rxdids *rxdid = NULL; 2607 struct ice_hw *hw = &vf->pf->hw; 2608 struct ice_pf *pf = vf->pf; 2609 int len = 0; 2610 int ret, i; 2611 u32 regval; 2612 2613 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2614 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2615 goto err; 2616 } 2617 2618 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2620 goto err; 2621 } 2622 2623 len = sizeof(struct virtchnl_supported_rxdids); 2624 rxdid = kzalloc(len, GFP_KERNEL); 2625 if (!rxdid) { 2626 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2627 len = 0; 2628 goto err; 2629 } 2630 2631 /* RXDIDs supported by DDP package can be read from the register 2632 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2633 * is not listed in DDP package, add it in the bitmap manually. 2634 * Legacy 16byte descriptor is not supported. 2635 */ 2636 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2637 2638 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2639 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2640 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2641 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2642 rxdid->supported_rxdids |= BIT(i); 2643 } 2644 2645 pf->supported_rxdids = rxdid->supported_rxdids; 2646 2647 err: 2648 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2649 v_ret, (u8 *)rxdid, len); 2650 kfree(rxdid); 2651 return ret; 2652 } 2653 2654 /** 2655 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2656 * @vf: VF to enable/disable VLAN stripping for on initialization 2657 * 2658 * Set the default for VLAN stripping based on whether a port VLAN is configured 2659 * and the current VLAN mode of the device. 2660 */ 2661 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2662 { 2663 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2664 2665 if (!vsi) 2666 return -EINVAL; 2667 2668 /* don't modify stripping if port VLAN is configured in SVM since the 2669 * port VLAN is based on the inner/single VLAN in SVM 2670 */ 2671 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2672 return 0; 2673 2674 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2675 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2676 else 2677 return vsi->inner_vlan_ops.dis_stripping(vsi); 2678 } 2679 2680 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2681 { 2682 if (vf->trusted) 2683 return VLAN_N_VID; 2684 else 2685 return ICE_MAX_VLAN_PER_VF; 2686 } 2687 2688 /** 2689 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2690 * @vf: VF that being checked for 2691 * 2692 * When the device is in double VLAN mode, check whether or not the outer VLAN 2693 * is allowed. 2694 */ 2695 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2696 { 2697 if (ice_vf_is_port_vlan_ena(vf)) 2698 return true; 2699 2700 return false; 2701 } 2702 2703 /** 2704 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2705 * @vf: VF that capabilities are being set for 2706 * @caps: VLAN capabilities to populate 2707 * 2708 * Determine VLAN capabilities support based on whether a port VLAN is 2709 * configured. If a port VLAN is configured then the VF should use the inner 2710 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2711 * capabilies. 2712 */ 2713 static void 2714 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2715 { 2716 struct virtchnl_vlan_supported_caps *supported_caps; 2717 2718 if (ice_vf_outer_vlan_not_allowed(vf)) { 2719 /* until support for inner VLAN filtering is added when a port 2720 * VLAN is configured, only support software offloaded inner 2721 * VLANs when a port VLAN is confgured in DVM 2722 */ 2723 supported_caps = &caps->filtering.filtering_support; 2724 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2725 2726 supported_caps = &caps->offloads.stripping_support; 2727 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2728 VIRTCHNL_VLAN_TOGGLE | 2729 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2730 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2731 2732 supported_caps = &caps->offloads.insertion_support; 2733 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2734 VIRTCHNL_VLAN_TOGGLE | 2735 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2736 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2737 2738 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2739 caps->offloads.ethertype_match = 2740 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2741 } else { 2742 supported_caps = &caps->filtering.filtering_support; 2743 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2744 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2745 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2746 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2747 VIRTCHNL_VLAN_ETHERTYPE_AND; 2748 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2749 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2750 VIRTCHNL_VLAN_ETHERTYPE_9100; 2751 2752 supported_caps = &caps->offloads.stripping_support; 2753 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2754 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2755 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2756 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2757 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2758 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2759 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2760 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2761 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2762 2763 supported_caps = &caps->offloads.insertion_support; 2764 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2765 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2766 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2767 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2768 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2769 