1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vf_res_msg
364  * @vf: pointer to the VF info
365  * @msg: pointer to the msg buffer
366  *
367  * called from the VF to request its resources
368  */
369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
370 {
371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
372 	struct virtchnl_vf_resource *vfres = NULL;
373 	struct ice_hw *hw = &vf->pf->hw;
374 	struct ice_vsi *vsi;
375 	int len = 0;
376 	int ret;
377 
378 	if (ice_check_vf_init(vf)) {
379 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
380 		goto err;
381 	}
382 
383 	len = sizeof(struct virtchnl_vf_resource);
384 
385 	vfres = kzalloc(len, GFP_KERNEL);
386 	if (!vfres) {
387 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
388 		len = 0;
389 		goto err;
390 	}
391 	if (VF_IS_V11(&vf->vf_ver))
392 		vf->driver_caps = *(u32 *)msg;
393 	else
394 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
395 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
396 				  VIRTCHNL_VF_OFFLOAD_VLAN;
397 
398 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
399 	vsi = ice_get_vf_vsi(vf);
400 	if (!vsi) {
401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
402 		goto err;
403 	}
404 
405 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
406 		/* VLAN offloads based on current device configuration */
407 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
408 	} else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
409 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
410 		 * these two conditions, which amounts to guest VLAN filtering
411 		 * and offloads being based on the inner VLAN or the
412 		 * inner/single VLAN respectively and don't allow VF to
413 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
414 		 */
415 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
416 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
417 		} else if (!ice_is_dvm_ena(hw) &&
418 			   !ice_vf_is_port_vlan_ena(vf)) {
419 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
420 			/* configure backward compatible support for VFs that
421 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
422 			 * configured in SVM, and no port VLAN is configured
423 			 */
424 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
425 		} else if (ice_is_dvm_ena(hw)) {
426 			/* configure software offloaded VLAN support when DVM
427 			 * is enabled, but no port VLAN is enabled
428 			 */
429 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
430 		}
431 	}
432 
433 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
435 	} else {
436 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
437 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
438 		else
439 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
440 	}
441 
442 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
443 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
444 
445 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
446 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
447 
448 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
449 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
450 
451 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
452 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
453 
454 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
455 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
456 
457 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
458 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
459 
460 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
461 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
462 
463 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
464 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
465 
466 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
467 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
468 
469 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
470 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
471 
472 	vfres->num_vsis = 1;
473 	/* Tx and Rx queue are equal for VF */
474 	vfres->num_queue_pairs = vsi->num_txq;
475 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
476 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
477 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
478 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
479 
480 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
481 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
482 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
483 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
484 			vf->hw_lan_addr.addr);
485 
486 	/* match guest capabilities */
487 	vf->driver_caps = vfres->vf_cap_flags;
488 
489 	ice_vc_set_caps_allowlist(vf);
490 	ice_vc_set_working_allowlist(vf);
491 
492 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
493 
494 err:
495 	/* send the response back to the VF */
496 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
497 				    (u8 *)vfres, len);
498 
499 	kfree(vfres);
500 	return ret;
501 }
502 
503 /**
504  * ice_vc_reset_vf_msg
505  * @vf: pointer to the VF info
506  *
507  * called from the VF to reset itself,
508  * unlike other virtchnl messages, PF driver
509  * doesn't send the response back to the VF
510  */
511 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
512 {
513 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
514 		ice_reset_vf(vf, 0);
515 }
516 
517 /**
518  * ice_find_vsi_from_id
519  * @pf: the PF structure to search for the VSI
520  * @id: ID of the VSI it is searching for
521  *
522  * searches for the VSI with the given ID
523  */
524 static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
525 {
526 	int i;
527 
528 	ice_for_each_vsi(pf, i)
529 		if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
530 			return pf->vsi[i];
531 
532 	return NULL;
533 }
534 
535 /**
536  * ice_vc_isvalid_vsi_id
537  * @vf: pointer to the VF info
538  * @vsi_id: VF relative VSI ID
539  *
540  * check for the valid VSI ID
541  */
542 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
543 {
544 	struct ice_pf *pf = vf->pf;
545 	struct ice_vsi *vsi;
546 
547 	vsi = ice_find_vsi_from_id(pf, vsi_id);
548 
549 	return (vsi && (vsi->vf == vf));
550 }
551 
552 /**
553  * ice_vc_isvalid_q_id
554  * @vf: pointer to the VF info
555  * @vsi_id: VSI ID
556  * @qid: VSI relative queue ID
557  *
558  * check for the valid queue ID
559  */
560 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
561 {
562 	struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
563 	/* allocated Tx and Rx queues should be always equal for VF VSI */
564 	return (vsi && (qid < vsi->alloc_txq));
565 }
566 
567 /**
568  * ice_vc_isvalid_ring_len
569  * @ring_len: length of ring
570  *
571  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
572  * or zero
573  */
574 static bool ice_vc_isvalid_ring_len(u16 ring_len)
575 {
576 	return ring_len == 0 ||
577 	       (ring_len >= ICE_MIN_NUM_DESC &&
578 		ring_len <= ICE_MAX_NUM_DESC &&
579 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
580 }
581 
582 /**
583  * ice_vc_validate_pattern
584  * @vf: pointer to the VF info
585  * @proto: virtchnl protocol headers
586  *
587  * validate the pattern is supported or not.
588  *
589  * Return: true on success, false on error.
590  */
591 bool
592 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
593 {
594 	bool is_ipv4 = false;
595 	bool is_ipv6 = false;
596 	bool is_udp = false;
597 	u16 ptype = -1;
598 	int i = 0;
599 
600 	while (i < proto->count &&
601 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
602 		switch (proto->proto_hdr[i].type) {
603 		case VIRTCHNL_PROTO_HDR_ETH:
604 			ptype = ICE_PTYPE_MAC_PAY;
605 			break;
606 		case VIRTCHNL_PROTO_HDR_IPV4:
607 			ptype = ICE_PTYPE_IPV4_PAY;
608 			is_ipv4 = true;
609 			break;
610 		case VIRTCHNL_PROTO_HDR_IPV6:
611 			ptype = ICE_PTYPE_IPV6_PAY;
612 			is_ipv6 = true;
613 			break;
614 		case VIRTCHNL_PROTO_HDR_UDP:
615 			if (is_ipv4)
616 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
617 			else if (is_ipv6)
618 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
619 			is_udp = true;
620 			break;
621 		case VIRTCHNL_PROTO_HDR_TCP:
622 			if (is_ipv4)
623 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
624 			else if (is_ipv6)
625 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
626 			break;
627 		case VIRTCHNL_PROTO_HDR_SCTP:
628 			if (is_ipv4)
629 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
630 			else if (is_ipv6)
631 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
632 			break;
633 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
634 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
635 			if (is_ipv4)
636 				ptype = ICE_MAC_IPV4_GTPU;
637 			else if (is_ipv6)
638 				ptype = ICE_MAC_IPV6_GTPU;
639 			goto out;
640 		case VIRTCHNL_PROTO_HDR_L2TPV3:
641 			if (is_ipv4)
642 				ptype = ICE_MAC_IPV4_L2TPV3;
643 			else if (is_ipv6)
644 				ptype = ICE_MAC_IPV6_L2TPV3;
645 			goto out;
646 		case VIRTCHNL_PROTO_HDR_ESP:
647 			if (is_ipv4)
648 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
649 						ICE_MAC_IPV4_ESP;
650 			else if (is_ipv6)
651 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
652 						ICE_MAC_IPV6_ESP;
653 			goto out;
654 		case VIRTCHNL_PROTO_HDR_AH:
655 			if (is_ipv4)
656 				ptype = ICE_MAC_IPV4_AH;
657 			else if (is_ipv6)
658 				ptype = ICE_MAC_IPV6_AH;
659 			goto out;
660 		case VIRTCHNL_PROTO_HDR_PFCP:
661 			if (is_ipv4)
662 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
663 			else if (is_ipv6)
664 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
665 			goto out;
666 		default:
667 			break;
668 		}
669 		i++;
670 	}
671 
672 out:
673 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
674 }
675 
676 /**
677  * ice_vc_parse_rss_cfg - parses hash fields and headers from
678  * a specific virtchnl RSS cfg
679  * @hw: pointer to the hardware
680  * @rss_cfg: pointer to the virtchnl RSS cfg
681  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
682  * to configure
683  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
684  *
685  * Return true if all the protocol header and hash fields in the RSS cfg could
686  * be parsed, else return false
687  *
688  * This function parses the virtchnl RSS cfg to be the intended
689  * hash fields and the intended header for RSS configuration
690  */
691 static bool
692 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
693 		     u32 *addl_hdrs, u64 *hash_flds)
694 {
695 	const struct ice_vc_hash_field_match_type *hf_list;
696 	const struct ice_vc_hdr_match_type *hdr_list;
697 	int i, hf_list_len, hdr_list_len;
698 
699 	hf_list = ice_vc_hash_field_list;
700 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
701 	hdr_list = ice_vc_hdr_list;
702 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
703 
704 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
705 		struct virtchnl_proto_hdr *proto_hdr =
706 					&rss_cfg->proto_hdrs.proto_hdr[i];
707 		bool hdr_found = false;
708 		int j;
709 
710 		/* Find matched ice headers according to virtchnl headers. */
711 		for (j = 0; j < hdr_list_len; j++) {
712 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
713 
714 			if (proto_hdr->type == hdr_map.vc_hdr) {
715 				*addl_hdrs |= hdr_map.ice_hdr;
716 				hdr_found = true;
717 			}
718 		}
719 
720 		if (!hdr_found)
721 			return false;
722 
723 		/* Find matched ice hash fields according to
724 		 * virtchnl hash fields.
