1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vf_res_msg 364 * @vf: pointer to the VF info 365 * @msg: pointer to the msg buffer 366 * 367 * called from the VF to request its resources 368 */ 369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 370 { 371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 372 struct virtchnl_vf_resource *vfres = NULL; 373 struct ice_hw *hw = &vf->pf->hw; 374 struct ice_vsi *vsi; 375 int len = 0; 376 int ret; 377 378 if (ice_check_vf_init(vf)) { 379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 380 goto err; 381 } 382 383 len = sizeof(struct virtchnl_vf_resource); 384 385 vfres = kzalloc(len, GFP_KERNEL); 386 if (!vfres) { 387 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 388 len = 0; 389 goto err; 390 } 391 if (VF_IS_V11(&vf->vf_ver)) 392 vf->driver_caps = *(u32 *)msg; 393 else 394 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 395 VIRTCHNL_VF_OFFLOAD_RSS_REG | 396 VIRTCHNL_VF_OFFLOAD_VLAN; 397 398 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 399 vsi = ice_get_vf_vsi(vf); 400 if (!vsi) { 401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 402 goto err; 403 } 404 405 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 406 /* VLAN offloads based on current device configuration */ 407 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2; 408 } else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 409 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 410 * these two conditions, which amounts to guest VLAN filtering 411 * and offloads being based on the inner VLAN or the 412 * inner/single VLAN respectively and don't allow VF to 413 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 414 */ 415 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 416 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 417 } else if (!ice_is_dvm_ena(hw) && 418 !ice_vf_is_port_vlan_ena(vf)) { 419 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 420 /* configure backward compatible support for VFs that 421 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 422 * configured in SVM, and no port VLAN is configured 423 */ 424 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 425 } else if (ice_is_dvm_ena(hw)) { 426 /* configure software offloaded VLAN support when DVM 427 * is enabled, but no port VLAN is enabled 428 */ 429 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 430 } 431 } 432 433 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 434 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 435 } else { 436 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 437 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 438 else 439 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 440 } 441 442 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 443 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 444 445 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 446 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 447 448 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 449 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 450 451 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 452 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 453 454 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 455 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 456 457 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 458 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 459 460 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 461 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 462 463 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 464 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 465 466 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 467 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 468 469 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 470 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 471 472 vfres->num_vsis = 1; 473 /* Tx and Rx queue are equal for VF */ 474 vfres->num_queue_pairs = vsi->num_txq; 475 vfres->max_vectors = vf->pf->vfs.num_msix_per; 476 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 477 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 478 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 479 480 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 481 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 482 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 483 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 484 vf->hw_lan_addr.addr); 485 486 /* match guest capabilities */ 487 vf->driver_caps = vfres->vf_cap_flags; 488 489 ice_vc_set_caps_allowlist(vf); 490 ice_vc_set_working_allowlist(vf); 491 492 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 493 494 err: 495 /* send the response back to the VF */ 496 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 497 (u8 *)vfres, len); 498 499 kfree(vfres); 500 return ret; 501 } 502 503 /** 504 * ice_vc_reset_vf_msg 505 * @vf: pointer to the VF info 506 * 507 * called from the VF to reset itself, 508 * unlike other virtchnl messages, PF driver 509 * doesn't send the response back to the VF 510 */ 511 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 512 { 513 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 514 ice_reset_vf(vf, 0); 515 } 516 517 /** 518 * ice_vc_isvalid_vsi_id 519 * @vf: pointer to the VF info 520 * @vsi_id: VF relative VSI ID 521 * 522 * check for the valid VSI ID 523 */ 524 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 525 { 526 struct ice_pf *pf = vf->pf; 527 struct ice_vsi *vsi; 528 529 vsi = ice_find_vsi(pf, vsi_id); 530 531 return (vsi && (vsi->vf == vf)); 532 } 533 534 /** 535 * ice_vc_isvalid_q_id 536 * @vf: pointer to the VF info 537 * @vsi_id: VSI ID 538 * @qid: VSI relative queue ID 539 * 540 * check for the valid queue ID 541 */ 542 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 543 { 544 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 545 /* allocated Tx and Rx queues should be always equal for VF VSI */ 546 return (vsi && (qid < vsi->alloc_txq)); 547 } 548 549 /** 550 * ice_vc_isvalid_ring_len 551 * @ring_len: length of ring 552 * 553 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 554 * or zero 555 */ 556 static bool ice_vc_isvalid_ring_len(u16 ring_len) 557 { 558 return ring_len == 0 || 559 (ring_len >= ICE_MIN_NUM_DESC && 560 ring_len <= ICE_MAX_NUM_DESC && 561 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 562 } 563 564 /** 565 * ice_vc_validate_pattern 566 * @vf: pointer to the VF info 567 * @proto: virtchnl protocol headers 568 * 569 * validate the pattern is supported or not. 570 * 571 * Return: true on success, false on error. 572 */ 573 bool 574 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 575 { 576 bool is_ipv4 = false; 577 bool is_ipv6 = false; 578 bool is_udp = false; 579 u16 ptype = -1; 580 int i = 0; 581 582 while (i < proto->count && 583 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 584 switch (proto->proto_hdr[i].type) { 585 case VIRTCHNL_PROTO_HDR_ETH: 586 ptype = ICE_PTYPE_MAC_PAY; 587 break; 588 case VIRTCHNL_PROTO_HDR_IPV4: 589 ptype = ICE_PTYPE_IPV4_PAY; 590 is_ipv4 = true; 591 break; 592 case VIRTCHNL_PROTO_HDR_IPV6: 593 ptype = ICE_PTYPE_IPV6_PAY; 594 is_ipv6 = true; 595 break; 596 case VIRTCHNL_PROTO_HDR_UDP: 597 if (is_ipv4) 598 ptype = ICE_PTYPE_IPV4_UDP_PAY; 599 else if (is_ipv6) 600 ptype = ICE_PTYPE_IPV6_UDP_PAY; 601 is_udp = true; 602 break; 603 case VIRTCHNL_PROTO_HDR_TCP: 604 if (is_ipv4) 605 ptype = ICE_PTYPE_IPV4_TCP_PAY; 606 else if (is_ipv6) 607 ptype = ICE_PTYPE_IPV6_TCP_PAY; 608 break; 609 case VIRTCHNL_PROTO_HDR_SCTP: 610 if (is_ipv4) 611 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 612 else if (is_ipv6) 613 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 614 break; 615 case VIRTCHNL_PROTO_HDR_GTPU_IP: 616 case VIRTCHNL_PROTO_HDR_GTPU_EH: 617 if (is_ipv4) 618 ptype = ICE_MAC_IPV4_GTPU; 619 else if (is_ipv6) 620 ptype = ICE_MAC_IPV6_GTPU; 621 goto out; 622 case VIRTCHNL_PROTO_HDR_L2TPV3: 623 if (is_ipv4) 624 ptype = ICE_MAC_IPV4_L2TPV3; 625 else if (is_ipv6) 626 ptype = ICE_MAC_IPV6_L2TPV3; 627 goto out; 628 case VIRTCHNL_PROTO_HDR_ESP: 629 if (is_ipv4) 630 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 631 ICE_MAC_IPV4_ESP; 632 else if (is_ipv6) 633 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 634 ICE_MAC_IPV6_ESP; 635 goto out; 636 case VIRTCHNL_PROTO_HDR_AH: 637 if (is_ipv4) 638 ptype = ICE_MAC_IPV4_AH; 639 else if (is_ipv6) 640 ptype = ICE_MAC_IPV6_AH; 641 goto out; 642 case VIRTCHNL_PROTO_HDR_PFCP: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_PFCP_SESSION; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_PFCP_SESSION; 647 goto out; 648 default: 649 break; 650 } 651 i++; 652 } 653 654 out: 655 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 656 } 657 658 /** 659 * ice_vc_parse_rss_cfg - parses hash fields and headers from 660 * a specific virtchnl RSS cfg 661 * @hw: pointer to the hardware 662 * @rss_cfg: pointer to the virtchnl RSS cfg 663 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 664 * to configure 665 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 666 * 667 * Return true if all the protocol header and hash fields in the RSS cfg could 668 * be parsed, else return false 669 * 670 * This function parses the virtchnl RSS cfg to be the intended 671 * hash fields and the intended header for RSS configuration 672 */ 673 static bool 674 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 675 u32 *addl_hdrs, u64 *hash_flds) 676 { 677 const struct ice_vc_hash_field_match_type *hf_list; 678 const struct ice_vc_hdr_match_type *hdr_list; 679 int i, hf_list_len, hdr_list_len; 680 681 hf_list = ice_vc_hash_field_list; 682 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 683 hdr_list = ice_vc_hdr_list; 684 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 685 686 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 687 struct virtchnl_proto_hdr *proto_hdr = 688 &rss_cfg->proto_hdrs.proto_hdr[i]; 689 bool hdr_found = false; 690 int j; 691 692 /* Find matched ice headers according to virtchnl headers. */ 693 for (j = 0; j < hdr_list_len; j++) { 694 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 695 696 if (proto_hdr->type == hdr_map.vc_hdr) { 697 *addl_hdrs |= hdr_map.ice_hdr; 698 hdr_found = true; 699 } 700 } 701 702 if (!hdr_found) 703 return false; 704 705 /* Find matched ice hash fields according to 706 * virtchnl hash fields. 707 */ 708 for (j = 0; j < hf_list_len; j++) { 709 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 710 711 if (proto_hdr->type == hf_map.vc_hdr && 712 proto_hdr->field_selector == hf_map.vc_hash_field) { 713 *hash_flds |= hf_map.ice_hash_field; 714 break; 715 } 716 } 717 } 718 719 return true; 720 } 721 722 /** 723 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 724 * RSS offloads 725 * @caps: VF driver negotiated capabilities 726 * 727 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 728 * else return false 729 */ 730 static bool ice_vf_adv_rss_offload_ena(u32 caps) 731 { 732 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 733 } 734 735 /** 736 * ice_vc_handle_rss_cfg 737 * @vf: pointer to the VF info 738 * @msg: pointer to the message buffer 739 * @add: add a RSS config if true, otherwise delete a RSS config 740 * 741 * This function adds/deletes a RSS config 742 */ 743 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 744 { 745 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 746 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 747 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 748 struct device *dev = ice_pf_to_dev(vf->pf); 749 struct ice_hw *hw = &vf->pf->hw; 750 struct ice_vsi *vsi; 751 752 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 753 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 754 vf->vf_id); 755 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 756 goto error_param; 757 } 758 759 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 760 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 761 vf->vf_id); 762 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 763 goto error_param; 764 } 765 766 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 767 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 768 goto error_param; 769 } 770 771 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 772 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 773 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 774 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 775 vf->vf_id); 776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 777 goto error_param; 778 } 779 780 vsi = ice_get_vf_vsi(vf); 781 if (!vsi) { 782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 783 goto error_param; 784 } 785 786 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 787 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 788 goto error_param; 789 } 790 791 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 792 struct ice_vsi_ctx *ctx; 793 u8 lut_type, hash_type; 794 int status; 795 796 