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2770 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2771 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2772 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2773 2774 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2775 2776 caps->offloads.ethertype_match = 2777 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2778 } 2779 2780 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2781 } 2782 2783 /** 2784 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2785 * @vf: VF that capabilities are being set for 2786 * @caps: VLAN capabilities to populate 2787 * 2788 * Determine VLAN capabilities support based on whether a port VLAN is 2789 * configured. If a port VLAN is configured then the VF does not have any VLAN 2790 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2791 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2792 * VLAN fitlering and offload capabilities. 2793 */ 2794 static void 2795 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2796 { 2797 struct virtchnl_vlan_supported_caps *supported_caps; 2798 2799 if (ice_vf_is_port_vlan_ena(vf)) { 2800 supported_caps = &caps->filtering.filtering_support; 2801 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2802 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2803 2804 supported_caps = &caps->offloads.stripping_support; 2805 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2806 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2807 2808 supported_caps = &caps->offloads.insertion_support; 2809 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2810 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2811 2812 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2813 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2814 caps->filtering.max_filters = 0; 2815 } else { 2816 supported_caps = &caps->filtering.filtering_support; 2817 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2818 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2819 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2820 2821 supported_caps = &caps->offloads.stripping_support; 2822 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2823 VIRTCHNL_VLAN_TOGGLE | 2824 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2825 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2826 2827 supported_caps = &caps->offloads.insertion_support; 2828 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2829 VIRTCHNL_VLAN_TOGGLE | 2830 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2831 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2832 2833 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2834 caps->offloads.ethertype_match = 2835 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2836 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2837 } 2838 } 2839 2840 /** 2841 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2842 * @vf: VF to determine VLAN capabilities for 2843 * 2844 * This will only be called if the VF and PF successfully negotiated 2845 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2846 * 2847 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2848 * is configured or not. 2849 */ 2850 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2851 { 2852 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2853 struct virtchnl_vlan_caps *caps = NULL; 2854 int err, len = 0; 2855 2856 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2857 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2858 goto out; 2859 } 2860 2861 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2862 if (!caps) { 2863 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2864 goto out; 2865 } 2866 len = sizeof(*caps); 2867 2868 if (ice_is_dvm_ena(&vf->pf->hw)) 2869 ice_vc_set_dvm_caps(vf, caps); 2870 else 2871 ice_vc_set_svm_caps(vf, caps); 2872 2873 /* store negotiated caps to prevent invalid VF messages */ 2874 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2875 2876 out: 2877 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2878 v_ret, (u8 *)caps, len); 2879 kfree(caps); 2880 return err; 2881 } 2882 2883 /** 2884 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2885 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2886 * @tpid: VLAN TPID used for validation 2887 * 2888 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2889 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2890 */ 2891 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2892 { 2893 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2894 2895 switch (tpid) { 2896 case ETH_P_8021Q: 2897 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2898 break; 2899 case ETH_P_8021AD: 2900 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2901 break; 2902 case ETH_P_QINQ1: 2903 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2904 break; 2905 } 2906 2907 if (!(filtering_caps & vlan_ethertype)) 2908 return false; 2909 2910 return true; 2911 } 2912 2913 /** 2914 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2915 * @vc_vlan: virtchnl_vlan to validate 2916 * 2917 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2918 * false. Otherwise return true. 2919 */ 2920 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2921 { 2922 if (!vc_vlan->tci || !vc_vlan->tpid) 2923 return false; 2924 2925 return true; 2926 } 2927 2928 /** 2929 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2930 * @vfc: negotiated/supported VLAN filtering capabilities 2931 * @vfl: VLAN filter list from VF to validate 2932 * 2933 * Validate all of the filters in the VLAN filter list from the VF. If any of 2934 * the checks fail then return false. Otherwise return true. 2935 */ 2936 static bool 2937 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2938 struct