1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 466 467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 469 470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 472 473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 475 476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 478 479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 481 482 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 483 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 484 485 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 486 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 487 488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 490 491 vfres->num_vsis = 1; 492 /* Tx and Rx queue are equal for VF */ 493 vfres->num_queue_pairs = vsi->num_txq; 494 vfres->max_vectors = vf->pf->vfs.num_msix_per; 495 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 496 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 497 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 498 499 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 500 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 501 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 502 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 503 vf->hw_lan_addr); 504 505 /* match guest capabilities */ 506 vf->driver_caps = vfres->vf_cap_flags; 507 508 ice_vc_set_caps_allowlist(vf); 509 ice_vc_set_working_allowlist(vf); 510 511 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 512 513 err: 514 /* send the response back to the VF */ 515 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 516 (u8 *)vfres, len); 517 518 kfree(vfres); 519 return ret; 520 } 521 522 /** 523 * ice_vc_reset_vf_msg 524 * @vf: pointer to the VF info 525 * 526 * called from the VF to reset itself, 527 * unlike other virtchnl messages, PF driver 528 * doesn't send the response back to the VF 529 */ 530 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 531 { 532 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 533 ice_reset_vf(vf, 0); 534 } 535 536 /** 537 * ice_vc_isvalid_vsi_id 538 * @vf: pointer to the VF info 539 * @vsi_id: VF relative VSI ID 540 * 541 * check for the valid VSI ID 542 */ 543 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 544 { 545 struct ice_pf *pf = vf->pf; 546 struct ice_vsi *vsi; 547 548 vsi = ice_find_vsi(pf, vsi_id); 549 550 return (vsi && (vsi->vf == vf)); 551 } 552 553 /** 554 * ice_vc_isvalid_q_id 555 * @vf: pointer to the VF info 556 * @vsi_id: VSI ID 557 * @qid: VSI relative queue ID 558 * 559 * check for the valid queue ID 560 */ 561 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 562 { 563 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 564 /* allocated Tx and Rx queues should be always equal for VF VSI */ 565 return (vsi && (qid < vsi->alloc_txq)); 566 } 567 568 /** 569 * ice_vc_isvalid_ring_len 570 * @ring_len: length of ring 571 * 572 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 573 * or zero 574 */ 575 static bool ice_vc_isvalid_ring_len(u16 ring_len) 576 { 577 return ring_len == 0 || 578 (ring_len >= ICE_MIN_NUM_DESC && 579 ring_len <= ICE_MAX_NUM_DESC && 580 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 581 } 582 583 /** 584 * ice_vc_validate_pattern 585 * @vf: pointer to the VF info 586 * @proto: virtchnl protocol headers 587 * 588 * validate the pattern is supported or not. 589 * 590 * Return: true on success, false on error. 591 */ 592 bool 593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 594 { 595 bool is_ipv4 = false; 596 bool is_ipv6 = false; 597 bool is_udp = false; 598 u16 ptype = -1; 599 int i = 0; 600 601 while (i < proto->count && 602 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 603 switch (proto->proto_hdr[i].type) { 604 case VIRTCHNL_PROTO_HDR_ETH: 605 ptype = ICE_PTYPE_MAC_PAY; 606 break; 607 case VIRTCHNL_PROTO_HDR_IPV4: 608 ptype = ICE_PTYPE_IPV4_PAY; 609 is_ipv4 = true; 610 break; 611 case VIRTCHNL_PROTO_HDR_IPV6: 612 ptype = ICE_PTYPE_IPV6_PAY; 613 is_ipv6 = true; 614 break; 615 case VIRTCHNL_PROTO_HDR_UDP: 616 if (is_ipv4) 617 ptype = ICE_PTYPE_IPV4_UDP_PAY; 618 else if (is_ipv6) 619 ptype = ICE_PTYPE_IPV6_UDP_PAY; 620 is_udp = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_TCP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_TCP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_TCP_PAY; 627 break; 628 case VIRTCHNL_PROTO_HDR_SCTP: 629 if (is_ipv4) 630 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 631 else if (is_ipv6) 632 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 633 break; 634 case VIRTCHNL_PROTO_HDR_GTPU_IP: 635 case VIRTCHNL_PROTO_HDR_GTPU_EH: 636 if (is_ipv4) 637 ptype = ICE_MAC_IPV4_GTPU; 638 else if (is_ipv6) 639 ptype = ICE_MAC_IPV6_GTPU; 640 goto out; 641 case VIRTCHNL_PROTO_HDR_L2TPV3: 642 if (is_ipv4) 643 ptype = ICE_MAC_IPV4_L2TPV3; 644 else