1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vf_res_msg 364 * @vf: pointer to the VF info 365 * @msg: pointer to the msg buffer 366 * 367 * called from the VF to request its resources 368 */ 369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 370 { 371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 372 struct virtchnl_vf_resource *vfres = NULL; 373 struct ice_hw *hw = &vf->pf->hw; 374 struct ice_vsi *vsi; 375 int len = 0; 376 int ret; 377 378 if (ice_check_vf_init(vf)) { 379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 380 goto err; 381 } 382 383 len = sizeof(struct virtchnl_vf_resource); 384 385 vfres = kzalloc(len, GFP_KERNEL); 386 if (!vfres) { 387 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 388 len = 0; 389 goto err; 390 } 391 if (VF_IS_V11(&vf->vf_ver)) 392 vf->driver_caps = *(u32 *)msg; 393 else 394 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 395 VIRTCHNL_VF_OFFLOAD_RSS_REG | 396 VIRTCHNL_VF_OFFLOAD_VLAN; 397 398 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 399 vsi = ice_get_vf_vsi(vf); 400 if (!vsi) { 401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 402 goto err; 403 } 404 405 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 406 /* VLAN offloads based on current device configuration */ 407 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2; 408 } else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 409 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 410 * these two conditions, which amounts to guest VLAN filtering 411 * and offloads being based on the inner VLAN or the 412 * inner/single VLAN respectively and don't allow VF to 413 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 414 */ 415 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 416 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 417 } else if (!ice_is_dvm_ena(hw) && 418 !ice_vf_is_port_vlan_ena(vf)) { 419 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 420 /* configure backward compatible support for VFs that 421 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 422 * configured in SVM, and no port VLAN is configured 423 */ 424 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 425 } else if (ice_is_dvm_ena(hw)) { 426 /* configure software offloaded VLAN support when DVM 427 * is enabled, but no port VLAN is enabled 428 */ 429 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 430 } 431 } 432 433 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 434 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 435 } else { 436 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 437 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 438 else 439 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 440 } 441 442 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 443 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 444 445 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 446 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 447 448 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 449 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 450 451 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 452 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 453 454 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 455 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 456 457 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 458 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 459 460 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 461 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 462 463 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 464 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 465 466 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 467 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 468 469 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 470 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 471 472 vfres->num_vsis = 1; 473 /* Tx and Rx queue are equal for VF */ 474 vfres->num_queue_pairs = vsi->num_txq; 475 vfres->max_vectors = vf->pf->vfs.num_msix_per; 476 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 477 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 478 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 479 480 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 481 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 482 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 483 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 484 vf->hw_lan_addr.addr); 485 486 /* match guest capabilities */ 487 vf->driver_caps = vfres->vf_cap_flags; 488 489 ice_vc_set_caps_allowlist(vf); 490 ice_vc_set_working_allowlist(vf); 491 492 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 493 494 err: 495 /* send the response back to the VF */ 496 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 497 (u8 *)vfres, len); 498 499 kfree(vfres); 500 return ret; 501 } 502 503 /** 504 * ice_vc_reset_vf_msg 505 * @vf: pointer to the VF info 506 * 507 * called from the VF to reset itself, 508 * unlike other virtchnl messages, PF driver 509 * doesn't send the response back to the VF 510 */ 511 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 512 { 513 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 514 ice_reset_vf(vf, 0); 515 } 516 517 /** 518 * ice_find_vsi_from_id 519 * @pf: the PF structure to search for the VSI 520 * @id: ID of the VSI it is searching for 521 * 522 * searches for the VSI with the given ID 523 */ 524 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) 525 { 526 int i; 527 528 ice_for_each_vsi(pf, i) 529 if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) 530 return pf->vsi[i]; 531 532 return NULL; 533 } 534 535 /** 536 * ice_vc_isvalid_vsi_id 537 * @vf: pointer to the VF info 538 * @vsi_id: VF relative VSI ID 539 * 540 * check for the valid VSI ID 541 */ 542 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 543 { 544 struct ice_pf *pf = vf->pf; 545 struct ice_vsi *vsi; 546 547 vsi = ice_find_vsi_from_id(pf, vsi_id); 548 549 return (vsi && (vsi->vf == vf)); 550 } 551 552 /** 553 * ice_vc_isvalid_q_id 554 * @vf: pointer to the VF info 555 * @vsi_id: VSI ID 556 * @qid: VSI relative queue ID 557 * 558 * check for the valid queue ID 559 */ 560 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 561 { 562 struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); 563 /* allocated Tx and Rx queues should be always equal for VF VSI */ 564 return (vsi && (qid < vsi->alloc_txq)); 565 } 566 567 /** 568 * ice_vc_isvalid_ring_len 569 * @ring_len: length of ring 570 * 571 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 572 * or zero 573 */ 574 static bool ice_vc_isvalid_ring_len(u16 ring_len) 575 { 576 return ring_len == 0 || 577 (ring_len >= ICE_MIN_NUM_DESC && 578 ring_len <= ICE_MAX_NUM_DESC && 579 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 580 } 581 582 /** 583 * ice_vc_validate_pattern 584 * @vf: pointer to the VF info 585 * @proto: virtchnl protocol headers 586 * 587 * validate the pattern is supported or not. 588 * 589 * Return: true on success, false on error. 590 */ 591 bool 592 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 593 { 594 bool is_ipv4 = false; 595 bool is_ipv6 = false; 596 bool is_udp = false; 597 u16 ptype = -1; 598 int i = 0; 599 600 while (i < proto->count && 601 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 602 switch (proto->proto_hdr[i].type) { 603 case VIRTCHNL_PROTO_HDR_ETH: 604 ptype = ICE_PTYPE_MAC_PAY; 605 break; 606 case VIRTCHNL_PROTO_HDR_IPV4: 607 ptype = ICE_PTYPE_IPV4_PAY; 608 is_ipv4 = true; 609 break; 610 case VIRTCHNL_PROTO_HDR_IPV6: 611 ptype = ICE_PTYPE_IPV6_PAY; 612 is_ipv6 = true; 613 break; 614 case VIRTCHNL_PROTO_HDR_UDP: 615 if (is_ipv4) 616 ptype = ICE_PTYPE_IPV4_UDP_PAY; 617 else if (is_ipv6) 618 ptype = ICE_PTYPE_IPV6_UDP_PAY; 619 is_udp = true; 620 break; 621 case VIRTCHNL_PROTO_HDR_TCP: 622 if (is_ipv4) 623 ptype = ICE_PTYPE_IPV4_TCP_PAY; 624 else if (is_ipv6) 625 ptype = ICE_PTYPE_IPV6_TCP_PAY; 626 break; 627 case VIRTCHNL_PROTO_HDR_SCTP: 628 if (is_ipv4) 629 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 630 else if (is_ipv6) 631 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 632 break; 633 case VIRTCHNL_PROTO_HDR_GTPU_IP: 634 case VIRTCHNL_PROTO_HDR_GTPU_EH: 635 if (is_ipv4) 636 ptype = ICE_MAC_IPV4_GTPU; 637 else if (is_ipv6) 638 ptype = ICE_MAC_IPV6_GTPU; 639 goto out; 640 case VIRTCHNL_PROTO_HDR_L2TPV3: 641 if (is_ipv4) 642 ptype = ICE_MAC_IPV4_L2TPV3; 643 else if (is_ipv6) 644 ptype = ICE_MAC_IPV6_L2TPV3; 645 goto out; 646 case VIRTCHNL_PROTO_HDR_ESP: 647 if (is_ipv4) 648 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 649 ICE_MAC_IPV4_ESP; 650 else if (is_ipv6) 651 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 652 ICE_MAC_IPV6_ESP; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_AH: 655 if (is_ipv4) 656 ptype = ICE_MAC_IPV4_AH; 657 else if (is_ipv6) 658 ptype = ICE_MAC_IPV6_AH; 659 goto out; 660 case VIRTCHNL_PROTO_HDR_PFCP: 661 if (is_ipv4) 662 ptype = ICE_MAC_IPV4_PFCP_SESSION; 663 else if (is_ipv6) 664 ptype = ICE_MAC_IPV6_PFCP_SESSION; 665 goto out; 666 default: 667 break; 668 } 669 i++; 670 } 671 672 out: 673 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 674 } 675 676 /** 677 * ice_vc_parse_rss_cfg - parses hash fields and headers from 678 * a specific virtchnl RSS cfg 679 * @hw: pointer to the hardware 680 * @rss_cfg: pointer to the virtchnl RSS cfg 681 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 682 * to configure 683 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 684 * 685 * Return true if all the protocol header and hash fields in the RSS cfg could 686 * be parsed, else return false 687 * 688 * This function parses the virtchnl RSS cfg to be the intended 689 * hash fields and the intended header for RSS configuration 690 */ 691 static bool 692 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 693 u32 *addl_hdrs, u64 *hash_flds) 694 { 695 const struct ice_vc_hash_field_match_type *hf_list; 696 const struct ice_vc_hdr_match_type *hdr_list; 697 int i, hf_list_len, hdr_list_len; 698 699 hf_list = ice_vc_hash_field_list; 700 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 701 hdr_list = ice_vc_hdr_list; 702 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 703 704 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 705 struct virtchnl_proto_hdr *proto_hdr = 706 &rss_cfg->proto_hdrs.proto_hdr[i]; 707 bool hdr_found = false; 708 int j; 709 710 /* Find matched ice headers according to virtchnl headers. */ 711 for (j = 0; j < hdr_list_len; j++) { 712 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 713 714 if (proto_hdr->type == hdr_map.vc_hdr) { 715 *addl_hdrs |= hdr_map.ice_hdr; 716 hdr_found = true; 717 } 718 } 719 720 if (!hdr_found) 721 return false; 722 723 /* Find matched ice hash fields according to 724 * virtchnl hash fields. 725 */ 726 for (j = 0; j < hf_list_len; j++) { 727 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 728 729 if (proto_hdr->type == hf_map.vc_hdr && 730 proto_hdr->field_selector == hf_map.vc_hash_field) { 731 *hash_flds |= hf_map.ice_hash_field; 732 break; 733 } 734 } 735 } 736 737 return true; 738 } 739 740 /** 741 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 742 * RSS offloads 743 * @caps: VF driver negotiated capabilities 744 * 745 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 746 * else return false 747 */ 748 static bool ice_vf_adv_rss_offload_ena(u32 caps) 749 { 750 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 751 } 752 753 /** 754 * ice_vc_handle_rss_cfg 755 * @vf: pointer to the VF info 756 * @msg: pointer to the message buffer 757 * @add: add a RSS config if true, otherwise delete a RSS config 758 * 759 * This function adds/deletes a RSS config 760 */ 761 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 762 { 763 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 764 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 765 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 766 struct device *dev = ice_pf_to_dev(vf->pf); 767 struct ice_hw *hw = &vf->pf->hw; 768 struct ice_vsi *vsi; 769 770 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 771 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 772 vf->vf_id); 773 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 774 goto error_param; 775 } 776 777 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 778 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 779 vf->vf_id); 780 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 781 goto error_param; 782 } 783 784 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 785 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 786 goto error_param; 787 } 788 789 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 790 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 791 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 792 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 793 vf->vf_id); 794 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 795 goto error_param; 796 } 797 798 vsi = ice_get_vf_vsi(vf); 799 if (!vsi) { 800 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 801 goto error_param; 