virtchnl_vlan_filter_list_v2 *vfl) 2939 { 2940 u16 i; 2941 2942 if (!vfl->num_elements) 2943 return false; 2944 2945 for (i = 0; i < vfl->num_elements; i++) { 2946 struct virtchnl_vlan_supported_caps *filtering_support = 2947 &vfc->filtering_support; 2948 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2949 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2950 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2951 2952 if ((ice_vc_is_valid_vlan(outer) && 2953 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2954 (ice_vc_is_valid_vlan(inner) && 2955 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2956 return false; 2957 2958 if ((outer->tci_mask && 2959 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2960 (inner->tci_mask && 2961 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2962 return false; 2963 2964 if (((outer->tci & VLAN_PRIO_MASK) && 2965 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2966 ((inner->tci & VLAN_PRIO_MASK) && 2967 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2968 return false; 2969 2970 if ((ice_vc_is_valid_vlan(outer) && 2971 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2972 outer->tpid)) || 2973 (ice_vc_is_valid_vlan(inner) && 2974 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2975 inner->tpid))) 2976 return false; 2977 } 2978 2979 return true; 2980 } 2981 2982 /** 2983 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2984 * @vc_vlan: struct virtchnl_vlan to transform 2985 */ 2986 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2987 { 2988 struct ice_vlan vlan = { 0 }; 2989 2990 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2991 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2992 vlan.tpid = vc_vlan->tpid; 2993 2994 return vlan; 2995 } 2996 2997 /** 2998 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2999 * @vsi: VF's VSI used to perform the action 3000 * @vlan_action: function to perform the action with (i.e. add/del) 3001 * @vlan: VLAN filter to perform the action with 3002 */ 3003 static int 3004 ice_vc_vlan_action(struct ice_vsi *vsi, 3005 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3006 struct ice_vlan *vlan) 3007 { 3008 int err; 3009 3010 err = vlan_action(vsi, vlan); 3011 if (err) 3012 return err; 3013 3014 return 0; 3015 } 3016 3017 /** 3018 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3019 * @vf: VF used to delete the VLAN(s) 3020 * @vsi: VF's VSI used to delete the VLAN(s) 3021 * @vfl: virthchnl filter list used to delete the filters 3022 */ 3023 static int 3024 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3025 struct virtchnl_vlan_filter_list_v2 *vfl) 3026 { 3027 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3028 int err; 3029 u16 i; 3030 3031 for (i = 0; i < vfl->num_elements; i++) { 3032 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3033 struct virtchnl_vlan *vc_vlan; 3034 3035 vc_vlan = &vlan_fltr->outer; 3036 if (ice_vc_is_valid_vlan(vc_vlan)) { 3037 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3038 3039 err = ice_vc_vlan_action(vsi, 3040 vsi->outer_vlan_ops.del_vlan, 3041 &vlan); 3042 if (err) 3043 return err; 3044 3045 if (vlan_promisc) 3046 ice_vf_dis_vlan_promisc(vsi, &vlan); 3047 3048 /* Disable VLAN filtering when only VLAN 0 is left */ 3049 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3050 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3051 if (err) 3052 return err; 3053 } 3054 } 3055 3056 vc_vlan = &vlan_fltr->inner; 3057 if (ice_vc_is_valid_vlan(vc_vlan)) { 3058 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3059 3060 err = ice_vc_vlan_action(vsi, 3061 vsi->inner_vlan_ops.del_vlan, 3062 &vlan); 3063 if (err) 3064 return err; 3065 3066 /* no support for VLAN promiscuous on inner VLAN unless 3067 * we are in Single VLAN Mode (SVM) 3068 */ 3069 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3070 if (vlan_promisc) 3071 ice_vf_dis_vlan_promisc(vsi, &vlan); 3072 3073 /* Disable VLAN filtering when only VLAN 0 is left */ 3074 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3075 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3076 if (err) 3077 return err; 3078 } 3079 } 3080 } 3081 } 3082 3083 return 0; 3084 } 3085 3086 /** 3087 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3088 * @vf: VF the message was received from 3089 * @msg: message received from the VF 3090 */ 3091 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3092 { 3093 struct virtchnl_vlan_filter_list_v2 *vfl = 3094 (struct virtchnl_vlan_filter_list_v2 *)msg; 3095 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3096 struct ice_vsi *vsi; 3097 3098 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3099 vfl)) { 3100 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3101 goto out; 3102 } 3103 3104 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3105 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3106 goto out; 3107 } 3108 3109 vsi = ice_get_vf_vsi(vf); 3110 if (!vsi) { 3111 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3112 goto out; 3113 } 3114 3115 if (ice_vc_del_vlans(vf, vsi, vfl)) 3116 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3117 3118 out: 3119 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3120 0); 3121 } 3122 3123 /** 3124 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3125 * @vf: VF used to add the VLAN(s) 3126 * @vsi: VF's VSI used to add the VLAN(s) 3127 * @vfl: virthchnl filter list used to add the filters 3128 */ 3129 static int 3130 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3131 struct virtchnl_vlan_filter_list_v2 *vfl) 3132 { 3133 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3134 int err; 3135 u16 i; 3136 3137 for (i = 0; i < vfl->num_elements; i++) { 3138 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3139 struct virtchnl_vlan *vc_vlan; 