if (is_ipv6) 645 ptype = ICE_MAC_IPV6_L2TPV3; 646 goto out; 647 case VIRTCHNL_PROTO_HDR_ESP: 648 if (is_ipv4) 649 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 650 ICE_MAC_IPV4_ESP; 651 else if (is_ipv6) 652 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 653 ICE_MAC_IPV6_ESP; 654 goto out; 655 case VIRTCHNL_PROTO_HDR_AH: 656 if (is_ipv4) 657 ptype = ICE_MAC_IPV4_AH; 658 else if (is_ipv6) 659 ptype = ICE_MAC_IPV6_AH; 660 goto out; 661 case VIRTCHNL_PROTO_HDR_PFCP: 662 if (is_ipv4) 663 ptype = ICE_MAC_IPV4_PFCP_SESSION; 664 else if (is_ipv6) 665 ptype = ICE_MAC_IPV6_PFCP_SESSION; 666 goto out; 667 default: 668 break; 669 } 670 i++; 671 } 672 673 out: 674 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 675 } 676 677 /** 678 * ice_vc_parse_rss_cfg - parses hash fields and headers from 679 * a specific virtchnl RSS cfg 680 * @hw: pointer to the hardware 681 * @rss_cfg: pointer to the virtchnl RSS cfg 682 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 683 * to configure 684 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 685 * 686 * Return true if all the protocol header and hash fields in the RSS cfg could 687 * be parsed, else return false 688 * 689 * This function parses the virtchnl RSS cfg to be the intended 690 * hash fields and the intended header for RSS configuration 691 */ 692 static bool 693 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 694 u32 *addl_hdrs, u64 *hash_flds) 695 { 696 const struct ice_vc_hash_field_match_type *hf_list; 697 const struct ice_vc_hdr_match_type *hdr_list; 698 int i, hf_list_len, hdr_list_len; 699 700 hf_list = ice_vc_hash_field_list; 701 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 702 hdr_list = ice_vc_hdr_list; 703 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 704 705 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 706 struct virtchnl_proto_hdr *proto_hdr = 707 &rss_cfg->proto_hdrs.proto_hdr[i]; 708 bool hdr_found = false; 709 int j; 710 711 /* Find matched ice headers according to virtchnl headers. */ 712 for (j = 0; j < hdr_list_len; j++) { 713 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 714 715 if (proto_hdr->type == hdr_map.vc_hdr) { 716 *addl_hdrs |= hdr_map.ice_hdr; 717 hdr_found = true; 718 } 719 } 720 721 if (!hdr_found) 722 return false; 723 724 /* Find matched ice hash fields according to 725 * virtchnl hash fields. 726 */ 727 for (j = 0; j < hf_list_len; j++) { 728 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 729 730 if (proto_hdr->type == hf_map.vc_hdr && 731 proto_hdr->field_selector == hf_map.vc_hash_field) { 732 *hash_flds |= hf_map.ice_hash_field; 733 break; 734 } 735 } 736 } 737 738 return true; 739 } 740 741 /** 742 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 743 * RSS offloads 744 * @caps: VF driver negotiated capabilities 745 * 746 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 747 * else return false 748 */ 749 static bool ice_vf_adv_rss_offload_ena(u32 caps) 750 { 751 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 752 } 753 754 /** 755 * ice_vc_handle_rss_cfg 756 * @vf: pointer to the VF info 757 * @msg: pointer to the message buffer 758 * @add: add a RSS config if true, otherwise delete a RSS config 759 * 760 * This function adds/deletes a RSS config 761 */ 762 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 763 { 764 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 765 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 766 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 767 struct device *dev = ice_pf_to_dev(vf->pf); 768 struct ice_hw *hw = &vf->pf->hw; 769 struct ice_vsi *vsi; 770 771 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 772 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 773 vf->vf_id); 774 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 775 goto error_param; 776 } 777 778 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 779 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 780 vf->vf_id); 781 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 782 goto error_param; 783 } 784 785 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 786 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 787 goto error_param; 788 } 789 790 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 791 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 792 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 793 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 794 vf->vf_id); 795 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 796 goto error_param; 797 } 798 799 vsi = ice_get_vf_vsi(vf); 800 if (!vsi) { 801 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 802 goto error_param; 803 } 804 805 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 806 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 807 goto error_param; 808 } 