802 } 803 804 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 805 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 806 goto error_param; 807 } 808 809 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 810 struct ice_vsi_ctx *ctx; 811 u8 lut_type, hash_type; 812 int status; 813 814 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 815 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 816 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 817 818 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 819 if (!ctx) { 820 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 821 goto error_param; 822 } 823 824 ctx->info.q_opt_rss = ((lut_type << 825 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 826 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 827 (hash_type & 828 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 829 830 /* Preserve existing queueing option setting */ 831 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 832 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 833 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 834 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 835 836 ctx->info.valid_sections = 837 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 838 839 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 840 if (status) { 841 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 842 status, ice_aq_str(hw->adminq.sq_last_status)); 843 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 844 } else { 845 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 846 } 847 848 kfree(ctx); 849 } else { 850 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 851 u64 hash_flds = ICE_HASH_INVALID; 852 853 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 854 &hash_flds)) { 855 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 856 goto error_param; 857 } 858 859 if (add) { 860 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 861 addl_hdrs)) { 862 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 863 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 864 vsi->vsi_num, v_ret); 865 } 866 } else { 867 int status; 868 869 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 870 addl_hdrs); 871 /* We just ignore -ENOENT, because if two configurations 872 * share the same profile remove one of them actually 873 * removes both, since the profile is deleted. 874 */ 875 if (status && status != -ENOENT) { 876 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 877 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 878 vf->vf_id, status); 879 } 880 } 881 } 882 883 error_param: 884 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 885 } 886 887 /** 888 * ice_vc_config_rss_key 889 * @vf: pointer to the VF info 890 * @msg: pointer to the msg buffer 891 * 892 * Configure the VF's RSS key 893 */ 894 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 895 { 896 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 897 struct virtchnl_rss_key *vrk = 898 (struct virtchnl_rss_key *)msg; 899 struct ice_vsi *vsi; 900 901 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 902 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 903 goto error_param; 904 } 905 906 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 907 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 908 goto error_param; 909 } 910 911 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 912 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 913 goto error_param; 914 } 915 916 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 vsi = ice_get_vf_vsi(vf); 922 if (!vsi) { 923 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 924 goto error_param; 925 } 926 927 if (ice_set_rss_key(vsi, vrk->key)) 928 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 929 error_param: 930 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 931 NULL, 0); 932 } 933 934 /** 935 * ice_vc_config_rss_lut 936 * @vf: pointer to the VF info 937 * @msg: pointer to the msg buffer 938 * 939 * Configure the VF's RSS LUT 940 */ 941 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 942 { 943 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 944 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 945 struct ice_vsi *vsi; 946 947 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 948 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 949 goto error_param; 950 } 951 952 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 953 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 954 goto error_param; 955 } 956 957 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 958 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 959 goto error_param; 960 } 961 962 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 vsi = ice_get_vf_vsi(vf); 968 if (!vsi) { 969 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 970 goto error_param; 971 } 972 973 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 974 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 975 error_param: 976 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 977 NULL, 0); 978 } 979 980 /** 981 * ice_vc_cfg_promiscuous_mode_msg 982 * @vf: pointer to the VF info 983 * @msg: pointer to the msg buffer 984 * 985 * called from the VF to configure VF VSIs promiscuous mode 986 */ 987 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 988 { 989 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 990 bool rm_promisc, alluni = false, allmulti = false; 991 struct virtchnl_promisc_info *info = 992 (struct virtchnl_promisc_info *)msg; 993 struct ice_vsi_vlan_ops *vlan_ops; 994 int mcast_err = 0, ucast_err = 0; 995 struct ice_pf *pf = vf->pf; 996 struct ice_vsi *vsi; 997 struct device *dev; 998 int ret = 0; 999 1000 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1001 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1002 goto error_param; 1003 } 1004 1005 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1006 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1007 goto error_param; 1008 } 1009 1010 vsi = ice_get_vf_vsi(vf); 1011 if (!vsi) { 1012 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1013 goto error_param; 1014 } 1015 1016 dev = ice_pf_to_dev(pf); 1017 if (!ice_is_vf_trusted(vf)) { 1018 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1019 vf->vf_id); 1020 /* Leave v_ret alone, lie to the VF on purpose. */ 1021 goto error_param; 1022 } 1023 1024 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1025 alluni = true; 1026 1027 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1028 allmulti = true; 1029 1030 rm_promisc = !allmulti && !alluni; 1031 1032 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1033 if (rm_promisc) 1034 ret = vlan_ops->ena_rx_filtering(vsi); 1035 else 1036 ret = vlan_ops->dis_rx_filtering(vsi); 1037 if (ret) { 1038 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1039 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1040 goto error_param; 1041 } 1042 1043 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1044 bool set_dflt_vsi = alluni || allmulti; 1045 1046 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) 1047 /* only attempt to set the default forwarding VSI if 1048 * it's not currently set 1049 */ 1050 ret = ice_set_dflt_vsi(pf->first_sw, vsi); 1051 else if (!set_dflt_vsi && 1052 ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 1053 /* only attempt to free the default forwarding VSI if we 1054 * are the owner 1055 */ 1056 ret = ice_clear_dflt_vsi(pf->first_sw); 1057 1058 if (ret) { 1059 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", 1060 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); 1061 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1062 goto error_param; 1063 } 1064 } else { 1065 u8 mcast_m, ucast_m; 1066 1067 if (ice_vf_is_port_vlan_ena(vf) || 1068 ice_vsi_has_non_zero_vlans(vsi)) { 1069 mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; 1070 ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; 1071 } else { 1072 mcast_m = ICE_MCAST_PROMISC_BITS; 1073 ucast_m = ICE_UCAST_PROMISC_BITS; 1074 } 1075 1076 if (alluni) 1077 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1078 else 1079 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1080 1081 if (allmulti) 1082 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1083 else 1084 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1085 1086 if (ucast_err || mcast_err) 1087 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1088 } 1089 1090 if (!mcast_err) { 1091 if (allmulti && 1092 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1093 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1094 vf->vf_id); 1095 else if (!allmulti && 1096 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1097 vf->vf_states)) 1098 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1099 vf->vf_id); 1100 } 1101 1102 if (!ucast_err) { 1103 if (alluni && 1104 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1105 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1106 vf->vf_id); 1107 else if (!alluni && 1108 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1109 vf->vf_states)) 1110 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1111 vf->vf_id); 1112 } 1113 1114 error_param: 1115 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1116 v_ret, NULL, 0); 1117 } 1118 1119 /** 1120 * ice_vc_get_stats_msg 1121 * @vf: pointer to the VF info 1122 * @msg: pointer to the msg buffer 1123 * 1124 * called from the VF to get VSI stats 1125 */ 1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1127 { 1128 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1129 struct virtchnl_queue_select *vqs = 1130 (struct virtchnl_queue_select *)msg; 1131 struct ice_eth_stats stats = { 0 }; 1132 struct ice_vsi *vsi; 1133 1134 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1136 goto error_param; 1137 } 1138 1139 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1140 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1141 goto error_param; 1142 } 1143 1144 vsi = ice_get_vf_vsi(vf); 1145 if (!vsi) { 1146 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1147 goto error_param; 1148 } 1149 1150 ice_update_eth_stats(vsi); 1151 1152 stats = vsi->eth_stats; 1153 1154 error_param: 1155 /* send the response to the VF */ 1156 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1157 (u8 *)&stats, sizeof(stats)); 1158 } 1159 1160 /** 1161 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1162 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1163 * 1164 * Return true on successful validation, else false 1165 */ 1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1167 { 1168 if ((!vqs->rx_queues && !vqs->tx_queues) || 1169 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1170 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /** 1177 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1178 * @vsi: VSI of the VF to configure 1179 * @q_idx: VF queue index used to determine the queue in the PF's space 1180 */ 1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1182 { 1183 struct ice_hw *hw = &vsi->back->hw; 1184 u32 pfq = vsi->txq_map[q_idx]; 1185 u32 reg; 1186 1187 reg = rd32(hw, QINT_TQCTL(pfq)); 1188 1189 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1190 * this is most likely a poll mode VF driver, so don't enable an 1191 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1192 */ 1193 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1194 return; 1195 1196 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1197 } 1198 1199 /** 1200 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1201 * @vsi: VSI of the VF to configure 1202 * @q_idx: VF queue index used to determine the queue in the PF's space 1203 */ 1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1205 { 1206 struct ice_hw *hw = &vsi->back->hw; 1207 u32 pfq = vsi->rxq_map[q_idx]; 1208 u32 reg; 1209 1210 reg = rd32(hw, QINT_RQCTL(pfq)); 1211 1212 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1213 * this is most likely a poll mode VF driver, so don't enable an 1214 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1215 */ 1216 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1217 return; 1218 1219 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1220 } 1221 1222 /** 1223 * ice_vc_ena_qs_msg 1224 * @vf: pointer to the VF info 1225 * @msg: pointer to the msg buffer 1226 * 1227 * called from the VF to enable all or specific queue(s) 1228 */ 1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1230 { 1231 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1232 struct virtchnl_queue_select *vqs = 1233 (struct virtchnl_queue_select *)msg; 1234 struct ice_vsi *vsi; 1235 unsigned long q_map; 1236 u16 vf_q_id; 1237 1238 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1239 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1240 goto error_param; 1241 } 1242 1243 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1245 goto error_param; 1246 } 1247 1248 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1249 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1250 goto error_param; 1251 } 1252 1253 vsi = ice_get_vf_vsi(vf); 1254 if (!vsi) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1260 * Tx queue group list was configured and the context bits were 1261 * programmed using ice_vsi_cfg_txqs 1262 */ 1263 q_map = vqs->rx_queues; 1264 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1265 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1266 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1267 goto error_param; 1268 } 1269 1270 /* Skip queue if enabled */ 1271 if (test_bit(vf_q_id, vf->rxq_ena)) 1272 continue; 1273 1274 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1275 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1276 vf_q_id, vsi->vsi_num); 1277 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1278 goto error_param; 1279 } 1280 1281 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1282 set_bit(vf_q_id, vf->rxq_ena); 1283 } 1284 1285 q_map = vqs->tx_queues; 1286 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1287 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1289 goto error_param; 1290 } 1291 1292 /* Skip queue if enabled */ 1293 if (test_bit(vf_q_id, vf->txq_ena)) 1294 continue; 1295 1296 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1297 set_bit(vf_q_id, vf->txq_ena); 1298 } 1299 1300 /* Set flag to indicate that queues are enabled */ 1301 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1302 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1303 1304 error_param: 1305 /* send the response to the VF */ 1306 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1307 NULL, 0); 1308 } 1309 1310 /** 1311 * ice_vc_dis_qs_msg 1312 * @vf: pointer to the VF info 1313 * @msg: pointer to the msg buffer 1314 * 1315 * called from the VF to disable all or specific 1316 * queue(s) 1317 */ 1318 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1319 { 1320 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1321 struct virtchnl_queue_select *vqs = 1322 (struct virtchnl_queue_select *)msg; 1323 struct ice_vsi *vsi; 1324 unsigned long q_map; 1325 u16 vf_q_id; 1326 1327 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1328 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1329 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1330 goto error_param; 1331 } 1332 1333 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1334 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1335 goto error_param; 1336 } 1337 1338 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1339 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1340 goto error_param; 1341 } 1342 1343 vsi = ice_get_vf_vsi(vf); 1344 if (!vsi) { 1345 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1346 goto error_param; 1347 } 1348 1349 if (vqs->tx_queues) { 1350 q_map = vqs->tx_queues; 1351 1352 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1353 struct ice_tx_ring *ring = vsi->tx_rings[vf_q_id]; 1354 struct ice_txq_meta txq_meta = { 0 }; 1355 1356 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1357 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1358 goto error_param; 1359 } 1360 1361 if (!test_bit(vf_q_id, vf->txq_ena)) 1362 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1363 vf_q_id, vsi->vsi_num); 1364 1365 ice_fill_txq_meta(vsi, ring, &txq_meta); 1366 1367 if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, 1368 ring, &txq_meta)) { 1369 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1370 vf_q_id, vsi->vsi_num); 1371 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1372 goto error_param; 1373 } 1374 1375 /* Clear enabled queues flag */ 1376 clear_bit(vf_q_id, vf->txq_ena); 1377 } 1378 } 1379 1380 q_map = vqs->rx_queues; 1381 /* speed up Rx queue disable by batching them if possible */ 1382 if (q_map && 1383 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1384 if (ice_vsi_stop_all_rx_rings(vsi)) { 1385 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1386 vsi->vsi_num); 1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1388 goto error_param; 1389 } 1390 1391 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1392 } else if (q_map) { 1393 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1394 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1396 goto error_param; 1397 } 1398 1399 /* Skip queue if not enabled */ 1400 if (!test_bit(vf_q_id, vf->rxq_ena)) 1401 continue; 1402 1403 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1404 true)) { 1405 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1406 vf_q_id, vsi->vsi_num); 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 1411 /* Clear enabled queues flag */ 1412 clear_bit(vf_q_id, vf->rxq_ena); 1413 } 1414 } 1415 1416 /* Clear enabled queues flag */ 1417 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1418 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1419 1420 error_param: 1421 /* send the response to the VF */ 1422 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1423 NULL, 0); 1424 } 1425 1426 /** 1427 * ice_cfg_interrupt 1428 * @vf: pointer to the VF info 1429 * @vsi: the VSI being configured 1430 * @vector_id: vector ID 1431 * @map: vector map for mapping vectors to queues 1432 * @q_vector: structure for interrupt vector 1433 * configure the IRQ to queue map 1434 */ 1435 static int 1436 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1437 struct virtchnl_vector_map *map, 1438 struct ice_q_vector *q_vector) 1439 { 1440 u16 vsi_q_id, vsi_q_id_idx; 1441 unsigned long qmap; 1442 1443 q_vector->num_ring_rx = 0; 1444 q_vector->num_ring_tx = 0; 1445 1446 qmap = map->rxq_map; 1447 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1448 vsi_q_id = vsi_q_id_idx; 1449 1450 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1451 return VIRTCHNL_STATUS_ERR_PARAM; 1452 1453 q_vector->num_ring_rx++; 1454 q_vector->rx.itr_idx = map->rxitr_idx; 1455 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1456 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1457 q_vector->rx.itr_idx); 1458 } 1459 1460 qmap = map->txq_map; 1461 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1462 vsi_q_id = vsi_q_id_idx; 1463 1464 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1465 return VIRTCHNL_STATUS_ERR_PARAM; 1466 1467 q_vector->num_ring_tx++; 1468 q_vector->tx.itr_idx = map->txitr_idx; 1469 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1470 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1471 q_vector->tx.itr_idx); 1472 } 1473 1474 return VIRTCHNL_STATUS_SUCCESS; 1475 } 1476 1477 /** 1478 * ice_vc_cfg_irq_map_msg 1479 * @vf: pointer to the VF info 1480 * @msg: pointer to the msg buffer 1481 * 1482 * called from the VF to configure the IRQ to queue map 1483 */ 1484 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1485 { 1486 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1487 u16 num_q_vectors_mapped, vsi_id, vector_id; 1488 struct virtchnl_irq_map_info *irqmap_info; 1489 struct virtchnl_vector_map *map; 1490 struct ice_pf *pf = vf->pf; 1491 struct ice_vsi *vsi; 1492 int i; 1493 1494 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1495 num_q_vectors_mapped = irqmap_info->num_vectors; 1496 1497 /* Check to make sure number of VF vectors mapped is not greater than 1498 * number of VF vectors originally allocated, and check that 1499 * there is actually at least a single VF queue vector mapped 1500 */ 1501 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1502 pf->vfs.num_msix_per < num_q_vectors_mapped || 1503 !num_q_vectors_mapped) { 1504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1505 goto error_param; 1506 } 1507 1508 vsi = ice_get_vf_vsi(vf); 1509 if (!vsi) { 1510 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1511 goto error_param; 1512 } 1513 1514 for (i = 0; i < num_q_vectors_mapped; i++) { 1515 struct ice_q_vector *q_vector; 1516 1517 map = &irqmap_info->vecmap[i]; 1518 1519 vector_id = map->vector_id; 1520 vsi_id = map->vsi_id; 1521 /* vector_id is always 0-based for each VF, and can never be 1522 * larger than or equal to the max allowed interrupts per VF 1523 */ 1524 if (!(vector_id < pf->vfs.num_msix_per) || 1525 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1526 (!vector_id && (map->rxq_map || map->txq_map))) { 1527 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1528 goto error_param; 1529 } 1530 1531 /* No need to map VF miscellaneous or rogue vector */ 1532 if (!vector_id) 1533 continue; 1534 1535 /* Subtract non queue vector from vector_id passed by VF 1536 * to get actual number of VSI queue vector array index 1537 */ 1538 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1539 if (!q_vector) { 1540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1541 goto error_param; 1542 } 1543 1544 /* lookout for the invalid queue index */ 1545 v_ret = (enum virtchnl_status_code) 1546 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1547 if (v_ret) 1548 goto error_param; 1549 } 1550 1551 error_param: 1552 /* send the response to the VF */ 1553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1554 NULL, 0); 1555 } 1556 1557 /** 1558 * ice_vc_cfg_qs_msg 1559 * @vf: pointer to the VF info 1560 * @msg: pointer to the msg buffer 1561 * 1562 * called from the VF to configure the Rx/Tx queues 1563 */ 1564 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1565 { 1566 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1567 struct virtchnl_vsi_queue_config_info *qci = 1568 (struct virtchnl_vsi_queue_config_info *)msg; 1569 struct virtchnl_queue_pair_info *qpi; 1570 struct ice_pf *pf = vf->pf; 1571 struct ice_vsi *vsi; 1572 int i, q_idx; 1573 1574 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1575 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1576 goto error_param; 1577 } 1578 1579 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { 1580 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1581 goto error_param; 1582 } 1583 1584 vsi = ice_get_vf_vsi(vf); 1585 if (!vsi) { 1586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1587 goto error_param; 1588 } 1589 1590 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1591 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1592 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1593 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1594 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1595 goto error_param; 1596 } 1597 1598 for (i = 0; i < qci->num_queue_pairs; i++) { 1599 qpi = &qci->qpair[i]; 1600 if (qpi->txq.vsi_id != qci->vsi_id || 1601 qpi->rxq.vsi_id != qci->vsi_id || 1602 qpi->rxq.queue_id != qpi->txq.queue_id || 1603 qpi->txq.headwb_enabled || 1604 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1605 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1606 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1607 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1608 goto error_param; 1609 } 1610 1611 q_idx = qpi->rxq.queue_id; 1612 1613 /* make sure selected "q_idx" is in valid range of queues 1614 * for selected "vsi" 1615 */ 1616 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1617 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1618 goto error_param; 1619 } 1620 1621 /* copy Tx queue info from VF into VSI */ 1622 if (qpi->txq.ring_len > 0) { 1623 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1624 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1625 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1626 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1627 goto error_param; 1628 } 1629 } 1630 1631 /* copy Rx queue info from VF into VSI */ 1632 if (qpi->rxq.ring_len > 0) { 1633 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1634 1635 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1636 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1637 1638 if (qpi->rxq.databuffer_size != 0 && 1639 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1640 qpi->rxq.databuffer_size < 1024)) { 1641 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1642 goto error_param; 1643 } 1644 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1645 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1646 if (qpi->rxq.max_pkt_size > max_frame_size || 1647 qpi->rxq.max_pkt_size < 64) { 1648 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1649 goto error_param; 1650 } 1651 1652 vsi->max_frame = qpi->rxq.max_pkt_size; 1653 /* add space for the port VLAN since the VF driver is 1654 * not expected to account for it in the MTU 1655 * calculation 1656 */ 1657 if (ice_vf_is_port_vlan_ena(vf)) 1658 vsi->max_frame += VLAN_HLEN; 1659 1660 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1661 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1662 goto error_param; 1663 } 1664 } 1665 } 1666 1667 error_param: 1668 /* send the response to the VF */ 1669 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, 1670 NULL, 0); 1671 } 1672 1673 /** 1674 * ice_can_vf_change_mac 1675 * @vf: pointer to the VF info 1676 * 1677 * Return true if the VF is allowed to change its MAC filters, false otherwise 1678 */ 1679 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1680 { 1681 /* If the VF MAC address has been set administratively (via the 1682 * ndo_set_vf_mac command), then deny permission to the VF to 1683 * add/delete unicast MAC addresses, unless the VF is trusted 1684 */ 1685 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1686 