725 		 */
726 		for (j = 0; j < hf_list_len; j++) {
727 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
728 
729 			if (proto_hdr->type == hf_map.vc_hdr &&
730 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
731 				*hash_flds |= hf_map.ice_hash_field;
732 				break;
733 			}
734 		}
735 	}
736 
737 	return true;
738 }
739 
740 /**
741  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
742  * RSS offloads
743  * @caps: VF driver negotiated capabilities
744  *
745  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
746  * else return false
747  */
748 static bool ice_vf_adv_rss_offload_ena(u32 caps)
749 {
750 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
751 }
752 
753 /**
754  * ice_vc_handle_rss_cfg
755  * @vf: pointer to the VF info
756  * @msg: pointer to the message buffer
757  * @add: add a RSS config if true, otherwise delete a RSS config
758  *
759  * This function adds/deletes a RSS config
760  */
761 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
762 {
763 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
764 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
765 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
766 	struct device *dev = ice_pf_to_dev(vf->pf);
767 	struct ice_hw *hw = &vf->pf->hw;
768 	struct ice_vsi *vsi;
769 
770 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
771 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
772 			vf->vf_id);
773 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
774 		goto error_param;
775 	}
776 
777 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
778 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
779 			vf->vf_id);
780 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
781 		goto error_param;
782 	}
783 
784 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
785 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
786 		goto error_param;
787 	}
788 
789 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
790 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
791 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
792 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
793 			vf->vf_id);
794 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
795 		goto error_param;
796 	}
797 
798 	vsi = ice_get_vf_vsi(vf);
799 	if (!vsi) {
800 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
801 		goto error_param;
802 	}
803 
804 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
805 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
806 		goto error_param;
807 	}
808 
809 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
810 		struct ice_vsi_ctx *ctx;
811 		u8 lut_type, hash_type;
812 		int status;
813 
814 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
815 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
816 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
817 
818 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
819 		if (!ctx) {
820 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
821 			goto error_param;
822 		}
823 
824 		ctx->info.q_opt_rss = ((lut_type <<
825 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
826 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
827 				       (hash_type &
828 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
829 
830 		/* Preserve existing queueing option setting */
831 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
832 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
833 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
834 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
835 
836 		ctx->info.valid_sections =
837 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
838 
839 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
840 		if (status) {
841 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
842 				status, ice_aq_str(hw->adminq.sq_last_status));
843 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
844 		} else {
845 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
846 		}
847 
848 		kfree(ctx);
849 	} else {
850 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
851 		u64 hash_flds = ICE_HASH_INVALID;
852 
853 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
854 					  &hash_flds)) {
855 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
856 			goto error_param;
857 		}
858 
859 		if (add) {
860 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
861 					    addl_hdrs)) {
862 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
863 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
864 					vsi->vsi_num, v_ret);
865 			}
866 		} else {
867 			int status;
868 
869 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
870 						 addl_hdrs);
871 			/* We just ignore -ENOENT, because if two configurations
872 			 * share the same profile remove one of them actually
873 			 * removes both, since the profile is deleted.
874 			 */
875 			if (status && status != -ENOENT) {
876 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
877 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
878 					vf->vf_id, status);
879 			}
880 		}
881 	}
882 
883 error_param:
884 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
885 }
886 
887 /**
888  * ice_vc_config_rss_key
889  * @vf: pointer to the VF info
890  * @msg: pointer to the msg buffer
891  *
892  * Configure the VF's RSS key
893  */
894 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
895 {
896 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
897 	struct virtchnl_rss_key *vrk =
898 		(struct virtchnl_rss_key *)msg;
899 	struct ice_vsi *vsi;
900 
901 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
902 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
903 		goto error_param;
904 	}
905 
906 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
907 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
908 		goto error_param;
909 	}
910 
911 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
912 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
913 		goto error_param;
914 	}
915 
916 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
917 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
918 		goto error_param;
919 	}
920 
921 	vsi = ice_get_vf_vsi(vf);
922 	if (!vsi) {
923 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
924 		goto error_param;
925 	}
926 
927 	if (ice_set_rss_key(vsi, vrk->key))
928 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
929 error_param:
930 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
931 				     NULL, 0);
932 }
933 
934 /**
935  * ice_vc_config_rss_lut
936  * @vf: pointer to the VF info
937  * @msg: pointer to the msg buffer
938  *
939  * Configure the VF's RSS LUT
940  */
941 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
942 {
943 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
944 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
945 	struct ice_vsi *vsi;
946 
947 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
948 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
949 		goto error_param;
950 	}
951 
952 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
953 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
954 		goto error_param;
955 	}
956 
957 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
958 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
959 		goto error_param;
960 	}
961 
962 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
964 		goto error_param;
965 	}
966 
967 	vsi = ice_get_vf_vsi(vf);
968 	if (!vsi) {
969 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
970 		goto error_param;
971 	}
972 
973 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
974 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
975 error_param:
976 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
977 				     NULL, 0);
978 }
979 
980 /**
981  * ice_vc_cfg_promiscuous_mode_msg
982  * @vf: pointer to the VF info
983  * @msg: pointer to the msg buffer
984  *
985  * called from the VF to configure VF VSIs promiscuous mode
986  */
987 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
988 {
989 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
990 	bool rm_promisc, alluni = false, allmulti = false;
991 	struct virtchnl_promisc_info *info =
992 	    (struct virtchnl_promisc_info *)msg;
993 	struct ice_vsi_vlan_ops *vlan_ops;
994 	int mcast_err = 0, ucast_err = 0;
995 	struct ice_pf *pf = vf->pf;
996 	struct ice_vsi *vsi;
997 	struct device *dev;
998 	int ret = 0;
999 
1000 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1001 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1002 		goto error_param;
1003 	}
1004 
1005 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1006 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1007 		goto error_param;
1008 	}
1009 
1010 	vsi = ice_get_vf_vsi(vf);
1011 	if (!vsi) {
1012 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013 		goto error_param;
1014 	}
1015 
1016 	dev = ice_pf_to_dev(pf);
1017 	if (!ice_is_vf_trusted(vf)) {
1018 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1019 			vf->vf_id);
1020 		/* Leave v_ret alone, lie to the VF on purpose. */
1021 		goto error_param;
1022 	}
1023 
1024 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1025 		alluni = true;
1026 
1027 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1028 		allmulti = true;
1029 
1030 	rm_promisc = !allmulti && !alluni;
1031 
1032 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1033 	if (rm_promisc)
1034 		ret = vlan_ops->ena_rx_filtering(vsi);
1035 	else
1036 		ret = vlan_ops->dis_rx_filtering(vsi);
1037 	if (ret) {
1038 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1039 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1040 		goto error_param;
1041 	}
1042 
1043 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1044 		bool set_dflt_vsi = alluni || allmulti;
1045 
1046 		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
1047 			/* only attempt to set the default forwarding VSI if
1048 			 * it's not currently set
1049 			 */
1050 			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
1051 		else if (!set_dflt_vsi &&
1052 			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
1053 			/* only attempt to free the default forwarding VSI if we
1054 			 * are the owner
1055 			 */
1056 			ret = ice_clear_dflt_vsi(pf->first_sw);
1057 
1058 		if (ret) {
1059 			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
1060 				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
1061 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1062 			goto error_param;
1063 		}
1064 	} else {
1065 		u8 mcast_m, ucast_m;
1066 
1067 		if (ice_vf_is_port_vlan_ena(vf) ||
1068 		    ice_vsi_has_non_zero_vlans(vsi)) {
1069 			mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
1070 			ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
1071 		} else {
1072 			mcast_m = ICE_MCAST_PROMISC_BITS;
1073 			ucast_m = ICE_UCAST_PROMISC_BITS;
1074 		}
1075 
1076 		if (alluni)
1077 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1078 		else
1079 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1080 
1081 		if (allmulti)
1082 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1083 		else
1084 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1085 
1086 		if (ucast_err || mcast_err)
1087 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1088 	}
1089 
1090 	if (!mcast_err) {
1091 		if (allmulti &&
1092 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1093 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1094 				 vf->vf_id);
1095 		else if (!allmulti &&
1096 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1097 					    vf->vf_states))
1098 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1099 				 vf->vf_id);
1100 	}
1101 
1102 	if (!ucast_err) {
1103 		if (alluni &&
1104 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1105 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1106 				 vf->vf_id);
1107 		else if (!alluni &&
1108 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1109 					    vf->vf_states))
1110 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1111 				 vf->vf_id);
1112 	}
1113 
1114 error_param:
1115 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1116 				     v_ret, NULL, 0);
1117 }
1118 
1119 /**
1120  * ice_vc_get_stats_msg
1121  * @vf: pointer to the VF info
1122  * @msg: pointer to the msg buffer
1123  *
1124  * called from the VF to get VSI stats
1125  */
1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1127 {
1128 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1129 	struct virtchnl_queue_select *vqs =
1130 		(struct virtchnl_queue_select *)msg;
1131 	struct ice_eth_stats stats = { 0 };
1132 	struct ice_vsi *vsi;
1133 
1134 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1135 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 		goto error_param;
1137 	}
1138 
1139 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1140 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1141 		goto error_param;
1142 	}
1143 
1144 	vsi = ice_get_vf_vsi(vf);
1145 	if (!vsi) {
1146 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1147 		goto error_param;
1148 	}
1149 
1150 	ice_update_eth_stats(vsi);
1151 
1152 	stats = vsi->eth_stats;
1153 
1154 error_param:
1155 	/* send the response to the VF */
1156 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1157 				     (u8 *)&stats, sizeof(stats));
1158 }
1159 
1160 /**
1161  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1162  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1163  *
1164  * Return true on successful validation, else false
1165  */
1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1167 {
1168 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1169 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1170 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1171 		return false;
1172 
1173 	return true;
1174 }
1175 
1176 /**
1177  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1178  * @vsi: VSI of the VF to configure
1179  * @q_idx: VF queue index used to determine the queue in the PF's space
1180  */
1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1182 {
1183 	struct ice_hw *hw = &vsi->back->hw;
1184 	u32 pfq = vsi->txq_map[q_idx];
1185 	u32 reg;
1186 
1187 	reg = rd32(hw, QINT_TQCTL(pfq));
1188 
1189 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1190 	 * this is most likely a poll mode VF driver, so don't enable an
1191 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1192 	 */
1193 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1194 		return;
1195 