809 810 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 811 struct ice_vsi_ctx *ctx; 812 u8 lut_type, hash_type; 813 int status; 814 815 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 816 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 817 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 818 819 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 820 if (!ctx) { 821 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 822 goto error_param; 823 } 824 825 ctx->info.q_opt_rss = 826 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 827 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 828 829 /* Preserve existing queueing option setting */ 830 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 831 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 832 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 833 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 834 835 ctx->info.valid_sections = 836 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 837 838 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 839 if (status) { 840 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 841 status, ice_aq_str(hw->adminq.sq_last_status)); 842 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 843 } else { 844 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 845 } 846 847 kfree(ctx); 848 } else { 849 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 850 u64 hash_flds = ICE_HASH_INVALID; 851 852 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 853 &hash_flds)) { 854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 855 goto error_param; 856 } 857 858 if (add) { 859 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 860 addl_hdrs)) { 861 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 862 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 863 vsi->vsi_num, v_ret); 864 } 865 } else { 866 int status; 867 868 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 869 addl_hdrs); 870 /* We just ignore -ENOENT, because if two configurations 871 * share the same profile remove one of them actually 872 * removes both, since the profile is deleted. 873 */ 874 if (status && status != -ENOENT) { 875 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 876 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 877 vf->vf_id, status); 878 } 879 } 880 } 881 882 error_param: 883 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 884 } 885 886 /** 887 * ice_vc_config_rss_key 888 * @vf: pointer to the VF info 889 * @msg: pointer to the msg buffer 890 * 891 * Configure the VF's RSS key 892 */ 893 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 894 { 895 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 896 struct virtchnl_rss_key *vrk = 897 (struct virtchnl_rss_key *)msg; 898 struct ice_vsi *vsi; 899 900 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 901 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 902 goto error_param; 903 } 904 905 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 906 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 907 goto error_param; 908 } 909 910 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 911 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 912 goto error_param; 913 } 914 915 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 916 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 917 goto error_param; 918 } 919 920 vsi = ice_get_vf_vsi(vf); 921 if (!vsi) { 922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 923 goto error_param; 924 } 925 926 if (ice_set_rss_key(vsi, vrk->key)) 927 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 928 error_param: 929 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 930 NULL, 0); 931 } 932 933 /** 934 * ice_vc_config_rss_lut 935 * @vf: pointer to the VF info 936 * @msg: pointer to the msg buffer 937 * 938 * Configure the VF's RSS LUT 939 */ 940 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 941 { 942 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 943 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 944 struct ice_vsi *vsi; 945 946 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 947 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 948 goto error_param; 949 } 950 951 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 952 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 953 goto error_param; 954 } 955 956 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 957 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 958 goto error_param; 959 } 960 961 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 962 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 963 goto error_param; 964 } 965 966 vsi = ice_get_vf_vsi(vf); 967 if (!vsi) { 968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 969 goto error_param; 970 } 971 972 