1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = sizeof(struct virtchnl_vf_resource); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 vfres->num_vsis = 1; 499 /* Tx and Rx queue are equal for VF */ 500 vfres->num_queue_pairs = vsi->num_txq; 501 vfres->max_vectors = vf->pf->vfs.num_msix_per; 502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 503 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 504 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 505 506 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 510 vf->hw_lan_addr.addr); 511 512 /* match guest capabilities */ 513 vf->driver_caps = vfres->vf_cap_flags; 514 515 ice_vc_set_caps_allowlist(vf); 516 ice_vc_set_working_allowlist(vf); 517 518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 519 520 err: 521 /* send the response back to the VF */ 522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 523 (u8 *)vfres, len); 524 525 kfree(vfres); 526 return ret; 527 } 528 529 /** 530 * ice_vc_reset_vf_msg 531 * @vf: pointer to the VF info 532 * 533 * called from the VF to reset itself, 534 * unlike other virtchnl messages, PF driver 535 * doesn't send the response back to the VF 536 */ 537 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 538 { 539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 540 ice_reset_vf(vf, 0); 541 } 542 543 /** 544 * ice_vc_isvalid_vsi_id 545 * @vf: pointer to the VF info 546 * @vsi_id: VF relative VSI ID 547 * 548 * check for the valid VSI ID 549 */ 550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 551 { 552 struct ice_pf *pf = vf->pf; 553 struct ice_vsi *vsi; 554 555 vsi = ice_find_vsi(pf, vsi_id); 556 557 return (vsi && (vsi->vf == vf)); 558 } 559 560 /** 561 * ice_vc_isvalid_q_id 562 * @vf: pointer to the VF info 563 * @vsi_id: VSI ID 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 569 { 570 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 571 /* allocated Tx and Rx queues should be always equal for VF VSI */ 572 return (vsi && (qid < vsi->alloc_txq)); 573 } 574 575 /** 576 * ice_vc_isvalid_ring_len 577 * @ring_len: length of ring 578 * 579 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 580 * or zero 581 */ 582 static bool ice_vc_isvalid_ring_len(u16 ring_len) 583 { 584 return ring_len == 0 || 585 (ring_len >= ICE_MIN_NUM_DESC && 586 ring_len <= ICE_MAX_NUM_DESC && 587 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 588 } 589 590 /** 591 * ice_vc_validate_pattern 592 * @vf: pointer to the VF info 593 * @proto: virtchnl protocol headers 594 * 595 * validate the pattern is supported or not. 596 * 597 * Return: true on success, false on error. 598 */ 599 bool 600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 601 { 602 bool is_ipv4 = false; 603 bool is_ipv6 = false; 604 bool is_udp = false; 605 u16 ptype = -1; 606 int i = 0; 607 608 while (i < proto->count && 609 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 610 switch (proto->proto_hdr[i].type) { 611 case VIRTCHNL_PROTO_HDR_ETH: 612 ptype = ICE_PTYPE_MAC_PAY; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV4: 615 ptype = ICE_PTYPE_IPV4_PAY; 616 is_ipv4 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_IPV6: 619 ptype = ICE_PTYPE_IPV6_PAY; 620 is_ipv6 = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_UDP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_UDP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_UDP_PAY; 627 is_udp = true; 628 break; 629 case VIRTCHNL_PROTO_HDR_TCP: 630 if (is_ipv4) 631 ptype = ICE_PTYPE_IPV4_TCP_PAY; 632 else if (is_ipv6) 633 ptype = ICE_PTYPE_IPV6_TCP_PAY; 634 break; 635 case VIRTCHNL_PROTO_HDR_SCTP: 636 if (is_ipv4) 637 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 638 else if (is_ipv6) 639 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 640 break; 641 case VIRTCHNL_PROTO_HDR_GTPU_IP: 642 case VIRTCHNL_PROTO_HDR_GTPU_EH: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_GTPU; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_GTPU; 647 goto out; 648 case VIRTCHNL_PROTO_HDR_L2TPV3: 649 if (is_ipv4) 650 ptype = ICE_MAC_IPV4_L2TPV3; 651 else if (is_ipv6) 652 ptype = ICE_MAC_IPV6_L2TPV3; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_ESP: 655 if (is_ipv4) 656 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 657 ICE_MAC_IPV4_ESP; 658 else if (is_ipv6) 659 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 660 ICE_MAC_IPV6_ESP; 661 goto out; 662 case VIRTCHNL_PROTO_HDR_AH: 663 if (is_ipv4) 664 ptype = ICE_MAC_IPV4_AH; 665 else if (is_ipv6) 666 ptype = ICE_MAC_IPV6_AH; 667 goto out; 668 case VIRTCHNL_PROTO_HDR_PFCP: 669 if (is_ipv4) 670 ptype = ICE_MAC_IPV4_PFCP_SESSION; 671 else if (is_ipv6) 672 ptype = ICE_MAC_IPV6_PFCP_SESSION; 673 goto out; 674 default: 675 break; 676 } 677 i++; 678 } 679 680 out: 681 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 682 } 683 684 /** 685 * ice_vc_parse_rss_cfg - parses hash fields and headers from 686 * a specific virtchnl RSS cfg 687 * @hw: pointer to the hardware 688 * @rss_cfg: pointer to the virtchnl RSS cfg 689 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 690 * to configure 691 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 692 * 693 * Return true if all the protocol header and hash fields in the RSS cfg could 694 * be parsed, else return false 695 * 696 * This function parses the virtchnl RSS cfg to be the intended 697 * hash fields and the intended header for RSS configuration 698 */ 699 static bool 700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 701 u32 *addl_hdrs, u64 *hash_flds) 702 { 703 const struct ice_vc_hash_field_match_type *hf_list; 704 const struct ice_vc_hdr_match_type *hdr_list; 705 int i, hf_list_len, hdr_list_len; 706 707 hf_list = ice_vc_hash_field_list; 708 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 709 hdr_list = ice_vc_hdr_list; 710 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 711 712 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 713 struct virtchnl_proto_hdr *proto_hdr = 714 &rss_cfg->proto_hdrs.proto_hdr[i]; 715 bool hdr_found = false; 716 int j; 717 718 /* Find matched ice headers according to virtchnl headers. */ 719 for (j = 0; j < hdr_list_len; j++) { 720 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 721 722 if (proto_hdr->type == hdr_map.vc_hdr) { 723 *addl_hdrs |= hdr_map.ice_hdr; 724 hdr_found = true; 725 } 726 } 727 728 if (!hdr_found) 729 return false; 730 731 /* Find matched ice hash fields according to 732 * virtchnl hash fields. 733 */ 734 for (j = 0; j < hf_list_len; j++) { 735 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 736 737 if (proto_hdr->type == hf_map.vc_hdr && 738 proto_hdr->field_selector == hf_map.vc_hash_field) { 739 *hash_flds |= hf_map.ice_hash_field; 740 break; 741 } 742 } 743 } 744 745 return true; 746 } 747 748 /** 749 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 750 * RSS offloads 751 * @caps: VF driver negotiated capabilities 752 * 753 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 754 * else return false 755 */ 756 static bool ice_vf_adv_rss_offload_ena(u32 caps) 757 { 758 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 759 } 760 761 /** 762 * ice_vc_handle_rss_cfg 763 * @vf: pointer to the VF info 764 * @msg: pointer to the message buffer 765 * @add: add a RSS config if true, otherwise delete a RSS config 766 * 767 * This function adds/deletes a RSS config 768 */ 769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 770 { 771 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 772 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 773 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 774 struct device *dev = ice_pf_to_dev(vf->pf); 775 struct ice_hw *hw = &vf->pf->hw; 776 struct ice_vsi *vsi; 777 778 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 779 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 780 vf->vf_id); 781 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 782 goto error_param; 783 } 784 785 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 789 goto error_param; 790 } 791 792 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 793 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 794 goto error_param; 795 } 796 797 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 798 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 799 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 800 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 801 vf->vf_id); 802 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 803 goto error_param; 804 } 805 806 vsi = ice_get_vf_vsi(vf); 807 if (!vsi) { 808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 809 goto error_param; 810 } 811 812 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 814 goto error_param; 815 } 816 817 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 818 struct ice_vsi_ctx *ctx; 819 u8 lut_type, hash_type; 820 int status; 821 822 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 823 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 824 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 825 826 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 827 if (!ctx) { 828 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 829 goto error_param; 830 } 831 832 ctx->info.q_opt_rss = ((lut_type << 833 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 834 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 835 (hash_type & 836 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 837 838 /* Preserve existing queueing option setting */ 839 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 840 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 841 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 842 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 843 844 ctx->info.valid_sections = 845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 846 847 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 848 if (status) { 849 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 850 status, ice_aq_str(hw->adminq.sq_last_status)); 851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 852 } else { 853 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 854 } 855 856 kfree(ctx); 857 } else { 858 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 859 u64 hash_flds = ICE_HASH_INVALID; 860 861 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 862 &hash_flds)) { 863 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 864 goto error_param; 865 } 866 867 if (add) { 868 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 869 addl_hdrs)) { 870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 871 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 872 vsi->vsi_num, v_ret); 873 } 874 } else { 875 int status; 876 877 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 878 addl_hdrs); 879 /* We just ignore -ENOENT, because if two configurations 880 * share the same profile remove one of them actually 881 * removes both, since the profile is deleted. 