1196 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1197 }
1198 
1199 /**
1200  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1201  * @vsi: VSI of the VF to configure
1202  * @q_idx: VF queue index used to determine the queue in the PF's space
1203  */
1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1205 {
1206 	struct ice_hw *hw = &vsi->back->hw;
1207 	u32 pfq = vsi->rxq_map[q_idx];
1208 	u32 reg;
1209 
1210 	reg = rd32(hw, QINT_RQCTL(pfq));
1211 
1212 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1213 	 * this is most likely a poll mode VF driver, so don't enable an
1214 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1215 	 */
1216 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1217 		return;
1218 
1219 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1220 }
1221 
1222 /**
1223  * ice_vc_ena_qs_msg
1224  * @vf: pointer to the VF info
1225  * @msg: pointer to the msg buffer
1226  *
1227  * called from the VF to enable all or specific queue(s)
1228  */
1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1230 {
1231 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1232 	struct virtchnl_queue_select *vqs =
1233 	    (struct virtchnl_queue_select *)msg;
1234 	struct ice_vsi *vsi;
1235 	unsigned long q_map;
1236 	u16 vf_q_id;
1237 
1238 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1239 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1240 		goto error_param;
1241 	}
1242 
1243 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1244 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1245 		goto error_param;
1246 	}
1247 
1248 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1249 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1250 		goto error_param;
1251 	}
1252 
1253 	vsi = ice_get_vf_vsi(vf);
1254 	if (!vsi) {
1255 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256 		goto error_param;
1257 	}
1258 
1259 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1260 	 * Tx queue group list was configured and the context bits were
1261 	 * programmed using ice_vsi_cfg_txqs
1262 	 */
1263 	q_map = vqs->rx_queues;
1264 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1265 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1266 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1267 			goto error_param;
1268 		}
1269 
1270 		/* Skip queue if enabled */
1271 		if (test_bit(vf_q_id, vf->rxq_ena))
1272 			continue;
1273 
1274 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1275 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1276 				vf_q_id, vsi->vsi_num);
1277 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1278 			goto error_param;
1279 		}
1280 
1281 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1282 		set_bit(vf_q_id, vf->rxq_ena);
1283 	}
1284 
1285 	q_map = vqs->tx_queues;
1286 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1287 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1288 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289 			goto error_param;
1290 		}
1291 
1292 		/* Skip queue if enabled */
1293 		if (test_bit(vf_q_id, vf->txq_ena))
1294 			continue;
1295 
1296 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1297 		set_bit(vf_q_id, vf->txq_ena);
1298 	}
1299 
1300 	/* Set flag to indicate that queues are enabled */
1301 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1302 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1303 
1304 error_param:
1305 	/* send the response to the VF */
1306 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1307 				     NULL, 0);
1308 }
1309 
1310 /**
1311  * ice_vc_dis_qs_msg
1312  * @vf: pointer to the VF info
1313  * @msg: pointer to the msg buffer
1314  *
1315  * called from the VF to disable all or specific
1316  * queue(s)
1317  */
1318 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1319 {
1320 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1321 	struct virtchnl_queue_select *vqs =
1322 	    (struct virtchnl_queue_select *)msg;
1323 	struct ice_vsi *vsi;
1324 	unsigned long q_map;
1325 	u16 vf_q_id;
1326 
1327 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1328 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1329 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1330 		goto error_param;
1331 	}
1332 
1333 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1334 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1335 		goto error_param;
1336 	}
1337 
1338 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1339 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1340 		goto error_param;
1341 	}
1342 
1343 	vsi = ice_get_vf_vsi(vf);
1344 	if (!vsi) {
1345 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1346 		goto error_param;
1347 	}
1348 
1349 	if (vqs->tx_queues) {
1350 		q_map = vqs->tx_queues;
1351 
1352 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1353 			struct ice_tx_ring *ring = vsi->tx_rings[vf_q_id];
1354 			struct ice_txq_meta txq_meta = { 0 };
1355 
1356 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1357 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1358 				goto error_param;
1359 			}
1360 
1361 			/* Skip queue if not enabled */
1362 			if (!test_bit(vf_q_id, vf->txq_ena))
1363 				continue;
1364 
1365 			ice_fill_txq_meta(vsi, ring, &txq_meta);
1366 
1367 			if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
1368 						 ring, &txq_meta)) {
1369 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1370 					vf_q_id, vsi->vsi_num);
1371 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1372 				goto error_param;
1373 			}
1374 
1375 			/* Clear enabled queues flag */
1376 			clear_bit(vf_q_id, vf->txq_ena);
1377 		}
1378 	}
1379 
1380 	q_map = vqs->rx_queues;
1381 	/* speed up Rx queue disable by batching them if possible */
1382 	if (q_map &&
1383 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1384 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1385 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1386 				vsi->vsi_num);
1387 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388 			goto error_param;
1389 		}
1390 
1391 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1392 	} else if (q_map) {
1393 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1394 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1395 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1396 				goto error_param;
1397 			}
1398 
1399 			/* Skip queue if not enabled */
1400 			if (!test_bit(vf_q_id, vf->rxq_ena))
1401 				continue;
1402 
1403 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1404 						     true)) {
1405 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1406 					vf_q_id, vsi->vsi_num);
1407 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408 				goto error_param;
1409 			}
1410 
1411 			/* Clear enabled queues flag */
1412 			clear_bit(vf_q_id, vf->rxq_ena);
1413 		}
1414 	}
1415 
1416 	/* Clear enabled queues flag */
1417 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1418 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1419 
1420 error_param:
1421 	/* send the response to the VF */
1422 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1423 				     NULL, 0);
1424 }
1425 
1426 /**
1427  * ice_cfg_interrupt
1428  * @vf: pointer to the VF info
1429  * @vsi: the VSI being configured
1430  * @vector_id: vector ID
1431  * @map: vector map for mapping vectors to queues
1432  * @q_vector: structure for interrupt vector
1433  * configure the IRQ to queue map
1434  */
1435 static int
1436 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1437 		  struct virtchnl_vector_map *map,
1438 		  struct ice_q_vector *q_vector)
1439 {
1440 	u16 vsi_q_id, vsi_q_id_idx;
1441 	unsigned long qmap;
1442 
1443 	q_vector->num_ring_rx = 0;
1444 	q_vector->num_ring_tx = 0;
1445 
1446 	qmap = map->rxq_map;
1447 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1448 		vsi_q_id = vsi_q_id_idx;
1449 
1450 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1451 			return VIRTCHNL_STATUS_ERR_PARAM;
1452 
1453 		q_vector->num_ring_rx++;
1454 		q_vector->rx.itr_idx = map->rxitr_idx;
1455 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1456 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1457 				      q_vector->rx.itr_idx);
1458 	}
1459 
1460 	qmap = map->txq_map;
1461 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1462 		vsi_q_id = vsi_q_id_idx;
1463 
1464 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1465 			return VIRTCHNL_STATUS_ERR_PARAM;
1466 
1467 		q_vector->num_ring_tx++;
1468 		q_vector->tx.itr_idx = map->txitr_idx;
1469 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1470 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1471 				      q_vector->tx.itr_idx);
1472 	}
1473 
1474 	return VIRTCHNL_STATUS_SUCCESS;
1475 }
1476 
1477 /**
1478  * ice_vc_cfg_irq_map_msg
1479  * @vf: pointer to the VF info
1480  * @msg: pointer to the msg buffer
1481  *
1482  * called from the VF to configure the IRQ to queue map
1483  */
1484 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1485 {
1486 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1487 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1488 	struct virtchnl_irq_map_info *irqmap_info;
1489 	struct virtchnl_vector_map *map;
1490 	struct ice_pf *pf = vf->pf;
1491 	struct ice_vsi *vsi;
1492 	int i;
1493 
1494 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1495 	num_q_vectors_mapped = irqmap_info->num_vectors;
1496 
1497 	/* Check to make sure number of VF vectors mapped is not greater than
1498 	 * number of VF vectors originally allocated, and check that
1499 	 * there is actually at least a single VF queue vector mapped
1500 	 */
1501 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1502 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1503 	    !num_q_vectors_mapped) {
1504 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1505 		goto error_param;
1506 	}
1507 
1508 	vsi = ice_get_vf_vsi(vf);
1509 	if (!vsi) {
1510 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1511 		goto error_param;
1512 	}
1513 
1514 	for (i = 0; i < num_q_vectors_mapped; i++) {
1515 		struct ice_q_vector *q_vector;
1516 
1517 		map = &irqmap_info->vecmap[i];
1518 
1519 		vector_id = map->vector_id;
1520 		vsi_id = map->vsi_id;
1521 		/* vector_id is always 0-based for each VF, and can never be
1522 		 * larger than or equal to the max allowed interrupts per VF
1523 		 */
1524 		if (!(vector_id < pf->vfs.num_msix_per) ||
1525 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1526 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1527 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1528 			goto error_param;
1529 		}
1530 
1531 		/* No need to map VF miscellaneous or rogue vector */
1532 		if (!vector_id)
1533 			continue;
1534 
1535 		/* Subtract non queue vector from vector_id passed by VF
1536 		 * to get actual number of VSI queue vector array index
1537 		 */
1538 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1539 		if (!q_vector) {
1540 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1541 			goto error_param;
1542 		}
1543 
1544 		/* lookout for the invalid queue index */
1545 		v_ret = (enum virtchnl_status_code)
1546 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1547 		if (v_ret)
1548 			goto error_param;
1549 	}
1550 
1551 error_param:
1552 	/* send the response to the VF */
1553 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1554 				     NULL, 0);
1555 }
1556 
1557 /**
1558  * ice_vc_cfg_qs_msg
1559  * @vf: pointer to the VF info
1560  * @msg: pointer to the msg buffer
1561  *
1562  * called from the VF to configure the Rx/Tx queues
1563  */
1564 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1565 {
1566 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1567 	struct virtchnl_vsi_queue_config_info *qci =
1568 	    (struct virtchnl_vsi_queue_config_info *)msg;
1569 	struct virtchnl_queue_pair_info *qpi;
1570 	struct ice_pf *pf = vf->pf;
1571 	struct ice_vsi *vsi;
1572 	int i, q_idx;
1573 
1574 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1575 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1576 		goto error_param;
1577 	}
1578 
1579 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
1580 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1581 		goto error_param;
1582 	}
1583 
1584 	vsi = ice_get_vf_vsi(vf);
1585 	if (!vsi) {
1586 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587 		goto error_param;
1588 	}
1589 
1590 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1591 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1592 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1593 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1594 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1595 		goto error_param;
1596 	}
1597 
1598 	for (i = 0; i < qci->num_queue_pairs; i++) {
1599 		qpi = &qci->qpair[i];
1600 		if (qpi->txq.vsi_id != qci->vsi_id ||
1601 		    qpi->rxq.vsi_id != qci->vsi_id ||
1602 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1603 		    qpi->txq.headwb_enabled ||
1604 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1605 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1606 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1607 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1608 			goto error_param;
1609 		}
1610 
1611 		q_idx = qpi->rxq.queue_id;
1612 
1613 		/* make sure selected "q_idx" is in valid range of queues
1614 		 * for selected "vsi"
1615 		 */
1616 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1617 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1618 			goto error_param;
1619 		}
1620 
1621 		/* copy Tx queue info from VF into VSI */
1622 		if (qpi->txq.ring_len > 0) {
1623 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1624 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1625 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1626 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1627 				goto error_param;
1628 			}
1629 		}
1630 
1631 		/* copy Rx queue info from VF into VSI */
1632 		if (qpi->rxq.ring_len > 0) {
1633 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1634 
1635 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1636 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1637 
1638 			if (qpi->rxq.databuffer_size != 0 &&
1639 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1640 			     qpi->rxq.databuffer_size < 1024)) {
1641 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1642 				goto error_param;
1643 			}
1644 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1645 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1646 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1647 			    qpi->rxq.max_pkt_size < 64) {