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 797 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 798 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 799 800 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 801 if (!ctx) { 802 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 803 goto error_param; 804 } 805 806 ctx->info.q_opt_rss = ((lut_type << 807 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 808 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 809 (hash_type & 810 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 811 812 /* Preserve existing queueing option setting */ 813 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 814 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 815 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 816 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 817 818 ctx->info.valid_sections = 819 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 820 821 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 822 if (status) { 823 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 824 status, ice_aq_str(hw->adminq.sq_last_status)); 825 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 826 } else { 827 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 828 } 829 830 kfree(ctx); 831 } else { 832 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 833 u64 hash_flds = ICE_HASH_INVALID; 834 835 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 836 &hash_flds)) { 837 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 838 goto error_param; 839 } 840 841 if (add) { 842 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 843 addl_hdrs)) { 844 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 845 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 846 vsi->vsi_num, v_ret); 847 } 848 } else { 849 int status; 850 851 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 852 addl_hdrs); 853 /* We just ignore -ENOENT, because if two configurations 854 * share the same profile remove one of them actually 855 * removes both, since the profile is deleted. 856 */ 857 if (status && status != -ENOENT) { 858 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 859 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 860 vf->vf_id, status); 861 } 862 } 863 } 864 865 error_param: 866 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 867 } 868 869 /** 870 * ice_vc_config_rss_key 871 * @vf: pointer to the VF info 872 * @msg: pointer to the msg buffer 873 * 874 * Configure the VF's RSS key 875 */ 876 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 877 { 878 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 879 struct virtchnl_rss_key *vrk = 880 (struct virtchnl_rss_key *)msg; 881 struct ice_vsi *vsi; 882 883 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 goto error_param; 886 } 887 888 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 889 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 890 goto error_param; 891 } 892 893 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 goto error_param; 896 } 897 898 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 899 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 900 goto error_param; 901 } 902 903 vsi = ice_get_vf_vsi(vf); 904 if (!vsi) { 905 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 906 goto error_param; 907 } 908 909 if (ice_set_rss_key(vsi, vrk->key)) 910 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 911 error_param: 912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 913 NULL, 0); 914 } 915 916 /** 917 * ice_vc_config_rss_lut 918 * @vf: pointer to the VF info 919 * @msg: pointer to the msg buffer 920 * 921 * Configure the VF's RSS LUT 922 */ 923 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 924 { 925 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 926 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 927 struct ice_vsi *vsi; 928 929 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 941 goto error_param; 942 } 943 944 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 946 goto error_param; 947 } 948 949 vsi = ice_get_vf_vsi(vf); 950 if (!vsi) { 951 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 952 goto error_param; 953 } 954 955 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 956 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 957 error_param: 958 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 959 NULL, 0); 960 } 961 962 /** 963 * ice_vc_cfg_promiscuous_mode_msg 964 * @vf: pointer to the VF info 965 * @msg: pointer to the msg buffer 966 * 967 * called from the VF to configure VF VSIs promiscuous mode 968 */ 969 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 970 { 971 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 972 bool rm_promisc, alluni = false, allmulti = false; 973 struct virtchnl_promisc_info *info = 974 (struct virtchnl_promisc_info *)msg; 975 struct ice_vsi_vlan_ops *vlan_ops; 976 int mcast_err = 0, ucast_err = 0; 977 struct ice_pf *pf = vf->pf; 978 struct ice_vsi *vsi; 979 struct device *dev; 980 int ret = 0; 981 982 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 983 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 984 goto error_param; 985 } 986 987 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 988 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 989 goto error_param; 990 } 991 992 vsi = ice_get_vf_vsi(vf); 993 if (!vsi) { 994 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 995 goto error_param; 996 } 997 998 dev = ice_pf_to_dev(pf); 999 if (!ice_is_vf_trusted(vf)) { 1000 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1001 vf->vf_id); 1002 /* Leave v_ret alone, lie to the VF on purpose. */ 1003 goto error_param; 1004 } 1005 1006 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1007 alluni = true; 1008 1009 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1010 allmulti = true; 1011 1012 rm_promisc = !allmulti && !alluni; 1013 1014 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1015 if (rm_promisc) 1016 ret = vlan_ops->ena_rx_filtering(vsi); 1017 else 1018 ret = vlan_ops->dis_rx_filtering(vsi); 1019 if (ret) { 1020 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1026 bool set_dflt_vsi = alluni || allmulti; 1027 1028 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) 1029 /* only attempt to set the default forwarding VSI if 1030 * it's not currently set 1031 */ 1032 ret = ice_set_dflt_vsi(pf->first_sw, vsi); 1033 else if (!set_dflt_vsi && 1034 ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 1035 /* only attempt to free the default forwarding VSI if we 1036 * are the owner 1037 */ 1038 ret = ice_clear_dflt_vsi(pf->first_sw); 1039 1040 if (ret) { 1041 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", 1042 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); 1043 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1044 goto error_param; 1045 } 1046 } else { 1047 u8 mcast_m, ucast_m; 1048 1049 if (ice_vf_is_port_vlan_ena(vf) || 1050 ice_vsi_has_non_zero_vlans(vsi)) { 1051 mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; 1052 ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; 1053 } else { 1054 mcast_m = ICE_MCAST_PROMISC_BITS; 1055 ucast_m = ICE_UCAST_PROMISC_BITS; 1056 } 1057 1058 if (alluni) 1059 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1060 else 1061 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1062 1063 if (allmulti) 1064 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1065 else 1066 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1067 1068 if (ucast_err || mcast_err) 1069 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1070 } 1071 1072 if (!mcast_err) { 1073 if (allmulti && 1074 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1075 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1076 vf->vf_id); 1077 else if (!allmulti && 1078 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1079 vf->vf_states)) 1080 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1081 vf->vf_id); 1082 } 1083 1084 if (!ucast_err) { 1085 if (alluni && 1086 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1087 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1088 vf->vf_id); 1089 else if (!alluni && 1090 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1091 vf->vf_states)) 1092 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1093 vf->vf_id); 1094 } 1095 1096 error_param: 1097 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1098 v_ret, NULL, 0); 1099 } 1100 1101 /** 1102 * ice_vc_get_stats_msg 1103 * @vf: pointer to the VF info 1104 * @msg: pointer to the msg buffer 1105 * 1106 * called from the VF to get VSI stats 1107 */ 1108 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1109 { 1110 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1111 struct virtchnl_queue_select *vqs = 1112 (struct virtchnl_queue_select *)msg; 1113 struct ice_eth_stats stats = { 0 }; 1114 struct ice_vsi *vsi; 1115 1116 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1117 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1118 goto error_param; 1119 } 1120 1121 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1122 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1123 goto error_param; 1124 } 1125 1126 vsi = ice_get_vf_vsi(vf); 1127 if (!vsi) { 1128 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1129 goto error_param; 1130 } 1131 1132 ice_update_eth_stats(vsi); 1133 1134 stats = vsi->eth_stats; 1135 1136 error_param: 1137 /* send the response to the VF */ 1138 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1139 (u8 *)&stats, sizeof(stats)); 1140 } 1141 1142 /** 1143 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1144 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1145 * 1146 * Return true on successful validation, else false 1147 */ 1148 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1149 { 1150 if ((!vqs->rx_queues && !vqs->tx_queues) || 1151 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1152 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1153 return false; 1154 1155 return true; 1156 } 1157 1158 /** 1159 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1160 * @vsi: VSI of the VF to configure 1161 * @q_idx: VF queue index used to determine the queue in the PF's space 1162 */ 1163 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1164 { 1165 struct ice_hw *hw = &vsi->back->hw; 1166 u32 pfq = vsi->txq_map[q_idx]; 1167 u32 reg; 1168 1169 reg = rd32(hw, QINT_TQCTL(pfq)); 1170 1171 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1172 * this is most likely a poll mode VF driver, so don't enable an 1173 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1174 */ 1175 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1176 return; 1177 1178 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1179 } 1180 1181 /** 1182 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1183 * @vsi: VSI of the VF to configure 1184 * @q_idx: VF queue index used to determine the queue in the PF's space 1185 */ 1186 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1187 { 1188 struct ice_hw *hw = &vsi->back->hw; 1189 u32 pfq = vsi->rxq_map[q_idx]; 1190 u32 reg; 1191 1192 reg = rd32(hw, QINT_RQCTL(pfq)); 1193 1194 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1195 * this is most likely a poll mode VF driver, so don't enable an 1196 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1197 */ 1198 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1199 return; 1200 1201 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1202 } 1203 1204 /** 1205 * ice_vc_ena_qs_msg 1206 * @vf: pointer to the VF info 1207 * @msg: pointer to the msg buffer 1208 * 1209 * called from the VF to enable all or specific queue(s) 1210 */ 1211 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1212 { 1213 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1214 struct virtchnl_queue_select *vqs = 1215 (struct virtchnl_queue_select *)msg; 1216 struct ice_vsi *vsi; 1217 unsigned long q_map; 1218 u16 vf_q_id; 1219 1220 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1221 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1222 goto error_param; 1223 } 1224 1225 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1226 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1227 goto error_param; 1228 } 1229 1230 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1232 goto error_param; 1233 } 1234 1235 vsi = ice_get_vf_vsi(vf); 1236 if (!vsi) { 1237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1238 goto error_param; 1239 } 1240 1241 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1242 * Tx queue group list was configured and the context bits were 1243 * programmed using ice_vsi_cfg_txqs 1244 */ 1245 q_map = vqs->rx_queues; 1246 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1247 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 /* Skip queue if enabled */ 1253 if (test_bit(vf_q_id, vf->rxq_ena)) 1254 continue; 1255 1256 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1257 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1258 