882 */ 883 if (status && status != -ENOENT) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 886 vf->vf_id, status); 887 } 888 } 889 } 890 891 error_param: 892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 893 } 894 895 /** 896 * ice_vc_config_rss_key 897 * @vf: pointer to the VF info 898 * @msg: pointer to the msg buffer 899 * 900 * Configure the VF's RSS key 901 */ 902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 903 { 904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 905 struct virtchnl_rss_key *vrk = 906 (struct virtchnl_rss_key *)msg; 907 struct ice_vsi *vsi; 908 909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 910 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 911 goto error_param; 912 } 913 914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 vsi = ice_get_vf_vsi(vf); 930 if (!vsi) { 931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 932 goto error_param; 933 } 934 935 if (ice_set_rss_key(vsi, vrk->key)) 936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 937 error_param: 938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 939 NULL, 0); 940 } 941 942 /** 943 * ice_vc_config_rss_lut 944 * @vf: pointer to the VF info 945 * @msg: pointer to the msg buffer 946 * 947 * Configure the VF's RSS LUT 948 */ 949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 950 { 951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 953 struct ice_vsi *vsi; 954 955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 957 goto error_param; 958 } 959 960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 vsi = ice_get_vf_vsi(vf); 976 if (!vsi) { 977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 978 goto error_param; 979 } 980 981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 983 error_param: 984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 985 NULL, 0); 986 } 987 988 /** 989 * ice_vc_cfg_promiscuous_mode_msg 990 * @vf: pointer to the VF info 991 * @msg: pointer to the msg buffer 992 * 993 * called from the VF to configure VF VSIs promiscuous mode 994 */ 995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 996 { 997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 998 bool rm_promisc, alluni = false, allmulti = false; 999 struct virtchnl_promisc_info *info = 1000 (struct virtchnl_promisc_info *)msg; 1001 struct ice_vsi_vlan_ops *vlan_ops; 1002 int mcast_err = 0, ucast_err = 0; 1003 struct ice_pf *pf = vf->pf; 1004 struct ice_vsi *vsi; 1005 u8 mcast_m, ucast_m; 1006 struct device *dev; 1007 int ret = 0; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 vsi = ice_get_vf_vsi(vf); 1020 if (!vsi) { 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 dev = ice_pf_to_dev(pf); 1026 if (!ice_is_vf_trusted(vf)) { 1027 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1028 vf->vf_id); 1029 /* Leave v_ret alone, lie to the VF on purpose. */ 1030 goto error_param; 1031 } 1032 1033 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1034 alluni = true; 1035 1036 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1037 allmulti = true; 1038 1039 rm_promisc = !allmulti && !alluni; 1040 1041 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1042 if (rm_promisc) 1043 ret = vlan_ops->ena_rx_filtering(vsi); 1044 else 1045 ret = vlan_ops->dis_rx_filtering(vsi); 1046 if (ret) { 1047 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1049 goto error_param; 1050 } 1051 1052 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1053 1054 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1055 if (alluni) { 1056 /* in this case we're turning on promiscuous mode */ 1057 ret = ice_set_dflt_vsi(vsi); 1058 } else { 1059 /* in this case we're turning off promiscuous mode */ 1060 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1061 ret = ice_clear_dflt_vsi(vsi); 1062 } 1063 1064 /* in this case we're turning on/off only 1065 * allmulticast 1066 */ 1067 if (allmulti) 1068 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1069 else 1070 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1071 1072 if (ret) { 1073 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1074 vf->vf_id, ret); 1075 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1076 goto error_param; 1077 } 1078 } else { 1079 if (alluni) 1080 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1081 else 1082 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1083 1084 if (allmulti) 1085 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1086 else 1087 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1088 1089 if (ucast_err || mcast_err) 1090 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1091 } 1092 1093 if (!mcast_err) { 1094 if (allmulti && 1095 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1096 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1097 vf->vf_id); 1098 else if (!allmulti && 1099 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1100 vf->vf_states)) 1101 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1102 vf->vf_id); 1103 } else { 1104 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1105 vf->vf_id, mcast_err); 1106 } 1107 1108 if (!ucast_err) { 1109 if (alluni && 1110 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1111 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1112 vf->vf_id); 1113 else if (!alluni && 1114 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1115 vf->vf_states)) 1116 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1117 vf->vf_id); 1118 } else { 1119 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1120 vf->vf_id, ucast_err); 1121 } 1122 1123 error_param: 1124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1125 v_ret, NULL, 0); 1126 } 1127 1128 /** 1129 * ice_vc_get_stats_msg 1130 * @vf: pointer to the VF info 1131 * @msg: pointer to the msg buffer 1132 * 1133 * called from the VF to get VSI stats 1134 */ 1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1136 { 1137 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1138 struct virtchnl_queue_select *vqs = 1139 (struct virtchnl_queue_select *)msg; 1140 struct ice_eth_stats stats = { 0 }; 1141 struct ice_vsi *vsi; 1142 1143 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1144 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1145 goto error_param; 1146 } 1147 1148 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1150 goto error_param; 1151 } 1152 1153 vsi = ice_get_vf_vsi(vf); 1154 if (!vsi) { 1155 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1156 goto error_param; 1157 } 1158 1159 ice_update_eth_stats(vsi); 1160 1161 stats = vsi->eth_stats; 1162 1163 error_param: 1164 /* send the response to the VF */ 1165 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1166 (u8 *)&stats, sizeof(stats)); 1167 } 1168 1169 /** 1170 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1171 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1172 * 1173 * Return true on successful validation, else false 1174 */ 1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1176 { 1177 if ((!vqs->rx_queues && !vqs->tx_queues) || 1178 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1179 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /** 1186 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1187 * @vsi: VSI of the VF to configure 1188 * @q_idx: VF queue index used to determine the queue in the PF's space 1189 */ 1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1191 { 1192 struct ice_hw *hw = &vsi->back->hw; 1193 u32 pfq = vsi->txq_map[q_idx]; 1194 u32 reg; 1195 1196 reg = rd32(hw, QINT_TQCTL(pfq)); 1197 1198 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1199 * this is most likely a poll mode VF driver, so don't enable an 1200 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1201 */ 1202 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1203 return; 1204 1205 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1206 } 1207 1208 /** 1209 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1210 * @vsi: VSI of the VF to configure 1211 * @q_idx: VF queue index used to determine the queue in the PF's space 1212 */ 1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1214 { 1215 struct ice_hw *hw = &vsi->back->hw; 1216 u32 pfq = vsi->rxq_map[q_idx]; 1217 u32 reg; 1218 1219 reg = rd32(hw, QINT_RQCTL(pfq)); 1220 1221 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1222 * this is most likely a poll mode VF driver, so don't enable an 1223 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1224 */ 1225 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1226 return; 1227 1228 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1229 } 1230 1231 /** 1232 * ice_vc_ena_qs_msg 1233 * @vf: pointer to the VF info 1234 * @msg: pointer to the msg buffer 1235 * 1236 * called from the VF to enable all or specific queue(s) 1237 */ 1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1239 { 1240 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1241 struct virtchnl_queue_select *vqs = 1242 (struct virtchnl_queue_select *)msg; 1243 struct ice_vsi *vsi; 1244 unsigned long q_map; 1245 u16 vf_q_id; 1246 1247 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1254 goto error_param; 1255 } 1256 1257 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 vsi = ice_get_vf_vsi(vf); 1263 if (!vsi) { 1264 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1265 goto error_param; 1266 } 1267 1268 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1269 * Tx queue group list was configured and the context bits were 1270 * programmed using ice_vsi_cfg_txqs 1271 */ 1272 q_map = vqs->rx_queues; 1273 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1274 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1275 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1276 goto error_param; 1277 } 1278 1279 /* Skip queue if enabled */ 1280 if (test_bit(vf_q_id, vf->rxq_ena)) 1281 continue; 1282 1283 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1284 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1285 vf_q_id, vsi->vsi_num); 1286 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1287 goto error_param; 1288 } 1289 1290 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1291 set_bit(vf_q_id, vf->rxq_ena); 1292 } 1293 1294 q_map = vqs->tx_queues; 1295 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1296 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1298 goto error_param; 1299 } 1300 1301 /* Skip queue if enabled */ 1302 if (test_bit(vf_q_id, vf->txq_ena)) 1303 continue; 1304 1305 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1306 set_bit(vf_q_id, vf->txq_ena); 1307 } 1308 1309 /* Set flag to indicate that queues are enabled */ 1310 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1311 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1312 1313 error_param: 1314 /* send the response to the VF */ 1315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1316 NULL, 0); 1317 } 1318 1319 /** 1320 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1321 * @vf: VF to disable queue for 1322 * @vsi: VSI for the VF 1323 * @q_id: VF relative (0-based) queue ID 1324 * 1325 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1326 * disabled then clear q_id bit in the enabled queues bitmap and return 1327 * success. Otherwise return error. 1328 */ 1329 static int 1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1331 { 1332 struct ice_txq_meta txq_meta = { 0 }; 1333 struct ice_tx_ring *ring; 1334 int err; 1335 1336 if (!test_bit(q_id, vf->txq_ena)) 1337 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1338 q_id, vsi->vsi_num); 1339 1340 ring = vsi->tx_rings[q_id]; 1341 if (!ring) 1342 return -EINVAL; 1343 1344 ice_fill_txq_meta(vsi, ring, &txq_meta); 1345 1346 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1347 if (err) { 1348 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1349 q_id, vsi->vsi_num); 1350 return err; 1351 } 1352 1353 /* Clear enabled queues flag */ 1354 clear_bit(q_id, vf->txq_ena); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * ice_vc_dis_qs_msg 1361 * @vf: pointer to the VF info 1362 * @msg: pointer to the msg buffer 1363 * 1364 * called from the VF to disable all or specific queue(s) 1365 */ 1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1367 { 1368 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1369 struct virtchnl_queue_select *vqs = 1370 (struct virtchnl_queue_select *)msg; 1371 struct ice_vsi *vsi; 1372 unsigned long q_map; 1373 u16 vf_q_id; 1374 1375 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1376 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1383 goto error_param; 1384 } 1385 1386 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1388 goto error_param; 1389 } 1390 1391 vsi = ice_get_vf_vsi(vf); 1392 if (!vsi) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 if (vqs->tx_queues) { 1398 q_map = vqs->tx_queues; 1399 1400 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1401 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1403 goto error_param; 1404 } 1405 1406 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 } 1411 } 1412 1413 q_map = vqs->rx_queues; 1414 /* speed up Rx queue disable by batching them if possible */ 1415 if (q_map && 1416 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1417 if (ice_vsi_stop_all_rx_rings(vsi)) { 1418 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1419 vsi->vsi_num); 1420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1421 goto error_param; 1422 } 1423 1424 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1425 } else if (q_map) { 1426 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1427 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1429 goto error_param; 1430 } 1431 1432 /* Skip queue if not enabled */ 1433 if (!test_bit(vf_q_id, vf->rxq_ena)) 1434 continue; 1435 1436 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1437 true)) { 1438 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1439 vf_q_id, vsi->vsi_num); 1440 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1441 goto error_param; 1442 } 1443 1444 /* Clear enabled queues flag */ 1445 clear_bit(vf_q_id, vf->rxq_ena); 1446 } 1447 } 1448 1449 /* Clear enabled queues flag */ 1450 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1451 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1452 1453 error_param: 1454 /* send the response to the VF */ 1455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1456 NULL, 0); 1457 } 1458 1459 /** 1460 * ice_cfg_interrupt 1461 * @vf: pointer to the VF info 1462 * @vsi: the VSI being configured 1463 * @vector_id: vector ID 1464 * @map: vector map for mapping vectors to queues 