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 973 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 974 error_param: 975 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 976 NULL, 0); 977 } 978 979 /** 980 * ice_vc_cfg_promiscuous_mode_msg 981 * @vf: pointer to the VF info 982 * @msg: pointer to the msg buffer 983 * 984 * called from the VF to configure VF VSIs promiscuous mode 985 */ 986 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 987 { 988 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 989 bool rm_promisc, alluni = false, allmulti = false; 990 struct virtchnl_promisc_info *info = 991 (struct virtchnl_promisc_info *)msg; 992 struct ice_vsi_vlan_ops *vlan_ops; 993 int mcast_err = 0, ucast_err = 0; 994 struct ice_pf *pf = vf->pf; 995 struct ice_vsi *vsi; 996 u8 mcast_m, ucast_m; 997 struct device *dev; 998 int ret = 0; 999 1000 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1001 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1002 goto error_param; 1003 } 1004 1005 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1006 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1007 goto error_param; 1008 } 1009 1010 vsi = ice_get_vf_vsi(vf); 1011 if (!vsi) { 1012 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1013 goto error_param; 1014 } 1015 1016 dev = ice_pf_to_dev(pf); 1017 if (!ice_is_vf_trusted(vf)) { 1018 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1019 vf->vf_id); 1020 /* Leave v_ret alone, lie to the VF on purpose. */ 1021 goto error_param; 1022 } 1023 1024 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1025 alluni = true; 1026 1027 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1028 allmulti = true; 1029 1030 rm_promisc = !allmulti && !alluni; 1031 1032 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1033 if (rm_promisc) 1034 ret = vlan_ops->ena_rx_filtering(vsi); 1035 else 1036 ret = vlan_ops->dis_rx_filtering(vsi); 1037 if (ret) { 1038 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1039 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1040 goto error_param; 1041 } 1042 1043 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1044 1045 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1046 if (alluni) { 1047 /* in this case we're turning on promiscuous mode */ 1048 ret = ice_set_dflt_vsi(vsi); 1049 } else { 1050 /* in this case we're turning off promiscuous mode */ 1051 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1052 ret = ice_clear_dflt_vsi(vsi); 1053 } 1054 1055 /* in this case we're turning on/off only 1056 * allmulticast 1057 */ 1058 if (allmulti) 1059 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1060 else 1061 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1062 1063 if (ret) { 1064 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1065 vf->vf_id, ret); 1066 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1067 goto error_param; 1068 } 1069 } else { 1070 if (alluni) 1071 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1072 else 1073 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1074 1075 if (allmulti) 1076 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1077 else 1078 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1079 1080 if (ucast_err || mcast_err) 1081 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1082 } 1083 1084 if (!mcast_err) { 1085 if (allmulti && 1086 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1087 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1088 vf->vf_id); 1089 else if (!allmulti && 1090 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1091 vf->vf_states)) 1092 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1093 vf->vf_id); 1094 } else { 1095 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1096 vf->vf_id, mcast_err); 1097 } 1098 1099 if (!ucast_err) { 1100 if (alluni && 1101 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1102 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1103 vf->vf_id); 1104 else if (!alluni && 1105 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1106 vf->vf_states)) 1107 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1108 vf->vf_id); 1109 } else { 1110 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1111 vf->vf_id, ucast_err); 1112 } 1113 1114 error_param: 1115 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1116 v_ret, NULL, 0); 1117 } 1118 1119 /** 1120 * ice_vc_get_stats_msg 1121 * @vf: pointer to the VF info 1122 * @msg: pointer to the msg buffer 1123 * 1124 * called from the VF to get VSI stats 1125 */ 1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1127 { 1128 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1129 struct virtchnl_queue_select *vqs = 1130 (struct virtchnl_queue_select *)msg; 1131 struct ice_eth_stats stats = { 0 }; 1132 struct ice_vsi *vsi; 1133 1134 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1135 