vf_q_id, vsi->vsi_num); 1259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1260 goto error_param; 1261 } 1262 1263 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1264 set_bit(vf_q_id, vf->rxq_ena); 1265 } 1266 1267 q_map = vqs->tx_queues; 1268 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1269 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1271 goto error_param; 1272 } 1273 1274 /* Skip queue if enabled */ 1275 if (test_bit(vf_q_id, vf->txq_ena)) 1276 continue; 1277 1278 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1279 set_bit(vf_q_id, vf->txq_ena); 1280 } 1281 1282 /* Set flag to indicate that queues are enabled */ 1283 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1284 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1285 1286 error_param: 1287 /* send the response to the VF */ 1288 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1289 NULL, 0); 1290 } 1291 1292 /** 1293 * ice_vc_dis_qs_msg 1294 * @vf: pointer to the VF info 1295 * @msg: pointer to the msg buffer 1296 * 1297 * called from the VF to disable all or specific 1298 * queue(s) 1299 */ 1300 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1301 { 1302 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1303 struct virtchnl_queue_select *vqs = 1304 (struct virtchnl_queue_select *)msg; 1305 struct ice_vsi *vsi; 1306 unsigned long q_map; 1307 u16 vf_q_id; 1308 1309 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1310 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1311 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1312 goto error_param; 1313 } 1314 1315 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1316 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1317 goto error_param; 1318 } 1319 1320 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1321 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1322 goto error_param; 1323 } 1324 1325 vsi = ice_get_vf_vsi(vf); 1326 if (!vsi) { 1327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1328 goto error_param; 1329 } 1330 1331 if (vqs->tx_queues) { 1332 q_map = vqs->tx_queues; 1333 1334 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1335 struct ice_tx_ring *ring = vsi->tx_rings[vf_q_id]; 1336 struct ice_txq_meta txq_meta = { 0 }; 1337 1338 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1339 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1340 goto error_param; 1341 } 1342 1343 if (!test_bit(vf_q_id, vf->txq_ena)) 1344 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1345 vf_q_id, vsi->vsi_num); 1346 1347 ice_fill_txq_meta(vsi, ring, &txq_meta); 1348 1349 if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, 1350 ring, &txq_meta)) { 1351 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1352 vf_q_id, vsi->vsi_num); 1353 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1354 goto error_param; 1355 } 1356 1357 /* Clear enabled queues flag */ 1358 clear_bit(vf_q_id, vf->txq_ena); 1359 } 1360 } 1361 1362 q_map = vqs->rx_queues; 1363 /* speed up Rx queue disable by batching them if possible */ 1364 if (q_map && 1365 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1366 if (ice_vsi_stop_all_rx_rings(vsi)) { 1367 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1368 vsi->vsi_num); 1369 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1370 goto error_param; 1371 } 1372 1373 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1374 } else if (q_map) { 1375 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1376 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 /* Skip queue if not enabled */ 1382 if (!test_bit(vf_q_id, vf->rxq_ena)) 1383 continue; 1384 1385 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1386 true)) { 1387 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1388 vf_q_id, vsi->vsi_num); 1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1390 goto error_param; 1391 } 1392 1393 /* Clear enabled queues flag */ 1394 clear_bit(vf_q_id, vf->rxq_ena); 1395 } 1396 } 1397 1398 /* Clear enabled queues flag */ 1399 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1400 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1401 1402 error_param: 1403 /* send the response to the VF */ 1404 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1405 NULL, 0); 1406 } 1407 1408 /** 1409 * ice_cfg_interrupt 1410 * @vf: pointer to the VF info 1411 * @vsi: the VSI being configured 1412 * @vector_id: vector ID 1413 * @map: vector map for mapping vectors to queues 1414 * @q_vector: structure for interrupt vector 1415 * configure the IRQ to queue map 1416 */ 1417 static int 1418 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1419 struct virtchnl_vector_map *map, 1420 struct ice_q_vector *q_vector) 1421 { 1422 u16 vsi_q_id, vsi_q_id_idx; 1423 unsigned long qmap; 1424 1425 q_vector->num_ring_rx = 0; 1426 q_vector->num_ring_tx = 0; 1427 1428 qmap = map->rxq_map; 1429 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1430 vsi_q_id = vsi_q_id_idx; 1431 1432 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1433 return VIRTCHNL_STATUS_ERR_PARAM; 1434 1435 q_vector->num_ring_rx++; 1436 q_vector->rx.itr_idx = map->rxitr_idx; 1437 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1438 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1439 q_vector->rx.itr_idx); 1440 } 1441 1442 qmap = map->txq_map; 1443 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1444 vsi_q_id = vsi_q_id_idx; 1445 1446 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1447 return VIRTCHNL_STATUS_ERR_PARAM; 1448 1449 q_vector->num_ring_tx++; 1450 q_vector->tx.itr_idx = map->txitr_idx; 1451 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1452 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1453 q_vector->tx.itr_idx); 1454 } 1455 1456 return VIRTCHNL_STATUS_SUCCESS; 1457 } 1458 1459 /** 1460 * ice_vc_cfg_irq_map_msg 1461 * @vf: pointer to the VF info 1462 * @msg: pointer to the msg buffer 1463 * 1464 * called from the VF to configure the IRQ to queue map 1465 */ 1466 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1467 { 1468 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1469 u16 num_q_vectors_mapped, vsi_id, vector_id; 1470 struct virtchnl_irq_map_info *irqmap_info; 1471 struct virtchnl_vector_map *map; 1472 struct ice_pf *pf = vf->pf; 1473 struct ice_vsi *vsi; 1474 int i; 1475 1476 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1477 num_q_vectors_mapped = irqmap_info->num_vectors; 1478 1479 /* Check to make sure number of VF vectors mapped is not greater than 1480 * number of VF vectors originally allocated, and check that 1481 * there is actually at least a single VF queue vector mapped 1482 */ 1483 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1484 pf->vfs.num_msix_per < num_q_vectors_mapped || 1485 !num_q_vectors_mapped) { 1486 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1487 goto error_param; 1488 } 1489 1490 vsi = ice_get_vf_vsi(vf); 1491 if (!vsi) { 1492 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1493 goto error_param; 1494 } 1495 1496 for (i = 0; i < num_q_vectors_mapped; i++) { 1497 struct ice_q_vector *q_vector; 1498 1499 map = &irqmap_info->vecmap[i]; 1500 1501 vector_id = map->vector_id; 1502 vsi_id = map->vsi_id; 1503 /* vector_id is always 0-based for each VF, and can never be 1504 * larger than or equal to the max allowed interrupts per VF 1505 */ 1506 if (!(vector_id < pf->vfs.num_msix_per) || 1507 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1508 (!vector_id && (map->rxq_map || map->txq_map))) { 1509 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1510 goto error_param; 1511 } 1512 1513 /* No need to map VF miscellaneous or rogue vector */ 1514 if (!vector_id) 1515 continue; 1516 1517 /* Subtract non queue vector from vector_id passed by VF 1518 * to get actual number of VSI queue vector array index 1519 */ 1520 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1521 if (!q_vector) { 1522 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1523 goto error_param; 1524 } 1525 1526 /* lookout for the invalid queue index */ 1527 v_ret = (enum virtchnl_status_code) 1528 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1529 if (v_ret) 1530 goto error_param; 1531 } 1532 1533 error_param: 1534 /* send the response to the VF */ 1535 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1536 NULL, 0); 1537 } 1538 1539 /** 1540 * ice_vc_cfg_qs_msg 1541 * @vf: pointer to the VF info 1542 * @msg: pointer to the msg buffer 1543 * 1544 * called from the VF to configure the Rx/Tx queues 1545 */ 1546 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1547 { 1548 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1549 struct virtchnl_vsi_queue_config_info *qci = 1550 (struct virtchnl_vsi_queue_config_info *)msg; 1551 struct virtchnl_queue_pair_info *qpi; 1552 struct ice_pf *pf = vf->pf; 1553 struct ice_vsi *vsi; 1554 int i, q_idx; 1555 1556 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1557 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1558 goto error_param; 1559 } 1560 1561 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { 1562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1563 goto error_param; 1564 } 1565 1566 vsi = ice_get_vf_vsi(vf); 1567 if (!vsi) { 1568 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1569 goto error_param; 1570 } 1571 1572 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1573 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1574 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1575 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1576 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1577 goto error_param; 1578 } 1579 1580 for (i = 0; i < qci->num_queue_pairs; i++) { 1581 qpi = &qci->qpair[i]; 1582 if (qpi->txq.vsi_id != qci->vsi_id || 1583 qpi->rxq.vsi_id != qci->vsi_id || 1584 qpi->rxq.queue_id != qpi->txq.queue_id || 1585 qpi->txq.headwb_enabled || 1586 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1587 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1588 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1589 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1590 goto error_param; 1591 } 1592 1593 q_idx = qpi->rxq.queue_id; 1594 1595 /* make sure selected "q_idx" is in valid range of queues 1596 * for selected "vsi" 1597 */ 1598 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1599 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1600 goto error_param; 1601 } 1602 1603 /* copy Tx queue info from VF into VSI */ 1604 if (qpi->txq.ring_len > 0) { 1605 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1606 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1607 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1608 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1609 goto error_param; 1610 } 1611 } 1612 1613 /* copy Rx queue info from VF into VSI */ 1614 if (qpi->rxq.ring_len > 0) { 1615 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1616 1617 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1618 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1619 1620 if (qpi->rxq.databuffer_size != 0 && 1621 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1622 qpi->rxq.databuffer_size < 1024)) { 1623 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1624 goto error_param; 1625 } 1626 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1627 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1628 if (qpi->rxq.max_pkt_size > max_frame_size || 1629 qpi->rxq.max_pkt_size < 64) { 1630 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1631 goto error_param; 1632 } 1633 1634 vsi->max_frame = qpi->rxq.max_pkt_size; 1635 /* add space for the port VLAN since the VF driver is 1636 * not expected to account for it in the MTU 1637 * calculation 1638 */ 1639 if (ice_vf_is_port_vlan_ena(vf)) 1640 vsi->max_frame += VLAN_HLEN; 1641 1642 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1643 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1644 goto error_param; 1645 } 1646 } 1647 } 1648 1649 error_param: 1650 /* send the response to the VF */ 1651 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, 1652 NULL, 0); 1653 } 1654 1655 /** 1656 * ice_can_vf_change_mac 1657 * @vf: pointer to the VF info 1658 * 1659 * Return true if the VF is allowed to change its MAC filters, false otherwise 1660 */ 1661 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1662 { 1663 /* If the VF MAC address has been set administratively (via the 1664 * ndo_set_vf_mac command), then deny permission to the VF to 1665 * add/delete unicast MAC addresses, unless the VF is trusted 1666 */ 1667 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1668 return false; 1669 1670 return true; 1671 } 1672 1673 /** 1674 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1675 * @vc_ether_addr: used to extract the type 1676 */ 1677 static u8 1678 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1679 { 1680 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1681 } 1682 1683 /** 1684 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1685 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1686 */ 1687 static bool 1688 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1689 { 1690 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1691 1692 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1693 } 1694 1695 /** 1696 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1697 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1698 * 1699 * This function should only be called when the MAC address in 1700 * virtchnl_ether_addr is a valid unicast MAC 1701 */ 1702 static bool 1703 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1704 { 1705 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1706 1707 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1708 } 1709 1710 /** 1711 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1712 * @vf: VF to update 1713 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1714 */ 1715 static void 1716 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1717 { 1718 u8 *mac_addr = vc_ether_addr->addr; 1719 1720 if (!is_valid_ether_addr(mac_addr)) 1721 return; 1722 1723 /* only allow legacy VF drivers to set the device and hardware MAC if it 1724 * is zero and allow new VF drivers to set the hardware MAC if the type 1725 * was correctly specified over VIRTCHNL 1726 */ 1727 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1728 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1729 ice_is_vc_addr_primary(vc_ether_addr)) { 1730 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1731 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1732 } 1733 1734 /* hardware and device MACs are already set, but its possible that the 1735 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1736 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1737 * away for the legacy VF driver case as it will be updated in the 1738 * delete flow for this case 1739 */ 1740 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1741 ether_addr_copy(vf->legacy_last_added_umac.addr, 1742 mac_addr); 1743 vf->legacy_last_added_umac.time_modified = jiffies; 1744 } 1745 } 1746 1747 /** 1748 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1749 * @vf: pointer to the VF info 1750 * @vsi: pointer to the VF's VSI 1751 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1752 */ 1753 static int 1754 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1755 struct virtchnl_ether_addr *vc_ether_addr) 1756 { 1757 struct device *dev = ice_pf_to_dev(vf->pf); 1758 u8 *mac_addr = vc_ether_addr->addr; 1759 int ret; 1760 1761 /* device MAC already added */ 1762 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1763 return 0; 1764 1765 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1766 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1767 return -EPERM; 1768 } 1769 1770 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1771 if (ret == -EEXIST) { 1772 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1773 vf->vf_id); 1774 /* don't return since we might need to update 1775 * the primary MAC in ice_vfhw_mac_add() below 1776 */ 1777 } else if (ret) { 1778 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1779 mac_addr, vf->vf_id, ret); 1780 return ret; 1781 } else { 1782 vf->num_mac++; 1783 } 1784 1785 ice_vfhw_mac_add(vf, vc_ether_addr); 1786 1787 return ret; 1788 } 1789 1790 /** 1791 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1792 * @last_added_umac: structure used to check expiration 1793 */ 1794 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1795 { 1796 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1797 return time_is_before_jiffies(last_added_umac->time_modified + 1798 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1799 } 1800 1801 /** 1802 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1803 * @vf: VF to update 1804 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1805 * 1806 * only update cached hardware MAC for legacy VF drivers on delete 1807 * because we cannot guarantee order/type of MAC from the VF driver 1808 */ 1809 static void 1810 ice_update_legacy_cached_mac(struct ice_vf *vf, 1811 struct virtchnl_ether_addr *vc_ether_addr) 1812 { 1813 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1814 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1815 return; 1816 1817 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1818 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1819 } 1820 1821 /** 1822 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1823 * @vf: VF to update 1824 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1825 */ 1826 static void 1827 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1828 { 1829 u8 *mac_addr = vc_ether_addr->addr; 1830 1831 if (!is_valid_ether_addr(mac_addr) || 1832 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1833 return; 1834 1835 /* allow the device MAC to be repopulated in the add flow and don't 1836 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1837 * to be persistent on VM reboot and across driver unload/load, which 1838 * won't work if we clear the hardware MAC here 1839 */ 1840 eth_zero_addr(vf->dev_lan_addr.addr); 1841 1842 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1843 } 1844 1845 /** 1846 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1847 * @vf: pointer to the VF info 1848 * @vsi: pointer to the VF's VSI 1849 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1850 */ 1851 static int 1852 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1853 struct virtchnl_ether_addr *vc_ether_addr) 1854 { 1855 struct device *dev = ice_pf_to_dev(vf->pf); 1856 u8 *mac_addr = vc_ether_addr->addr; 1857 int status; 1858 1859 if (!ice_can_vf_change_mac(vf) && 1860 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1861 return 0; 1862 1863 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1864 if (status == -ENOENT) { 1865 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1866 vf->vf_id); 1867 return -ENOENT; 1868 } else if (status) { 1869 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1870 mac_addr, vf->vf_id, status); 1871 return -EIO; 1872 } 1873 1874 ice_vfhw_mac_del(vf, vc_ether_addr); 1875 1876 vf->num_mac--; 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * ice_vc_handle_mac_addr_msg 1883 * @vf: pointer to the VF info 1884 * @msg: pointer to the msg buffer 1885 * @set: true if MAC filters are being set, false otherwise 1886 * 1887 * add guest MAC address filter 1888 */ 1889 static int 1890 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1891 { 1892 int (*ice_vc_cfg_mac) 1893 (struct ice_vf *vf, struct ice_vsi *vsi, 1894 struct virtchnl_ether_addr *virtchnl_ether_addr); 1895 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1896 struct virtchnl_ether_addr_list *al = 1897 (struct virtchnl_ether_addr_list *)msg; 1898 struct ice_pf *pf = vf->pf; 1899 enum virtchnl_ops vc_op; 1900 struct ice_vsi *vsi; 1901 int i; 1902 1903 if (set) { 1904 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1905 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1906 } else { 1907 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1908 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1909 } 1910 1911 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1912 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1913 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1914 goto handle_mac_exit; 1915 } 1916 1917 /* If this VF is not privileged, then we can't add more than a 1918 * limited number of addresses. Check to make sure that the 1919 * additions do not push us over the limit. 1920 */ 1921 if (set && !ice_is_vf_trusted(vf) && 1922 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 1923 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 1924 vf->vf_id); 1925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1926 goto handle_mac_exit; 1927 } 1928 1929 vsi = ice_get_vf_vsi(vf); 1930 if (!vsi) { 1931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1932 goto handle_mac_exit; 1933 } 1934 1935 for (i = 0; i < al->num_elements; i++) { 1936 u8 *mac_addr = al->list[i].addr; 1937 int result; 1938 1939 if (is_broadcast_ether_addr(mac_addr) || 1940 is_zero_ether_addr(mac_addr)) 1941 continue; 1942 1943 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 1944 if (result == -EEXIST || result == -ENOENT) { 1945 continue; 1946 } else if (result) { 1947 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1948 goto handle_mac_exit; 1949 } 1950 } 1951 1952 handle_mac_exit: 1953 /* send the response to the VF */ 1954 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 1955 } 1956 1957 /** 1958 * ice_vc_add_mac_addr_msg 1959 * @vf: pointer to the VF info 1960 * @msg: pointer to the msg buffer 1961 * 1962 * add guest MAC address filter 1963 */ 1964 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1965 { 1966 return ice_vc_handle_mac_addr_msg(vf, msg, true); 1967 } 1968 1969 /** 1970 * ice_vc_del_mac_addr_msg 1971 * @vf: pointer to the VF info 1972 * @msg: pointer to the msg buffer 1973 * 1974 * remove guest MAC address filter 1975 */ 1976 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1977 { 1978 return ice_vc_handle_mac_addr_msg(vf, msg, false); 1979 } 1980 1981 /** 1982 * ice_vc_request_qs_msg 1983 * @vf: pointer to the VF info 1984 * @msg: pointer to the msg buffer 1985 * 1986 * VFs get a default number of queues but can use this message to request a 1987 * different number. If the request is successful, PF will reset the VF and 1988 * return 0. If unsuccessful, PF will send message informing VF of number of 1989 * available queue pairs via virtchnl message response to VF. 1990 */ 1991 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 1992 { 1993 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1994 struct virtchnl_vf_res_request *vfres = 1995 (struct virtchnl_vf_res_request *)msg; 1996 u16 req_queues = vfres->num_queue_pairs; 1997 struct ice_pf *pf = vf->pf; 1998 u16 max_allowed_vf_queues; 1999 u16 tx_rx_queue_left; 2000 struct device *dev; 2001 u16 cur_queues; 2002 2003 dev = ice_pf_to_dev(pf); 2004 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2005 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2006 goto error_param; 2007 } 2008 2009 cur_queues = vf->num_vf_qs; 2010 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2011 ice_get_avail_rxq_count(pf)); 2012 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2013 if (!req_queues) { 2014 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2015 vf->vf_id); 2016 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2017 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2018 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2019 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2020 } else if (req_queues > cur_queues && 2021 req_queues - cur_queues > tx_rx_queue_left) { 2022 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2023 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2024 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2025 ICE_MAX_RSS_QS_PER_VF); 2026 } else { 2027 /* request is successful, then reset VF */ 2028 vf->num_req_qs = req_queues; 2029 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2030 dev_info(dev, "VF %d granted request of %u queues.\n", 2031 vf->vf_id, req_queues); 2032 return 0; 2033 } 2034 2035 error_param: 2036 /* send the response to the VF */ 2037 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2038 v_ret, (u8 *)vfres, sizeof(*vfres)); 2039 } 2040 2041 /** 2042 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2043 * @caps: VF driver negotiated capabilities 2044 * 2045 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2046 */ 2047 static bool ice_vf_vlan_offload_ena(u32 caps) 2048 { 2049 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2050 } 2051 2052 /** 2053 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2054 * @vf: VF used to determine if VLAN promiscuous config is allowed 2055 */ 2056 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2057 { 2058 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2059 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2060 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2061 return true; 2062 2063 return false; 2064 } 2065 2066 /** 2067 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2068 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2069 * @vlan: VLAN used to enable VLAN promiscuous 2070 * 2071 * This function should only be called if VLAN promiscuous mode is allowed, 2072 * which can be determined via ice_is_vlan_promisc_allowed(). 2073 */ 2074 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2075 { 2076 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2077 int status; 2078 2079 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2080 vlan->vid); 2081 if (status && status != -EEXIST) 2082 return status; 2083 2084 return 0; 2085 } 2086 2087 /** 2088 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2089 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2090 * @vlan: VLAN used to disable VLAN promiscuous 2091 * 2092 * This function should only be called if VLAN promiscuous mode is allowed, 2093 * which can be determined via ice_is_vlan_promisc_allowed(). 