1648 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1649 				goto error_param;
1650 			}
1651 
1652 			vsi->max_frame = qpi->rxq.max_pkt_size;
1653 			/* add space for the port VLAN since the VF driver is
1654 			 * not expected to account for it in the MTU
1655 			 * calculation
1656 			 */
1657 			if (ice_vf_is_port_vlan_ena(vf))
1658 				vsi->max_frame += VLAN_HLEN;
1659 
1660 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1661 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1662 				goto error_param;
1663 			}
1664 		}
1665 	}
1666 
1667 error_param:
1668 	/* send the response to the VF */
1669 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
1670 				     NULL, 0);
1671 }
1672 
1673 /**
1674  * ice_can_vf_change_mac
1675  * @vf: pointer to the VF info
1676  *
1677  * Return true if the VF is allowed to change its MAC filters, false otherwise
1678  */
1679 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1680 {
1681 	/* If the VF MAC address has been set administratively (via the
1682 	 * ndo_set_vf_mac command), then deny permission to the VF to
1683 	 * add/delete unicast MAC addresses, unless the VF is trusted
1684 	 */
1685 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1686 		return false;
1687 
1688 	return true;
1689 }
1690 
1691 /**
1692  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1693  * @vc_ether_addr: used to extract the type
1694  */
1695 static u8
1696 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1697 {
1698 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1699 }
1700 
1701 /**
1702  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1703  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1704  */
1705 static bool
1706 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1707 {
1708 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1709 
1710 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1711 }
1712 
1713 /**
1714  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1715  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1716  *
1717  * This function should only be called when the MAC address in
1718  * virtchnl_ether_addr is a valid unicast MAC
1719  */
1720 static bool
1721 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1722 {
1723 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1724 
1725 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1726 }
1727 
1728 /**
1729  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1730  * @vf: VF to update
1731  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1732  */
1733 static void
1734 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1735 {
1736 	u8 *mac_addr = vc_ether_addr->addr;
1737 
1738 	if (!is_valid_ether_addr(mac_addr))
1739 		return;
1740 
1741 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1742 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1743 	 * was correctly specified over VIRTCHNL
1744 	 */
1745 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1746 	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1747 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1748 		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1749 		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1750 	}
1751 
1752 	/* hardware and device MACs are already set, but its possible that the
1753 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1754 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1755 	 * away for the legacy VF driver case as it will be updated in the
1756 	 * delete flow for this case
1757 	 */
1758 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1759 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1760 				mac_addr);
1761 		vf->legacy_last_added_umac.time_modified = jiffies;
1762 	}
1763 }
1764 
1765 /**
1766  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1767  * @vf: pointer to the VF info
1768  * @vsi: pointer to the VF's VSI
1769  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1770  */
1771 static int
1772 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1773 		    struct virtchnl_ether_addr *vc_ether_addr)
1774 {
1775 	struct device *dev = ice_pf_to_dev(vf->pf);
1776 	u8 *mac_addr = vc_ether_addr->addr;
1777 	int ret;
1778 
1779 	/* device MAC already added */
1780 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1781 		return 0;
1782 
1783 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1784 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1785 		return -EPERM;
1786 	}
1787 
1788 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1789 	if (ret == -EEXIST) {
1790 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1791 			vf->vf_id);
1792 		/* don't return since we might need to update
1793 		 * the primary MAC in ice_vfhw_mac_add() below
1794 		 */
1795 	} else if (ret) {
1796 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1797 			mac_addr, vf->vf_id, ret);
1798 		return ret;
1799 	} else {
1800 		vf->num_mac++;
1801 	}
1802 
1803 	ice_vfhw_mac_add(vf, vc_ether_addr);
1804 
1805 	return ret;
1806 }
1807 
1808 /**
1809  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1810  * @last_added_umac: structure used to check expiration
1811  */
1812 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1813 {
1814 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1815 	return time_is_before_jiffies(last_added_umac->time_modified +
1816 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1817 }
1818 
1819 /**
1820  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1821  * @vf: VF to update
1822  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1823  *
1824  * only update cached hardware MAC for legacy VF drivers on delete
1825  * because we cannot guarantee order/type of MAC from the VF driver
1826  */
1827 static void
1828 ice_update_legacy_cached_mac(struct ice_vf *vf,
1829 			     struct virtchnl_ether_addr *vc_ether_addr)
1830 {
1831 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1832 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1833 		return;
1834 
1835 	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1836 	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1837 }
1838 
1839 /**
1840  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1841  * @vf: VF to update
1842  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1843  */
1844 static void
1845 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1846 {
1847 	u8 *mac_addr = vc_ether_addr->addr;
1848 
1849 	if (!is_valid_ether_addr(mac_addr) ||
1850 	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1851 		return;
1852 
1853 	/* allow the device MAC to be repopulated in the add flow and don't
1854 	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1855 	 * to be persistent on VM reboot and across driver unload/load, which
1856 	 * won't work if we clear the hardware MAC here
1857 	 */
1858 	eth_zero_addr(vf->dev_lan_addr.addr);
1859 
1860 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1861 }
1862 
1863 /**
1864  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1865  * @vf: pointer to the VF info
1866  * @vsi: pointer to the VF's VSI
1867  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1868  */
1869 static int
1870 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1871 		    struct virtchnl_ether_addr *vc_ether_addr)
1872 {
1873 	struct device *dev = ice_pf_to_dev(vf->pf);
1874 	u8 *mac_addr = vc_ether_addr->addr;
1875 	int status;
1876 
1877 	if (!ice_can_vf_change_mac(vf) &&
1878 	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1879 		return 0;
1880 
1881 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1882 	if (status == -ENOENT) {
1883 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1884 			vf->vf_id);
1885 		return -ENOENT;
1886 	} else if (status) {
1887 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1888 			mac_addr, vf->vf_id, status);
1889 		return -EIO;
1890 	}
1891 
1892 	ice_vfhw_mac_del(vf, vc_ether_addr);
1893 
1894 	vf->num_mac--;
1895 
1896 	return 0;
1897 }
1898 
1899 /**
1900  * ice_vc_handle_mac_addr_msg
1901  * @vf: pointer to the VF info
1902  * @msg: pointer to the msg buffer
1903  * @set: true if MAC filters are being set, false otherwise
1904  *
1905  * add guest MAC address filter
1906  */
1907 static int
1908 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1909 {
1910 	int (*ice_vc_cfg_mac)
1911 		(struct ice_vf *vf, struct ice_vsi *vsi,
1912 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1913 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1914 	struct virtchnl_ether_addr_list *al =
1915 	    (struct virtchnl_ether_addr_list *)msg;
1916 	struct ice_pf *pf = vf->pf;
1917 	enum virtchnl_ops vc_op;
1918 	struct ice_vsi *vsi;
1919 	int i;
1920 
1921 	if (set) {
1922 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1923 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
1924 	} else {
1925 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1926 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
1927 	}
1928 
1929 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1930 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1931 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1932 		goto handle_mac_exit;
1933 	}
1934 
1935 	/* If this VF is not privileged, then we can't add more than a
1936 	 * limited number of addresses. Check to make sure that the
1937 	 * additions do not push us over the limit.
1938 	 */
1939 	if (set && !ice_is_vf_trusted(vf) &&
1940 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
1941 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
1942 			vf->vf_id);
1943 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1944 		goto handle_mac_exit;
1945 	}
1946 
1947 	vsi = ice_get_vf_vsi(vf);
1948 	if (!vsi) {
1949 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1950 		goto handle_mac_exit;
1951 	}
1952 
1953 	for (i = 0; i < al->num_elements; i++) {
1954 		u8 *mac_addr = al->list[i].addr;
1955 		int result;
1956 
1957 		if (is_broadcast_ether_addr(mac_addr) ||
1958 		    is_zero_ether_addr(mac_addr))
1959 			continue;
1960 
1961 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
1962 		if (result == -EEXIST || result == -ENOENT) {
1963 			continue;
1964 		} else if (result) {
1965 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1966 			goto handle_mac_exit;
1967 		}
1968 	}
1969 
1970 handle_mac_exit:
1971 	/* send the response to the VF */
1972 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
1973 }
1974 
1975 /**
1976  * ice_vc_add_mac_addr_msg
1977  * @vf: pointer to the VF info
1978  * @msg: pointer to the msg buffer
1979  *
1980  * add guest MAC address filter
1981  */
1982 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1983 {
1984 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
1985 }
1986 
1987 /**
1988  * ice_vc_del_mac_addr_msg
1989  * @vf: pointer to the VF info
1990  * @msg: pointer to the msg buffer
1991  *
1992  * remove guest MAC address filter
1993  */
1994 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1995 {
1996 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
1997 }
1998 
1999 /**
2000  * ice_vc_request_qs_msg
2001  * @vf: pointer to the VF info
2002  * @msg: pointer to the msg buffer
2003  *
2004  * VFs get a default number of queues but can use this message to request a
2005  * different number. If the request is successful, PF will reset the VF and
2006  * return 0. If unsuccessful, PF will send message informing VF of number of
2007  * available queue pairs via virtchnl message response to VF.
2008  */
2009 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2010 {
2011 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2012 	struct virtchnl_vf_res_request *vfres =
2013 		(struct virtchnl_vf_res_request *)msg;
2014 	u16 req_queues = vfres->num_queue_pairs;
2015 	struct ice_pf *pf = vf->pf;
2016 	u16 max_allowed_vf_queues;
2017 	u16 tx_rx_queue_left;
2018 	struct device *dev;
2019 	u16 cur_queues;
2020 
2021 	dev = ice_pf_to_dev(pf);
2022 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2023 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2024 		goto error_param;
2025 	}
2026 
2027 	cur_queues = vf->num_vf_qs;
2028 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2029 				 ice_get_avail_rxq_count(pf));
2030 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2031 	if (!req_queues) {
2032 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2033 			vf->vf_id);
2034 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2035 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2036 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2037 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2038 	} else if (req_queues > cur_queues &&
2039 		   req_queues - cur_queues > tx_rx_queue_left) {
2040 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2041 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2042 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2043 					       ICE_MAX_RSS_QS_PER_VF);
2044 	} else {
2045 		/* request is successful, then reset VF */
2046 		vf->num_req_qs = req_queues;
2047 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2048 		dev_info(dev, "VF %d granted request of %u queues.\n",
2049 			 vf->vf_id, req_queues);
2050 		return 0;
2051 	}
2052 
2053 error_param:
2054 	/* send the response to the VF */
2055 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2056 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2057 }
2058 
2059 /**
2060  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2061  * @caps: VF driver negotiated capabilities
2062  *
2063  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2064  */
2065 static bool ice_vf_vlan_offload_ena(u32 caps)
2066 {
2067 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2068 }
2069 
2070 /**
2071  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2072  * @vf: VF used to determine if VLAN promiscuous config is allowed
2073  */
2074 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2075 {
2076 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2077 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2078 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2079 		return true;
2080 
2081 	return false;
2082 }
2083 
2084 /**
2085  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2086  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2087  * @vlan: VLAN used to enable VLAN promiscuous
2088  *
2089  * This function should only be called if VLAN promiscuous mode is allowed,
2090  * which can be determined via ice_is_vlan_promisc_allowed().