1465 * @q_vector: structure for interrupt vector 1466 * configure the IRQ to queue map 1467 */ 1468 static int 1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1470 struct virtchnl_vector_map *map, 1471 struct ice_q_vector *q_vector) 1472 { 1473 u16 vsi_q_id, vsi_q_id_idx; 1474 unsigned long qmap; 1475 1476 q_vector->num_ring_rx = 0; 1477 q_vector->num_ring_tx = 0; 1478 1479 qmap = map->rxq_map; 1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1481 vsi_q_id = vsi_q_id_idx; 1482 1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1484 return VIRTCHNL_STATUS_ERR_PARAM; 1485 1486 q_vector->num_ring_rx++; 1487 q_vector->rx.itr_idx = map->rxitr_idx; 1488 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1489 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1490 q_vector->rx.itr_idx); 1491 } 1492 1493 qmap = map->txq_map; 1494 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1495 vsi_q_id = vsi_q_id_idx; 1496 1497 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1498 return VIRTCHNL_STATUS_ERR_PARAM; 1499 1500 q_vector->num_ring_tx++; 1501 q_vector->tx.itr_idx = map->txitr_idx; 1502 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1503 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1504 q_vector->tx.itr_idx); 1505 } 1506 1507 return VIRTCHNL_STATUS_SUCCESS; 1508 } 1509 1510 /** 1511 * ice_vc_cfg_irq_map_msg 1512 * @vf: pointer to the VF info 1513 * @msg: pointer to the msg buffer 1514 * 1515 * called from the VF to configure the IRQ to queue map 1516 */ 1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1518 { 1519 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1520 u16 num_q_vectors_mapped, vsi_id, vector_id; 1521 struct virtchnl_irq_map_info *irqmap_info; 1522 struct virtchnl_vector_map *map; 1523 struct ice_pf *pf = vf->pf; 1524 struct ice_vsi *vsi; 1525 int i; 1526 1527 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1528 num_q_vectors_mapped = irqmap_info->num_vectors; 1529 1530 /* Check to make sure number of VF vectors mapped is not greater than 1531 * number of VF vectors originally allocated, and check that 1532 * there is actually at least a single VF queue vector mapped 1533 */ 1534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1535 pf->vfs.num_msix_per < num_q_vectors_mapped || 1536 !num_q_vectors_mapped) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 vsi = ice_get_vf_vsi(vf); 1542 if (!vsi) { 1543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1544 goto error_param; 1545 } 1546 1547 for (i = 0; i < num_q_vectors_mapped; i++) { 1548 struct ice_q_vector *q_vector; 1549 1550 map = &irqmap_info->vecmap[i]; 1551 1552 vector_id = map->vector_id; 1553 vsi_id = map->vsi_id; 1554 /* vector_id is always 0-based for each VF, and can never be 1555 * larger than or equal to the max allowed interrupts per VF 1556 */ 1557 if (!(vector_id < pf->vfs.num_msix_per) || 1558 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1559 (!vector_id && (map->rxq_map || map->txq_map))) { 1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1561 goto error_param; 1562 } 1563 1564 /* No need to map VF miscellaneous or rogue vector */ 1565 if (!vector_id) 1566 continue; 1567 1568 /* Subtract non queue vector from vector_id passed by VF 1569 * to get actual number of VSI queue vector array index 1570 */ 1571 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1572 if (!q_vector) { 1573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1574 goto error_param; 1575 } 1576 1577 /* lookout for the invalid queue index */ 1578 v_ret = (enum virtchnl_status_code) 1579 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1580 if (v_ret) 1581 goto error_param; 1582 } 1583 1584 error_param: 1585 /* send the response to the VF */ 1586 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1587 NULL, 0); 1588 } 1589 1590 /** 1591 * ice_vc_cfg_qs_msg 1592 * @vf: pointer to the VF info 1593 * @msg: pointer to the msg buffer 1594 * 1595 * called from the VF to configure the Rx/Tx queues 1596 */ 1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1598 { 1599 struct virtchnl_vsi_queue_config_info *qci = 1600 (struct virtchnl_vsi_queue_config_info *)msg; 1601 struct virtchnl_queue_pair_info *qpi; 1602 struct ice_pf *pf = vf->pf; 1603 struct ice_vsi *vsi; 1604 int i = -1, q_idx; 1605 1606 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1607 goto error_param; 1608 1609 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1610 goto error_param; 1611 1612 vsi = ice_get_vf_vsi(vf); 1613 if (!vsi) 1614 goto error_param; 1615 1616 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1617 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1618 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1619 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1620 goto error_param; 1621 } 1622 1623 for (i = 0; i < qci->num_queue_pairs; i++) { 1624 struct ice_hw *hw; 1625 u32 rxdid; 1626 u16 pf_q; 1627 qpi = &qci->qpair[i]; 1628 if (qpi->txq.vsi_id != qci->vsi_id || 1629 qpi->rxq.vsi_id != qci->vsi_id || 1630 qpi->rxq.queue_id != qpi->txq.queue_id || 1631 qpi->txq.headwb_enabled || 1632 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1633 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1634 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1635 goto error_param; 1636 } 1637 1638 q_idx = qpi->rxq.queue_id; 1639 1640 /* make sure selected "q_idx" is in valid range of queues 1641 * for selected "vsi" 1642 */ 1643 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1644 goto error_param; 1645 } 1646 1647 /* copy Tx queue info from VF into VSI */ 1648 if (qpi->txq.ring_len > 0) { 1649 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1650 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1651 1652 /* Disable any existing queue first */ 1653 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1654 goto error_param; 1655 1656 /* Configure a queue with the requested settings */ 1657 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1658 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1659 vf->vf_id, i); 1660 goto error_param; 1661 } 1662 } 1663 1664 /* copy Rx queue info from VF into VSI */ 1665 if (qpi->rxq.ring_len > 0) { 1666 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1667 1668 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1669 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1670 1671 if (qpi->rxq.databuffer_size != 0 && 1672 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1673 qpi->rxq.databuffer_size < 1024)) 1674 goto error_param; 1675 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1676 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1677 if (qpi->rxq.max_pkt_size > max_frame_size || 1678 qpi->rxq.max_pkt_size < 64) 1679 goto error_param; 1680 1681 vsi->max_frame = qpi->rxq.max_pkt_size; 1682 /* add space for the port VLAN since the VF driver is 1683 * not expected to account for it in the MTU 1684 * calculation 1685 */ 1686 if (ice_vf_is_port_vlan_ena(vf)) 1687 vsi->max_frame += VLAN_HLEN; 1688 1689 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1690 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1691 vf->vf_id, i); 1692 goto error_param; 1693 } 1694 } 1695 1696 /* VF Rx queue RXDID configuration */ 1697 pf_q = vsi->rxq_map[qpi->rxq.queue_id]; 1698 rxdid = qpi->rxq.rxdid; 1699 hw = &vsi->back->hw; 1700 1701 /* If Rx flex desc is supported, select RXDID for Rx queues. 1702 * Otherwise, use legacy 32byte descriptor format. 1703 * Legacy 16byte descriptor is not supported. If this RXDID 1704 * is selected, return error. 1705 */ 1706 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1707 if (!(BIT(rxdid) & pf->supported_rxdids)) 1708 goto error_param; 1709 } else { 1710 rxdid = ICE_RXDID_LEGACY_1; 1711 } 1712 1713 ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x03, false); 1714 } 1715 1716 /* send the response to the VF */ 1717 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1718 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1719 error_param: 1720 /* disable whatever we can */ 1721 for (; i >= 0; i--) { 1722 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1723 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1724 vf->vf_id, i); 1725 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1726 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1727 vf->vf_id, i); 1728 } 1729 1730 /* send the response to the VF */ 1731 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1732 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1733 } 1734 1735 /** 1736 * ice_can_vf_change_mac 1737 * @vf: pointer to the VF info 1738 * 1739 * Return true if the VF is allowed to change its MAC filters, false otherwise 1740 */ 1741 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1742 { 1743 /* If the VF MAC address has been set administratively (via the 1744 * ndo_set_vf_mac command), then deny permission to the VF to 1745 * add/delete unicast MAC addresses, unless the VF is trusted 1746 */ 1747 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1748 return false; 1749 1750 return true; 1751 } 1752 1753 /** 1754 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1755 * @vc_ether_addr: used to extract the type 1756 */ 1757 static u8 1758 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1759 { 1760 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1761 } 1762 1763 /** 1764 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1765 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1766 */ 1767 static bool 1768 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1769 { 1770 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1771 1772 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1773 } 1774 1775 /** 1776 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1777 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1778 * 1779 * This function should only be called when the MAC address in 1780 * virtchnl_ether_addr is a valid unicast MAC 1781 */ 1782 static bool 1783 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1784 { 1785 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1786 1787 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1788 } 1789 1790 /** 1791 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1792 * @vf: VF to update 1793 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1794 */ 1795 static void 1796 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1797 { 1798 u8 *mac_addr = vc_ether_addr->addr; 1799 1800 if (!is_valid_ether_addr(mac_addr)) 1801 return; 1802 1803 /* only allow legacy VF drivers to set the device and hardware MAC if it 1804 * is zero and allow new VF drivers to set the hardware MAC if the type 1805 * was correctly specified over VIRTCHNL 1806 */ 1807 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1808 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1809 ice_is_vc_addr_primary(vc_ether_addr)) { 1810 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1811 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1812 } 1813 1814 /* hardware and device MACs are already set, but its possible that the 1815 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1816 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1817 * away for the legacy VF driver case as it will be updated in the 1818 * delete flow for this case 1819 */ 1820 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1821 ether_addr_copy(vf->legacy_last_added_umac.addr, 1822 mac_addr); 1823 vf->legacy_last_added_umac.time_modified = jiffies; 1824 } 1825 } 1826 1827 /** 1828 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1829 * @vf: pointer to the VF info 1830 * @vsi: pointer to the VF's VSI 1831 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1832 */ 1833 static int 1834 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1835 struct virtchnl_ether_addr *vc_ether_addr) 1836 { 1837 struct device *dev = ice_pf_to_dev(vf->pf); 1838 u8 *mac_addr = vc_ether_addr->addr; 1839 int ret; 1840 1841 /* device MAC already added */ 1842 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1843 return 0; 1844 1845 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1846 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1847 return -EPERM; 1848 } 1849 1850 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1851 if (ret == -EEXIST) { 1852 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1853 vf->vf_id); 1854 /* don't return since we might need to update 1855 * the primary MAC in ice_vfhw_mac_add() below 1856 */ 1857 } else if (ret) { 1858 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1859 mac_addr, vf->vf_id, ret); 1860 return ret; 1861 } else { 1862 vf->num_mac++; 1863 } 1864 1865 ice_vfhw_mac_add(vf, vc_ether_addr); 1866 1867 return ret; 1868 } 1869 1870 /** 1871 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1872 * @last_added_umac: structure used to check expiration 1873 */ 1874 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1875 { 1876 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1877 return time_is_before_jiffies(last_added_umac->time_modified + 1878 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1879 } 1880 1881 /** 1882 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1883 * @vf: VF to update 1884 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1885 * 1886 * only update cached hardware MAC for legacy VF drivers on delete 1887 * because we cannot guarantee order/type of MAC from the VF driver 1888 */ 1889 static void 1890 ice_update_legacy_cached_mac(struct ice_vf *vf, 1891 struct virtchnl_ether_addr *vc_ether_addr) 1892 { 1893 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1894 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1895 return; 1896 1897 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1898 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1899 } 1900 1901 /** 1902 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1903 * @vf: VF to update 1904 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1905 */ 1906 static void 1907 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1908 { 1909 u8 *mac_addr = vc_ether_addr->addr; 1910 1911 if (!is_valid_ether_addr(mac_addr) || 1912 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1913 return; 1914 1915 /* allow the device MAC to be repopulated in the add flow and don't 1916 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1917 * to be persistent on VM reboot and across driver unload/load, which 1918 * won't work if we clear the hardware MAC here 1919 */ 1920 eth_zero_addr(vf->dev_lan_addr.addr); 1921 1922 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1923 } 1924 1925 /** 1926 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1927 * @vf: pointer to the VF info 1928 * @vsi: pointer to the VF's VSI 1929 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1930 */ 1931 static int 1932 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1933 struct virtchnl_ether_addr *vc_ether_addr) 1934 { 1935 struct device *dev = ice_pf_to_dev(vf->pf); 1936 u8 *mac_addr = vc_ether_addr->addr; 1937 int status; 1938 1939 if (!ice_can_vf_change_mac(vf) && 1940 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1941 return 0; 1942 1943 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1944 if (status == -ENOENT) { 1945 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1946 vf->vf_id); 1947 return -ENOENT; 1948 } else if (status) { 1949 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1950 mac_addr, vf->vf_id, status); 1951 return -EIO; 1952 } 1953 1954 ice_vfhw_mac_del(vf, vc_ether_addr); 1955 1956 vf->num_mac--; 1957 1958 return 0; 1959 } 1960 1961 /** 1962 * ice_vc_handle_mac_addr_msg 1963 * @vf: pointer to the VF info 1964 * @msg: pointer to the msg buffer 1965 * @set: true if MAC filters are being set, false otherwise 1966 * 1967 * add guest MAC address filter 1968 */ 1969 static int 1970 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1971 { 1972 int (*ice_vc_cfg_mac) 1973 (struct ice_vf *vf, struct ice_vsi *vsi, 1974 struct virtchnl_ether_addr *virtchnl_ether_addr); 1975 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1976 struct virtchnl_ether_addr_list *al = 1977 (struct virtchnl_ether_addr_list *)msg; 1978 struct ice_pf *pf = vf->pf; 1979 enum virtchnl_ops vc_op; 1980 struct ice_vsi *vsi; 1981 int i; 1982 1983 if (set) { 1984 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1985 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1986 } else { 1987 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1988 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1989 } 1990 1991 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1992 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1993 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1994 goto handle_mac_exit; 1995 } 1996 1997 /* If this VF is not privileged, then we can't add more than a 1998 * limited number of addresses. Check to make sure that the 1999 * additions do not push us over the limit. 2000 */ 2001 if (set && !ice_is_vf_trusted(vf) && 2002 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2003 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2004 vf->vf_id); 2005 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2006 goto handle_mac_exit; 2007 } 2008 2009 vsi = ice_get_vf_vsi(vf); 2010 if (!vsi) { 2011 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2012 goto handle_mac_exit; 2013 } 2014 2015 for (i = 0; i < al->num_elements; i++) { 2016 u8 *mac_addr = al->list[i].addr; 2017 int result; 2018 2019 if (is_broadcast_ether_addr(mac_addr) || 2020 is_zero_ether_addr(mac_addr)) 2021 continue; 2022 2023 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2024 if (result == -EEXIST || result == -ENOENT) { 2025 continue; 2026 } else if (result) { 2027 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2028 goto handle_mac_exit; 2029 } 2030 } 2031 2032 handle_mac_exit: 2033 /* send the response to the VF */ 2034 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2035 } 2036 2037 /** 2038 * ice_vc_add_mac_addr_msg 2039 * @vf: pointer to the VF info 2040 * @msg: pointer to the msg buffer 2041 * 2042 * add guest MAC address filter 2043 */ 2044 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2045 { 2046 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2047 } 2048 2049 /** 2050 * ice_vc_del_mac_addr_msg 2051 * @vf: pointer to the VF info 2052 * @msg: pointer to the msg buffer 2053 * 2054 * remove guest MAC address filter 2055 */ 2056 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2057 { 2058 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2059 } 2060 2061 /** 2062 * ice_vc_request_qs_msg 2063 * @vf: pointer to the VF info 2064 * @msg: pointer to the msg buffer 2065 * 2066 * VFs get a default number of queues but can use this message to request a 2067 * different number. If the request is successful, PF will reset the VF and 2068 * return 0. If unsuccessful, PF will send message informing VF of number of 2069 * available queue pairs via virtchnl message response to VF. 2070 */ 2071 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2072 { 2073 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2074 struct virtchnl_vf_res_request *vfres = 2075 (struct virtchnl_vf_res_request *)msg; 2076 u16 req_queues = vfres->num_queue_pairs; 2077 struct ice_pf *pf = vf->pf; 2078 u16 max_allowed_vf_queues; 2079 u16 tx_rx_queue_left; 2080 struct device *dev; 2081 u16 cur_queues; 2082 2083 dev = ice_pf_to_dev(pf); 2084 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2085 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2086 goto error_param; 2087 } 2088 2089 cur_queues = vf->num_vf_qs; 2090 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2091 ice_get_avail_rxq_count(pf)); 2092 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2093 if (!req_queues) { 2094 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2095 vf->vf_id); 2096 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2097 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2098 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2099 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2100 } else if (req_queues > cur_queues && 2101 req_queues - cur_queues > tx_rx_queue_left) { 2102 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2103 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2104 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2105 ICE_MAX_RSS_QS_PER_VF); 2106 } else { 2107 /* request is successful, then reset VF */ 2108 vf->num_req_qs = req_queues; 2109 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2110 dev_info(dev, "VF %d granted request of %u queues.\n", 2111 vf->vf_id, req_queues); 2112 return 0; 2113 } 2114 2115 error_param: 2116 /* send the response to the VF */ 2117 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2118 v_ret, (u8 *)vfres, sizeof(*vfres)); 2119 } 2120 2121 /** 2122 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2123 * @caps: VF driver negotiated capabilities 2124 * 2125 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2126 */ 2127 static bool ice_vf_vlan_offload_ena(u32 caps) 2128 { 2129 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2130 } 2131 2132 /** 2133 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2134 * @vf: VF used to determine if VLAN promiscuous config is allowed 2135 */ 2136 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2137 { 2138 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2139 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2140 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2141 return true; 2142 2143 return false; 2144 } 2145 2146 /** 2147 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2148 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2149 * @vlan: VLAN used to enable VLAN promiscuous 2150 * 2151 * This function should only be called if VLAN promiscuous mode is allowed, 2152 * which can be determined via ice_is_vlan_promisc_allowed(). 2153 */ 2154 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2155 { 2156 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2157 int status; 2158 2159 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2160 vlan->vid); 2161 if (status && status != -EEXIST) 2162 return status; 2163 2164 return 0; 2165 } 2166 2167 /** 2168 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2169 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2170 * @vlan: VLAN used to disable VLAN promiscuous 2171 * 2172 * This function should only be called if VLAN promiscuous mode is allowed, 2173 * which can be determined via ice_is_vlan_promisc_allowed(). 2174 */ 2175 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2176 { 2177 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2178 int status; 2179 2180 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2181 vlan->vid); 2182 if (status && status != -ENOENT) 2183 return status; 2184 2185 return 0; 2186 } 2187 2188 /** 2189 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2190 * @vf: VF to check against 2191 * @vsi: VF's VSI 2192 * 2193 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2194 * wants to, so return false. 2195 * 2196 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2197 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2198 */ 2199 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2200 { 2201 if (ice_is_vf_trusted(vf)) 2202 return false; 2203 2204 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2205 return ((ice_vsi_num_non_zero_vlans(vsi) + 2206 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2207 } 2208 2209 /** 2210 * ice_vc_process_vlan_msg 2211 * @vf: pointer to the VF info 2212 * @msg: pointer to the msg buffer 2213 * @add_v: Add VLAN if true, otherwise delete VLAN 2214 * 2215 * Process virtchnl op to add or remove programmed guest VLAN ID 2216 */ 2217 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2218 { 2219 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2220 struct virtchnl_vlan_filter_list *vfl = 2221 (struct virtchnl_vlan_filter_list *)msg; 2222 struct ice_pf *pf = vf->pf; 2223 bool vlan_promisc = false; 2224 struct ice_vsi *vsi; 2225 struct device *dev; 2226 int status = 0; 2227 int i; 2228 2229 dev = ice_pf_to_dev(pf); 2230 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2232 goto error_param; 2233 } 2234 2235 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2236 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2237 goto error_param; 2238 } 2239 2240 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2241 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2242 goto error_param; 2243 } 2244 2245 for (i = 0; i < vfl->num_elements; i++) { 2246 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2248 dev_err(dev, "invalid VF VLAN id %d\n", 2249 vfl->vlan_id[i]); 2250 goto error_param; 2251 } 2252 } 2253 2254 vsi = ice_get_vf_vsi(vf); 2255 if (!vsi) { 2256 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2257 goto error_param; 2258 } 2259 2260 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2261 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2262 vf->vf_id); 2263 /* There is no need to let VF know about being not trusted, 2264 * so we can just return success message here 2265 */ 2266 goto error_param; 2267 } 2268 2269 /* in DVM a VF can add/delete inner VLAN filters when 2270 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2271 */ 2272 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2273 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2274 goto error_param; 2275 } 2276 2277 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2278 