2094 */ 2095 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2096 { 2097 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2098 int status; 2099 2100 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2101 vlan->vid); 2102 if (status && status != -ENOENT) 2103 return status; 2104 2105 return 0; 2106 } 2107 2108 /** 2109 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2110 * @vf: VF to check against 2111 * @vsi: VF's VSI 2112 * 2113 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2114 * wants to, so return false. 2115 * 2116 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2117 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2118 */ 2119 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2120 { 2121 if (ice_is_vf_trusted(vf)) 2122 return false; 2123 2124 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2125 return ((ice_vsi_num_non_zero_vlans(vsi) + 2126 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2127 } 2128 2129 /** 2130 * ice_vc_process_vlan_msg 2131 * @vf: pointer to the VF info 2132 * @msg: pointer to the msg buffer 2133 * @add_v: Add VLAN if true, otherwise delete VLAN 2134 * 2135 * Process virtchnl op to add or remove programmed guest VLAN ID 2136 */ 2137 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2138 { 2139 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2140 struct virtchnl_vlan_filter_list *vfl = 2141 (struct virtchnl_vlan_filter_list *)msg; 2142 struct ice_pf *pf = vf->pf; 2143 bool vlan_promisc = false; 2144 struct ice_vsi *vsi; 2145 struct device *dev; 2146 int status = 0; 2147 int i; 2148 2149 dev = ice_pf_to_dev(pf); 2150 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2151 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2152 goto error_param; 2153 } 2154 2155 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2156 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2157 goto error_param; 2158 } 2159 2160 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2161 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2162 goto error_param; 2163 } 2164 2165 for (i = 0; i < vfl->num_elements; i++) { 2166 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2167 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2168 dev_err(dev, "invalid VF VLAN id %d\n", 2169 vfl->vlan_id[i]); 2170 goto error_param; 2171 } 2172 } 2173 2174 vsi = ice_get_vf_vsi(vf); 2175 if (!vsi) { 2176 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2177 goto error_param; 2178 } 2179 2180 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2181 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2182 vf->vf_id); 2183 /* There is no need to let VF know about being not trusted, 2184 * so we can just return success message here 2185 */ 2186 goto error_param; 2187 } 2188 2189 /* in DVM a VF can add/delete inner VLAN filters when 2190 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2191 */ 2192 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2193 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2194 goto error_param; 2195 } 2196 2197 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2198 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2199 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2200 */ 2201 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2202 !ice_is_dvm_ena(&pf->hw) && 2203 !ice_vf_is_port_vlan_ena(vf); 2204 2205 if (add_v) { 2206 for (i = 0; i < vfl->num_elements; i++) { 2207 u16 vid = vfl->vlan_id[i]; 2208 struct ice_vlan vlan; 2209 2210 if (ice_vf_has_max_vlans(vf, vsi)) { 2211 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2212 vf->vf_id); 2213 /* There is no need to let VF know about being 2214 * not trusted, so we can just return success 2215 * message here as well. 2216 */ 2217 goto error_param; 2218 } 2219 2220 /* we add VLAN 0 by default for each VF so we can enable 2221 * Tx VLAN anti-spoof without triggering MDD events so 2222 * we don't need to add it again here 2223 */ 2224 if (!vid) 2225 continue; 2226 2227 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2228 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2229 if (status) { 2230 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2231 goto error_param; 2232 } 2233 2234 /* Enable VLAN filtering on first non-zero VLAN */ 2235 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2236 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2238 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2239 vid, status); 2240 goto error_param; 2241 } 2242 } else if (vlan_promisc) { 2243 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2244 if (status) { 2245 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2246 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2247 vid, status); 2248 } 2249 } 2250 } 2251 } else { 2252 /* In case of non_trusted VF, number of VLAN elements passed 2253 * to PF for removal might be greater than number of VLANs 2254 * filter programmed for that VF - So, use actual number of 2255 * VLANS added earlier with add VLAN opcode. In order to avoid 2256 * removing VLAN that doesn't exist, which result to sending 2257 * erroneous failed message back to the VF 2258 */ 2259 int num_vf_vlan; 2260 2261 num_vf_vlan = vsi->num_vlan; 2262 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2263 u16 vid = vfl->vlan_id[i]; 2264 struct ice_vlan vlan; 2265 2266 /* we add VLAN 0 by default for each VF so we can enable 2267 * Tx VLAN anti-spoof without triggering MDD events so 2268 * we don't want a VIRTCHNL request to remove it 2269 */ 2270 if (!vid) 2271 continue; 2272 2273 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2274 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2275 if (status) { 2276 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2277 goto error_param; 2278 } 2279 2280 /* Disable VLAN filtering when only VLAN 0 is left */ 2281 if (!ice_vsi_has_non_zero_vlans(vsi)) 2282 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2283 2284 if (vlan_promisc) 2285 ice_vf_dis_vlan_promisc(vsi, &vlan); 2286 } 2287 } 2288 2289 error_param: 2290 /* send the response to the VF */ 2291 if (add_v) 2292 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2293 NULL, 0); 2294 else 2295 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2296 NULL, 0); 2297 } 2298 2299 /** 2300 * ice_vc_add_vlan_msg 2301 * @vf: pointer to the VF info 2302 * @msg: pointer to the msg buffer 2303 * 2304 * Add and program guest VLAN ID 2305 */ 2306 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2307 { 2308 return ice_vc_process_vlan_msg(vf, msg, true); 2309 } 2310 2311 /** 2312 * ice_vc_remove_vlan_msg 2313 * @vf: pointer to the VF info 2314 * @msg: pointer to the msg buffer 2315 * 2316 * remove programmed guest VLAN ID 2317 */ 2318 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2319 { 2320 return ice_vc_process_vlan_msg(vf, msg, false); 2321 } 2322 2323 /** 2324 * ice_vc_ena_vlan_stripping 2325 * @vf: pointer to the VF info 2326 * 2327 * Enable VLAN header stripping for a given VF 2328 */ 2329 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2330 { 2331 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2332 struct ice_vsi *vsi; 2333 2334 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2335 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2336 goto error_param; 2337 } 2338 2339 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2340 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2341 goto error_param; 2342 } 2343 2344 vsi = ice_get_vf_vsi(vf); 2345 if (!vsi) { 2346 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2347 goto error_param; 2348 } 2349 2350 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2351 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2352 2353 error_param: 2354 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2355 v_ret, NULL, 0); 2356 } 2357 2358 /** 2359 * ice_vc_dis_vlan_stripping 2360 * @vf: pointer to the VF info 2361 * 2362 * Disable VLAN header stripping for a given VF 2363 */ 2364 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2365 { 2366 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2367 struct ice_vsi *vsi; 2368 2369 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2370 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2371 goto error_param; 2372 } 2373 2374 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2376 goto error_param; 2377 } 2378 2379 vsi = ice_get_vf_vsi(vf); 2380 if (!vsi) { 2381 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2382 goto error_param; 2383 } 2384 2385 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2386 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2387 2388 error_param: 2389 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2390 v_ret, NULL, 0); 2391 } 2392 2393 /** 2394 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2395 * @vf: VF to enable/disable VLAN stripping for on initialization 2396 * 2397 * Set the default for VLAN stripping based on whether a port VLAN is configured 2398 * and the current VLAN mode of the device. 2399 */ 2400 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2401 { 2402 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2403 2404 if (!vsi) 2405 return -EINVAL; 2406 2407 /* don't modify stripping if port VLAN is configured in SVM since the 2408 * port VLAN is based on the inner/single VLAN in SVM 2409 */ 2410 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2411 return 0; 2412 2413 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2414 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2415 else 2416 return vsi->inner_vlan_ops.dis_stripping(vsi); 2417 } 2418 2419 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2420 { 2421 if (vf->trusted) 2422 return VLAN_N_VID; 2423 else 2424 return ICE_MAX_VLAN_PER_VF; 2425 } 2426 2427 /** 2428 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2429 * @vf: VF that being checked for 2430 * 2431 * When the device is in double VLAN mode, check whether or not the outer VLAN 2432 * is allowed. 2433 */ 2434 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2435 { 2436 if (ice_vf_is_port_vlan_ena(vf)) 2437 return true; 2438 2439 return false; 2440 } 2441 2442 /** 2443 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2444 * @vf: VF that capabilities are being set for 2445 * @caps: VLAN capabilities to populate 2446 * 2447 * Determine VLAN capabilities support based on whether a port VLAN is 2448 * configured. If a port VLAN is configured then the VF should use the inner 2449 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2450 * capabilies. 2451 */ 2452 static void 2453 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2454 { 2455 struct virtchnl_vlan_supported_caps *supported_caps; 2456 2457 if (ice_vf_outer_vlan_not_allowed(vf)) { 2458 /* until support for inner VLAN filtering is added when a port 2459 * VLAN is configured, only support software offloaded inner 2460 * VLANs when a port VLAN is confgured in DVM 2461 */ 2462 supported_caps = &caps->filtering.filtering_support; 2463 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2464 2465 supported_caps = &caps->offloads.stripping_support; 2466 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2467 VIRTCHNL_VLAN_TOGGLE | 2468 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2469 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2470 2471 supported_caps = &caps->offloads.insertion_support; 2472 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2473 VIRTCHNL_VLAN_TOGGLE | 2474 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2475 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2476 2477 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2478 caps->offloads.ethertype_match = 2479 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2480 } else { 2481 supported_caps = &caps->filtering.filtering_support; 2482 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2483 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2484 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2485 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2486 VIRTCHNL_VLAN_ETHERTYPE_AND; 2487 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2488 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2489 VIRTCHNL_VLAN_ETHERTYPE_9100; 2490 2491 supported_caps = &caps->offloads.stripping_support; 2492 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2493 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2494 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2495 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2496 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2497 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2498 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2499 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2501 2502 supported_caps = &caps->offloads.insertion_support; 2503 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2504 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2506 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2507 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2508 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2509 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2510 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2511 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2512 2513 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2514 2515 caps->offloads.ethertype_match = 2516 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2517 } 2518 2519 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2520 } 2521 2522 /** 2523 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2524 * @vf: VF that capabilities are being set for 2525 * @caps: VLAN capabilities to populate 2526 * 2527 * Determine VLAN capabilities support based on whether a port VLAN is 2528 * configured. If a port VLAN is configured then the VF does not have any VLAN 2529 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2530 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2531 * VLAN fitlering and offload capabilities. 