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1136 goto error_param; 1137 } 1138 1139 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1140 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1141 goto error_param; 1142 } 1143 1144 vsi = ice_get_vf_vsi(vf); 1145 if (!vsi) { 1146 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1147 goto error_param; 1148 } 1149 1150 ice_update_eth_stats(vsi); 1151 1152 stats = vsi->eth_stats; 1153 1154 error_param: 1155 /* send the response to the VF */ 1156 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1157 (u8 *)&stats, sizeof(stats)); 1158 } 1159 1160 /** 1161 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1162 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1163 * 1164 * Return true on successful validation, else false 1165 */ 1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1167 { 1168 if ((!vqs->rx_queues && !vqs->tx_queues) || 1169 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1170 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /** 1177 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1178 * @vsi: VSI of the VF to configure 1179 * @q_idx: VF queue index used to determine the queue in the PF's space 1180 */ 1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1182 { 1183 struct ice_hw *hw = &vsi->back->hw; 1184 u32 pfq = vsi->txq_map[q_idx]; 1185 u32 reg; 1186 1187 reg = rd32(hw, QINT_TQCTL(pfq)); 1188 1189 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1190 * this is most likely a poll mode VF driver, so don't enable an 1191 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1192 */ 1193 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1194 return; 1195 1196 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1197 } 1198 1199 /** 1200 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1201 * @vsi: VSI of the VF to configure 1202 * @q_idx: VF queue index used to determine the queue in the PF's space 1203 */ 1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1205 { 1206 struct ice_hw *hw = &vsi->back->hw; 1207 u32 pfq = vsi->rxq_map[q_idx]; 1208 u32 reg; 1209 1210 reg = rd32(hw, QINT_RQCTL(pfq)); 1211 1212 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1213 * this is most likely a poll mode VF driver, so don't enable an 1214 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1215 */ 1216 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1217 return; 1218 1219 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1220 } 1221 1222 /** 1223 * ice_vc_ena_qs_msg 1224 * @vf: pointer to the VF info 1225 * @msg: pointer to the msg buffer 1226 * 1227 * called from the VF to enable all or specific queue(s) 1228 */ 1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1230 { 1231 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1232 struct virtchnl_queue_select *vqs = 1233 (struct virtchnl_queue_select *)msg; 1234 struct ice_vsi *vsi; 1235 unsigned long q_map; 1236 u16 vf_q_id; 1237 1238 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1239 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1240 goto error_param; 1241 } 1242 1243 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1245 goto error_param; 1246 } 1247 1248 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1249 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1250 goto error_param; 1251 } 1252 1253 vsi = ice_get_vf_vsi(vf); 1254 if (!vsi) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1260 * Tx queue group list was configured and the context bits were 1261 * programmed using ice_vsi_cfg_txqs 1262 */ 1263 q_map = vqs->rx_queues; 1264 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1265 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1266 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1267 goto error_param; 1268 } 1269 1270 /* Skip queue if enabled */ 1271 if (test_bit(vf_q_id, vf->rxq_ena)) 1272 continue; 1273 1274 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1275 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1276 vf_q_id, vsi->vsi_num); 1277 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1278 goto error_param; 1279 } 1280 1281 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1282 set_bit(vf_q_id, vf->rxq_ena); 1283 } 1284 1285 q_map = vqs->tx_queues; 1286 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1287 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1289 goto error_param; 1290 } 1291 1292 /* Skip queue if enabled */ 1293 if (test_bit(vf_q_id, vf->txq_ena)) 1294 continue; 1295 1296 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1297 set_bit(vf_q_id, vf->txq_ena); 1298 } 1299 1300 /* Set flag to indicate that queues are enabled */ 1301 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1302 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1303 1304 error_param: 1305 /* send the response to the VF */ 1306 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1307 NULL, 0); 1308 } 1309 1310 /** 1311 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1312 * @vf: VF to disable queue for 1313 * @vsi: VSI for the VF 1314 * @q_id: VF relative (0-based) queue ID 1315 * 1316 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1317 * disabled then clear q_id bit in the enabled queues bitmap and return 1318 * success. Otherwise return error. 