3140 3141 vc_vlan = &vlan_fltr->outer; 3142 if (ice_vc_is_valid_vlan(vc_vlan)) { 3143 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3144 3145 err = ice_vc_vlan_action(vsi, 3146 vsi->outer_vlan_ops.add_vlan, 3147 &vlan); 3148 if (err) 3149 return err; 3150 3151 if (vlan_promisc) { 3152 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3153 if (err) 3154 return err; 3155 } 3156 3157 /* Enable VLAN filtering on first non-zero VLAN */ 3158 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3159 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3160 if (err) 3161 return err; 3162 } 3163 } 3164 3165 vc_vlan = &vlan_fltr->inner; 3166 if (ice_vc_is_valid_vlan(vc_vlan)) { 3167 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3168 3169 err = ice_vc_vlan_action(vsi, 3170 vsi->inner_vlan_ops.add_vlan, 3171 &vlan); 3172 if (err) 3173 return err; 3174 3175 /* no support for VLAN promiscuous on inner VLAN unless 3176 * we are in Single VLAN Mode (SVM) 3177 */ 3178 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3179 if (vlan_promisc) { 3180 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3181 if (err) 3182 return err; 3183 } 3184 3185 /* Enable VLAN filtering on first non-zero VLAN */ 3186 if (vf->spoofchk && vlan.vid) { 3187 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3188 if (err) 3189 return err; 3190 } 3191 } 3192 } 3193 } 3194 3195 return 0; 3196 } 3197 3198 /** 3199 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3200 * @vsi: VF VSI used to get number of existing VLAN filters 3201 * @vfc: negotiated/supported VLAN filtering capabilities 3202 * @vfl: VLAN filter list from VF to validate 3203 * 3204 * Validate all of the filters in the VLAN filter list from the VF during the 3205 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3206 * Otherwise return true. 3207 */ 3208 static bool 3209 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3210 struct virtchnl_vlan_filtering_caps *vfc, 3211 struct virtchnl_vlan_filter_list_v2 *vfl) 3212 { 3213 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3214 vfl->num_elements; 3215 3216 if (num_requested_filters > vfc->max_filters) 3217 return false; 3218 3219 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3220 } 3221 3222 /** 3223 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3224 * @vf: VF the message was received from 3225 * @msg: message received from the VF 3226 */ 3227 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3228 { 3229 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3230 struct virtchnl_vlan_filter_list_v2 *vfl = 3231 (struct virtchnl_vlan_filter_list_v2 *)msg; 3232 struct ice_vsi *vsi; 3233 3234 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3235 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3236 goto out; 3237 } 3238 3239 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3241 goto out; 3242 } 3243 3244 vsi = ice_get_vf_vsi(vf); 3245 if (!vsi) { 3246 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3247 goto out; 3248 } 3249 3250 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3251 &vf->vlan_v2_caps.filtering, 3252 vfl)) { 3253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3254 goto out; 3255 } 3256 3257 if (ice_vc_add_vlans(vf, vsi, vfl)) 3258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3259 3260 out: 3261 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3262 0); 3263 } 3264 3265 /** 3266 * ice_vc_valid_vlan_setting - validate VLAN setting 3267 * @negotiated_settings: negotiated VLAN settings during VF init 3268 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3269 */ 3270 static bool 3271 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3272 { 3273 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3274 return false; 3275 3276 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3277 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3278 */ 3279 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3280 hweight32(ethertype_setting) > 1) 3281 return false; 3282 3283 /* ability to modify the VLAN setting was not negotiated */ 3284 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3285 return false; 3286 3287 return true; 3288 } 3289 3290 /** 3291 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3292 * @caps: negotiated VLAN settings during VF init 3293 * @msg: message to validate 3294 * 3295 * Used to validate any VLAN virtchnl message sent as a 3296 * virtchnl_vlan_setting structure. Validates the message against the 3297 * negotiated/supported caps during VF driver init. 3298 */ 3299 static bool 3300 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3301 struct virtchnl_vlan_setting *msg) 3302 { 3303 if ((!msg->outer_ethertype_setting && 3304 !msg->inner_ethertype_setting) || 3305 (!caps->outer && !caps->inner)) 3306 return false; 3307 3308 if (msg->outer_ethertype_setting && 3309 !ice_vc_valid_vlan_setting(caps->outer, 3310 msg->outer_ethertype_setting)) 3311 return false; 3312 3313 if (msg->inner_ethertype_setting && 3314 !ice_vc_valid_vlan_setting(caps->inner, 3315 msg->inner_ethertype_setting)) 3316 return false; 3317 3318 return true; 3319 } 3320 3321 /** 3322 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3323 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3324 * @tpid: VLAN TPID to populate 3325 */ 3326 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3327 { 3328 switch (ethertype_setting) { 3329 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3330 *tpid = ETH_P_8021Q; 3331 break; 3332 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3333 *tpid = ETH_P_8021AD; 3334 break; 3335 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3336 *tpid = ETH_P_QINQ1; 3337 break; 3338 default: 3339 *tpid = 0; 3340 return -EINVAL; 3341 } 3342 3343 return 0; 3344 } 3345 3346 /** 3347 