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2279 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2280 */ 2281 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2282 !ice_is_dvm_ena(&pf->hw) && 2283 !ice_vf_is_port_vlan_ena(vf); 2284 2285 if (add_v) { 2286 for (i = 0; i < vfl->num_elements; i++) { 2287 u16 vid = vfl->vlan_id[i]; 2288 struct ice_vlan vlan; 2289 2290 if (ice_vf_has_max_vlans(vf, vsi)) { 2291 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2292 vf->vf_id); 2293 /* There is no need to let VF know about being 2294 * not trusted, so we can just return success 2295 * message here as well. 2296 */ 2297 goto error_param; 2298 } 2299 2300 /* we add VLAN 0 by default for each VF so we can enable 2301 * Tx VLAN anti-spoof without triggering MDD events so 2302 * we don't need to add it again here 2303 */ 2304 if (!vid) 2305 continue; 2306 2307 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2308 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2309 if (status) { 2310 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2311 goto error_param; 2312 } 2313 2314 /* Enable VLAN filtering on first non-zero VLAN */ 2315 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2316 if (vf->spoofchk) { 2317 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2318 if (status) { 2319 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2320 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2321 vid, status); 2322 goto error_param; 2323 } 2324 } 2325 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2326 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2327 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2328 vid, status); 2329 goto error_param; 2330 } 2331 } else if (vlan_promisc) { 2332 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2333 if (status) { 2334 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2335 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2336 vid, status); 2337 } 2338 } 2339 } 2340 } else { 2341 /* In case of non_trusted VF, number of VLAN elements passed 2342 * to PF for removal might be greater than number of VLANs 2343 * filter programmed for that VF - So, use actual number of 2344 * VLANS added earlier with add VLAN opcode. In order to avoid 2345 * removing VLAN that doesn't exist, which result to sending 2346 * erroneous failed message back to the VF 2347 */ 2348 int num_vf_vlan; 2349 2350 num_vf_vlan = vsi->num_vlan; 2351 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2352 u16 vid = vfl->vlan_id[i]; 2353 struct ice_vlan vlan; 2354 2355 /* we add VLAN 0 by default for each VF so we can enable 2356 * Tx VLAN anti-spoof without triggering MDD events so 2357 * we don't want a VIRTCHNL request to remove it 2358 */ 2359 if (!vid) 2360 continue; 2361 2362 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2363 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2364 if (status) { 2365 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2366 goto error_param; 2367 } 2368 2369 /* Disable VLAN filtering when only VLAN 0 is left */ 2370 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2371 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2372 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2373 } 2374 2375 if (vlan_promisc) 2376 ice_vf_dis_vlan_promisc(vsi, &vlan); 2377 } 2378 } 2379 2380 error_param: 2381 /* send the response to the VF */ 2382 if (add_v) 2383 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2384 NULL, 0); 2385 else 2386 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2387 NULL, 0); 2388 } 2389 2390 /** 2391 * ice_vc_add_vlan_msg 2392 * @vf: pointer to the VF info 2393 * @msg: pointer to the msg buffer 2394 * 2395 * Add and program guest VLAN ID 2396 */ 2397 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2398 { 2399 return ice_vc_process_vlan_msg(vf, msg, true); 2400 } 2401 2402 /** 2403 * ice_vc_remove_vlan_msg 2404 * @vf: pointer to the VF info 2405 * @msg: pointer to the msg buffer 2406 * 2407 * remove programmed guest VLAN ID 2408 */ 2409 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2410 { 2411 return ice_vc_process_vlan_msg(vf, msg, false); 2412 } 2413 2414 /** 2415 * ice_vc_ena_vlan_stripping 2416 * @vf: pointer to the VF info 2417 * 2418 * Enable VLAN header stripping for a given VF 2419 */ 2420 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2421 { 2422 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2423 struct ice_vsi *vsi; 2424 2425 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2426 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2427 goto error_param; 2428 } 2429 2430 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2431 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2432 goto error_param; 2433 } 2434 2435 vsi = ice_get_vf_vsi(vf); 2436 if (!vsi) { 2437 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2438 goto error_param; 2439 } 2440 2441 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2442 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2443 2444 error_param: 2445 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2446 v_ret, NULL, 0); 2447 } 2448 2449 /** 2450 * ice_vc_dis_vlan_stripping 2451 * @vf: pointer to the VF info 2452 * 2453 * Disable VLAN header stripping for a given VF 2454 */ 2455 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2456 { 2457 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2458 struct ice_vsi *vsi; 2459 2460 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2461 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2462 goto error_param; 2463 } 2464 2465 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2466 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2467 goto error_param; 2468 } 2469 2470 vsi = ice_get_vf_vsi(vf); 2471 if (!vsi) { 2472 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2473 goto error_param; 2474 } 2475 2476 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2477 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2478 2479 error_param: 2480 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2481 v_ret, NULL, 0); 2482 } 2483 2484 /** 2485 * ice_vc_query_rxdid - query RXDID supported by DDP package 2486 * @vf: pointer to VF info 2487 * 2488 * Called from VF to query a bitmap of supported flexible 2489 * descriptor RXDIDs of a DDP package. 2490 */ 2491 static int ice_vc_query_rxdid(struct ice_vf *vf) 2492 { 2493 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2494 struct virtchnl_supported_rxdids *rxdid = NULL; 2495 struct ice_hw *hw = &vf->pf->hw; 2496 struct ice_pf *pf = vf->pf; 2497 int len = 0; 2498 int ret, i; 2499 u32 regval; 2500 2501 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2502 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2503 goto err; 2504 } 2505 2506 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2507 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2508 goto err; 2509 } 2510 2511 len = sizeof(struct virtchnl_supported_rxdids); 2512 rxdid = kzalloc(len, GFP_KERNEL); 2513 if (!rxdid) { 2514 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2515 len = 0; 2516 goto err; 2517 } 2518 2519 /* Read flexiflag registers to determine whether the 2520 * corresponding RXDID is configured and supported or not. 2521 * Since Legacy 16byte descriptor format is not supported, 2522 * start from Legacy 32byte descriptor. 2523 */ 2524 for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2525 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2526 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2527 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2528 rxdid->supported_rxdids |= BIT(i); 2529 } 2530 2531 pf->supported_rxdids = rxdid->supported_rxdids; 2532 2533 err: 2534 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2535 v_ret, (u8 *)rxdid, len); 2536 kfree(rxdid); 2537 return ret; 2538 } 2539 2540 /** 2541 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2542 * @vf: VF to enable/disable VLAN stripping for on initialization 2543 * 2544 * Set the default for VLAN stripping based on whether a port VLAN is configured 2545 * and the current VLAN mode of the device. 2546 */ 2547 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2548 { 2549 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2550 2551 if (!vsi) 2552 return -EINVAL; 2553 2554 /* don't modify stripping if port VLAN is configured in SVM since the 2555 * port VLAN is based on the inner/single VLAN in SVM 2556 */ 2557 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2558 return 0; 2559 2560 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2561 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2562 else 2563 return vsi->inner_vlan_ops.dis_stripping(vsi); 2564 } 2565 2566 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2567 { 2568 if (vf->trusted) 2569 return VLAN_N_VID; 2570 else 2571 return ICE_MAX_VLAN_PER_VF; 2572 } 2573 2574 /** 2575 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2576 * @vf: VF that being checked for 2577 * 2578 * When the device is in double VLAN mode, check whether or not the outer VLAN 2579 * is allowed. 2580 */ 2581 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2582 { 2583 if (ice_vf_is_port_vlan_ena(vf)) 2584 return true; 2585 2586 return false; 2587 } 2588 2589 /** 2590 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2591 * @vf: VF that capabilities are being set for 2592 * @caps: VLAN capabilities to populate 2593 * 2594 * Determine VLAN capabilities support based on whether a port VLAN is 2595 * configured. If a port VLAN is configured then the VF should use the inner 2596 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2597 * capabilies. 2598 */ 2599 static void 2600 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2601 { 2602 struct virtchnl_vlan_supported_caps *supported_caps; 2603 2604 if (ice_vf_outer_vlan_not_allowed(vf)) { 2605 /* until support for inner VLAN filtering is added when a port 2606 * VLAN is configured, only support software offloaded inner 2607 * VLANs when a port VLAN is confgured in DVM 2608 */ 2609 supported_caps = &caps->filtering.filtering_support; 2610 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2611 2612 supported_caps = &caps->offloads.stripping_support; 2613 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2614 VIRTCHNL_VLAN_TOGGLE | 2615 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2616 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2617 2618 supported_caps = &caps->offloads.insertion_support; 2619 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2620 VIRTCHNL_VLAN_TOGGLE | 2621 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2622 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2623 2624 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2625 caps->offloads.ethertype_match = 2626 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2627 } else { 2628 supported_caps = &caps->filtering.filtering_support; 2629 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2630 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2631 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2632 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2633 VIRTCHNL_VLAN_ETHERTYPE_AND; 2634 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2635 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2636 VIRTCHNL_VLAN_ETHERTYPE_9100; 2637 2638 supported_caps = &caps->offloads.stripping_support; 2639 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2640 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2641 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2642 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2643 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2644 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2645 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2646 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2647 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2648 2649 supported_caps = &caps->offloads.insertion_support; 2650 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2651 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2652 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2653 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2654 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2655 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2656 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2657 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2658 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2659 2660 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2661 2662 caps->offloads.ethertype_match = 2663 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2664 } 2665 2666 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2667 } 2668 2669 /** 2670 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2671 * @vf: VF that capabilities are being set for 2672 * @caps: VLAN capabilities to populate 2673 * 2674 * Determine VLAN capabilities support based on whether a port VLAN is 2675 * configured. If a port VLAN is configured then the VF does not have any VLAN 2676 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2677 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2678 * VLAN fitlering and offload capabilities. 