return false; 1687 1688 return true; 1689 } 1690 1691 /** 1692 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1693 * @vc_ether_addr: used to extract the type 1694 */ 1695 static u8 1696 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1697 { 1698 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1699 } 1700 1701 /** 1702 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1703 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1704 */ 1705 static bool 1706 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1707 { 1708 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1709 1710 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1711 } 1712 1713 /** 1714 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1715 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1716 * 1717 * This function should only be called when the MAC address in 1718 * virtchnl_ether_addr is a valid unicast MAC 1719 */ 1720 static bool 1721 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1722 { 1723 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1724 1725 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1726 } 1727 1728 /** 1729 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1730 * @vf: VF to update 1731 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1732 */ 1733 static void 1734 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1735 { 1736 u8 *mac_addr = vc_ether_addr->addr; 1737 1738 if (!is_valid_ether_addr(mac_addr)) 1739 return; 1740 1741 /* only allow legacy VF drivers to set the device and hardware MAC if it 1742 * is zero and allow new VF drivers to set the hardware MAC if the type 1743 * was correctly specified over VIRTCHNL 1744 */ 1745 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1746 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1747 ice_is_vc_addr_primary(vc_ether_addr)) { 1748 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1749 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1750 } 1751 1752 /* hardware and device MACs are already set, but its possible that the 1753 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1754 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1755 * away for the legacy VF driver case as it will be updated in the 1756 * delete flow for this case 1757 */ 1758 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1759 ether_addr_copy(vf->legacy_last_added_umac.addr, 1760 mac_addr); 1761 vf->legacy_last_added_umac.time_modified = jiffies; 1762 } 1763 } 1764 1765 /** 1766 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1767 * @vf: pointer to the VF info 1768 * @vsi: pointer to the VF's VSI 1769 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1770 */ 1771 static int 1772 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1773 struct virtchnl_ether_addr *vc_ether_addr) 1774 { 1775 struct device *dev = ice_pf_to_dev(vf->pf); 1776 u8 *mac_addr = vc_ether_addr->addr; 1777 int ret; 1778 1779 /* device MAC already added */ 1780 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1781 return 0; 1782 1783 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1784 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1785 return -EPERM; 1786 } 1787 1788 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1789 if (ret == -EEXIST) { 1790 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1791 vf->vf_id); 1792 /* don't return since we might need to update 1793 * the primary MAC in ice_vfhw_mac_add() below 1794 */ 1795 } else if (ret) { 1796 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1797 mac_addr, vf->vf_id, ret); 1798 return ret; 1799 } else { 1800 vf->num_mac++; 1801 } 1802 1803 ice_vfhw_mac_add(vf, vc_ether_addr); 1804 1805 return ret; 1806 } 1807 1808 /** 1809 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1810 * @last_added_umac: structure used to check expiration 1811 */ 1812 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1813 { 1814 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1815 return time_is_before_jiffies(last_added_umac->time_modified + 1816 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1817 } 1818 1819 /** 1820 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1821 * @vf: VF to update 1822 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1823 * 1824 * only update cached hardware MAC for legacy VF drivers on delete 1825 * because we cannot guarantee order/type of MAC from the VF driver 1826 */ 1827 static void 1828 ice_update_legacy_cached_mac(struct ice_vf *vf, 1829 struct virtchnl_ether_addr *vc_ether_addr) 1830 { 1831 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1832 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1833 return; 1834 1835 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1836 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1837 } 1838 1839 /** 1840 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1841 * @vf: VF to update 1842 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1843 */ 1844 static void 1845 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1846 { 1847 u8 *mac_addr = vc_ether_addr->addr; 1848 1849 if (!is_valid_ether_addr(mac_addr) || 1850 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1851 return; 1852 1853 /* allow the device MAC to be repopulated in the add flow and don't 1854 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1855 * to be persistent on VM reboot and across driver unload/load, which 1856 * won't work if we clear the hardware MAC here 1857 */ 1858 eth_zero_addr(vf->dev_lan_addr.addr); 1859 1860 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1861 } 1862 1863 /** 1864 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1865 * @vf: pointer to the VF info 1866 * @vsi: pointer to the VF's VSI 1867 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1868 */ 1869 static int 1870 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1871 struct virtchnl_ether_addr *vc_ether_addr) 1872 { 1873 struct device *dev = ice_pf_to_dev(vf->pf); 1874 u8 *mac_addr = vc_ether_addr->addr; 1875 int status; 1876 1877 if (!ice_can_vf_change_mac(vf) && 1878 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1879 return 0; 1880 1881 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1882 if (status == -ENOENT) { 1883 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1884 vf->vf_id); 1885 return -ENOENT; 1886 } else if (status) { 1887 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1888 mac_addr, vf->vf_id, status); 1889 return -EIO; 1890 } 1891 1892 ice_vfhw_mac_del(vf, vc_ether_addr); 1893 1894 vf->num_mac--; 1895 1896 return 0; 1897 } 1898 1899 /** 1900 * ice_vc_handle_mac_addr_msg 1901 * @vf: pointer to the VF info 1902 * @msg: pointer to the msg buffer 1903 * @set: true if MAC filters are being set, false otherwise 1904 * 1905 * add guest MAC address filter 1906 */ 1907 static int 1908 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1909 { 1910 int (*ice_vc_cfg_mac) 1911 (struct ice_vf *vf, struct ice_vsi *vsi, 1912 struct virtchnl_ether_addr *virtchnl_ether_addr); 1913 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1914 struct virtchnl_ether_addr_list *al = 1915 (struct virtchnl_ether_addr_list *)msg; 1916 struct ice_pf *pf = vf->pf; 1917 enum virtchnl_ops vc_op; 1918 struct ice_vsi *vsi; 1919 int i; 1920 1921 if (set) { 1922 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1923 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1924 } else { 1925 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1926 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1927 } 1928 1929 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1930 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1932 goto handle_mac_exit; 1933 } 1934 1935 /* If this VF is not privileged, then we can't add more than a 1936 * limited number of addresses. Check to make sure that the 1937 * additions do not push us over the limit. 1938 */ 1939 if (set && !ice_is_vf_trusted(vf) && 1940 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 1941 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 1942 vf->vf_id); 1943 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1944 goto handle_mac_exit; 1945 } 1946 1947 vsi = ice_get_vf_vsi(vf); 1948 if (!vsi) { 1949 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1950 goto handle_mac_exit; 1951 } 1952 1953 for (i = 0; i < al->num_elements; i++) { 1954 u8 *mac_addr = al->list[i].addr; 1955 int result; 1956 1957 if (is_broadcast_ether_addr(mac_addr) || 1958 is_zero_ether_addr(mac_addr)) 1959 continue; 1960 1961 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 1962 if (result == -EEXIST || result == -ENOENT) { 1963 continue; 1964 } else if (result) { 1965 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1966 goto handle_mac_exit; 1967 } 1968 } 1969 1970 handle_mac_exit: 1971 /* send the response to the VF */ 1972 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 1973 } 1974 1975 /** 1976 * ice_vc_add_mac_addr_msg 1977 * @vf: pointer to the VF info 1978 * @msg: pointer to the msg buffer 1979 * 1980 * add guest MAC address filter 1981 */ 1982 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1983 { 1984 return ice_vc_handle_mac_addr_msg(vf, msg, true); 1985 } 1986 1987 /** 1988 * ice_vc_del_mac_addr_msg 1989 * @vf: pointer to the VF info 1990 * @msg: pointer to the msg buffer 1991 * 1992 * remove guest MAC address filter 1993 */ 1994 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1995 { 1996 return ice_vc_handle_mac_addr_msg(vf, msg, false); 1997 } 1998 1999 /** 2000 * ice_vc_request_qs_msg 2001 * @vf: pointer to the VF info 2002 * @msg: pointer to the msg buffer 2003 * 2004 * VFs get a default number of queues but can use this message to request a 2005 * different number. If the request is successful, PF will reset the VF and 2006 * return 0. If unsuccessful, PF will send message informing VF of number of 2007 * available queue pairs via virtchnl message response to VF. 2008 */ 2009 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2010 { 2011 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2012 struct virtchnl_vf_res_request *vfres = 2013 (struct virtchnl_vf_res_request *)msg; 2014 u16 req_queues = vfres->num_queue_pairs; 2015 struct ice_pf *pf = vf->pf; 2016 u16 max_allowed_vf_queues; 2017 u16 tx_rx_queue_left; 2018 struct device *dev; 2019 u16 cur_queues; 2020 2021 dev = ice_pf_to_dev(pf); 2022 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2023 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2024 goto error_param; 2025 } 2026 2027 cur_queues = vf->num_vf_qs; 2028 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2029 ice_get_avail_rxq_count(pf)); 2030 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2031 if (!req_queues) { 2032 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2033 vf->vf_id); 2034 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2035 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2036 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2037 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2038 } else if (req_queues > cur_queues && 2039 req_queues - cur_queues > tx_rx_queue_left) { 2040 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2041 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2042 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2043 ICE_MAX_RSS_QS_PER_VF); 2044 } else { 2045 /* request is successful, then reset VF */ 2046 vf->num_req_qs = req_queues; 2047 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2048 dev_info(dev, "VF %d granted request of %u queues.\n", 2049 vf->vf_id, req_queues); 2050 return 0; 2051 } 2052 2053 error_param: 2054 /* send the response to the VF */ 2055 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2056 v_ret, (u8 *)vfres, sizeof(*vfres)); 2057 } 2058 2059 /** 2060 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2061 * @caps: VF driver negotiated capabilities 2062 * 2063 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2064 */ 2065 static bool ice_vf_vlan_offload_ena(u32 caps) 2066 { 2067 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2068 } 2069 2070 /** 2071 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2072 * @vf: VF used to determine if VLAN promiscuous config is allowed 2073 */ 2074 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2075 { 2076 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2077 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2078 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2079 return true; 2080 2081 return false; 2082 } 2083 2084 /** 2085 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2086 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2087 * @vlan: VLAN used to enable VLAN promiscuous 2088 * 2089 * This function should only be called if VLAN promiscuous mode is allowed, 2090 * which can be determined via ice_is_vlan_promisc_allowed(). 2091 */ 2092 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2093 { 2094 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2095 int status; 2096 2097 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2098 vlan->vid); 2099 if (status && status != -EEXIST) 2100 return status; 2101 2102 return 0; 2103 } 2104 2105 /** 2106 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2107 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2108 * @vlan: VLAN used to disable VLAN promiscuous 2109 * 2110 * This function should only be called if VLAN promiscuous mode is allowed, 2111 * which can be determined via ice_is_vlan_promisc_allowed(). 