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3348 * @vsi: VF's VSI used to enable the VLAN offload 3349 * @ena_offload: function used to enable the VLAN offload 3350 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3351 */ 3352 static int 3353 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3354 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3355 u32 ethertype_setting) 3356 { 3357 u16 tpid; 3358 int err; 3359 3360 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3361 if (err) 3362 return err; 3363 3364 err = ena_offload(vsi, tpid); 3365 if (err) 3366 return err; 3367 3368 return 0; 3369 } 3370 3371 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3372 #define ICE_L2TSEL_BIT_OFFSET 23 3373 enum ice_l2tsel { 3374 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3375 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3376 }; 3377 3378 /** 3379 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3380 * @vsi: VSI used to update l2tsel on 3381 * @l2tsel: l2tsel setting requested 3382 * 3383 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3384 * This will modify which descriptor field the first offloaded VLAN will be 3385 * stripped into. 3386 */ 3387 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3388 { 3389 struct ice_hw *hw = &vsi->back->hw; 3390 u32 l2tsel_bit; 3391 int i; 3392 3393 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3394 l2tsel_bit = 0; 3395 else 3396 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3397 3398 for (i = 0; i < vsi->alloc_rxq; i++) { 3399 u16 pfq = vsi->rxq_map[i]; 3400 u32 qrx_context_offset; 3401 u32 regval; 3402 3403 qrx_context_offset = 3404 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3405 3406 regval = rd32(hw, qrx_context_offset); 3407 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3408 regval |= l2tsel_bit; 3409 wr32(hw, qrx_context_offset, regval); 3410 } 3411 } 3412 3413 /** 3414 * ice_vc_ena_vlan_stripping_v2_msg 3415 * @vf: VF the message was received from 3416 * @msg: message received from the VF 3417 * 3418 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3419 */ 3420 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3421 { 3422 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3423 struct virtchnl_vlan_supported_caps *stripping_support; 3424 struct virtchnl_vlan_setting *strip_msg = 3425 (struct virtchnl_vlan_setting *)msg; 3426 u32 ethertype_setting; 3427 struct ice_vsi *vsi; 3428 3429 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3430 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3431 goto out; 3432 } 3433 3434 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3435 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3436 goto out; 3437 } 3438 3439 vsi = ice_get_vf_vsi(vf); 3440 if (!vsi) { 3441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3442 goto out; 3443 } 3444 3445 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3446 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3447 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3448 goto out; 3449 } 3450 3451 ethertype_setting = strip_msg->outer_ethertype_setting; 3452 if (ethertype_setting) { 3453 if (ice_vc_ena_vlan_offload(vsi, 3454 vsi->outer_vlan_ops.ena_stripping, 3455 ethertype_setting)) { 3456 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3457 goto out; 3458 } else { 3459 enum ice_l2tsel l2tsel = 3460 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3461 3462 /* PF tells the VF that the outer VLAN tag is always 3463 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3464 * inner is always extracted to 3465 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3466 * support outer stripping so the first tag always ends 3467 * up in L2TAG2_2ND and the second/inner tag, if 3468 * enabled, is extracted in L2TAG1. 3469 */ 3470 ice_vsi_update_l2tsel(vsi, l2tsel); 3471 } 3472 } 3473 3474 ethertype_setting = strip_msg->inner_ethertype_setting; 3475 if (ethertype_setting && 3476 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3477 ethertype_setting)) { 3478 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3479 goto out; 3480 } 3481 3482 out: 3483 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3484 v_ret, NULL, 0); 3485 } 3486 3487 /** 3488 * ice_vc_dis_vlan_stripping_v2_msg 3489 * @vf: VF the message was received from 3490 * @msg: message received from the VF 3491 * 3492 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3493 */ 3494 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3495 { 3496 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3497 struct virtchnl_vlan_supported_caps *stripping_support; 3498 struct virtchnl_vlan_setting *strip_msg = 3499 (struct virtchnl_vlan_setting *)msg; 3500 u32 ethertype_setting; 3501 struct ice_vsi *vsi; 3502 3503 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3505 goto out; 3506 } 3507 3508 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3509 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3510 goto out; 3511 } 3512 3513 vsi = ice_get_vf_vsi(vf); 3514 if (!vsi) { 3515 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3516 goto out; 3517 } 3518 3519 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3520 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3521 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3522 goto out; 3523 } 3524 3525 ethertype_setting = strip_msg->outer_ethertype_setting; 3526 if (ethertype_setting) { 3527 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3528 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3529 goto out; 3530 } else { 3531 enum ice_l2tsel l2tsel = 3532 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3533 3534 /* PF tells the VF that the outer VLAN tag is always 3535 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3536 * inner is always extracted to 3537 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3538 * support inner stripping while outer stripping is 3539 * disabled so that the first and only tag is extracted 3540 * in L2TAG1. 