2532 */ 2533 static void 2534 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2535 { 2536 struct virtchnl_vlan_supported_caps *supported_caps; 2537 2538 if (ice_vf_is_port_vlan_ena(vf)) { 2539 supported_caps = &caps->filtering.filtering_support; 2540 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2541 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2542 2543 supported_caps = &caps->offloads.stripping_support; 2544 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2545 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2546 2547 supported_caps = &caps->offloads.insertion_support; 2548 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2549 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2550 2551 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2552 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2553 caps->filtering.max_filters = 0; 2554 } else { 2555 supported_caps = &caps->filtering.filtering_support; 2556 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2557 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2558 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2559 2560 supported_caps = &caps->offloads.stripping_support; 2561 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2562 VIRTCHNL_VLAN_TOGGLE | 2563 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2564 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2565 2566 supported_caps = &caps->offloads.insertion_support; 2567 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2568 VIRTCHNL_VLAN_TOGGLE | 2569 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2570 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2571 2572 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2573 caps->offloads.ethertype_match = 2574 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2575 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2576 } 2577 } 2578 2579 /** 2580 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2581 * @vf: VF to determine VLAN capabilities for 2582 * 2583 * This will only be called if the VF and PF successfully negotiated 2584 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2585 * 2586 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2587 * is configured or not. 2588 */ 2589 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2590 { 2591 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2592 struct virtchnl_vlan_caps *caps = NULL; 2593 int err, len = 0; 2594 2595 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2596 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2597 goto out; 2598 } 2599 2600 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2601 if (!caps) { 2602 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2603 goto out; 2604 } 2605 len = sizeof(*caps); 2606 2607 if (ice_is_dvm_ena(&vf->pf->hw)) 2608 ice_vc_set_dvm_caps(vf, caps); 2609 else 2610 ice_vc_set_svm_caps(vf, caps); 2611 2612 /* store negotiated caps to prevent invalid VF messages */ 2613 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2614 2615 out: 2616 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2617 v_ret, (u8 *)caps, len); 2618 kfree(caps); 2619 return err; 2620 } 2621 2622 /** 2623 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2624 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2625 * @tpid: VLAN TPID used for validation 2626 * 2627 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2628 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2629 */ 2630 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2631 { 2632 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2633 2634 switch (tpid) { 2635 case ETH_P_8021Q: 2636 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2637 break; 2638 case ETH_P_8021AD: 2639 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2640 break; 2641 case ETH_P_QINQ1: 2642 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2643 break; 2644 } 2645 2646 if (!(filtering_caps & vlan_ethertype)) 2647 return false; 2648 2649 return true; 2650 } 2651 2652 /** 2653 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2654 * @vc_vlan: virtchnl_vlan to validate 2655 * 2656 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2657 * false. Otherwise return true. 2658 */ 2659 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2660 { 2661 if (!vc_vlan->tci || !vc_vlan->tpid) 2662 return false; 2663 2664 return true; 2665 } 2666 2667 /** 2668 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2669 * @vfc: negotiated/supported VLAN filtering capabilities 2670 * @vfl: VLAN filter list from VF to validate 2671 * 2672 * Validate all of the filters in the VLAN filter list from the VF. If any of 2673 * the checks fail then return false. Otherwise return true. 2674 */ 2675 static bool 2676 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2677 struct virtchnl_vlan_filter_list_v2 *vfl) 2678 { 2679 u16 i; 2680 2681 if (!vfl->num_elements) 2682 return false; 2683 2684 for (i = 0; i < vfl->num_elements; i++) { 2685 struct virtchnl_vlan_supported_caps *filtering_support = 2686 &vfc->filtering_support; 2687 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2688 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2689 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2690 2691 if ((ice_vc_is_valid_vlan(outer) && 2692 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2693 (ice_vc_is_valid_vlan(inner) && 2694 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2695 return false; 2696 2697 if ((outer->tci_mask && 2698 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2699 (inner->tci_mask && 2700 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2701 return false; 2702 2703 if (((outer->tci & VLAN_PRIO_MASK) && 2704 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2705 ((inner->tci & VLAN_PRIO_MASK) && 2706 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2707 return false; 2708 2709 if ((ice_vc_is_valid_vlan(outer) && 2710 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2711 outer->tpid)) || 2712 (ice_vc_is_valid_vlan(inner) && 2713 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2714 inner->tpid))) 2715 return false; 2716 } 2717 2718 return true; 2719 } 2720 2721 /** 2722 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2723 * @vc_vlan: struct virtchnl_vlan to transform 2724 */ 2725 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2726 { 2727 struct ice_vlan vlan = { 0 }; 2728 2729 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2730 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2731 vlan.tpid = vc_vlan->tpid; 2732 2733 return vlan; 2734 } 2735 2736 /** 2737 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2738 * @vsi: VF's VSI used to perform the action 2739 * @vlan_action: function to perform the action with (i.e. add/del) 2740 * @vlan: VLAN filter to perform the action with 2741 */ 2742 static int 2743 ice_vc_vlan_action(struct ice_vsi *vsi, 2744 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2745 struct ice_vlan *vlan) 2746 { 2747 int err; 2748 2749 err = vlan_action(vsi, vlan); 2750 if (err) 2751 return err; 2752 2753 return 0; 2754 } 2755 2756 /** 2757 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2758 * @vf: VF used to delete the VLAN(s) 2759 * @vsi: VF's VSI used to delete the VLAN(s) 2760 * @vfl: virthchnl filter list used to delete the filters 2761 */ 2762 static int 2763 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2764 struct virtchnl_vlan_filter_list_v2 *vfl) 2765 { 2766 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2767 int err; 2768 u16 i; 2769 2770 for (i = 0; i < vfl->num_elements; i++) { 2771 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2772 struct virtchnl_vlan *vc_vlan; 2773 2774 vc_vlan = &vlan_fltr->outer; 2775 if (ice_vc_is_valid_vlan(vc_vlan)) { 2776 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2777 2778 err = ice_vc_vlan_action(vsi, 2779 vsi->outer_vlan_ops.del_vlan, 2780 &vlan); 2781 if (err) 2782 return err; 2783 2784 if (vlan_promisc) 2785 ice_vf_dis_vlan_promisc(vsi, &vlan); 2786 } 2787 2788 vc_vlan = &vlan_fltr->inner; 2789 if (ice_vc_is_valid_vlan(vc_vlan)) { 2790 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2791 2792 err = ice_vc_vlan_action(vsi, 2793 vsi->inner_vlan_ops.del_vlan, 2794 &vlan); 2795 if (err) 2796 return err; 2797 2798 /* no support for VLAN promiscuous on inner VLAN unless 2799 * we are in Single VLAN Mode (SVM) 2800 */ 2801 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) 2802 ice_vf_dis_vlan_promisc(vsi, &vlan); 2803 } 2804 } 2805 2806 return 0; 2807 } 2808 2809 /** 2810 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2811 * @vf: VF the message was received from 2812 * @msg: message received from the VF 2813 */ 2814 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2815 { 2816 struct virtchnl_vlan_filter_list_v2 *vfl = 2817 (struct virtchnl_vlan_filter_list_v2 *)msg; 2818 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2819 struct ice_vsi *vsi; 2820 2821 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2822 vfl)) { 2823 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2824 goto out; 2825 } 2826 2827 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2828 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2829 goto out; 2830 } 2831 2832 vsi = ice_get_vf_vsi(vf); 2833 if (!vsi) { 2834 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2835 goto out; 2836 } 2837 2838 if (ice_vc_del_vlans(vf, vsi, vfl)) 2839 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2840 2841 out: 2842 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 2843 0); 2844 } 2845 2846 /** 2847 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 2848 * @vf: VF used to add the VLAN(s) 2849 * @vsi: VF's VSI used to add the VLAN(s) 2850 * @vfl: virthchnl filter list used to add the filters 2851 */ 2852 static int 2853 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2854 struct virtchnl_vlan_filter_list_v2 *vfl) 2855 { 2856 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2857 int err; 2858 u16 i; 2859 2860 for (i = 0; i < vfl->num_elements; i++) { 2861 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2862 struct virtchnl_vlan *vc_vlan; 2863 2864 vc_vlan = &vlan_fltr->outer; 2865 if (ice_vc_is_valid_vlan(vc_vlan)) { 2866 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2867 2868 err = ice_vc_vlan_action(vsi, 2869 vsi->outer_vlan_ops.add_vlan, 2870 &vlan); 2871 if (err) 2872 return err; 2873 2874 if (vlan_promisc) { 2875 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2876 if (err) 2877 return err; 2878 } 2879 } 2880 2881 vc_vlan = &vlan_fltr->inner; 2882 if (ice_vc_is_valid_vlan(vc_vlan)) { 2883 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2884 2885 err = ice_vc_vlan_action(vsi, 2886 vsi->inner_vlan_ops.add_vlan, 2887 &vlan); 2888 if (err) 2889 return err; 2890 2891 /* no support for VLAN promiscuous on inner VLAN unless 2892 * we are in Single VLAN Mode (SVM) 2893 */ 2894 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) { 2895 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2896 if (err) 2897 return err; 2898 } 2899 } 2900 } 2901 2902 return 0; 2903 } 2904 2905 /** 2906 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 2907 * @vsi: VF VSI used to get number of existing VLAN filters 2908 * @vfc: negotiated/supported VLAN filtering capabilities 2909 * @vfl: VLAN filter list from VF to validate 2910 * 2911 * Validate all of the filters in the VLAN filter list from the VF during the 2912 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 2913 * Otherwise return true. 2914 */ 2915 static bool 2916 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 2917 struct virtchnl_vlan_filtering_caps *vfc, 2918 struct virtchnl_vlan_filter_list_v2 *vfl) 2919 { 2920 u16 num_requested_filters = vsi->num_vlan + vfl->num_elements; 2921 2922 if (num_requested_filters > vfc->max_filters) 2923 return false; 2924 2925 return ice_vc_validate_vlan_filter_list(vfc, vfl); 2926 } 2927 2928 /** 2929 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 2930 * @vf: VF the message was received from 2931 * @msg: message received from the VF 2932 */ 2933 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2934 { 2935 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2936 struct virtchnl_vlan_filter_list_v2 *vfl = 2937 (struct virtchnl_vlan_filter_list_v2 *)msg; 2938 struct ice_vsi *vsi; 2939 2940 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2941 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2942 goto out; 2943 } 2944 2945 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2946 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2947 goto out; 2948 } 2949 2950 vsi = ice_get_vf_vsi(vf); 2951 if (!vsi) { 2952 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2953 goto out; 2954 } 2955 2956 if (!ice_vc_validate_add_vlan_filter_list(vsi, 2957 &vf->vlan_v2_caps.filtering, 2958 vfl)) { 2959 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2960 goto out; 2961 } 2962 2963 if (ice_vc_add_vlans(vf, vsi, vfl)) 2964 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2965 2966 out: 2967 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 2968 0); 2969 } 2970 2971 /** 2972 * ice_vc_valid_vlan_setting - validate VLAN setting 2973 * @negotiated_settings: negotiated VLAN settings during VF init 2974 * @ethertype_setting: ethertype(s) requested for the VLAN setting 2975 */ 2976 static bool 2977 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 2978 { 2979 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 2980 return false; 2981 2982 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 2983 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 2984 */ 2985 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 2986 hweight32(ethertype_setting) > 1) 2987 return false; 2988 2989 /* ability to modify the VLAN setting was not negotiated */ 2990 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 2991 return false; 2992 2993 return true; 2994 } 2995 2996 /** 2997 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 2998 * @caps: negotiated VLAN settings during VF init 2999 * @msg: message to validate 3000 * 3001 * Used to validate any VLAN virtchnl message sent as a 3002 * virtchnl_vlan_setting structure. Validates the message against the 3003 * negotiated/supported caps during VF driver init. 3004 */ 3005 static bool 3006 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3007 struct virtchnl_vlan_setting *msg) 3008 { 3009 if ((!msg->outer_ethertype_setting && 3010 !msg->inner_ethertype_setting) || 3011 (!caps->outer && !caps->inner)) 3012 return false; 3013 3014 if (msg->outer_ethertype_setting && 3015 !ice_vc_valid_vlan_setting(caps->outer, 3016 msg->outer_ethertype_setting)) 3017 return false; 3018 3019 if (msg->inner_ethertype_setting && 3020 !ice_vc_valid_vlan_setting(caps->inner, 3021 msg->inner_ethertype_setting)) 3022 return false; 3023 3024 return true; 3025 } 3026 3027 /** 3028 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3029 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3030 * @tpid: VLAN TPID to populate 3031 */ 3032 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3033 { 3034 switch (ethertype_setting) { 3035 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3036 *tpid = ETH_P_8021Q; 3037 break; 3038 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3039 *tpid = ETH_P_8021AD; 3040 break; 3041 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3042 *tpid = ETH_P_QINQ1; 3043 break; 3044 default: 3045 *tpid = 0; 3046 return -EINVAL; 3047 } 3048 3049 return 0; 3050 } 3051 3052 /** 3053 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3054 * @vsi: VF's VSI used to enable the VLAN offload 3055 * @ena_offload: function used to enable the VLAN offload 3056 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3057 */ 3058 static int 3059 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3060 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3061 u32 ethertype_setting) 3062 { 3063 u16 tpid; 3064 int err; 3065 3066 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3067 if (err) 3068 return err; 3069 3070 err = ena_offload(vsi, tpid); 3071 if (err) 3072 return err; 3073 3074 return 0; 3075 } 3076 3077 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3078 #define ICE_L2TSEL_BIT_OFFSET 23 3079 enum ice_l2tsel { 3080 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3081 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3082 }; 3083 3084 /** 3085 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3086 * @vsi: VSI used to update l2tsel on 3087 * @l2tsel: l2tsel setting requested 3088 * 3089 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3090 * This will modify which descriptor field the first offloaded VLAN will be 3091 * stripped into. 3092 */ 3093 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3094 { 3095 struct ice_hw *hw = &vsi->back->hw; 3096 u32 l2tsel_bit; 3097 int i; 3098 3099 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3100 l2tsel_bit = 0; 3101 else 3102 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3103 3104 for (i = 0; i < vsi->alloc_rxq; i++) { 3105 u16 pfq = vsi->rxq_map[i]; 3106 u32 qrx_context_offset; 3107 u32 regval; 3108 3109 qrx_context_offset = 3110 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3111 3112 regval = rd32(hw, qrx_context_offset); 3113 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3114 regval |= l2tsel_bit; 3115 wr32(hw, qrx_context_offset, regval); 3116 } 3117 } 3118 3119 /** 3120 * ice_vc_ena_vlan_stripping_v2_msg 3121 * @vf: VF the message was received from 3122 * @msg: message received from the VF 3123 * 3124 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3125 */ 3126 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3127 { 3128 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3129 struct virtchnl_vlan_supported_caps *stripping_support; 3130 struct virtchnl_vlan_setting *strip_msg = 3131 (struct virtchnl_vlan_setting *)msg; 3132 u32 ethertype_setting; 3133 struct ice_vsi *vsi; 3134 3135 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3136 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3137 goto out; 3138 } 3139 3140 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3141 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3142 goto out; 3143 } 3144 3145 vsi = ice_get_vf_vsi(vf); 3146 if (!vsi) { 3147 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3148 goto out; 3149 } 3150 3151 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3152 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3153 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3154 goto out; 3155 } 3156 3157 ethertype_setting = strip_msg->outer_ethertype_setting; 3158 if (ethertype_setting) { 3159 if (ice_vc_ena_vlan_offload(vsi, 3160 vsi->outer_vlan_ops.ena_stripping, 3161 ethertype_setting)) { 3162 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3163 goto out; 3164 } else { 3165 enum ice_l2tsel l2tsel = 3166 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3167 3168 /* PF tells the VF that the outer VLAN tag is always 3169 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3170 * inner is always extracted to 3171 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3172 * support outer stripping so the first tag always ends 3173 * up in L2TAG2_2ND and the second/inner tag, if 3174 * enabled, is extracted in L2TAG1. 3175 */ 3176 ice_vsi_update_l2tsel(vsi, l2tsel); 3177 } 3178 } 3179 3180 ethertype_setting = strip_msg->inner_ethertype_setting; 3181 if (ethertype_setting && 3182 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3183 ethertype_setting)) { 3184 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3185 goto out; 3186 } 3187 3188 out: 3189 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3190 v_ret, NULL, 0); 3191 } 3192 3193 /** 3194 * ice_vc_dis_vlan_stripping_v2_msg 3195 * @vf: VF the message was received from 3196 * @msg: message received from the VF 3197 * 3198 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3199 */ 3200 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3201 { 3202 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3203 struct virtchnl_vlan_supported_caps *stripping_support; 3204 struct virtchnl_vlan_setting *strip_msg = 3205 (struct virtchnl_vlan_setting *)msg; 3206 u32 ethertype_setting; 3207 struct ice_vsi *vsi; 3208 3209 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3210 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3211 goto out; 3212 } 3213 3214 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3215 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3216 goto out; 3217 } 3218 3219 vsi = ice_get_vf_vsi(vf); 3220 if (!vsi) { 3221 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3222 goto out; 3223 } 3224 3225 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3226 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3227 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3228 goto out; 3229 } 3230 3231 ethertype_setting = strip_msg->outer_ethertype_setting; 3232 if (ethertype_setting) { 3233 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3234 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3235 goto out; 3236 } else { 3237 enum ice_l2tsel l2tsel = 3238 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3239 3240 /* PF tells the VF that the outer VLAN tag is always 3241 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3242 * inner is always extracted to 3243 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3244 * support inner stripping while outer stripping is 3245 * disabled so that the first and only tag is extracted 3246 * in L2TAG1. 3247 */ 3248 ice_vsi_update_l2tsel(vsi, l2tsel); 3249 } 3250 } 3251 3252 ethertype_setting = strip_msg->inner_ethertype_setting; 3253 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3254 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3255 goto out; 3256 } 3257 3258 out: 3259 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3260 v_ret, NULL, 0); 3261 } 3262 3263 /** 3264 * ice_vc_ena_vlan_insertion_v2_msg 3265 * @vf: VF the message was received from 3266 * @msg: message received from the VF 3267 * 3268 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3269 */ 3270 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3271 { 3272 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3273 struct virtchnl_vlan_supported_caps *insertion_support; 3274 struct virtchnl_vlan_setting *insertion_msg = 3275 (struct virtchnl_vlan_setting *)msg; 3276 u32 ethertype_setting; 3277 struct ice_vsi *vsi; 3278 3279 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3280 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3281 goto out; 3282 } 3283 3284 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3285 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3286 goto out; 3287 } 3288 3289 vsi = ice_get_vf_vsi(vf); 3290 if (!vsi) { 3291 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3292 goto out; 3293 } 3294 3295 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3296 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3298 goto out; 3299 } 3300 3301 ethertype_setting = insertion_msg->outer_ethertype_setting; 3302 if (ethertype_setting && 3303 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3304 ethertype_setting)) { 3305 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3306 goto out; 3307 } 3308 3309 ethertype_setting = insertion_msg->inner_ethertype_setting; 3310 if (ethertype_setting && 3311 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3312 ethertype_setting)) { 3313 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3314 goto out; 3315 } 3316 3317 out: 3318 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3319 v_ret, NULL, 0); 3320 } 3321 3322 /** 3323 * ice_vc_dis_vlan_insertion_v2_msg 3324 * @vf: VF the message was received from 3325 * @msg: message received from the VF 3326 * 3327 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3328 */ 3329 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3330 { 3331 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3332 struct virtchnl_vlan_supported_caps *insertion_support; 3333 struct virtchnl_vlan_setting *insertion_msg = 3334 (struct virtchnl_vlan_setting *)msg; 3335 u32 ethertype_setting; 3336 struct ice_vsi *vsi; 3337 3338 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3339 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3340 goto out; 3341 } 3342 3343 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3344 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3345 goto out; 3346 } 3347 3348 vsi = ice_get_vf_vsi(vf); 3349 if (!vsi) { 3350 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3351 goto out; 3352 } 3353 3354 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3355 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3356 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3357 goto out; 3358 } 3359 3360 ethertype_setting = insertion_msg->outer_ethertype_setting; 3361 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3362 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3363 goto out; 3364 } 3365 3366 ethertype_setting = insertion_msg->inner_ethertype_setting; 3367 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3368 