2112 */ 2113 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2114 { 2115 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2116 int status; 2117 2118 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2119 vlan->vid); 2120 if (status && status != -ENOENT) 2121 return status; 2122 2123 return 0; 2124 } 2125 2126 /** 2127 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2128 * @vf: VF to check against 2129 * @vsi: VF's VSI 2130 * 2131 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2132 * wants to, so return false. 2133 * 2134 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2135 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2136 */ 2137 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2138 { 2139 if (ice_is_vf_trusted(vf)) 2140 return false; 2141 2142 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2143 return ((ice_vsi_num_non_zero_vlans(vsi) + 2144 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2145 } 2146 2147 /** 2148 * ice_vc_process_vlan_msg 2149 * @vf: pointer to the VF info 2150 * @msg: pointer to the msg buffer 2151 * @add_v: Add VLAN if true, otherwise delete VLAN 2152 * 2153 * Process virtchnl op to add or remove programmed guest VLAN ID 2154 */ 2155 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2156 { 2157 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2158 struct virtchnl_vlan_filter_list *vfl = 2159 (struct virtchnl_vlan_filter_list *)msg; 2160 struct ice_pf *pf = vf->pf; 2161 bool vlan_promisc = false; 2162 struct ice_vsi *vsi; 2163 struct device *dev; 2164 int status = 0; 2165 int i; 2166 2167 dev = ice_pf_to_dev(pf); 2168 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2169 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2170 goto error_param; 2171 } 2172 2173 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2174 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2175 goto error_param; 2176 } 2177 2178 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2179 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2180 goto error_param; 2181 } 2182 2183 for (i = 0; i < vfl->num_elements; i++) { 2184 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2185 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2186 dev_err(dev, "invalid VF VLAN id %d\n", 2187 vfl->vlan_id[i]); 2188 goto error_param; 2189 } 2190 } 2191 2192 vsi = ice_get_vf_vsi(vf); 2193 if (!vsi) { 2194 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2195 goto error_param; 2196 } 2197 2198 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2199 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2200 vf->vf_id); 2201 /* There is no need to let VF know about being not trusted, 2202 * so we can just return success message here 2203 */ 2204 goto error_param; 2205 } 2206 2207 /* in DVM a VF can add/delete inner VLAN filters when 2208 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2209 */ 2210 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2211 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2212 goto error_param; 2213 } 2214 2215 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2216 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2217 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2218 */ 2219 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2220 !ice_is_dvm_ena(&pf->hw) && 2221 !ice_vf_is_port_vlan_ena(vf); 2222 2223 if (add_v) { 2224 for (i = 0; i < vfl->num_elements; i++) { 2225 u16 vid = vfl->vlan_id[i]; 2226 struct ice_vlan vlan; 2227 2228 if (ice_vf_has_max_vlans(vf, vsi)) { 2229 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2230 vf->vf_id); 2231 /* There is no need to let VF know about being 2232 * not trusted, so we can just return success 2233 * message here as well. 2234 */ 2235 goto error_param; 2236 } 2237 2238 /* we add VLAN 0 by default for each VF so we can enable 2239 * Tx VLAN anti-spoof without triggering MDD events so 2240 * we don't need to add it again here 2241 */ 2242 if (!vid) 2243 continue; 2244 2245 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2246 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2247 if (status) { 2248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2249 goto error_param; 2250 } 2251 2252 /* Enable VLAN filtering on first non-zero VLAN */ 2253 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2254 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2256 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2257 vid, status); 2258 goto error_param; 2259 } 2260 } else if (vlan_promisc) { 2261 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2262 if (status) { 2263 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2264 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2265 vid, status); 2266 } 2267 } 2268 } 2269 } else { 2270 /* In case of non_trusted VF, number of VLAN elements passed 2271 * to PF for removal might be greater than number of VLANs 2272 * filter programmed for that VF - So, use actual number of 2273 * VLANS added earlier with add VLAN opcode. In order to avoid 2274 * removing VLAN that doesn't exist, which result to sending 2275 * erroneous failed message back to the VF 2276 */ 2277 int num_vf_vlan; 2278 2279 num_vf_vlan = vsi->num_vlan; 2280 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2281 u16 vid = vfl->vlan_id[i]; 2282 struct ice_vlan vlan; 2283 2284 /* we add VLAN 0 by default for each VF so we can enable 2285 * Tx VLAN anti-spoof without triggering MDD events so 2286 * we don't want a VIRTCHNL request to remove it 2287 */ 2288 if (!vid) 2289 continue; 2290 2291 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2292 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2293 if (status) { 2294 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2295 goto error_param; 2296 } 2297 2298 /* Disable VLAN filtering when only VLAN 0 is left */ 2299 if (!ice_vsi_has_non_zero_vlans(vsi)) 2300 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2301 2302 if (vlan_promisc) 2303 ice_vf_dis_vlan_promisc(vsi, &vlan); 2304 } 2305 } 2306 2307 error_param: 2308 /* send the response to the VF */ 2309 if (add_v) 2310 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2311 NULL, 0); 2312 else 2313 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2314 NULL, 0); 2315 } 2316 2317 /** 2318 * ice_vc_add_vlan_msg 2319 * @vf: pointer to the VF info 2320 * @msg: pointer to the msg buffer 2321 * 2322 * Add and program guest VLAN ID 2323 */ 2324 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2325 { 2326 return ice_vc_process_vlan_msg(vf, msg, true); 2327 } 2328 2329 /** 2330 * ice_vc_remove_vlan_msg 2331 * @vf: pointer to the VF info 2332 * @msg: pointer to the msg buffer 2333 * 2334 * remove programmed guest VLAN ID 2335 */ 2336 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2337 { 2338 return ice_vc_process_vlan_msg(vf, msg, false); 2339 } 2340 2341 /** 2342 * ice_vc_ena_vlan_stripping 2343 * @vf: pointer to the VF info 2344 * 2345 * Enable VLAN header stripping for a given VF 2346 */ 2347 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2348 { 2349 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2350 struct ice_vsi *vsi; 2351 2352 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2353 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2354 goto error_param; 2355 } 2356 2357 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2358 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2359 goto error_param; 2360 } 2361 2362 vsi = ice_get_vf_vsi(vf); 2363 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2365 2366 error_param: 2367 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2368 v_ret, NULL, 0); 2369 } 2370 2371 /** 2372 * ice_vc_dis_vlan_stripping 2373 * @vf: pointer to the VF info 2374 * 2375 * Disable VLAN header stripping for a given VF 2376 */ 2377 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2378 { 2379 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2380 struct ice_vsi *vsi; 2381 2382 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2383 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2384 goto error_param; 2385 } 2386 2387 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2388 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2389 goto error_param; 2390 } 2391 2392 vsi = ice_get_vf_vsi(vf); 2393 if (!vsi) { 2394 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2395 goto error_param; 2396 } 2397 2398 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2399 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2400 2401 error_param: 2402 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2403 v_ret, NULL, 0); 2404 } 2405 2406 /** 2407 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2408 * @vf: VF to enable/disable VLAN stripping for on initialization 2409 * 2410 * Set the default for VLAN stripping based on whether a port VLAN is configured 2411 * and the current VLAN mode of the device. 2412 */ 2413 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2414 { 2415 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2416 2417 if (!vsi) 2418 return -EINVAL; 2419 2420 /* don't modify stripping if port VLAN is configured in SVM since the 2421 * port VLAN is based on the inner/single VLAN in SVM 2422 */ 2423 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2424 return 0; 2425 2426 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2427 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2428 else 2429 return vsi->inner_vlan_ops.dis_stripping(vsi); 2430 } 2431 2432 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2433 { 2434 if (vf->trusted) 2435 return VLAN_N_VID; 2436 else 2437 return ICE_MAX_VLAN_PER_VF; 2438 } 2439 2440 /** 2441 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2442 * @vf: VF that being checked for 2443 * 2444 * When the device is in double VLAN mode, check whether or not the outer VLAN 2445 * is allowed. 2446 */ 2447 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2448 { 2449 if (ice_vf_is_port_vlan_ena(vf)) 2450 return true; 2451 2452 return false; 2453 } 2454 2455 /** 2456 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2457 * @vf: VF that capabilities are being set for 2458 * @caps: VLAN capabilities to populate 2459 * 2460 * Determine VLAN capabilities support based on whether a port VLAN is 2461 * configured. If a port VLAN is configured then the VF should use the inner 2462 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2463 * capabilies. 2464 */ 2465 static void 2466 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2467 { 2468 struct virtchnl_vlan_supported_caps *supported_caps; 2469 2470 if (ice_vf_outer_vlan_not_allowed(vf)) { 2471 /* until support for inner VLAN filtering is added when a port 2472 * VLAN is configured, only support software offloaded inner 2473 * VLANs when a port VLAN is confgured in DVM 2474 */ 2475 supported_caps = &caps->filtering.filtering_support; 2476 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2477 2478 supported_caps = &caps->offloads.stripping_support; 2479 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2480 VIRTCHNL_VLAN_TOGGLE | 2481 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2482 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2483 2484 supported_caps = &caps->offloads.insertion_support; 2485 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2486 VIRTCHNL_VLAN_TOGGLE | 2487 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2488 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2489 2490 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2491 caps->offloads.ethertype_match = 2492 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2493 } else { 2494 supported_caps = &caps->filtering.filtering_support; 2495 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2496 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2497 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2498 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2499 VIRTCHNL_VLAN_ETHERTYPE_AND; 2500 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2501 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2502 VIRTCHNL_VLAN_ETHERTYPE_9100; 2503 2504 supported_caps = &caps->offloads.stripping_support; 2505 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2506 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2507 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2508 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2509 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2510 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2511 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2512 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2513 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2514 2515 supported_caps = &caps->offloads.insertion_support; 2516 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2517 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2518 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2519 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2520 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2521 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2522 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2523 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2524 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2525 2526 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2527 2528 caps->offloads.ethertype_match = 2529 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2530 } 2531 2532 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2533 } 2534 2535 /** 2536 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2537 * @vf: VF that capabilities are being set for 2538 * @caps: VLAN capabilities to populate 2539 * 2540 * Determine VLAN capabilities support based on whether a port VLAN is 2541 * configured. If a port VLAN is configured then the VF does not have any VLAN 2542 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2543 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2544 * VLAN fitlering and offload capabilities. 