2679 */ 2680 static void 2681 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2682 { 2683 struct virtchnl_vlan_supported_caps *supported_caps; 2684 2685 if (ice_vf_is_port_vlan_ena(vf)) { 2686 supported_caps = &caps->filtering.filtering_support; 2687 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2688 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2689 2690 supported_caps = &caps->offloads.stripping_support; 2691 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2692 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2693 2694 supported_caps = &caps->offloads.insertion_support; 2695 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2696 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2697 2698 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2699 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2700 caps->filtering.max_filters = 0; 2701 } else { 2702 supported_caps = &caps->filtering.filtering_support; 2703 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2704 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2705 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2706 2707 supported_caps = &caps->offloads.stripping_support; 2708 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2709 VIRTCHNL_VLAN_TOGGLE | 2710 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2711 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2712 2713 supported_caps = &caps->offloads.insertion_support; 2714 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2715 VIRTCHNL_VLAN_TOGGLE | 2716 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2717 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2718 2719 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2720 caps->offloads.ethertype_match = 2721 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2722 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2723 } 2724 } 2725 2726 /** 2727 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2728 * @vf: VF to determine VLAN capabilities for 2729 * 2730 * This will only be called if the VF and PF successfully negotiated 2731 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2732 * 2733 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2734 * is configured or not. 2735 */ 2736 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2737 { 2738 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2739 struct virtchnl_vlan_caps *caps = NULL; 2740 int err, len = 0; 2741 2742 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2743 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2744 goto out; 2745 } 2746 2747 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2748 if (!caps) { 2749 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2750 goto out; 2751 } 2752 len = sizeof(*caps); 2753 2754 if (ice_is_dvm_ena(&vf->pf->hw)) 2755 ice_vc_set_dvm_caps(vf, caps); 2756 else 2757 ice_vc_set_svm_caps(vf, caps); 2758 2759 /* store negotiated caps to prevent invalid VF messages */ 2760 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2761 2762 out: 2763 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2764 v_ret, (u8 *)caps, len); 2765 kfree(caps); 2766 return err; 2767 } 2768 2769 /** 2770 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2771 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2772 * @tpid: VLAN TPID used for validation 2773 * 2774 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2775 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2776 */ 2777 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2778 { 2779 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2780 2781 switch (tpid) { 2782 case ETH_P_8021Q: 2783 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2784 break; 2785 case ETH_P_8021AD: 2786 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2787 break; 2788 case ETH_P_QINQ1: 2789 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2790 break; 2791 } 2792 2793 if (!(filtering_caps & vlan_ethertype)) 2794 return false; 2795 2796 return true; 2797 } 2798 2799 /** 2800 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2801 * @vc_vlan: virtchnl_vlan to validate 2802 * 2803 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2804 * false. Otherwise return true. 2805 */ 2806 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2807 { 2808 if (!vc_vlan->tci || !vc_vlan->tpid) 2809 return false; 2810 2811 return true; 2812 } 2813 2814 /** 2815 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2816 * @vfc: negotiated/supported VLAN filtering capabilities 2817 * @vfl: VLAN filter list from VF to validate 2818 * 2819 * Validate all of the filters in the VLAN filter list from the VF. If any of 2820 * the checks fail then return false. Otherwise return true. 2821 */ 2822 static bool 2823 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2824 struct virtchnl_vlan_filter_list_v2 *vfl) 2825 { 2826 u16 i; 2827 2828 if (!vfl->num_elements) 2829 return false; 2830 2831 for (i = 0; i < vfl->num_elements; i++) { 2832 struct virtchnl_vlan_supported_caps *filtering_support = 2833 &vfc->filtering_support; 2834 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2835 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2836 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2837 2838 if ((ice_vc_is_valid_vlan(outer) && 2839 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2840 (ice_vc_is_valid_vlan(inner) && 2841 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2842 return false; 2843 2844 if ((outer->tci_mask && 2845 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2846 (inner->tci_mask && 2847 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2848 return false; 2849 2850 if (((outer->tci & VLAN_PRIO_MASK) && 2851 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2852 ((inner->tci & VLAN_PRIO_MASK) && 2853 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2854 return false; 2855 2856 if ((ice_vc_is_valid_vlan(outer) && 2857 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2858 outer->tpid)) || 2859 (ice_vc_is_valid_vlan(inner) && 2860 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2861 inner->tpid))) 2862 return false; 2863 } 2864 2865 return true; 2866 } 2867 2868 /** 2869 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2870 * @vc_vlan: struct virtchnl_vlan to transform 2871 */ 2872 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2873 { 2874 struct ice_vlan vlan = { 0 }; 2875 2876 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2877 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2878 vlan.tpid = vc_vlan->tpid; 2879 2880 return vlan; 2881 } 2882 2883 /** 2884 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2885 * @vsi: VF's VSI used to perform the action 2886 * @vlan_action: function to perform the action with (i.e. add/del) 2887 * @vlan: VLAN filter to perform the action with 2888 */ 2889 static int 2890 ice_vc_vlan_action(struct ice_vsi *vsi, 2891 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2892 struct ice_vlan *vlan) 2893 { 2894 int err; 2895 2896 err = vlan_action(vsi, vlan); 2897 if (err) 2898 return err; 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2905 * @vf: VF used to delete the VLAN(s) 2906 * @vsi: VF's VSI used to delete the VLAN(s) 2907 * @vfl: virthchnl filter list used to delete the filters 2908 */ 2909 static int 2910 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2911 struct virtchnl_vlan_filter_list_v2 *vfl) 2912 { 2913 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2914 int err; 2915 u16 i; 2916 2917 for (i = 0; i < vfl->num_elements; i++) { 2918 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2919 struct virtchnl_vlan *vc_vlan; 2920 2921 vc_vlan = &vlan_fltr->outer; 2922 if (ice_vc_is_valid_vlan(vc_vlan)) { 2923 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2924 2925 err = ice_vc_vlan_action(vsi, 2926 vsi->outer_vlan_ops.del_vlan, 2927 &vlan); 2928 if (err) 2929 return err; 2930 2931 if (vlan_promisc) 2932 ice_vf_dis_vlan_promisc(vsi, &vlan); 2933 2934 /* Disable VLAN filtering when only VLAN 0 is left */ 2935 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 2936 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 2937 if (err) 2938 return err; 2939 } 2940 } 2941 2942 vc_vlan = &vlan_fltr->inner; 2943 if (ice_vc_is_valid_vlan(vc_vlan)) { 2944 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2945 2946 err = ice_vc_vlan_action(vsi, 2947 vsi->inner_vlan_ops.del_vlan, 2948 &vlan); 2949 if (err) 2950 return err; 2951 2952 /* no support for VLAN promiscuous on inner VLAN unless 2953 * we are in Single VLAN Mode (SVM) 2954 */ 2955 if (!ice_is_dvm_ena(&vsi->back->hw)) { 2956 if (vlan_promisc) 2957 ice_vf_dis_vlan_promisc(vsi, &vlan); 2958 2959 /* Disable VLAN filtering when only VLAN 0 is left */ 2960 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2961 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2962 if (err) 2963 return err; 2964 } 2965 } 2966 } 2967 } 2968 2969 return 0; 2970 } 2971 2972 /** 2973 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2974 * @vf: VF the message was received from 2975 * @msg: message received from the VF 2976 */ 2977 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2978 { 2979 struct virtchnl_vlan_filter_list_v2 *vfl = 2980 (struct virtchnl_vlan_filter_list_v2 *)msg; 2981 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2982 struct ice_vsi *vsi; 2983 2984 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2985 vfl)) { 2986 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2987 goto out; 2988 } 2989 2990 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2991 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2992 goto out; 2993 } 2994 2995 vsi = ice_get_vf_vsi(vf); 2996 if (!vsi) { 2997 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2998 goto out; 2999 } 3000 3001 if (ice_vc_del_vlans(vf, vsi, vfl)) 3002 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3003 3004 out: 3005 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3006 0); 3007 } 3008 3009 /** 3010 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3011 * @vf: VF used to add the VLAN(s) 3012 * @vsi: VF's VSI used to add the VLAN(s) 3013 * @vfl: virthchnl filter list used to add the filters 3014 */ 3015 static int 3016 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3017 struct virtchnl_vlan_filter_list_v2 *vfl) 3018 { 3019 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3020 int err; 3021 u16 i; 3022 3023 for (i = 0; i < vfl->num_elements; i++) { 3024 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3025 struct virtchnl_vlan *vc_vlan; 3026 3027 vc_vlan = &vlan_fltr->outer; 3028 if (ice_vc_is_valid_vlan(vc_vlan)) { 3029 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3030 3031 err = ice_vc_vlan_action(vsi, 3032 vsi->outer_vlan_ops.add_vlan, 3033 &vlan); 3034 if (err) 3035 return err; 3036 3037 if (vlan_promisc) { 3038 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3039 if (err) 3040 return err; 3041 } 3042 3043 /* Enable VLAN filtering on first non-zero VLAN */ 3044 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3045 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3046 if (err) 3047 return err; 3048 } 3049 } 3050 3051 vc_vlan = &vlan_fltr->inner; 3052 if (ice_vc_is_valid_vlan(vc_vlan)) { 3053 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3054 3055 err = ice_vc_vlan_action(vsi, 3056 vsi->inner_vlan_ops.add_vlan, 3057 &vlan); 3058 if (err) 3059 return err; 3060 3061 /* no support for VLAN promiscuous on inner VLAN unless 3062 * we are in Single VLAN Mode (SVM) 3063 */ 3064 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3065 if (vlan_promisc) { 3066 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3067 if (err) 3068 return err; 3069 } 3070 3071 /* Enable VLAN filtering on first non-zero VLAN */ 3072 if (vf->spoofchk && vlan.vid) { 3073 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3074 if (err) 3075 return err; 3076 } 3077 } 3078 } 3079 } 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3086 * @vsi: VF VSI used to get number of existing VLAN filters 3087 * @vfc: negotiated/supported VLAN filtering capabilities 3088 * @vfl: VLAN filter list from VF to validate 3089 * 3090 * Validate all of the filters in the VLAN filter list from the VF during the 3091 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3092 * Otherwise return true. 3093 */ 3094 static bool 3095 