3541 */ 3542 ice_vsi_update_l2tsel(vsi, l2tsel); 3543 } 3544 } 3545 3546 ethertype_setting = strip_msg->inner_ethertype_setting; 3547 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3548 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3549 goto out; 3550 } 3551 3552 out: 3553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3554 v_ret, NULL, 0); 3555 } 3556 3557 /** 3558 * ice_vc_ena_vlan_insertion_v2_msg 3559 * @vf: VF the message was received from 3560 * @msg: message received from the VF 3561 * 3562 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3563 */ 3564 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3565 { 3566 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3567 struct virtchnl_vlan_supported_caps *insertion_support; 3568 struct virtchnl_vlan_setting *insertion_msg = 3569 (struct virtchnl_vlan_setting *)msg; 3570 u32 ethertype_setting; 3571 struct ice_vsi *vsi; 3572 3573 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3574 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3575 goto out; 3576 } 3577 3578 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3579 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3580 goto out; 3581 } 3582 3583 vsi = ice_get_vf_vsi(vf); 3584 if (!vsi) { 3585 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3586 goto out; 3587 } 3588 3589 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3590 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3591 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3592 goto out; 3593 } 3594 3595 ethertype_setting = insertion_msg->outer_ethertype_setting; 3596 if (ethertype_setting && 3597 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3598 ethertype_setting)) { 3599 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3600 goto out; 3601 } 3602 3603 ethertype_setting = insertion_msg->inner_ethertype_setting; 3604 if (ethertype_setting && 3605 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3606 ethertype_setting)) { 3607 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3608 goto out; 3609 } 3610 3611 out: 3612 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3613 v_ret, NULL, 0); 3614 } 3615 3616 /** 3617 * ice_vc_dis_vlan_insertion_v2_msg 3618 * @vf: VF the message was received from 3619 * @msg: message received from the VF 3620 * 3621 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3622 */ 3623 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3624 { 3625 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3626 struct virtchnl_vlan_supported_caps *insertion_support; 3627 struct virtchnl_vlan_setting *insertion_msg = 3628 (struct virtchnl_vlan_setting *)msg; 3629 u32 ethertype_setting; 3630 struct ice_vsi *vsi; 3631 3632 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3634 goto out; 3635 } 3636 3637 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3638 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3639 goto out; 3640 } 3641 3642 vsi = ice_get_vf_vsi(vf); 3643 if (!vsi) { 3644 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3645 goto out; 3646 } 3647 3648 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3649 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3650 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3651 goto out; 3652 } 3653 3654 ethertype_setting = insertion_msg->outer_ethertype_setting; 3655 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3656 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3657 goto out; 3658 } 3659 3660 ethertype_setting = insertion_msg->inner_ethertype_setting; 3661 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3663 goto out; 3664 } 3665 3666 out: 3667 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3668 v_ret, NULL, 0); 3669 } 3670 3671 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3672 .get_ver_msg = ice_vc_get_ver_msg, 3673 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3674 .reset_vf = ice_vc_reset_vf_msg, 3675 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3676 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3677 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3678 .ena_qs_msg = ice_vc_ena_qs_msg, 3679 .dis_qs_msg = ice_vc_dis_qs_msg, 3680 .request_qs_msg = ice_vc_request_qs_msg, 3681 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3682 .config_rss_key = ice_vc_config_rss_key, 3683 .config_rss_lut = ice_vc_config_rss_lut, 3684 .get_stats_msg = ice_vc_get_stats_msg, 3685 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3686 .add_vlan_msg = ice_vc_add_vlan_msg, 3687 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3688 .query_rxdid = ice_vc_query_rxdid, 3689 .get_rss_hena = ice_vc_get_rss_hena, 3690 .set_rss_hena_msg = ice_vc_set_rss_hena, 3691 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3692 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3693 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3694 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3695 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3696 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3697 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3698 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3699 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3700 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3701 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3702 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3703 }; 3704 3705 /** 3706 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3707 * @vf: the VF to switch ops 3708 */ 3709 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3710 { 3711 