2545 */ 2546 static void 2547 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2548 { 2549 struct virtchnl_vlan_supported_caps *supported_caps; 2550 2551 if (ice_vf_is_port_vlan_ena(vf)) { 2552 supported_caps = &caps->filtering.filtering_support; 2553 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2554 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2555 2556 supported_caps = &caps->offloads.stripping_support; 2557 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2558 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2559 2560 supported_caps = &caps->offloads.insertion_support; 2561 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2562 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2563 2564 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2565 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2566 caps->filtering.max_filters = 0; 2567 } else { 2568 supported_caps = &caps->filtering.filtering_support; 2569 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2570 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2571 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2572 2573 supported_caps = &caps->offloads.stripping_support; 2574 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2575 VIRTCHNL_VLAN_TOGGLE | 2576 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2577 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2578 2579 supported_caps = &caps->offloads.insertion_support; 2580 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2581 VIRTCHNL_VLAN_TOGGLE | 2582 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2583 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2584 2585 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2586 caps->offloads.ethertype_match = 2587 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2588 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2589 } 2590 } 2591 2592 /** 2593 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2594 * @vf: VF to determine VLAN capabilities for 2595 * 2596 * This will only be called if the VF and PF successfully negotiated 2597 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2598 * 2599 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2600 * is configured or not. 2601 */ 2602 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2603 { 2604 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2605 struct virtchnl_vlan_caps *caps = NULL; 2606 int err, len = 0; 2607 2608 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2609 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2610 goto out; 2611 } 2612 2613 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2614 if (!caps) { 2615 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2616 goto out; 2617 } 2618 len = sizeof(*caps); 2619 2620 if (ice_is_dvm_ena(&vf->pf->hw)) 2621 ice_vc_set_dvm_caps(vf, caps); 2622 else 2623 ice_vc_set_svm_caps(vf, caps); 2624 2625 /* store negotiated caps to prevent invalid VF messages */ 2626 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2627 2628 out: 2629 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2630 v_ret, (u8 *)caps, len); 2631 kfree(caps); 2632 return err; 2633 } 2634 2635 /** 2636 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2637 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2638 * @tpid: VLAN TPID used for validation 2639 * 2640 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2641 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2642 */ 2643 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2644 { 2645 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2646 2647 switch (tpid) { 2648 case ETH_P_8021Q: 2649 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2650 break; 2651 case ETH_P_8021AD: 2652 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2653 break; 2654 case ETH_P_QINQ1: 2655 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2656 break; 2657 } 2658 2659 if (!(filtering_caps & vlan_ethertype)) 2660 return false; 2661 2662 return true; 2663 } 2664 2665 /** 2666 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2667 * @vc_vlan: virtchnl_vlan to validate 2668 * 2669 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2670 * false. Otherwise return true. 2671 */ 2672 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2673 { 2674 if (!vc_vlan->tci || !vc_vlan->tpid) 2675 return false; 2676 2677 return true; 2678 } 2679 2680 /** 2681 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2682 * @vfc: negotiated/supported VLAN filtering capabilities 2683 * @vfl: VLAN filter list from VF to validate 2684 * 2685 * Validate all of the filters in the VLAN filter list from the VF. If any of 2686 * the checks fail then return false. Otherwise return true. 2687 */ 2688 static bool 2689 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2690 struct virtchnl_vlan_filter_list_v2 *vfl) 2691 { 2692 u16 i; 2693 2694 if (!vfl->num_elements) 2695 return false; 2696 2697 for (i = 0; i < vfl->num_elements; i++) { 2698 struct virtchnl_vlan_supported_caps *filtering_support = 2699 &vfc->filtering_support; 2700 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2701 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2702 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2703 2704 if ((ice_vc_is_valid_vlan(outer) && 2705 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2706 (ice_vc_is_valid_vlan(inner) && 2707 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2708 return false; 2709 2710 if ((outer->tci_mask && 2711 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2712 (inner->tci_mask && 2713 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2714 return false; 2715 2716 if (((outer->tci & VLAN_PRIO_MASK) && 2717 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2718 ((inner->tci & VLAN_PRIO_MASK) && 2719 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2720 return false; 2721 2722 if ((ice_vc_is_valid_vlan(outer) && 2723 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2724 outer->tpid)) || 2725 (ice_vc_is_valid_vlan(inner) && 2726 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2727 inner->tpid))) 2728 return false; 2729 } 2730 2731 return true; 2732 } 2733 2734 /** 2735 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2736 * @vc_vlan: struct virtchnl_vlan to transform 2737 */ 2738 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2739 { 2740 struct ice_vlan vlan = { 0 }; 2741 2742 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2743 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2744 vlan.tpid = vc_vlan->tpid; 2745 2746 return vlan; 2747 } 2748 2749 /** 2750 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2751 * @vsi: VF's VSI used to perform the action 2752 * @vlan_action: function to perform the action with (i.e. add/del) 2753 * @vlan: VLAN filter to perform the action with 2754 */ 2755 static int 2756 ice_vc_vlan_action(struct ice_vsi *vsi, 2757 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2758 struct ice_vlan *vlan) 2759 { 2760 int err; 2761 2762 err = vlan_action(vsi, vlan); 2763 if (err) 2764 return err; 2765 2766 return 0; 2767 } 2768 2769 /** 2770 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2771 * @vf: VF used to delete the VLAN(s) 2772 * @vsi: VF's VSI used to delete the VLAN(s) 2773 * @vfl: virthchnl filter list used to delete the filters 2774 */ 2775 static int 2776 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2777 struct virtchnl_vlan_filter_list_v2 *vfl) 2778 { 2779 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2780 int err; 2781 u16 i; 2782 2783 for (i = 0; i < vfl->num_elements; i++) { 2784 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2785 struct virtchnl_vlan *vc_vlan; 2786 2787 vc_vlan = &vlan_fltr->outer; 2788 if (ice_vc_is_valid_vlan(vc_vlan)) { 2789 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2790 2791 err = ice_vc_vlan_action(vsi, 2792 vsi->outer_vlan_ops.del_vlan, 2793 &vlan); 2794 if (err) 2795 return err; 2796 2797 if (vlan_promisc) 2798 ice_vf_dis_vlan_promisc(vsi, &vlan); 2799 } 2800 2801 vc_vlan = &vlan_fltr->inner; 2802 if (ice_vc_is_valid_vlan(vc_vlan)) { 2803 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2804 2805 err = ice_vc_vlan_action(vsi, 2806 vsi->inner_vlan_ops.del_vlan, 2807 &vlan); 2808 if (err) 2809 return err; 2810 2811 /* no support for VLAN promiscuous on inner VLAN unless 2812 * we are in Single VLAN Mode (SVM) 2813 */ 2814 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) 2815 ice_vf_dis_vlan_promisc(vsi, &vlan); 2816 } 2817 } 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2824 * @vf: VF the message was received from 2825 * @msg: message received from the VF 2826 */ 2827 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2828 { 2829 struct virtchnl_vlan_filter_list_v2 *vfl = 2830 (struct virtchnl_vlan_filter_list_v2 *)msg; 2831 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2832 struct ice_vsi *vsi; 2833 2834 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2835 vfl)) { 2836 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2837 goto out; 2838 } 2839 2840 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2841 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2842 goto out; 2843 } 2844 2845 vsi = ice_get_vf_vsi(vf); 2846 if (!vsi) { 2847 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2848 goto out; 2849 } 2850 2851 if (ice_vc_del_vlans(vf, vsi, vfl)) 2852 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2853 2854 out: 2855 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 2856 0); 2857 } 2858 2859 /** 2860 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 2861 * @vf: VF used to add the VLAN(s) 2862 * @vsi: VF's VSI used to add the VLAN(s) 2863 * @vfl: virthchnl filter list used to add the filters 2864 */ 2865 static int 2866 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2867 struct virtchnl_vlan_filter_list_v2 *vfl) 2868 { 2869 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2870 int err; 2871 u16 i; 2872 2873 for (i = 0; i < vfl->num_elements; i++) { 2874 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2875 struct virtchnl_vlan *vc_vlan; 2876 2877 vc_vlan = &vlan_fltr->outer; 2878 if (ice_vc_is_valid_vlan(vc_vlan)) { 2879 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2880 2881 err = ice_vc_vlan_action(vsi, 2882 vsi->outer_vlan_ops.add_vlan, 2883 &vlan); 2884 if (err) 2885 return err; 2886 2887 if (vlan_promisc) { 2888 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2889 if (err) 2890 return err; 2891 } 2892 } 2893 2894 vc_vlan = &vlan_fltr->inner; 2895 if (ice_vc_is_valid_vlan(vc_vlan)) { 2896 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2897 2898 err = ice_vc_vlan_action(vsi, 2899 vsi->inner_vlan_ops.add_vlan, 2900 &vlan); 2901 if (err) 2902 return err; 2903 2904 /* no support for VLAN promiscuous on inner VLAN unless 2905 * we are in Single VLAN Mode (SVM) 2906 */ 2907 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) { 2908 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2909 if (err) 2910 return err; 2911 } 2912 } 2913 } 2914 2915 return 0; 2916 } 2917 2918 /** 2919 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 2920 * @vsi: VF VSI used to get number of existing VLAN filters 2921 * @vfc: negotiated/supported VLAN filtering capabilities 2922 * @vfl: VLAN filter list from VF to validate 2923 * 2924 * Validate all of the filters in the VLAN filter list from the VF during the 2925 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 2926 * Otherwise return true. 2927 */ 2928 static bool 2929 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 2930 struct virtchnl_vlan_filtering_caps *vfc, 2931 struct virtchnl_vlan_filter_list_v2 *vfl) 2932 { 2933 u16 num_requested_filters = vsi->num_vlan + vfl->num_elements; 2934 2935 if (num_requested_filters > vfc->max_filters) 2936 return false; 2937 2938 return ice_vc_validate_vlan_filter_list(vfc, vfl); 2939 } 2940 2941 /** 2942 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 2943 * @vf: VF the message was received from 2944 * @msg: message received from the VF 2945 */ 2946 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2947 { 2948 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2949 struct virtchnl_vlan_filter_list_v2 *vfl = 2950 (struct virtchnl_vlan_filter_list_v2 *)msg; 2951 struct ice_vsi *vsi; 2952 2953 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2954 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2955 goto out; 2956 } 2957 2958 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2959 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2960 goto out; 2961 } 2962 2963 vsi = ice_get_vf_vsi(vf); 2964 if (!vsi) { 2965 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2966 goto out; 2967 } 2968 2969 if (!ice_vc_validate_add_vlan_filter_list(vsi, 2970 &vf->vlan_v2_caps.filtering, 2971 vfl)) { 2972 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2973 goto out; 2974 } 2975 2976 if (ice_vc_add_vlans(vf, vsi, vfl)) 2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2978 2979 out: 2980 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 2981 0); 2982 } 2983 2984 /** 2985 * ice_vc_valid_vlan_setting - validate VLAN setting 2986 * @negotiated_settings: negotiated VLAN settings during VF init 2987 * @ethertype_setting: ethertype(s) requested for the VLAN setting 2988 */ 2989 static bool 2990 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 2991 { 2992 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 2993 return false; 2994 2995 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 2996 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 2997 */ 2998 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 2999 hweight32(ethertype_setting) > 1) 3000 return false; 3001 3002 /* ability to modify the VLAN setting was not negotiated */ 3003 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3004 return false; 3005 3006 return true; 3007 } 3008 3009 /** 3010 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3011 * @caps: negotiated VLAN settings during VF init 3012 * @msg: message to validate 3013 * 3014 * Used to validate any VLAN virtchnl message sent as a 3015 * virtchnl_vlan_setting structure. Validates the message against the 3016 * negotiated/supported caps during VF driver init. 3017 */ 3018 static bool 3019 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3020 struct virtchnl_vlan_setting *msg) 3021 { 3022 if ((!msg->outer_ethertype_setting && 3023 !msg->inner_ethertype_setting) || 3024 (!caps->outer && !caps->inner)) 3025 return false; 3026 3027 if (msg->outer_ethertype_setting && 3028 !ice_vc_valid_vlan_setting(caps->outer, 3029 msg->outer_ethertype_setting)) 3030 return false; 3031 3032 if (msg->inner_ethertype_setting && 3033 !ice_vc_valid_vlan_setting(caps->inner, 3034 msg->inner_ethertype_setting)) 3035 return false; 3036 3037 return true; 3038 } 3039 3040 /** 3041 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3042 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3043 * @tpid: VLAN TPID to populate 3044 */ 3045 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3046 { 3047 switch (ethertype_setting) { 3048 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3049 *tpid = ETH_P_8021Q; 3050 break; 3051 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3052 *tpid = ETH_P_8021AD; 3053 break; 3054 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3055 *tpid = ETH_P_QINQ1; 3056 break; 3057 default: 3058 *tpid = 0; 3059 return -EINVAL; 3060 } 3061 3062 return 0; 3063 } 3064 3065 /** 3066 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3067 * @vsi: VF's VSI used to enable the VLAN offload 3068 * @ena_offload: function used to enable the VLAN offload 3069 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3070 */ 3071 static int 3072 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3073 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3074 u32 ethertype_setting) 3075 { 3076 u16 tpid; 3077 int err; 3078 3079 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3080 if (err) 3081 return err; 3082 3083 err = ena_offload(vsi, tpid); 3084 if (err) 3085 return err; 3086 3087 return 0; 3088 } 3089 3090 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3091 #define ICE_L2TSEL_BIT_OFFSET 23 3092 enum ice_l2tsel { 3093 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3094 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3095 }; 3096 3097 /** 3098 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3099 * @vsi: VSI used to update l2tsel on 3100 * @l2tsel: l2tsel setting requested 3101 * 3102 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3103 * This will modify which descriptor field the first offloaded VLAN will be 3104 * stripped into. 3105 */ 3106 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3107 { 3108 struct ice_hw *hw = &vsi->back->hw; 3109 u32 l2tsel_bit; 3110 int i; 3111 3112 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3113 l2tsel_bit = 0; 3114 else 3115 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3116 3117 for (i = 0; i < vsi->alloc_rxq; i++) { 3118 u16 pfq = vsi->rxq_map[i]; 3119 u32 qrx_context_offset; 3120 u32 regval; 3121 3122 qrx_context_offset = 3123 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3124 3125 regval = rd32(hw, qrx_context_offset); 3126 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3127 regval |= l2tsel_bit; 3128 wr32(hw, qrx_context_offset, regval); 3129 } 3130 } 3131 3132 /** 3133 * ice_vc_ena_vlan_stripping_v2_msg 3134 * @vf: VF the message was received from 3135 * @msg: message received from the VF 3136 * 3137 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3138 */ 3139 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3140 { 3141 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3142 struct virtchnl_vlan_supported_caps *stripping_support; 3143 struct virtchnl_vlan_setting *strip_msg = 3144 (struct virtchnl_vlan_setting *)msg; 3145 u32 ethertype_setting; 3146 struct ice_vsi *vsi; 3147 3148 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3149 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3150 goto out; 3151 } 3152 3153 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3154 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3155 goto out; 3156 } 3157 3158 vsi = ice_get_vf_vsi(vf); 3159 if (!vsi) { 3160 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3161 goto out; 3162 } 3163 3164 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3165 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3166 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3167 goto out; 3168 } 3169 3170 ethertype_setting = strip_msg->outer_ethertype_setting; 3171 if (ethertype_setting) { 3172 if (ice_vc_ena_vlan_offload(vsi, 3173 vsi->outer_vlan_ops.ena_stripping, 3174 ethertype_setting)) { 3175 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3176 goto out; 3177 } else { 3178 enum ice_l2tsel l2tsel = 3179 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3180 3181 /* PF tells the VF that the outer VLAN tag is always 3182 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3183 * inner is always extracted to 3184 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3185 * support outer stripping so the first tag always ends 3186 * up in L2TAG2_2ND and the second/inner tag, if 3187 * enabled, is extracted in L2TAG1. 3188 */ 3189 ice_vsi_update_l2tsel(vsi, l2tsel); 3190 } 3191 } 3192 3193 ethertype_setting = strip_msg->inner_ethertype_setting; 3194 if (ethertype_setting && 3195 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3196 ethertype_setting)) { 3197 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3198 goto out; 3199 } 3200 3201 out: 3202 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3203 v_ret, NULL, 0); 3204 } 3205 3206 /** 3207 * ice_vc_dis_vlan_stripping_v2_msg 3208 * @vf: VF the message was received from 3209 * @msg: message received from the VF 3210 * 3211 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3212 */ 3213 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3214 { 3215 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3216 struct virtchnl_vlan_supported_caps *stripping_support; 3217 struct virtchnl_vlan_setting *strip_msg = 3218 (struct virtchnl_vlan_setting *)msg; 3219 u32 ethertype_setting; 3220 struct ice_vsi *vsi; 3221 3222 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3223 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3224 goto out; 3225 } 3226 3227 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3228 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3229 goto out; 3230 } 3231 3232 vsi = ice_get_vf_vsi(vf); 3233 if (!vsi) { 3234 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3235 goto out; 3236 } 3237 3238 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3239 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3241 goto out; 3242 } 3243 3244 ethertype_setting = strip_msg->outer_ethertype_setting; 3245 if (ethertype_setting) { 3246 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3248 goto out; 3249 } else { 3250 enum ice_l2tsel l2tsel = 3251 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3252 3253 /* PF tells the VF that the outer VLAN tag is always 3254 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3255 * inner is always extracted to 3256 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3257 * support inner stripping while outer stripping is 3258 * disabled so that the first and only tag is extracted 3259 * in L2TAG1. 3260 */ 3261 ice_vsi_update_l2tsel(vsi, l2tsel); 3262 } 3263 } 3264 3265 ethertype_setting = strip_msg->inner_ethertype_setting; 3266 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3267 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3268 goto out; 3269 } 3270 3271 out: 3272 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3273 v_ret, NULL, 0); 3274 } 3275 3276 /** 3277 * ice_vc_ena_vlan_insertion_v2_msg 3278 * @vf: VF the message was received from 3279 * @msg: message received from the VF 3280 * 3281 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3282 */ 3283 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3284 { 3285 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3286 struct virtchnl_vlan_supported_caps *insertion_support; 3287 struct virtchnl_vlan_setting *insertion_msg = 3288 (struct virtchnl_vlan_setting *)msg; 3289 u32 ethertype_setting; 3290 struct ice_vsi *vsi; 3291 3292 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3293 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3294 goto out; 3295 } 3296 3297 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3298 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3299 goto out; 3300 } 3301 3302 vsi = ice_get_vf_vsi(vf); 3303 if (!vsi) { 3304 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3305 goto out; 3306 } 3307 3308 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3309 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3310 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3311 goto out; 3312 } 3313 3314 ethertype_setting = insertion_msg->outer_ethertype_setting; 3315 if (ethertype_setting && 3316 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3317 ethertype_setting)) { 3318 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3319 goto out; 3320 } 3321 3322 ethertype_setting = insertion_msg->inner_ethertype_setting; 3323 if (ethertype_setting && 3324 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3325 ethertype_setting)) { 3326 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3327 goto out; 3328 } 3329 3330 out: 3331 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3332 v_ret, NULL, 0); 3333 } 3334 3335 /** 3336 * ice_vc_dis_vlan_insertion_v2_msg 3337 * @vf: VF the message was received from 3338 * @msg: message received from the VF 3339 * 3340 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3341 */ 3342 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3343 { 3344 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3345 struct virtchnl_vlan_supported_caps *insertion_support; 3346 struct virtchnl_vlan_setting *insertion_msg = 3347 (struct virtchnl_vlan_setting *)msg; 3348 u32 ethertype_setting; 3349 struct ice_vsi *vsi; 3350 3351 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3352 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3353 goto out; 3354 } 3355 3356 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3357 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3358 goto out; 3359 } 3360 3361 vsi = ice_get_vf_vsi(vf); 3362 if (!vsi) { 3363 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3364 goto out; 3365 } 3366 3367 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3368 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3369 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3370 goto out; 3371 } 3372 3373 ethertype_setting = insertion_msg->outer_ethertype_setting; 3374 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3376 goto out; 3377 } 3378 3379 ethertype_setting = insertion_msg->inner_ethertype_setting; 3380 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3381 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3382 goto out; 3383 } 3384 3385 out: 3386 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3387 v_ret, NULL, 0); 3388 } 3389 3390 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3391 .get_ver_msg = ice_vc_get_ver_msg, 3392 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3393 .reset_vf = ice_vc_reset_vf_msg, 3394 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3395 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3396 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3397 .ena_qs_msg = ice_vc_ena_qs_msg, 3398 .dis_qs_msg = ice_vc_dis_qs_msg, 3399 .request_qs_msg = ice_vc_request_qs_msg, 3400 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3401 .config_rss_key = ice_vc_config_rss_key, 3402 .config_rss_lut = ice_vc_config_rss_lut, 3403 .get_stats_msg = ice_vc_get_stats_msg, 3404 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3405 .add_vlan_msg = ice_vc_add_vlan_msg, 3406 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3407 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3408 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3409 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3410 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3411 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3412 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3413 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3414 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3415 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3416 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3417 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3418 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3419 }; 3420 3421 /** 3422 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3423 * @vf: the VF to switch ops 3424 */ 3425 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3426 { 3427 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3428 } 3429 3430 /** 3431 * ice_vc_repr_add_mac 3432 * @vf: pointer to VF 3433 * @msg: virtchannel message 3434 * 3435 * When port representors are created, we do not add MAC rule 3436 * to firmware, we store it so that PF could report same 3437 * MAC as VF. 3438 */ 3439 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3440 { 3441 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3442 struct virtchnl_ether_addr_list *al = 3443 (struct virtchnl_ether_addr_list *)msg; 3444 struct ice_vsi *vsi; 3445 struct ice_pf *pf; 3446 int i; 3447 3448 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3449 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3450 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3451 goto handle_mac_exit; 3452 } 3453 3454 pf = vf->pf; 3455 3456 vsi = ice_get_vf_vsi(vf); 3457 if (!vsi) { 3458 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3459 goto handle_mac_exit; 3460 } 3461 3462 for (i = 0; i < al->num_elements; i++) { 3463 u8 *mac_addr = al->list[i].addr; 3464 int result; 3465 3466 if (!is_unicast_ether_addr(mac_addr) || 3467 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3468 continue; 3469 3470 if (vf->pf_set_mac) { 3471 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3472 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3473 goto handle_mac_exit; 3474 } 3475 3476 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3477 if (result) { 3478 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3479 mac_addr, vf->vf_id, result); 3480 goto handle_mac_exit; 3481 } 3482 3483 ice_vfhw_mac_add(vf, &al->list[i]); 3484 vf->num_mac++; 3485 break; 3486 } 3487 3488 handle_mac_exit: 3489 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3490 v_ret, NULL, 0); 3491 } 3492 3493 /** 3494 * ice_vc_repr_del_mac - response with success for deleting MAC 3495 * @vf: pointer to VF 3496 * @msg: virtchannel message 3497 * 3498 * Respond with success to not break normal VF flow. 3499 * For legacy VF driver try to update cached MAC address. 3500 */ 3501 static int 3502 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3503 { 3504 struct virtchnl_ether_addr_list *al = 3505 (struct virtchnl_ether_addr_list *)msg; 3506 3507 ice_update_legacy_cached_mac(vf, &al->list[0]); 3508 3509 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3510 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3511 } 3512 3513 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3514 { 3515 dev_dbg(ice_pf_to_dev(vf->pf), 3516 "Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id); 3517 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, 3518 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3519 } 3520 3521 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3522 { 3523 dev_dbg(ice_pf_to_dev(vf->pf), 3524 "Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id); 3525 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, 3526 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3527 } 3528 3529 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf) 3530 { 3531 dev_dbg(ice_pf_to_dev(vf->pf), 3532 "Can't enable VLAN stripping in switchdev mode for VF %d\n", 3533 vf->vf_id); 3534 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 3535 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3536 NULL, 0); 3537 } 3538 3539 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf) 3540 { 3541 dev_dbg(ice_pf_to_dev(vf->pf), 3542 "Can't disable VLAN stripping in switchdev mode for VF %d\n", 3543 vf->vf_id); 3544 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 3545 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3546 NULL, 0); 3547 } 3548 3549 static int 3550 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3551 { 3552 dev_dbg(ice_pf_to_dev(vf->pf), 3553 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3554 vf->vf_id); 3555 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3556 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3557 NULL, 0); 3558 } 3559 3560 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3561 .get_ver_msg = ice_vc_get_ver_msg, 3562 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3563 .reset_vf = ice_vc_reset_vf_msg, 3564 .add_mac_addr_msg = ice_vc_repr_add_mac, 3565 .del_mac_addr_msg = ice_vc_repr_del_mac, 3566 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3567 .ena_qs_msg = ice_vc_ena_qs_msg, 3568 .dis_qs_msg = ice_vc_dis_qs_msg, 3569 .request_qs_msg = ice_vc_request_qs_msg, 3570 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3571 .config_rss_key = ice_vc_config_rss_key, 3572 .config_rss_lut = ice_vc_config_rss_lut, 3573 .get_stats_msg = ice_vc_get_stats_msg, 3574 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3575 .add_vlan_msg = ice_vc_repr_add_vlan, 3576 .remove_vlan_msg = ice_vc_repr_del_vlan, 3577 .ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping, 3578 .dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping, 3579 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3580 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3581 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3582 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3583 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3584 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3585 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3586 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3587 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3588 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3589 }; 3590 3591 /** 3592 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3593 * @vf: the VF to switch ops 3594 */ 3595 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3596 { 3597 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3598 } 3599 3600 /** 3601 * ice_vc_process_vf_msg - Process request from VF 3602 * @pf: pointer to the PF structure 3603 * @event: pointer to the AQ event 3604 * 3605 * called from the common asq/arq handler to 3606 * process request from VF 3607 */ 3608 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3609 { 3610 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3611 s16 vf_id = le16_to_cpu(event->desc.retval); 3612 const struct ice_virtchnl_ops *ops; 3613 u16 msglen = event->msg_len; 3614 u8 *msg = event->msg_buf; 3615 struct ice_vf *vf = NULL; 3616 struct device *dev; 3617 int err = 0; 3618 3619 dev = ice_pf_to_dev(pf); 3620 3621 vf = ice_get_vf_by_id(pf, vf_id); 3622 if (!vf) { 3623 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3624 vf_id, v_opcode, msglen); 3625 return; 3626 } 3627 3628 /* Check if VF is disabled. */ 3629 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3630 err = -EPERM; 3631 goto error_handler; 3632 } 3633 3634 ops = vf->virtchnl_ops; 3635 3636 /* Perform basic checks on the msg */ 3637 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3638 if (err) { 3639 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3640 err = -EPERM; 3641 else 3642 err = -EINVAL; 3643 } 3644 3645 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3646 ice_vc_send_msg_to_vf(vf, v_opcode, 3647 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3648 0); 3649 ice_put_vf(vf); 3650 return; 3651 } 3652 3653 error_handler: 3654 if (err) { 3655 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3656 NULL, 0); 3657 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3658 vf_id, v_opcode, msglen, err); 3659 ice_put_vf(vf); 3660 return; 3661 } 3662 3663 /* VF is being configured in another context that triggers a VFR, so no 3664 * need to process this message 3665 */ 3666 if (!mutex_trylock(&vf->cfg_lock)) { 3667 dev_info(dev, "VF %u is being configured in another context that will trigger a VFR, so there is no need to handle this message\n", 3668 vf->vf_id); 3669 ice_put_vf(vf); 3670 return; 3671 } 3672 3673 switch (v_opcode) { 3674 case VIRTCHNL_OP_VERSION: 3675 err = ops->get_ver_msg(vf, msg); 3676 break; 3677 case VIRTCHNL_OP_GET_VF_RESOURCES: 3678 err = ops->get_vf_res_msg(vf, msg); 3679 if (ice_vf_init_vlan_stripping(vf)) 3680 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3681 vf->vf_id); 3682 ice_vc_notify_vf_link_state(vf); 3683 break; 3684 case VIRTCHNL_OP_RESET_VF: 3685 ops->reset_vf(vf); 3686 break; 3687 case VIRTCHNL_OP_ADD_ETH_ADDR: 3688 err = ops->add_mac_addr_msg(vf, msg); 3689 break; 3690 case VIRTCHNL_OP_DEL_ETH_ADDR: 3691 err = ops->del_mac_addr_msg(vf, msg); 3692 break; 3693 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3694 err = ops->cfg_qs_msg(vf, msg); 3695 break; 3696 case VIRTCHNL_OP_ENABLE_QUEUES: 3697 err = ops->ena_qs_msg(vf, msg); 3698 ice_vc_notify_vf_link_state(vf); 3699 break; 3700 case VIRTCHNL_OP_DISABLE_QUEUES: 3701 err = ops->dis_qs_msg(vf, msg); 3702 break; 3703 case VIRTCHNL_OP_REQUEST_QUEUES: 3704 err = ops->request_qs_msg(vf, msg); 3705 break; 3706 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3707 err = ops->cfg_irq_map_msg(vf, msg); 3708 break; 3709 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3710 err = ops->config_rss_key(vf, msg); 3711 break; 3712 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3713 err = ops->config_rss_lut(vf, msg); 3714 break; 3715 case VIRTCHNL_OP_GET_STATS: 3716 err = ops->get_stats_msg(vf, msg); 3717 break; 3718 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3719 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3720 break; 3721 case VIRTCHNL_OP_ADD_VLAN: 3722 err = ops->add_vlan_msg(vf, msg); 3723 break; 3724 case VIRTCHNL_OP_DEL_VLAN: 3725 err = ops->remove_vlan_msg(vf, msg); 3726 break; 3727 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3728 err = ops->ena_vlan_stripping(vf); 3729 break; 3730 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3731 err = ops->dis_vlan_stripping(vf); 3732 break; 3733 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3734 err = ops->add_fdir_fltr_msg(vf, msg); 3735 break; 3736 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3737 err = ops->del_fdir_fltr_msg(vf, msg); 3738 break; 3739 case VIRTCHNL_OP_ADD_RSS_CFG: 3740 err = ops->handle_rss_cfg_msg(vf, msg, true); 3741 break; 3742 case VIRTCHNL_OP_DEL_RSS_CFG: 3743 err = ops->handle_rss_cfg_msg(vf, msg, false); 3744 break; 3745 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3746 err = ops->get_offload_vlan_v2_caps(vf); 3747 break; 3748 case VIRTCHNL_OP_ADD_VLAN_V2: 3749 err = ops->add_vlan_v2_msg(vf, msg); 3750 break; 3751 case VIRTCHNL_OP_DEL_VLAN_V2: 3752 err = ops->remove_vlan_v2_msg(vf, msg); 3753 break; 3754 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3755 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3756 break; 3757 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3758 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3759 break; 3760 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3761 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3762 break; 3763 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3764 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3765 break; 3766 case VIRTCHNL_OP_UNKNOWN: 3767 default: 3768 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3769 vf_id); 3770 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3771 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3772 NULL, 0); 3773 break; 3774 } 3775 if (err) { 3776 /* Helper function cares less about error return values here 3777 * as it is busy with pending work. 3778 */ 3779 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3780 vf_id, v_opcode, err); 3781 } 3782 3783 mutex_unlock(&vf->cfg_lock); 3784 ice_put_vf(vf); 3785 } 3786