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3096 struct virtchnl_vlan_filtering_caps *vfc, 3097 struct virtchnl_vlan_filter_list_v2 *vfl) 3098 { 3099 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3100 vfl->num_elements; 3101 3102 if (num_requested_filters > vfc->max_filters) 3103 return false; 3104 3105 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3106 } 3107 3108 /** 3109 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3110 * @vf: VF the message was received from 3111 * @msg: message received from the VF 3112 */ 3113 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3114 { 3115 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3116 struct virtchnl_vlan_filter_list_v2 *vfl = 3117 (struct virtchnl_vlan_filter_list_v2 *)msg; 3118 struct ice_vsi *vsi; 3119 3120 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3121 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3122 goto out; 3123 } 3124 3125 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3126 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3127 goto out; 3128 } 3129 3130 vsi = ice_get_vf_vsi(vf); 3131 if (!vsi) { 3132 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3133 goto out; 3134 } 3135 3136 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3137 &vf->vlan_v2_caps.filtering, 3138 vfl)) { 3139 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3140 goto out; 3141 } 3142 3143 if (ice_vc_add_vlans(vf, vsi, vfl)) 3144 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3145 3146 out: 3147 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3148 0); 3149 } 3150 3151 /** 3152 * ice_vc_valid_vlan_setting - validate VLAN setting 3153 * @negotiated_settings: negotiated VLAN settings during VF init 3154 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3155 */ 3156 static bool 3157 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3158 { 3159 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3160 return false; 3161 3162 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3163 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3164 */ 3165 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3166 hweight32(ethertype_setting) > 1) 3167 return false; 3168 3169 /* ability to modify the VLAN setting was not negotiated */ 3170 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3171 return false; 3172 3173 return true; 3174 } 3175 3176 /** 3177 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3178 * @caps: negotiated VLAN settings during VF init 3179 * @msg: message to validate 3180 * 3181 * Used to validate any VLAN virtchnl message sent as a 3182 * virtchnl_vlan_setting structure. Validates the message against the 3183 * negotiated/supported caps during VF driver init. 3184 */ 3185 static bool 3186 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3187 struct virtchnl_vlan_setting *msg) 3188 { 3189 if ((!msg->outer_ethertype_setting && 3190 !msg->inner_ethertype_setting) || 3191 (!caps->outer && !caps->inner)) 3192 return false; 3193 3194 if (msg->outer_ethertype_setting && 3195 !ice_vc_valid_vlan_setting(caps->outer, 3196 msg->outer_ethertype_setting)) 3197 return false; 3198 3199 if (msg->inner_ethertype_setting && 3200 !ice_vc_valid_vlan_setting(caps->inner, 3201 msg->inner_ethertype_setting)) 3202 return false; 3203 3204 return true; 3205 } 3206 3207 /** 3208 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3209 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3210 * @tpid: VLAN TPID to populate 3211 */ 3212 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3213 { 3214 switch (ethertype_setting) { 3215 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3216 *tpid = ETH_P_8021Q; 3217 break; 3218 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3219 *tpid = ETH_P_8021AD; 3220 break; 3221 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3222 *tpid = ETH_P_QINQ1; 3223 break; 3224 default: 3225 *tpid = 0; 3226 return -EINVAL; 3227 } 3228 3229 return 0; 3230 } 3231 3232 /** 3233 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3234 * @vsi: VF's VSI used to enable the VLAN offload 3235 * @ena_offload: function used to enable the VLAN offload 3236 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3237 */ 3238 static int 3239 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3240 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3241 u32 ethertype_setting) 3242 { 3243 u16 tpid; 3244 int err; 3245 3246 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3247 if (err) 3248 return err; 3249 3250 err = ena_offload(vsi, tpid); 3251 if (err) 3252 return err; 3253 3254 return 0; 3255 } 3256 3257 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3258 #define ICE_L2TSEL_BIT_OFFSET 23 3259 enum ice_l2tsel { 3260 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3261 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3262 }; 3263 3264 /** 3265 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3266 * @vsi: VSI used to update l2tsel on 3267 * @l2tsel: l2tsel setting requested 3268 * 3269 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3270 * This will modify which descriptor field the first offloaded VLAN will be 3271 * stripped into. 3272 */ 3273 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3274 { 3275 struct ice_hw *hw = &vsi->back->hw; 3276 u32 l2tsel_bit; 3277 int i; 3278 3279 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3280 l2tsel_bit = 0; 3281 else 3282 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3283 3284 for (i = 0; i < vsi->alloc_rxq; i++) { 3285 u16 pfq = vsi->rxq_map[i]; 3286 u32 qrx_context_offset; 3287 u32 regval; 3288 3289 qrx_context_offset = 3290 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3291 3292 regval = rd32(hw, qrx_context_offset); 3293 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3294 regval |= l2tsel_bit; 3295 wr32(hw, qrx_context_offset, regval); 3296 } 3297 } 3298 3299 /** 3300 * ice_vc_ena_vlan_stripping_v2_msg 3301 * @vf: VF the message was received from 3302 * @msg: message received from the VF 3303 * 3304 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3305 */ 3306 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3307 { 3308 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3309 struct virtchnl_vlan_supported_caps *stripping_support; 3310 struct virtchnl_vlan_setting *strip_msg = 3311 (struct virtchnl_vlan_setting *)msg; 3312 u32 ethertype_setting; 3313 struct ice_vsi *vsi; 3314 3315 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3316 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3317 goto out; 3318 } 3319 3320 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3321 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3322 goto out; 3323 } 3324 3325 vsi = ice_get_vf_vsi(vf); 3326 if (!vsi) { 3327 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3328 goto out; 3329 } 3330 3331 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3332 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3333 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3334 goto out; 3335 } 3336 3337 ethertype_setting = strip_msg->outer_ethertype_setting; 3338 if (ethertype_setting) { 3339 if (ice_vc_ena_vlan_offload(vsi, 3340 vsi->outer_vlan_ops.ena_stripping, 3341 ethertype_setting)) { 3342 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3343 goto out; 3344 } else { 3345 enum ice_l2tsel l2tsel = 3346 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3347 3348 /* PF tells the VF that the outer VLAN tag is always 3349 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3350 * inner is always extracted to 3351 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3352 * support outer stripping so the first tag always ends 3353 * up in L2TAG2_2ND and the second/inner tag, if 3354 * enabled, is extracted in L2TAG1. 3355 */ 3356 ice_vsi_update_l2tsel(vsi, l2tsel); 3357 } 3358 } 3359 3360 ethertype_setting = strip_msg->inner_ethertype_setting; 3361 if (ethertype_setting && 3362 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3363 ethertype_setting)) { 3364 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3365 goto out; 3366 } 3367 3368 out: 3369 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3370 v_ret, NULL, 0); 3371 } 3372 3373 /** 3374 * ice_vc_dis_vlan_stripping_v2_msg 3375 * @vf: VF the message was received from 3376 * @msg: message received from the VF 3377 * 3378 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3379 */ 3380 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3381 { 3382 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3383 struct virtchnl_vlan_supported_caps *stripping_support; 3384 struct virtchnl_vlan_setting *strip_msg = 3385 (struct virtchnl_vlan_setting *)msg; 3386 u32 ethertype_setting; 3387 struct ice_vsi *vsi; 3388 3389 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3390 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3391 goto out; 3392 } 3393 3394 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3396 goto out; 3397 } 3398 3399 vsi = ice_get_vf_vsi(vf); 3400 if (!vsi) { 3401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3402 goto out; 3403 } 3404 3405 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3406 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3408 goto out; 3409 } 3410 3411 ethertype_setting = strip_msg->outer_ethertype_setting; 3412 if (ethertype_setting) { 3413 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3414 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3415 goto out; 3416 } else { 3417 enum ice_l2tsel l2tsel = 3418 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3419 3420 /* PF tells the VF that the outer VLAN tag is always 3421 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3422 * inner is always extracted to 3423 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3424 * support inner stripping while outer stripping is 3425 * disabled so that the first and only tag is extracted 3426 * in L2TAG1. 3427 */ 3428 ice_vsi_update_l2tsel(vsi, l2tsel); 3429 } 3430 } 3431 3432 ethertype_setting = strip_msg->inner_ethertype_setting; 3433 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3434 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3435 goto out; 3436 } 3437 3438 out: 3439 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3440 v_ret, NULL, 0); 3441 } 3442 3443 /** 3444 * ice_vc_ena_vlan_insertion_v2_msg 3445 * @vf: VF the message was received from 3446 * @msg: message received from the VF 3447 * 3448 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3449 */ 3450 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3451 { 3452 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3453 struct virtchnl_vlan_supported_caps *insertion_support; 3454 struct virtchnl_vlan_setting *insertion_msg = 3455 (struct virtchnl_vlan_setting *)msg; 3456 u32 ethertype_setting; 3457 struct ice_vsi *vsi; 3458 3459 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3460 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3461 goto out; 3462 } 3463 3464 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3465 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3466 goto out; 3467 } 3468 3469 vsi = ice_get_vf_vsi(vf); 3470 if (!vsi) { 3471 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3472 goto out; 3473 } 3474 3475 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3476 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3477 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3478 goto out; 3479 } 3480 3481 ethertype_setting = insertion_msg->outer_ethertype_setting; 3482 if (ethertype_setting && 3483 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3484 ethertype_setting)) { 3485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3486 goto out; 3487 } 3488 3489 ethertype_setting = insertion_msg->inner_ethertype_setting; 3490 if (ethertype_setting && 3491 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3492 ethertype_setting)) { 3493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3494 goto out; 3495 } 3496 3497 out: 3498 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3499 v_ret, NULL, 0); 3500 } 3501 3502 /** 3503 * ice_vc_dis_vlan_insertion_v2_msg 3504 * @vf: VF the message was received from 3505 * @msg: message received from the VF 3506 * 3507 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3508 */ 3509 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3510 { 3511 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3512 struct virtchnl_vlan_supported_caps *insertion_support; 3513 struct virtchnl_vlan_setting *insertion_msg = 3514 (struct virtchnl_vlan_setting *)msg; 3515 u32 ethertype_setting; 3516 struct ice_vsi *vsi; 3517 3518 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3519 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3520 goto out; 3521 } 3522 3523 