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3712 } 3713 3714 /** 3715 * ice_vc_repr_add_mac 3716 * @vf: pointer to VF 3717 * @msg: virtchannel message 3718 * 3719 * When port representors are created, we do not add MAC rule 3720 * to firmware, we store it so that PF could report same 3721 * MAC as VF. 3722 */ 3723 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3724 { 3725 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3726 struct virtchnl_ether_addr_list *al = 3727 (struct virtchnl_ether_addr_list *)msg; 3728 struct ice_vsi *vsi; 3729 struct ice_pf *pf; 3730 int i; 3731 3732 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3733 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3734 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3735 goto handle_mac_exit; 3736 } 3737 3738 pf = vf->pf; 3739 3740 vsi = ice_get_vf_vsi(vf); 3741 if (!vsi) { 3742 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3743 goto handle_mac_exit; 3744 } 3745 3746 for (i = 0; i < al->num_elements; i++) { 3747 u8 *mac_addr = al->list[i].addr; 3748 3749 if (!is_unicast_ether_addr(mac_addr) || 3750 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3751 continue; 3752 3753 if (vf->pf_set_mac) { 3754 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3755 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3756 goto handle_mac_exit; 3757 } 3758 3759 ice_vfhw_mac_add(vf, &al->list[i]); 3760 vf->num_mac++; 3761 break; 3762 } 3763 3764 handle_mac_exit: 3765 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3766 v_ret, NULL, 0); 3767 } 3768 3769 /** 3770 * ice_vc_repr_del_mac - response with success for deleting MAC 3771 * @vf: pointer to VF 3772 * @msg: virtchannel message 3773 * 3774 * Respond with success to not break normal VF flow. 3775 * For legacy VF driver try to update cached MAC address. 3776 */ 3777 static int 3778 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3779 { 3780 struct virtchnl_ether_addr_list *al = 3781 (struct virtchnl_ether_addr_list *)msg; 3782 3783 ice_update_legacy_cached_mac(vf, &al->list[0]); 3784 3785 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3786 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3787 } 3788 3789 static int 3790 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3791 { 3792 dev_dbg(ice_pf_to_dev(vf->pf), 3793 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3794 vf->vf_id); 3795 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3796 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3797 NULL, 0); 3798 } 3799 3800 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3801 .get_ver_msg = ice_vc_get_ver_msg, 3802 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3803 .reset_vf = ice_vc_reset_vf_msg, 3804 .add_mac_addr_msg = ice_vc_repr_add_mac, 3805 .del_mac_addr_msg = ice_vc_repr_del_mac, 3806 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3807 .ena_qs_msg = ice_vc_ena_qs_msg, 3808 .dis_qs_msg = ice_vc_dis_qs_msg, 3809 .request_qs_msg = ice_vc_request_qs_msg, 3810 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3811 .config_rss_key = ice_vc_config_rss_key, 3812 .config_rss_lut = ice_vc_config_rss_lut, 3813 .get_stats_msg = ice_vc_get_stats_msg, 3814 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3815 .add_vlan_msg = ice_vc_add_vlan_msg, 3816 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3817 .query_rxdid = ice_vc_query_rxdid, 3818 .get_rss_hena = ice_vc_get_rss_hena, 3819 .set_rss_hena_msg = ice_vc_set_rss_hena, 3820 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3821 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3822 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3823 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3824 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3825 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3826 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3827 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3828 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3829 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3830 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3831 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3832 }; 3833 3834 /** 3835 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3836 * @vf: the VF to switch ops 3837 */ 3838 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3839 { 3840 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3841 } 3842 3843 /** 3844 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3845 * @vf: the VF to check 3846 * @mbxdata: data about the state of the mailbox 3847 * 3848 * Detect if a given VF might be malicious and attempting to overflow the PF 3849 * mailbox. If so, log a warning message and ignore this event. 3850 */ 3851 static bool 3852 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3853 { 3854 bool report_malvf = false; 3855 struct device *dev; 3856 struct ice_pf *pf; 3857 int status; 3858 3859 pf = vf->pf; 3860 dev = ice_pf_to_dev(pf); 3861 3862 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3863 return vf->mbx_info.malicious; 3864 3865 /* check to see if we have a newly malicious VF */ 3866 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3867 &report_malvf); 3868 if (status) 3869 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3870 vf->vf_id, vf->dev_lan_addr, status); 3871 3872 if (report_malvf) { 3873 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3874 u8 zero_addr[ETH_ALEN] = {}; 3875 3876 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3877 vf->dev_lan_addr, 3878 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3879 } 3880 3881 return vf->mbx_info.malicious; 3882 } 3883 3884 /** 3885 * ice_vc_process_vf_msg - Process request from VF 3886 * @pf: pointer to the PF structure 3887 * @event: pointer to the AQ event 3888 * @mbxdata: information