2091  */
2092 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2093 {
2094 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2095 	int status;
2096 
2097 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2098 					  vlan->vid);
2099 	if (status && status != -EEXIST)
2100 		return status;
2101 
2102 	return 0;
2103 }
2104 
2105 /**
2106  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2107  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2108  * @vlan: VLAN used to disable VLAN promiscuous
2109  *
2110  * This function should only be called if VLAN promiscuous mode is allowed,
2111  * which can be determined via ice_is_vlan_promisc_allowed().
2112  */
2113 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2114 {
2115 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2116 	int status;
2117 
2118 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2119 					    vlan->vid);
2120 	if (status && status != -ENOENT)
2121 		return status;
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2128  * @vf: VF to check against
2129  * @vsi: VF's VSI
2130  *
2131  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2132  * wants to, so return false.
2133  *
2134  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2135  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2136  */
2137 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2138 {
2139 	if (ice_is_vf_trusted(vf))
2140 		return false;
2141 
2142 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2143 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2144 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2145 }
2146 
2147 /**
2148  * ice_vc_process_vlan_msg
2149  * @vf: pointer to the VF info
2150  * @msg: pointer to the msg buffer
2151  * @add_v: Add VLAN if true, otherwise delete VLAN
2152  *
2153  * Process virtchnl op to add or remove programmed guest VLAN ID
2154  */
2155 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2156 {
2157 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2158 	struct virtchnl_vlan_filter_list *vfl =
2159 	    (struct virtchnl_vlan_filter_list *)msg;
2160 	struct ice_pf *pf = vf->pf;
2161 	bool vlan_promisc = false;
2162 	struct ice_vsi *vsi;
2163 	struct device *dev;
2164 	int status = 0;
2165 	int i;
2166 
2167 	dev = ice_pf_to_dev(pf);
2168 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2169 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2170 		goto error_param;
2171 	}
2172 
2173 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2174 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2175 		goto error_param;
2176 	}
2177 
2178 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2179 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2180 		goto error_param;
2181 	}
2182 
2183 	for (i = 0; i < vfl->num_elements; i++) {
2184 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2185 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2186 			dev_err(dev, "invalid VF VLAN id %d\n",
2187 				vfl->vlan_id[i]);
2188 			goto error_param;
2189 		}
2190 	}
2191 
2192 	vsi = ice_get_vf_vsi(vf);
2193 	if (!vsi) {
2194 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2195 		goto error_param;
2196 	}
2197 
2198 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2199 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2200 			 vf->vf_id);
2201 		/* There is no need to let VF know about being not trusted,
2202 		 * so we can just return success message here
2203 		 */
2204 		goto error_param;
2205 	}
2206 
2207 	/* in DVM a VF can add/delete inner VLAN filters when
2208 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2209 	 */
2210 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2211 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2212 		goto error_param;
2213 	}
2214 
2215 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2216 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2217 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2218 	 */
2219 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2220 		!ice_is_dvm_ena(&pf->hw) &&
2221 		!ice_vf_is_port_vlan_ena(vf);
2222 
2223 	if (add_v) {
2224 		for (i = 0; i < vfl->num_elements; i++) {
2225 			u16 vid = vfl->vlan_id[i];
2226 			struct ice_vlan vlan;
2227 
2228 			if (ice_vf_has_max_vlans(vf, vsi)) {
2229 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2230 					 vf->vf_id);
2231 				/* There is no need to let VF know about being
2232 				 * not trusted, so we can just return success
2233 				 * message here as well.
2234 				 */
2235 				goto error_param;
2236 			}
2237 
2238 			/* we add VLAN 0 by default for each VF so we can enable
2239 			 * Tx VLAN anti-spoof without triggering MDD events so
2240 			 * we don't need to add it again here
2241 			 */
2242 			if (!vid)
2243 				continue;
2244 
2245 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2246 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2247 			if (status) {
2248 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2249 				goto error_param;
2250 			}
2251 
2252 			/* Enable VLAN filtering on first non-zero VLAN */
2253 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2254 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2255 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2256 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2257 						vid, status);
2258 					goto error_param;
2259 				}
2260 			} else if (vlan_promisc) {
2261 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2262 				if (status) {
2263 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2264 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2265 						vid, status);
2266 				}
2267 			}
2268 		}
2269 	} else {
2270 		/* In case of non_trusted VF, number of VLAN elements passed
2271 		 * to PF for removal might be greater than number of VLANs
2272 		 * filter programmed for that VF - So, use actual number of
2273 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2274 		 * removing VLAN that doesn't exist, which result to sending
2275 		 * erroneous failed message back to the VF
2276 		 */
2277 		int num_vf_vlan;
2278 
2279 		num_vf_vlan = vsi->num_vlan;
2280 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2281 			u16 vid = vfl->vlan_id[i];
2282 			struct ice_vlan vlan;
2283 
2284 			/* we add VLAN 0 by default for each VF so we can enable
2285 			 * Tx VLAN anti-spoof without triggering MDD events so
2286 			 * we don't want a VIRTCHNL request to remove it
2287 			 */
2288 			if (!vid)
2289 				continue;
2290 
2291 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2292 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2293 			if (status) {
2294 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2295 				goto error_param;
2296 			}
2297 
2298 			/* Disable VLAN filtering when only VLAN 0 is left */
2299 			if (!ice_vsi_has_non_zero_vlans(vsi))
2300 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2301 
2302 			if (vlan_promisc)
2303 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2304 		}
2305 	}
2306 
2307 error_param:
2308 	/* send the response to the VF */
2309 	if (add_v)
2310 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2311 					     NULL, 0);
2312 	else
2313 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2314 					     NULL, 0);
2315 }
2316 
2317 /**
2318  * ice_vc_add_vlan_msg
2319  * @vf: pointer to the VF info
2320  * @msg: pointer to the msg buffer
2321  *
2322  * Add and program guest VLAN ID
2323  */
2324 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2325 {
2326 	return ice_vc_process_vlan_msg(vf, msg, true);
2327 }
2328 
2329 /**
2330  * ice_vc_remove_vlan_msg
2331  * @vf: pointer to the VF info
2332  * @msg: pointer to the msg buffer
2333  *
2334  * remove programmed guest VLAN ID
2335  */
2336 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2337 {
2338 	return ice_vc_process_vlan_msg(vf, msg, false);
2339 }
2340 
2341 /**
2342  * ice_vc_ena_vlan_stripping
2343  * @vf: pointer to the VF info
2344  *
2345  * Enable VLAN header stripping for a given VF
2346  */
2347 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2348 {
2349 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2350 	struct ice_vsi *vsi;
2351 
2352 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2353 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2354 		goto error_param;
2355 	}
2356 
2357 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2358 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2359 		goto error_param;
2360 	}
2361 
2362 	vsi = ice_get_vf_vsi(vf);
2363 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2364 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365 
2366 error_param:
2367 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2368 				     v_ret, NULL, 0);
2369 }
2370 
2371 /**
2372  * ice_vc_dis_vlan_stripping
2373  * @vf: pointer to the VF info
2374  *
2375  * Disable VLAN header stripping for a given VF
2376  */
2377 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2378 {
2379 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2380 	struct ice_vsi *vsi;
2381 
2382 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2383 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2384 		goto error_param;
2385 	}
2386 
2387 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2388 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2389 		goto error_param;
2390 	}
2391 
2392 	vsi = ice_get_vf_vsi(vf);
2393 	if (!vsi) {
2394 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2395 		goto error_param;
2396 	}
2397 
2398 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2399 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2400 
2401 error_param:
2402 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2403 				     v_ret, NULL, 0);
2404 }
2405 
2406 /**
2407  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2408  * @vf: VF to enable/disable VLAN stripping for on initialization
2409  *
2410  * Set the default for VLAN stripping based on whether a port VLAN is configured
2411  * and the current VLAN mode of the device.
2412  */
2413 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2414 {
2415 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2416 
2417 	if (!vsi)
2418 		return -EINVAL;
2419 
2420 	/* don't modify stripping if port VLAN is configured in SVM since the
2421 	 * port VLAN is based on the inner/single VLAN in SVM
2422 	 */
2423 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2424 		return 0;
2425 
2426 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2427 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2428 	else
2429 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2430 }
2431 
2432 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2433 {
2434 	if (vf->trusted)
2435 		return VLAN_N_VID;
2436 	else
2437 		return ICE_MAX_VLAN_PER_VF;
2438 }
2439 
2440 /**
2441  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2442  * @vf: VF that being checked for
2443  *
2444  * When the device is in double VLAN mode, check whether or not the outer VLAN
2445  * is allowed.
2446  */
2447 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2448 {
2449 	if (ice_vf_is_port_vlan_ena(vf))
2450 		return true;
2451 
2452 	return false;
2453 }
2454 
2455 /**
2456  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2457  * @vf: VF that capabilities are being set for
2458  * @caps: VLAN capabilities to populate
2459  *
2460  * Determine VLAN capabilities support based on whether a port VLAN is
2461  * configured. If a port VLAN is configured then the VF should use the inner
2462  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2463  * capabilies.
2464  */
2465 static void
2466 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2467 {
2468 	struct virtchnl_vlan_supported_caps *supported_caps;
2469 
2470 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2471 		/* until support for inner VLAN filtering is added when a port
2472 		 * VLAN is configured, only support software offloaded inner
2473 		 * VLANs when a port VLAN is confgured in DVM
2474 		 */
2475 		supported_caps = &caps->filtering.filtering_support;
2476 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2477 
2478 		supported_caps = &caps->offloads.stripping_support;
2479 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2480 					VIRTCHNL_VLAN_TOGGLE |
2481 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2482 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2483 
2484 		supported_caps = &caps->offloads.insertion_support;
2485 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2486 					VIRTCHNL_VLAN_TOGGLE |
2487 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2488 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2489 
2490 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2491 		caps->offloads.ethertype_match =
2492 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2493 	} else {
2494 		supported_caps = &caps->filtering.filtering_support;
2495 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2496 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2497 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2498 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2499 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2500 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2501 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2502 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2503 
2504 		supported_caps = &caps->offloads.stripping_support;
2505 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2506 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2507 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2508 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2509 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2510 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2511 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2512 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2513 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2514 
2515 		supported_caps = &caps->offloads.insertion_support;
2516 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2517 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2518 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2519 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2520 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2521 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2522 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2523 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2524 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2525 
2526 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2527 
2528 		caps->offloads.ethertype_match =
2529 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2530 	}
2531 
2532 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2533 }
2534 
2535 /**
2536  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2537  * @vf: VF that capabilities are being set for
2538  * @caps: VLAN capabilities to populate
2539  *
2540  * Determine VLAN capabilities support based on whether a port VLAN is
2541  * configured. If a port VLAN is configured then the VF does not have any VLAN
2542  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2543  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2544  * VLAN fitlering and offload capabilities.