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3524 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3525 goto out; 3526 } 3527 3528 vsi = ice_get_vf_vsi(vf); 3529 if (!vsi) { 3530 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3531 goto out; 3532 } 3533 3534 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3535 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3536 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3537 goto out; 3538 } 3539 3540 ethertype_setting = insertion_msg->outer_ethertype_setting; 3541 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3543 goto out; 3544 } 3545 3546 ethertype_setting = insertion_msg->inner_ethertype_setting; 3547 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3548 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3549 goto out; 3550 } 3551 3552 out: 3553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3554 v_ret, NULL, 0); 3555 } 3556 3557 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3558 .get_ver_msg = ice_vc_get_ver_msg, 3559 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3560 .reset_vf = ice_vc_reset_vf_msg, 3561 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3562 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3563 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3564 .ena_qs_msg = ice_vc_ena_qs_msg, 3565 .dis_qs_msg = ice_vc_dis_qs_msg, 3566 .request_qs_msg = ice_vc_request_qs_msg, 3567 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3568 .config_rss_key = ice_vc_config_rss_key, 3569 .config_rss_lut = ice_vc_config_rss_lut, 3570 .get_stats_msg = ice_vc_get_stats_msg, 3571 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3572 .add_vlan_msg = ice_vc_add_vlan_msg, 3573 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3574 .query_rxdid = ice_vc_query_rxdid, 3575 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3576 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3577 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3578 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3579 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3580 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3581 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3582 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3583 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3584 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3585 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3586 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3587 }; 3588 3589 /** 3590 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3591 * @vf: the VF to switch ops 3592 */ 3593 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3594 { 3595 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3596 } 3597 3598 /** 3599 * ice_vc_repr_add_mac 3600 * @vf: pointer to VF 3601 * @msg: virtchannel message 3602 * 3603 * When port representors are created, we do not add MAC rule 3604 * to firmware, we store it so that PF could report same 3605 * MAC as VF. 3606 */ 3607 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3608 { 3609 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3610 struct virtchnl_ether_addr_list *al = 3611 (struct virtchnl_ether_addr_list *)msg; 3612 struct ice_vsi *vsi; 3613 struct ice_pf *pf; 3614 int i; 3615 3616 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3617 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3618 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3619 goto handle_mac_exit; 3620 } 3621 3622 pf = vf->pf; 3623 3624 vsi = ice_get_vf_vsi(vf); 3625 if (!vsi) { 3626 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3627 goto handle_mac_exit; 3628 } 3629 3630 for (i = 0; i < al->num_elements; i++) { 3631 u8 *mac_addr = al->list[i].addr; 3632 int result; 3633 3634 if (!is_unicast_ether_addr(mac_addr) || 3635 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3636 continue; 3637 3638 if (vf->pf_set_mac) { 3639 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3640 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3641 goto handle_mac_exit; 3642 } 3643 3644 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3645 if (result) { 3646 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3647 mac_addr, vf->vf_id, result); 3648 goto handle_mac_exit; 3649 } 3650 3651 ice_vfhw_mac_add(vf, &al->list[i]); 3652 vf->num_mac++; 3653 break; 3654 } 3655 3656 handle_mac_exit: 3657 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3658 v_ret, NULL, 0); 3659 } 3660 3661 /** 3662 * ice_vc_repr_del_mac - response with success for deleting MAC 3663 * @vf: pointer to VF 3664 * @msg: virtchannel message 3665 * 3666 * Respond with success to not break normal VF flow. 3667 * For legacy VF driver try to update cached MAC address. 3668 */ 3669 static int 3670 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3671 { 3672 struct virtchnl_ether_addr_list *al = 3673 (struct virtchnl_ether_addr_list *)msg; 3674 3675 ice_update_legacy_cached_mac(vf, &al->list[0]); 3676 3677 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3678 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3679 } 3680 3681 static int 3682 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3683 { 3684 dev_dbg(ice_pf_to_dev(vf->pf), 3685 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3686 vf->vf_id); 3687 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3688 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3689 NULL, 0); 3690 } 3691 3692 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3693 .get_ver_msg = ice_vc_get_ver_msg, 3694 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3695 .reset_vf = ice_vc_reset_vf_msg, 3696 .add_mac_addr_msg = ice_vc_repr_add_mac, 3697 .del_mac_addr_msg = ice_vc_repr_del_mac, 3698 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3699 .ena_qs_msg = ice_vc_ena_qs_msg, 3700 .dis_qs_msg = ice_vc_dis_qs_msg, 3701 .request_qs_msg = ice_vc_request_qs_msg, 3702 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3703 .config_rss_key = ice_vc_config_rss_key, 3704 .config_rss_lut = ice_vc_config_rss_lut, 3705 .get_stats_msg = ice_vc_get_stats_msg, 3706 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3707 .add_vlan_msg = ice_vc_add_vlan_msg, 3708 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3709 .query_rxdid = ice_vc_query_rxdid, 3710 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3711 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3712 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3713 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3714 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3715 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3716 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3717 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3718 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3719 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3720 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3721 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3722 }; 3723 3724 /** 3725 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3726 * @vf: the VF to switch ops 3727 */ 3728 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3729 { 3730 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3731 } 3732 3733 /** 3734 * ice_vc_process_vf_msg - Process request from VF 3735 * @pf: pointer to the PF structure 3736 * @event: pointer to the AQ event 3737 * 3738 * called from the common asq/arq handler to 3739 * process request from VF 3740 */ 3741 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3742 { 3743 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3744 s16 vf_id = le16_to_cpu(event->desc.retval); 3745 const struct ice_virtchnl_ops *ops; 3746 u16 msglen = event->msg_len; 3747 u8 *msg = event->msg_buf; 3748 struct ice_vf *vf = NULL; 3749 struct device *dev; 3750 int err = 0; 3751 3752 dev = ice_pf_to_dev(pf); 3753 3754 vf = ice_get_vf_by_id(pf, vf_id); 3755 if (!vf) { 3756 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3757 vf_id, v_opcode, msglen); 3758 return; 3759 } 3760 3761 mutex_lock(&vf->cfg_lock); 3762 3763 /* Check if VF is disabled. */ 3764 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3765 err = -EPERM; 3766 goto error_handler; 3767 } 3768 3769 ops = vf->virtchnl_ops; 3770 3771 /* Perform basic checks on the msg */ 3772 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3773 if (err) { 3774 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3775 err = -EPERM; 3776 else 3777 err = -EINVAL; 3778 } 3779 3780 error_handler: 3781 if (err) { 3782 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3783 NULL, 0); 3784 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3785 vf_id, v_opcode, msglen, err); 3786 goto finish; 3787 } 3788 3789 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3790 ice_vc_send_msg_to_vf(vf, v_opcode, 3791 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3792 0); 3793 goto finish; 3794 } 3795 3796 switch (v_opcode) { 3797 case VIRTCHNL_OP_VERSION: 3798 err = ops->get_ver_msg(vf, msg); 3799 break; 3800 case VIRTCHNL_OP_GET_VF_RESOURCES: 3801 err = ops->get_vf_res_msg(vf, msg); 3802 if (ice_vf_init_vlan_stripping(vf)) 3803 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3804 vf->vf_id); 3805 ice_vc_notify_vf_link_state(vf); 3806 break; 3807 case VIRTCHNL_OP_RESET_VF: 3808 ops->reset_vf(vf); 3809 break; 3810 case VIRTCHNL_OP_ADD_ETH_ADDR: 3811 err = ops->add_mac_addr_msg(vf, msg); 3812 break; 3813 case VIRTCHNL_OP_DEL_ETH_ADDR: 3814 err = ops->del_mac_addr_msg(vf, msg); 3815 break; 3816 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3817 err = ops->cfg_qs_msg(vf, msg); 3818 break; 3819 case VIRTCHNL_OP_ENABLE_QUEUES: 3820 err = ops->ena_qs_msg(vf, msg); 3821 ice_vc_notify_vf_link_state(vf); 3822 break; 3823 case VIRTCHNL_OP_DISABLE_QUEUES: 3824 err = ops->dis_qs_msg(vf, msg); 3825 break; 3826 case VIRTCHNL_OP_REQUEST_QUEUES: 3827 err = ops->request_qs_msg(vf, msg); 3828 break; 3829 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3830 err = ops->cfg_irq_map_msg(vf, msg); 3831 break; 3832 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3833 err = ops->config_rss_key(vf, msg); 3834 break; 3835 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3836 err = ops->config_rss_lut(vf, msg); 3837 break; 3838 case VIRTCHNL_OP_GET_STATS: 3839 err = ops->get_stats_msg(vf, msg); 3840 break; 3841 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3842 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3843 break; 3844 case VIRTCHNL_OP_ADD_VLAN: 3845 err = ops->add_vlan_msg(vf, msg); 3846 break; 3847 case VIRTCHNL_OP_DEL_VLAN: 3848 err = ops->remove_vlan_msg(vf, msg); 3849 break; 3850 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 3851 err = ops->query_rxdid(vf); 3852 break; 3853 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3854 err = ops->ena_vlan_stripping(vf); 3855 break; 3856 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3857 err = ops->dis_vlan_stripping(vf); 3858 break; 3859 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3860 err = ops->add_fdir_fltr_msg(vf, msg); 3861 break; 3862 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3863 err = ops->del_fdir_fltr_msg(vf, msg); 3864 break; 3865 case VIRTCHNL_OP_ADD_RSS_CFG: 3866 err = ops->handle_rss_cfg_msg(vf, msg, true); 3867 break; 3868 case VIRTCHNL_OP_DEL_RSS_CFG: 3869 err = ops->handle_rss_cfg_msg(vf, msg, false); 3870 break; 3871 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3872 err = ops->get_offload_vlan_v2_caps(vf); 3873 break; 3874 case VIRTCHNL_OP_ADD_VLAN_V2: 3875 err = ops->add_vlan_v2_msg(vf, msg); 3876 break; 3877 case VIRTCHNL_OP_DEL_VLAN_V2: 3878 err = ops->remove_vlan_v2_msg(vf, msg); 3879 break; 3880 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3881 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3882 break; 3883 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3884 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3885 break; 3886 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3887 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3888 break; 3889 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3890 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3891 break; 3892 case VIRTCHNL_OP_UNKNOWN: 3893 default: 3894 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3895 vf_id); 3896 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3897 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3898 NULL, 0); 3899 break; 3900 } 3901 if (err) { 3902 /* Helper function cares less about error return values here 3903 * as it is busy with pending work. 3904 */ 3905 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3906 vf_id, v_opcode, err); 3907 } 3908 3909 finish: 3910 mutex_unlock(&vf->cfg_lock); 3911 ice_put_vf(vf); 3912 } 3913