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3369 goto out; 3370 } 3371 3372 out: 3373 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3374 v_ret, NULL, 0); 3375 } 3376 3377 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3378 .get_ver_msg = ice_vc_get_ver_msg, 3379 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3380 .reset_vf = ice_vc_reset_vf_msg, 3381 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3382 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3383 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3384 .ena_qs_msg = ice_vc_ena_qs_msg, 3385 .dis_qs_msg = ice_vc_dis_qs_msg, 3386 .request_qs_msg = ice_vc_request_qs_msg, 3387 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3388 .config_rss_key = ice_vc_config_rss_key, 3389 .config_rss_lut = ice_vc_config_rss_lut, 3390 .get_stats_msg = ice_vc_get_stats_msg, 3391 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3392 .add_vlan_msg = ice_vc_add_vlan_msg, 3393 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3394 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3395 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3396 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3397 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3398 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3399 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3400 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3401 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3402 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3403 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3404 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3405 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3406 }; 3407 3408 /** 3409 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3410 * @vf: the VF to switch ops 3411 */ 3412 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3413 { 3414 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3415 } 3416 3417 /** 3418 * ice_vc_repr_add_mac 3419 * @vf: pointer to VF 3420 * @msg: virtchannel message 3421 * 3422 * When port representors are created, we do not add MAC rule 3423 * to firmware, we store it so that PF could report same 3424 * MAC as VF. 3425 */ 3426 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3427 { 3428 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3429 struct virtchnl_ether_addr_list *al = 3430 (struct virtchnl_ether_addr_list *)msg; 3431 struct ice_vsi *vsi; 3432 struct ice_pf *pf; 3433 int i; 3434 3435 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3436 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3437 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3438 goto handle_mac_exit; 3439 } 3440 3441 pf = vf->pf; 3442 3443 vsi = ice_get_vf_vsi(vf); 3444 if (!vsi) { 3445 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3446 goto handle_mac_exit; 3447 } 3448 3449 for (i = 0; i < al->num_elements; i++) { 3450 u8 *mac_addr = al->list[i].addr; 3451 int result; 3452 3453 if (!is_unicast_ether_addr(mac_addr) || 3454 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3455 continue; 3456 3457 if (vf->pf_set_mac) { 3458 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3459 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3460 goto handle_mac_exit; 3461 } 3462 3463 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3464 if (result) { 3465 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3466 mac_addr, vf->vf_id, result); 3467 goto handle_mac_exit; 3468 } 3469 3470 ice_vfhw_mac_add(vf, &al->list[i]); 3471 vf->num_mac++; 3472 break; 3473 } 3474 3475 handle_mac_exit: 3476 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3477 v_ret, NULL, 0); 3478 } 3479 3480 /** 3481 * ice_vc_repr_del_mac - response with success for deleting MAC 3482 * @vf: pointer to VF 3483 * @msg: virtchannel message 3484 * 3485 * Respond with success to not break normal VF flow. 3486 * For legacy VF driver try to update cached MAC address. 3487 */ 3488 static int 3489 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3490 { 3491 struct virtchnl_ether_addr_list *al = 3492 (struct virtchnl_ether_addr_list *)msg; 3493 3494 ice_update_legacy_cached_mac(vf, &al->list[0]); 3495 3496 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3497 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3498 } 3499 3500 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3501 { 3502 dev_dbg(ice_pf_to_dev(vf->pf), 3503 "Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id); 3504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, 3505 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3506 } 3507 3508 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3509 { 3510 dev_dbg(ice_pf_to_dev(vf->pf), 3511 "Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id); 3512 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, 3513 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3514 } 3515 3516 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf) 3517 { 3518 dev_dbg(ice_pf_to_dev(vf->pf), 3519 "Can't enable VLAN stripping in switchdev mode for VF %d\n", 3520 vf->vf_id); 3521 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 3522 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3523 NULL, 0); 3524 } 3525 3526 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf) 3527 { 3528 dev_dbg(ice_pf_to_dev(vf->pf), 3529 "Can't disable VLAN stripping in switchdev mode for VF %d\n", 3530 vf->vf_id); 3531 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 3532 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3533 NULL, 0); 3534 } 3535 3536 static int 3537 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3538 { 3539 dev_dbg(ice_pf_to_dev(vf->pf), 3540 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3541 vf->vf_id); 3542 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3543 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3544 NULL, 0); 3545 } 3546 3547 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3548 .get_ver_msg = ice_vc_get_ver_msg, 3549 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3550 .reset_vf = ice_vc_reset_vf_msg, 3551 .add_mac_addr_msg = ice_vc_repr_add_mac, 3552 .del_mac_addr_msg = ice_vc_repr_del_mac, 3553 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3554 .ena_qs_msg = ice_vc_ena_qs_msg, 3555 .dis_qs_msg = ice_vc_dis_qs_msg, 3556 .request_qs_msg = ice_vc_request_qs_msg, 3557 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3558 .config_rss_key = ice_vc_config_rss_key, 3559 .config_rss_lut = ice_vc_config_rss_lut, 3560 .get_stats_msg = ice_vc_get_stats_msg, 3561 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3562 .add_vlan_msg = ice_vc_repr_add_vlan, 3563 .remove_vlan_msg = ice_vc_repr_del_vlan, 3564 .ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping, 3565 .dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping, 3566 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3567 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3568 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3569 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3570 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3571 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3572 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3573 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3574 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3575 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3576 }; 3577 3578 /** 3579 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3580 * @vf: the VF to switch ops 3581 */ 3582 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3583 { 3584 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3585 } 3586 3587 /** 3588 * ice_vc_process_vf_msg - Process request from VF 3589 * @pf: pointer to the PF structure 3590 * @event: pointer to the AQ event 3591 * 3592 * called from the common asq/arq handler to 3593 * process request from VF 3594 */ 3595 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3596 { 3597 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3598 s16 vf_id = le16_to_cpu(event->desc.retval); 3599 const struct ice_virtchnl_ops *ops; 3600 u16 msglen = event->msg_len; 3601 u8 *msg = event->msg_buf; 3602 struct ice_vf *vf = NULL; 3603 struct device *dev; 3604 int err = 0; 3605 3606 dev = ice_pf_to_dev(pf); 3607 3608 vf = ice_get_vf_by_id(pf, vf_id); 3609 if (!vf) { 3610 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3611 vf_id, v_opcode, msglen); 3612 return; 3613 } 3614 3615 mutex_lock(&vf->cfg_lock); 3616 3617 /* Check if VF is disabled. */ 3618 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3619 err = -EPERM; 3620 goto error_handler; 3621 } 3622 3623 ops = vf->virtchnl_ops; 3624 3625 /* Perform basic checks on the msg */ 3626 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3627 if (err) { 3628 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3629 err = -EPERM; 3630 else 3631 err = -EINVAL; 3632 } 3633 3634 error_handler: 3635 if (err) { 3636 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3637 NULL, 0); 3638 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3639 vf_id, v_opcode, msglen, err); 3640 goto finish; 3641 } 3642 3643 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3644 ice_vc_send_msg_to_vf(vf, v_opcode, 3645 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3646 0); 3647 goto finish; 3648 } 3649 3650 switch (v_opcode) { 3651 case VIRTCHNL_OP_VERSION: 3652 err = ops->get_ver_msg(vf, msg); 3653 break; 3654 case VIRTCHNL_OP_GET_VF_RESOURCES: 3655 err = ops->get_vf_res_msg(vf, msg); 3656 if (ice_vf_init_vlan_stripping(vf)) 3657 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3658 vf->vf_id); 3659 ice_vc_notify_vf_link_state(vf); 3660 break; 3661 case VIRTCHNL_OP_RESET_VF: 3662 ops->reset_vf(vf); 3663 break; 3664 case VIRTCHNL_OP_ADD_ETH_ADDR: 3665 err = ops->add_mac_addr_msg(vf, msg); 3666 break; 3667 case VIRTCHNL_OP_DEL_ETH_ADDR: 3668 err = ops->del_mac_addr_msg(vf, msg); 3669 break; 3670 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3671 err = ops->cfg_qs_msg(vf, msg); 3672 break; 3673 case VIRTCHNL_OP_ENABLE_QUEUES: 3674 err = ops->ena_qs_msg(vf, msg); 3675 ice_vc_notify_vf_link_state(vf); 3676 break; 3677 case VIRTCHNL_OP_DISABLE_QUEUES: 3678 err = ops->dis_qs_msg(vf, msg); 3679 break; 3680 case VIRTCHNL_OP_REQUEST_QUEUES: 3681 err = ops->request_qs_msg(vf, msg); 3682 break; 3683 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3684 err = ops->cfg_irq_map_msg(vf, msg); 3685 break; 3686 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3687 err = ops->config_rss_key(vf, msg); 3688 break; 3689 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3690 err = ops->config_rss_lut(vf, msg); 3691 break; 3692 case VIRTCHNL_OP_GET_STATS: 3693 err = ops->get_stats_msg(vf, msg); 3694 break; 3695 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3696 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3697 break; 3698 case VIRTCHNL_OP_ADD_VLAN: 3699 err = ops->add_vlan_msg(vf, msg); 3700 break; 3701 case VIRTCHNL_OP_DEL_VLAN: 3702 err = ops->remove_vlan_msg(vf, msg); 3703 break; 3704 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3705 err = ops->ena_vlan_stripping(vf); 3706 break; 3707 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3708 err = ops->dis_vlan_stripping(vf); 3709 break; 3710 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3711 err = ops->add_fdir_fltr_msg(vf, msg); 3712 break; 3713 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3714 err = ops->del_fdir_fltr_msg(vf, msg); 3715 break; 3716 case VIRTCHNL_OP_ADD_RSS_CFG: 3717 err = ops->handle_rss_cfg_msg(vf, msg, true); 3718 break; 3719 case VIRTCHNL_OP_DEL_RSS_CFG: 3720 err = ops->handle_rss_cfg_msg(vf, msg, false); 3721 break; 3722 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3723 err = ops->get_offload_vlan_v2_caps(vf); 3724 break; 3725 case VIRTCHNL_OP_ADD_VLAN_V2: 3726 err = ops->add_vlan_v2_msg(vf, msg); 3727 break; 3728 case VIRTCHNL_OP_DEL_VLAN_V2: 3729 err = ops->remove_vlan_v2_msg(vf, msg); 3730 break; 3731 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3732 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3733 break; 3734 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3735 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3736 break; 3737 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3738 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3739 break; 3740 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3741 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3742 break; 3743 case VIRTCHNL_OP_UNKNOWN: 3744 default: 3745 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3746 vf_id); 3747 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3748 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3749 NULL, 0); 3750 break; 3751 } 3752 if (err) { 3753 /* Helper function cares less about error return values here 3754 * as it is busy with pending work. 3755 */ 3756 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3757 vf_id, v_opcode, err); 3758 } 3759 3760 finish: 3761 mutex_unlock(&vf->cfg_lock); 3762 ice_put_vf(vf); 3763 } 3764