2545  */
2546 static void
2547 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2548 {
2549 	struct virtchnl_vlan_supported_caps *supported_caps;
2550 
2551 	if (ice_vf_is_port_vlan_ena(vf)) {
2552 		supported_caps = &caps->filtering.filtering_support;
2553 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2554 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2555 
2556 		supported_caps = &caps->offloads.stripping_support;
2557 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2558 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2559 
2560 		supported_caps = &caps->offloads.insertion_support;
2561 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2562 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2563 
2564 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2565 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2566 		caps->filtering.max_filters = 0;
2567 	} else {
2568 		supported_caps = &caps->filtering.filtering_support;
2569 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2570 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2571 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2572 
2573 		supported_caps = &caps->offloads.stripping_support;
2574 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2575 					VIRTCHNL_VLAN_TOGGLE |
2576 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2577 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2578 
2579 		supported_caps = &caps->offloads.insertion_support;
2580 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2581 					VIRTCHNL_VLAN_TOGGLE |
2582 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2583 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2584 
2585 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2586 		caps->offloads.ethertype_match =
2587 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2588 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2589 	}
2590 }
2591 
2592 /**
2593  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2594  * @vf: VF to determine VLAN capabilities for
2595  *
2596  * This will only be called if the VF and PF successfully negotiated
2597  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2598  *
2599  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2600  * is configured or not.
2601  */
2602 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2603 {
2604 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2605 	struct virtchnl_vlan_caps *caps = NULL;
2606 	int err, len = 0;
2607 
2608 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2609 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2610 		goto out;
2611 	}
2612 
2613 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2614 	if (!caps) {
2615 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616 		goto out;
2617 	}
2618 	len = sizeof(*caps);
2619 
2620 	if (ice_is_dvm_ena(&vf->pf->hw))
2621 		ice_vc_set_dvm_caps(vf, caps);
2622 	else
2623 		ice_vc_set_svm_caps(vf, caps);
2624 
2625 	/* store negotiated caps to prevent invalid VF messages */
2626 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2627 
2628 out:
2629 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2630 				    v_ret, (u8 *)caps, len);
2631 	kfree(caps);
2632 	return err;
2633 }
2634 
2635 /**
2636  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2637  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2638  * @tpid: VLAN TPID used for validation
2639  *
2640  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2641  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2642  */
2643 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2644 {
2645 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2646 
2647 	switch (tpid) {
2648 	case ETH_P_8021Q:
2649 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2650 		break;
2651 	case ETH_P_8021AD:
2652 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2653 		break;
2654 	case ETH_P_QINQ1:
2655 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2656 		break;
2657 	}
2658 
2659 	if (!(filtering_caps & vlan_ethertype))
2660 		return false;
2661 
2662 	return true;
2663 }
2664 
2665 /**
2666  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2667  * @vc_vlan: virtchnl_vlan to validate
2668  *
2669  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2670  * false. Otherwise return true.
2671  */
2672 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2673 {
2674 	if (!vc_vlan->tci || !vc_vlan->tpid)
2675 		return false;
2676 
2677 	return true;
2678 }
2679 
2680 /**
2681  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2682  * @vfc: negotiated/supported VLAN filtering capabilities
2683  * @vfl: VLAN filter list from VF to validate
2684  *
2685  * Validate all of the filters in the VLAN filter list from the VF. If any of
2686  * the checks fail then return false. Otherwise return true.
2687  */
2688 static bool
2689 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2690 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2691 {
2692 	u16 i;
2693 
2694 	if (!vfl->num_elements)
2695 		return false;
2696 
2697 	for (i = 0; i < vfl->num_elements; i++) {
2698 		struct virtchnl_vlan_supported_caps *filtering_support =
2699 			&vfc->filtering_support;
2700 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2701 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2702 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2703 
2704 		if ((ice_vc_is_valid_vlan(outer) &&
2705 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2706 		    (ice_vc_is_valid_vlan(inner) &&
2707 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2708 			return false;
2709 
2710 		if ((outer->tci_mask &&
2711 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2712 		    (inner->tci_mask &&
2713 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2714 			return false;
2715 
2716 		if (((outer->tci & VLAN_PRIO_MASK) &&
2717 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2718 		    ((inner->tci & VLAN_PRIO_MASK) &&
2719 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2720 			return false;
2721 
2722 		if ((ice_vc_is_valid_vlan(outer) &&
2723 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2724 						outer->tpid)) ||
2725 		    (ice_vc_is_valid_vlan(inner) &&
2726 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2727 						inner->tpid)))
2728 			return false;
2729 	}
2730 
2731 	return true;
2732 }
2733 
2734 /**
2735  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2736  * @vc_vlan: struct virtchnl_vlan to transform
2737  */
2738 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2739 {
2740 	struct ice_vlan vlan = { 0 };
2741 
2742 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2743 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2744 	vlan.tpid = vc_vlan->tpid;
2745 
2746 	return vlan;
2747 }
2748 
2749 /**
2750  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2751  * @vsi: VF's VSI used to perform the action
2752  * @vlan_action: function to perform the action with (i.e. add/del)
2753  * @vlan: VLAN filter to perform the action with
2754  */
2755 static int
2756 ice_vc_vlan_action(struct ice_vsi *vsi,
2757 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2758 		   struct ice_vlan *vlan)
2759 {
2760 	int err;
2761 
2762 	err = vlan_action(vsi, vlan);
2763 	if (err)
2764 		return err;
2765 
2766 	return 0;
2767 }
2768 
2769 /**
2770  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
2771  * @vf: VF used to delete the VLAN(s)
2772  * @vsi: VF's VSI used to delete the VLAN(s)
2773  * @vfl: virthchnl filter list used to delete the filters
2774  */
2775 static int
2776 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2777 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2778 {
2779 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2780 	int err;
2781 	u16 i;
2782 
2783 	for (i = 0; i < vfl->num_elements; i++) {
2784 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2785 		struct virtchnl_vlan *vc_vlan;
2786 
2787 		vc_vlan = &vlan_fltr->outer;
2788 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2789 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2790 
2791 			err = ice_vc_vlan_action(vsi,
2792 						 vsi->outer_vlan_ops.del_vlan,
2793 						 &vlan);
2794 			if (err)
2795 				return err;
2796 
2797 			if (vlan_promisc)
2798 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2799 		}
2800 
2801 		vc_vlan = &vlan_fltr->inner;
2802 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2803 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2804 
2805 			err = ice_vc_vlan_action(vsi,
2806 						 vsi->inner_vlan_ops.del_vlan,
2807 						 &vlan);
2808 			if (err)
2809 				return err;
2810 
2811 			/* no support for VLAN promiscuous on inner VLAN unless
2812 			 * we are in Single VLAN Mode (SVM)
2813 			 */
2814 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
2815 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2816 		}
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 /**
2823  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
2824  * @vf: VF the message was received from
2825  * @msg: message received from the VF
2826  */
2827 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2828 {
2829 	struct virtchnl_vlan_filter_list_v2 *vfl =
2830 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2831 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2832 	struct ice_vsi *vsi;
2833 
2834 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
2835 					      vfl)) {
2836 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2837 		goto out;
2838 	}
2839 
2840 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2841 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2842 		goto out;
2843 	}
2844 
2845 	vsi = ice_get_vf_vsi(vf);
2846 	if (!vsi) {
2847 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2848 		goto out;
2849 	}
2850 
2851 	if (ice_vc_del_vlans(vf, vsi, vfl))
2852 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2853 
2854 out:
2855 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
2856 				     0);
2857 }
2858 
2859 /**
2860  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
2861  * @vf: VF used to add the VLAN(s)
2862  * @vsi: VF's VSI used to add the VLAN(s)
2863  * @vfl: virthchnl filter list used to add the filters
2864  */
2865 static int
2866 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2867 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2868 {
2869 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2870 	int err;
2871 	u16 i;
2872 
2873 	for (i = 0; i < vfl->num_elements; i++) {
2874 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2875 		struct virtchnl_vlan *vc_vlan;
2876 
2877 		vc_vlan = &vlan_fltr->outer;
2878 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2879 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2880 
2881 			err = ice_vc_vlan_action(vsi,
2882 						 vsi->outer_vlan_ops.add_vlan,
2883 						 &vlan);
2884 			if (err)
2885 				return err;
2886 
2887 			if (vlan_promisc) {
2888 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2889 				if (err)
2890 					return err;
2891 			}
2892 		}
2893 
2894 		vc_vlan = &vlan_fltr->inner;
2895 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2896 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2897 
2898 			err = ice_vc_vlan_action(vsi,
2899 						 vsi->inner_vlan_ops.add_vlan,
2900 						 &vlan);
2901 			if (err)
2902 				return err;
2903 
2904 			/* no support for VLAN promiscuous on inner VLAN unless
2905 			 * we are in Single VLAN Mode (SVM)
2906 			 */
2907 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
2908 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2909 				if (err)
2910 					return err;
2911 			}
2912 		}
2913 	}
2914 
2915 	return 0;
2916 }
2917 
2918 /**
2919  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
2920  * @vsi: VF VSI used to get number of existing VLAN filters
2921  * @vfc: negotiated/supported VLAN filtering capabilities
2922  * @vfl: VLAN filter list from VF to validate
2923  *
2924  * Validate all of the filters in the VLAN filter list from the VF during the
2925  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
2926  * Otherwise return true.
2927  */
2928 static bool
2929 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
2930 				     struct virtchnl_vlan_filtering_caps *vfc,
2931 				     struct virtchnl_vlan_filter_list_v2 *vfl)
2932 {
2933 	u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
2934 
2935 	if (num_requested_filters > vfc->max_filters)
2936 		return false;
2937 
2938 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
2939 }
2940 
2941 /**
2942  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
2943  * @vf: VF the message was received from
2944  * @msg: message received from the VF
2945  */
2946 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2947 {
2948 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2949 	struct virtchnl_vlan_filter_list_v2 *vfl =
2950 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2951 	struct ice_vsi *vsi;
2952 
2953 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2954 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2955 		goto out;
2956 	}
2957 
2958 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2959 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2960 		goto out;
2961 	}
2962 
2963 	vsi = ice_get_vf_vsi(vf);
2964 	if (!vsi) {
2965 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2966 		goto out;
2967 	}
2968 
2969 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
2970 						  &vf->vlan_v2_caps.filtering,
2971 						  vfl)) {
2972 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973 		goto out;
2974 	}
2975 
2976 	if (ice_vc_add_vlans(vf, vsi, vfl))
2977 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978 
2979 out:
2980 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
2981 				     0);
2982 }
2983 
2984 /**
2985  * ice_vc_valid_vlan_setting - validate VLAN setting
2986  * @negotiated_settings: negotiated VLAN settings during VF init
2987  * @ethertype_setting: ethertype(s) requested for the VLAN setting
2988  */
2989 static bool
2990 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
2991 {
2992 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
2993 		return false;
2994 
2995 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
2996 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
2997 	 */
2998 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
2999 	    hweight32(ethertype_setting) > 1)
3000 		return false;
3001 
3002 	/* ability to modify the VLAN setting was not negotiated */
3003 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3004 		return false;
3005 
3006 	return true;
3007 }
3008 
3009 /**
3010  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3011  * @caps: negotiated VLAN settings during VF init
3012  * @msg: message to validate
3013  *
3014  * Used to validate any VLAN virtchnl message sent as a
3015  * virtchnl_vlan_setting structure. Validates the message against the
3016  * negotiated/supported caps during VF driver init.