used to detect VF attempting mailbox overflow 3889 * 3890 * called from the common asq/arq handler to 3891 * process request from VF 3892 */ 3893 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3894 struct ice_mbx_data *mbxdata) 3895 { 3896 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3897 s16 vf_id = le16_to_cpu(event->desc.retval); 3898 const struct ice_virtchnl_ops *ops; 3899 u16 msglen = event->msg_len; 3900 u8 *msg = event->msg_buf; 3901 struct ice_vf *vf = NULL; 3902 struct device *dev; 3903 int err = 0; 3904 3905 dev = ice_pf_to_dev(pf); 3906 3907 vf = ice_get_vf_by_id(pf, vf_id); 3908 if (!vf) { 3909 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3910 vf_id, v_opcode, msglen); 3911 return; 3912 } 3913 3914 mutex_lock(&vf->cfg_lock); 3915 3916 /* Check if the VF is trying to overflow the mailbox */ 3917 if (ice_is_malicious_vf(vf, mbxdata)) 3918 goto finish; 3919 3920 /* Check if VF is disabled. */ 3921 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3922 err = -EPERM; 3923 goto error_handler; 3924 } 3925 3926 ops = vf->virtchnl_ops; 3927 3928 /* Perform basic checks on the msg */ 3929 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3930 if (err) { 3931 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3932 err = -EPERM; 3933 else 3934 err = -EINVAL; 3935 } 3936 3937 error_handler: 3938 if (err) { 3939 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3940 NULL, 0); 3941 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3942 vf_id, v_opcode, msglen, err); 3943 goto finish; 3944 } 3945 3946 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3947 ice_vc_send_msg_to_vf(vf, v_opcode, 3948 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3949 0); 3950 goto finish; 3951 } 3952 3953 switch (v_opcode) { 3954 case VIRTCHNL_OP_VERSION: 3955 err = ops->get_ver_msg(vf, msg); 3956 break; 3957 case VIRTCHNL_OP_GET_VF_RESOURCES: 3958 err = ops->get_vf_res_msg(vf, msg); 3959 if (ice_vf_init_vlan_stripping(vf)) 3960 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3961 vf->vf_id); 3962 ice_vc_notify_vf_link_state(vf); 3963 break; 3964 case VIRTCHNL_OP_RESET_VF: 3965 ops->reset_vf(vf); 3966 break; 3967 case VIRTCHNL_OP_ADD_ETH_ADDR: 3968 err = ops->add_mac_addr_msg(vf, msg); 3969 break; 3970 case VIRTCHNL_OP_DEL_ETH_ADDR: 3971 err = ops->del_mac_addr_msg(vf, msg); 3972 break; 3973 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3974 err = ops->cfg_qs_msg(vf, msg); 3975 break; 3976 case VIRTCHNL_OP_ENABLE_QUEUES: 3977 err = ops->ena_qs_msg(vf, msg); 3978 ice_vc_notify_vf_link_state(vf); 3979 break; 3980 case VIRTCHNL_OP_DISABLE_QUEUES: 3981 err = ops->dis_qs_msg(vf, msg); 3982 break; 3983 case VIRTCHNL_OP_REQUEST_QUEUES: 3984 err = ops->request_qs_msg(vf, msg); 3985 break; 3986 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3987 err = ops->cfg_irq_map_msg(vf, msg); 3988 break; 3989 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3990 err = ops->config_rss_key(vf, msg); 3991 break; 3992 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3993 err = ops->config_rss_lut(vf, msg); 3994 break; 3995 case VIRTCHNL_OP_GET_STATS: 3996 err = ops->get_stats_msg(vf, msg); 3997 break; 3998 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3999 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4000 break; 4001 case VIRTCHNL_OP_ADD_VLAN: 4002 err = ops->add_vlan_msg(vf, msg); 4003 break; 4004 case VIRTCHNL_OP_DEL_VLAN: 4005 err = ops->remove_vlan_msg(vf, msg); 4006 break; 4007 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4008 err = ops->query_rxdid(vf); 4009 break; 4010 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4011 err = ops->get_rss_hena(vf); 4012 break; 4013 case VIRTCHNL_OP_SET_RSS_HENA: 4014 err = ops->set_rss_hena_msg(vf, msg); 4015 break; 4016 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4017 err = ops->ena_vlan_stripping(vf); 4018 break; 4019 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4020 err = ops->dis_vlan_stripping(vf); 4021 break; 4022 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4023 err = ops->add_fdir_fltr_msg(vf, msg); 4024 break; 4025 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4026 err = ops->del_fdir_fltr_msg(vf, msg); 4027 break; 4028 case VIRTCHNL_OP_ADD_RSS_CFG: 4029 err = ops->handle_rss_cfg_msg(vf, msg, true); 4030 break; 4031 case VIRTCHNL_OP_DEL_RSS_CFG: 4032 err = ops->handle_rss_cfg_msg(vf, msg, false); 4033 break; 4034 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4035 err = ops->get_offload_vlan_v2_caps(vf); 4036 break; 4037 case VIRTCHNL_OP_ADD_VLAN_V2: 4038 err = ops->add_vlan_v2_msg(vf, msg); 4039 break; 4040 case VIRTCHNL_OP_DEL_VLAN_V2: 4041 err = ops->remove_vlan_v2_msg(vf, msg); 4042 break; 4043 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4044 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4045 break; 4046 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4047 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4048 break; 4049 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4050 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4051 break; 4052 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4053 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4054 break; 4055 case VIRTCHNL_OP_UNKNOWN: 4056 default: 4057 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4058 vf_id); 4059 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4060 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4061 NULL, 0); 4062 break; 4063 } 4064 if (err) { 4065 /* Helper function cares less about error return values here 4066 * as it is busy with pending work. 4067 */ 4068 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4069 vf_id, v_opcode, err); 4070 } 4071 4072 finish: 4073 mutex_unlock(&vf->cfg_lock); 4074 ice_put_vf(vf); 4075 } 4076