3017  */
3018 static bool
3019 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3020 			      struct virtchnl_vlan_setting *msg)
3021 {
3022 	if ((!msg->outer_ethertype_setting &&
3023 	     !msg->inner_ethertype_setting) ||
3024 	    (!caps->outer && !caps->inner))
3025 		return false;
3026 
3027 	if (msg->outer_ethertype_setting &&
3028 	    !ice_vc_valid_vlan_setting(caps->outer,
3029 				       msg->outer_ethertype_setting))
3030 		return false;
3031 
3032 	if (msg->inner_ethertype_setting &&
3033 	    !ice_vc_valid_vlan_setting(caps->inner,
3034 				       msg->inner_ethertype_setting))
3035 		return false;
3036 
3037 	return true;
3038 }
3039 
3040 /**
3041  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3042  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3043  * @tpid: VLAN TPID to populate
3044  */
3045 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3046 {
3047 	switch (ethertype_setting) {
3048 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3049 		*tpid = ETH_P_8021Q;
3050 		break;
3051 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3052 		*tpid = ETH_P_8021AD;
3053 		break;
3054 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3055 		*tpid = ETH_P_QINQ1;
3056 		break;
3057 	default:
3058 		*tpid = 0;
3059 		return -EINVAL;
3060 	}
3061 
3062 	return 0;
3063 }
3064 
3065 /**
3066  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3067  * @vsi: VF's VSI used to enable the VLAN offload
3068  * @ena_offload: function used to enable the VLAN offload
3069  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3070  */
3071 static int
3072 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3073 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3074 			u32 ethertype_setting)
3075 {
3076 	u16 tpid;
3077 	int err;
3078 
3079 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3080 	if (err)
3081 		return err;
3082 
3083 	err = ena_offload(vsi, tpid);
3084 	if (err)
3085 		return err;
3086 
3087 	return 0;
3088 }
3089 
3090 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3091 #define ICE_L2TSEL_BIT_OFFSET		23
3092 enum ice_l2tsel {
3093 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3094 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3095 };
3096 
3097 /**
3098  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3099  * @vsi: VSI used to update l2tsel on
3100  * @l2tsel: l2tsel setting requested
3101  *
3102  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3103  * This will modify which descriptor field the first offloaded VLAN will be
3104  * stripped into.
3105  */
3106 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3107 {
3108 	struct ice_hw *hw = &vsi->back->hw;
3109 	u32 l2tsel_bit;
3110 	int i;
3111 
3112 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3113 		l2tsel_bit = 0;
3114 	else
3115 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3116 
3117 	for (i = 0; i < vsi->alloc_rxq; i++) {
3118 		u16 pfq = vsi->rxq_map[i];
3119 		u32 qrx_context_offset;
3120 		u32 regval;
3121 
3122 		qrx_context_offset =
3123 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3124 
3125 		regval = rd32(hw, qrx_context_offset);
3126 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3127 		regval |= l2tsel_bit;
3128 		wr32(hw, qrx_context_offset, regval);
3129 	}
3130 }
3131 
3132 /**
3133  * ice_vc_ena_vlan_stripping_v2_msg
3134  * @vf: VF the message was received from
3135  * @msg: message received from the VF
3136  *
3137  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3138  */
3139 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3140 {
3141 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3142 	struct virtchnl_vlan_supported_caps *stripping_support;
3143 	struct virtchnl_vlan_setting *strip_msg =
3144 		(struct virtchnl_vlan_setting *)msg;
3145 	u32 ethertype_setting;
3146 	struct ice_vsi *vsi;
3147 
3148 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3149 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3150 		goto out;
3151 	}
3152 
3153 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3154 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3155 		goto out;
3156 	}
3157 
3158 	vsi = ice_get_vf_vsi(vf);
3159 	if (!vsi) {
3160 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3161 		goto out;
3162 	}
3163 
3164 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3165 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3166 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3167 		goto out;
3168 	}
3169 
3170 	ethertype_setting = strip_msg->outer_ethertype_setting;
3171 	if (ethertype_setting) {
3172 		if (ice_vc_ena_vlan_offload(vsi,
3173 					    vsi->outer_vlan_ops.ena_stripping,
3174 					    ethertype_setting)) {
3175 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3176 			goto out;
3177 		} else {
3178 			enum ice_l2tsel l2tsel =
3179 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3180 
3181 			/* PF tells the VF that the outer VLAN tag is always
3182 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3183 			 * inner is always extracted to
3184 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3185 			 * support outer stripping so the first tag always ends
3186 			 * up in L2TAG2_2ND and the second/inner tag, if
3187 			 * enabled, is extracted in L2TAG1.
3188 			 */
3189 			ice_vsi_update_l2tsel(vsi, l2tsel);
3190 		}
3191 	}
3192 
3193 	ethertype_setting = strip_msg->inner_ethertype_setting;
3194 	if (ethertype_setting &&
3195 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3196 				    ethertype_setting)) {
3197 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3198 		goto out;
3199 	}
3200 
3201 out:
3202 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3203 				     v_ret, NULL, 0);
3204 }
3205 
3206 /**
3207  * ice_vc_dis_vlan_stripping_v2_msg
3208  * @vf: VF the message was received from
3209  * @msg: message received from the VF
3210  *
3211  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3212  */
3213 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3214 {
3215 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3216 	struct virtchnl_vlan_supported_caps *stripping_support;
3217 	struct virtchnl_vlan_setting *strip_msg =
3218 		(struct virtchnl_vlan_setting *)msg;
3219 	u32 ethertype_setting;
3220 	struct ice_vsi *vsi;
3221 
3222 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3223 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3224 		goto out;
3225 	}
3226 
3227 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3228 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3229 		goto out;
3230 	}
3231 
3232 	vsi = ice_get_vf_vsi(vf);
3233 	if (!vsi) {
3234 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3235 		goto out;
3236 	}
3237 
3238 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3239 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3240 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3241 		goto out;
3242 	}
3243 
3244 	ethertype_setting = strip_msg->outer_ethertype_setting;
3245 	if (ethertype_setting) {
3246 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3247 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3248 			goto out;
3249 		} else {
3250 			enum ice_l2tsel l2tsel =
3251 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3252 
3253 			/* PF tells the VF that the outer VLAN tag is always
3254 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3255 			 * inner is always extracted to
3256 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3257 			 * support inner stripping while outer stripping is
3258 			 * disabled so that the first and only tag is extracted
3259 			 * in L2TAG1.
3260 			 */
3261 			ice_vsi_update_l2tsel(vsi, l2tsel);
3262 		}
3263 	}
3264 
3265 	ethertype_setting = strip_msg->inner_ethertype_setting;
3266 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3267 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3268 		goto out;
3269 	}
3270 
3271 out:
3272 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3273 				     v_ret, NULL, 0);
3274 }
3275 
3276 /**
3277  * ice_vc_ena_vlan_insertion_v2_msg
3278  * @vf: VF the message was received from
3279  * @msg: message received from the VF
3280  *
3281  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3282  */
3283 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3284 {
3285 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3286 	struct virtchnl_vlan_supported_caps *insertion_support;
3287 	struct virtchnl_vlan_setting *insertion_msg =
3288 		(struct virtchnl_vlan_setting *)msg;
3289 	u32 ethertype_setting;
3290 	struct ice_vsi *vsi;
3291 
3292 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3293 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3294 		goto out;
3295 	}
3296 
3297 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3298 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3299 		goto out;
3300 	}
3301 
3302 	vsi = ice_get_vf_vsi(vf);
3303 	if (!vsi) {
3304 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3305 		goto out;
3306 	}
3307 
3308 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3309 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3310 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3311 		goto out;
3312 	}
3313 
3314 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3315 	if (ethertype_setting &&
3316 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3317 				    ethertype_setting)) {
3318 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3319 		goto out;
3320 	}
3321 
3322 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3323 	if (ethertype_setting &&
3324 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3325 				    ethertype_setting)) {
3326 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3327 		goto out;
3328 	}
3329 
3330 out:
3331 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3332 				     v_ret, NULL, 0);
3333 }
3334 
3335 /**
3336  * ice_vc_dis_vlan_insertion_v2_msg
3337  * @vf: VF the message was received from
3338  * @msg: message received from the VF
3339  *
3340  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3341  */
3342 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3343 {
3344 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3345 	struct virtchnl_vlan_supported_caps *insertion_support;
3346 	struct virtchnl_vlan_setting *insertion_msg =
3347 		(struct virtchnl_vlan_setting *)msg;
3348 	u32 ethertype_setting;
3349 	struct ice_vsi *vsi;
3350 
3351 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3352 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3353 		goto out;
3354 	}
3355 
3356 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3357 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3358 		goto out;
3359 	}
3360 
3361 	vsi = ice_get_vf_vsi(vf);
3362 	if (!vsi) {
3363 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3364 		goto out;
3365 	}
3366 
3367 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3368 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3369 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3370 		goto out;
3371 	}
3372 
3373 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3374 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3375 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3376 		goto out;
3377 	}
3378 
3379 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3380 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3381 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3382 		goto out;
3383 	}
3384 
3385 out:
3386 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3387 				     v_ret, NULL, 0);
3388 }
3389 
3390 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3391 	.get_ver_msg = ice_vc_get_ver_msg,
3392 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3393 	.reset_vf = ice_vc_reset_vf_msg,
3394 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3395 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3396 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3397 	.ena_qs_msg = ice_vc_ena_qs_msg,
3398 	.dis_qs_msg = ice_vc_dis_qs_msg,
3399 	.request_qs_msg = ice_vc_request_qs_msg,
3400 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3401 	.config_rss_key = ice_vc_config_rss_key,
3402 	.config_rss_lut = ice_vc_config_rss_lut,
3403 	.get_stats_msg = ice_vc_get_stats_msg,
3404 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3405 	.add_vlan_msg = ice_vc_add_vlan_msg,
3406 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3407 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3408 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3409 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3410 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3411 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3412 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3413 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3414 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3415 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3416 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3417 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3418 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3419 };
3420 
3421 /**
3422  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3423  * @vf: the VF to switch ops
3424  */
3425 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3426 {
3427 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3428 }
3429 
3430 /**
3431  * ice_vc_repr_add_mac
3432  * @vf: pointer to VF
3433  * @msg: virtchannel message
3434  *
3435  * When port representors are created, we do not add MAC rule
3436  * to firmware, we store it so that PF could report same
3437  * MAC as VF.
3438  */
3439 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3440 {
3441 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3442 	struct virtchnl_ether_addr_list *al =
3443 	    (struct virtchnl_ether_addr_list *)msg;
3444 	struct ice_vsi *vsi;
3445 	struct ice_pf *pf;
3446 	int i;
3447 
3448 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3449 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3450 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3451 		goto handle_mac_exit;
3452 	}
3453 
3454 	pf = vf->pf;
3455 
3456 	vsi = ice_get_vf_vsi(vf);
3457 	if (!vsi) {
3458 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3459 		goto handle_mac_exit;
3460 	}
3461 
3462 	for (i = 0; i < al->num_elements; i++) {
3463 		u8 *mac_addr = al->list[i].addr;
3464 		int result;
3465 
3466 		if (!is_unicast_ether_addr(mac_addr) ||
3467 		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3468 			continue;
3469 
3470 		if (vf->pf_set_mac) {
3471 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3472 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3473 			goto handle_mac_exit;
3474 		}
3475 
3476 		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3477 		if (result) {
3478 			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3479 				mac_addr, vf->vf_id, result);
3480 			goto handle_mac_exit;
3481 		}
3482 
3483 		ice_vfhw_mac_add(vf, &al->list[i]);
3484 		vf->num_mac++;
3485 		break;
3486 	}
3487 
3488 handle_mac_exit:
3489 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3490 				     v_ret, NULL, 0);
3491 }
3492 
3493 /**
3494  * ice_vc_repr_del_mac - response with success for deleting MAC
3495  * @vf: pointer to VF
3496  * @msg: virtchannel message
3497  *
3498  * Respond with success to not break normal VF flow.
3499  * For legacy VF driver try to update cached MAC address.
3500  */
3501 static int
3502 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3503 {
3504 	struct virtchnl_ether_addr_list *al =
3505 		(struct virtchnl_ether_addr_list *)msg;
3506 
3507 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3508 
3509 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3510 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3511 }
3512 
3513 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3514 {
3515 	dev_dbg(ice_pf_to_dev(vf->pf),
3516 		"Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
3517 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
3518 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3519 }
3520 
3521 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3522 {
3523 	dev_dbg(ice_pf_to_dev(vf->pf),
3524 		"Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
3525 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
3526 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3527 }
3528 
3529 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
3530 {
3531 	dev_dbg(ice_pf_to_dev(vf->pf),
3532 		"Can't enable VLAN stripping in switchdev mode for VF %d\n",
3533 		vf->vf_id);
3534 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3535 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3536 				     NULL, 0);
3537 }
3538 
3539 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
3540 {
3541 	dev_dbg(ice_pf_to_dev(vf->pf),
3542 		"Can't disable VLAN stripping in switchdev mode for VF %d\n",
3543 		vf->vf_id);
3544 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3545 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3546 				     NULL, 0);
3547 }
3548 
3549 static int
3550 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3551 {
3552 	dev_dbg(ice_pf_to_dev(vf->pf),
3553 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3554 		vf->vf_id);
3555 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3556 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3557 				     NULL, 0);
3558 }
3559 
3560 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3561 	.get_ver_msg = ice_vc_get_ver_msg,
3562 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3563 	.reset_vf = ice_vc_reset_vf_msg,
3564 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3565 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3566 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3567 	.ena_qs_msg = ice_vc_ena_qs_msg,
3568 	.dis_qs_msg = ice_vc_dis_qs_msg,
3569 	.request_qs_msg = ice_vc_request_qs_msg,
3570 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3571 	.config_rss_key = ice_vc_config_rss_key,
3572 	.config_rss_lut = ice_vc_config_rss_lut,
3573 	.get_stats_msg = ice_vc_get_stats_msg,
3574 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3575 	.add_vlan_msg = ice_vc_repr_add_vlan,
3576 	.remove_vlan_msg = ice_vc_repr_del_vlan,
3577 	.ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
3578 	.dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
3579 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3580 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3581 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3582 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3583 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3584 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3585 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3586 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3587 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3588 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3589 };
3590 
3591 /**
3592  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3593  * @vf: the VF to switch ops
3594  */
3595 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3596 {
3597 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3598 }
3599 
3600 /**
3601  * ice_vc_process_vf_msg - Process request from VF
3602  * @pf: pointer to the PF structure
3603  * @event: pointer to the AQ event
3604  *
3605  * called from the common asq/arq handler to
3606  * process request from VF
3607  */
3608 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3609 {
3610 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3611 	s16 vf_id = le16_to_cpu(event->desc.retval);
3612 	const struct ice_virtchnl_ops *ops;
3613 	u16 msglen = event->msg_len;
3614 	u8 *msg = event->msg_buf;
3615 	struct ice_vf *vf = NULL;
3616 	struct device *dev;
3617 	int err = 0;
3618 
3619 	dev = ice_pf_to_dev(pf);
3620 
3621 	vf = ice_get_vf_by_id(pf, vf_id);
3622 	if (!vf) {
3623 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3624 			vf_id, v_opcode, msglen);
3625 		return;
3626 	}
3627 
3628 	/* Check if VF is disabled. */
3629 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3630 		err = -EPERM;
3631 		goto error_handler;
3632 	}
3633 
3634 	ops = vf->virtchnl_ops;
3635 
3636 	/* Perform basic checks on the msg */
3637 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3638 	if (err) {
3639 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3640 			err = -EPERM;
3641 		else
3642 			err = -EINVAL;
3643 	}
3644 
3645 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3646 		ice_vc_send_msg_to_vf(vf, v_opcode,
3647 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3648 				      0);
3649 		ice_put_vf(vf);
3650 		return;
3651 	}
3652 
3653 error_handler:
3654 	if (err) {
3655 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3656 				      NULL, 0);
3657 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3658 			vf_id, v_opcode, msglen, err);
3659 		ice_put_vf(vf);
3660 		return;
3661 	}
3662 
3663 	/* VF is being configured in another context that triggers a VFR, so no
3664 	 * need to process this message
3665 	 */
3666 	if (!mutex_trylock(&vf->cfg_lock)) {
3667 		dev_info(dev, "VF %u is being configured in another context that will trigger a VFR, so there is no need to handle this message\n",
3668 			 vf->vf_id);
3669 		ice_put_vf(vf);
3670 		return;
3671 	}
3672 
3673 	switch (v_opcode) {
3674 	case VIRTCHNL_OP_VERSION:
3675 		err = ops->get_ver_msg(vf, msg);
3676 		break;
3677 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3678 		err = ops->get_vf_res_msg(vf, msg);
3679 		if (ice_vf_init_vlan_stripping(vf))
3680 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3681 				vf->vf_id);
3682 		ice_vc_notify_vf_link_state(vf);
3683 		break;
3684 	case VIRTCHNL_OP_RESET_VF:
3685 		ops->reset_vf(vf);
3686 		break;
3687 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3688 		err = ops->add_mac_addr_msg(vf, msg);
3689 		break;
3690 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3691 		err = ops->del_mac_addr_msg(vf, msg);
3692 		break;
3693 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3694 		err = ops->cfg_qs_msg(vf, msg);
3695 		break;
3696 	case VIRTCHNL_OP_ENABLE_QUEUES:
3697 		err = ops->ena_qs_msg(vf, msg);
3698 		ice_vc_notify_vf_link_state(vf);
3699 		break;
3700 	case VIRTCHNL_OP_DISABLE_QUEUES:
3701 		err = ops->dis_qs_msg(vf, msg);
3702 		break;
3703 	case VIRTCHNL_OP_REQUEST_QUEUES:
3704 		err = ops->request_qs_msg(vf, msg);
3705 		break;
3706 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3707 		err = ops->cfg_irq_map_msg(vf, msg);
3708 		break;
3709 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3710 		err = ops->config_rss_key(vf, msg);
3711 		break;
3712 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3713 		err = ops->config_rss_lut(vf, msg);
3714 		break;
3715 	case VIRTCHNL_OP_GET_STATS:
3716 		err = ops->get_stats_msg(vf, msg);
3717 		break;
3718 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3719 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
3720 		break;
3721 	case VIRTCHNL_OP_ADD_VLAN:
3722 		err = ops->add_vlan_msg(vf, msg);
3723 		break;
3724 	case VIRTCHNL_OP_DEL_VLAN:
3725 		err = ops->remove_vlan_msg(vf, msg);
3726 		break;
3727 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3728 		err = ops->ena_vlan_stripping(vf);
3729 		break;
3730 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3731 		err = ops->dis_vlan_stripping(vf);
3732 		break;
3733 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
3734 		err = ops->add_fdir_fltr_msg(vf, msg);
3735 		break;
3736 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
3737 		err = ops->del_fdir_fltr_msg(vf, msg);
3738 		break;
3739 	case VIRTCHNL_OP_ADD_RSS_CFG:
3740 		err = ops->handle_rss_cfg_msg(vf, msg, true);
3741 		break;
3742 	case VIRTCHNL_OP_DEL_RSS_CFG:
3743 		err = ops->handle_rss_cfg_msg(vf, msg, false);
3744 		break;
3745 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3746 		err = ops->get_offload_vlan_v2_caps(vf);
3747 		break;
3748 	case VIRTCHNL_OP_ADD_VLAN_V2:
3749 		err = ops->add_vlan_v2_msg(vf, msg);
3750 		break;
3751 	case VIRTCHNL_OP_DEL_VLAN_V2:
3752 		err = ops->remove_vlan_v2_msg(vf, msg);
3753 		break;
3754 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3755 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3756 		break;
3757 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3758 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3759 		break;
3760 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3761 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
3762 		break;
3763 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
3764 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
3765 		break;
3766 	case VIRTCHNL_OP_UNKNOWN:
3767 	default:
3768 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3769 			vf_id);
3770 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
3771 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3772 					    NULL, 0);
3773 		break;
3774 	}
3775 	if (err) {
3776 		/* Helper function cares less about error return values here
3777 		 * as it is busy with pending work.
3778 		 */
3779 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3780 			 vf_id, v_opcode, err);
3781 	}
3782 
3783 	mutex_unlock(&vf->cfg_lock);
3784 	ice_put_vf(vf);
3785 }
3786