1319 */ 1320 static int 1321 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1322 { 1323 struct ice_txq_meta txq_meta = { 0 }; 1324 struct ice_tx_ring *ring; 1325 int err; 1326 1327 if (!test_bit(q_id, vf->txq_ena)) 1328 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1329 q_id, vsi->vsi_num); 1330 1331 ring = vsi->tx_rings[q_id]; 1332 if (!ring) 1333 return -EINVAL; 1334 1335 ice_fill_txq_meta(vsi, ring, &txq_meta); 1336 1337 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1338 if (err) { 1339 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1340 q_id, vsi->vsi_num); 1341 return err; 1342 } 1343 1344 /* Clear enabled queues flag */ 1345 clear_bit(q_id, vf->txq_ena); 1346 1347 return 0; 1348 } 1349 1350 /** 1351 * ice_vc_dis_qs_msg 1352 * @vf: pointer to the VF info 1353 * @msg: pointer to the msg buffer 1354 * 1355 * called from the VF to disable all or specific queue(s) 1356 */ 1357 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1358 { 1359 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1360 struct virtchnl_queue_select *vqs = 1361 (struct virtchnl_queue_select *)msg; 1362 struct ice_vsi *vsi; 1363 unsigned long q_map; 1364 u16 vf_q_id; 1365 1366 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1367 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1368 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1369 goto error_param; 1370 } 1371 1372 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1373 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1374 goto error_param; 1375 } 1376 1377 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1378 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1379 goto error_param; 1380 } 1381 1382 vsi = ice_get_vf_vsi(vf); 1383 if (!vsi) { 1384 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1385 goto error_param; 1386 } 1387 1388 if (vqs->tx_queues) { 1389 q_map = vqs->tx_queues; 1390 1391 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1392 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1398 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1399 goto error_param; 1400 } 1401 } 1402 } 1403 1404 q_map = vqs->rx_queues; 1405 /* speed up Rx queue disable by batching them if possible */ 1406 if (q_map && 1407 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1408 if (ice_vsi_stop_all_rx_rings(vsi)) { 1409 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1410 vsi->vsi_num); 1411 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1412 goto error_param; 1413 } 1414 1415 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1416 } else if (q_map) { 1417 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1418 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1419 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1420 goto error_param; 1421 } 1422 1423 /* Skip queue if not enabled */ 1424 if (!test_bit(vf_q_id, vf->rxq_ena)) 1425 continue; 1426 1427 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1428 true)) { 1429 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1430 vf_q_id, vsi->vsi_num); 1431 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1432 goto error_param; 1433 } 1434 1435 /* Clear enabled queues flag */ 1436 clear_bit(vf_q_id, vf->rxq_ena); 1437 } 1438 } 1439 1440 /* Clear enabled queues flag */ 1441 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1442 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1443 1444 error_param: 1445 /* send the response to the VF */ 1446 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1447 NULL, 0); 1448 } 1449 1450 /** 1451 * ice_cfg_interrupt 1452 * @vf: pointer to the VF info 1453 * @vsi: the VSI being configured 1454 * @vector_id: vector ID 1455 * @map: vector map for mapping vectors to queues 1456 * @q_vector: structure for interrupt vector 1457 * configure the IRQ to queue map 1458 */ 1459 static int 1460 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1461 struct virtchnl_vector_map *map, 1462 struct ice_q_vector *q_vector) 1463 { 1464 u16 vsi_q_id, vsi_q_id_idx; 1465 unsigned long qmap; 1466 1467 q_vector->num_ring_rx = 0; 1468 q_vector->num_ring_tx = 0; 1469 1470 qmap = map->rxq_map; 1471 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1472 vsi_q_id = vsi_q_id_idx; 1473 1474 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1475 return VIRTCHNL_STATUS_ERR_PARAM; 1476 1477 q_vector->num_ring_rx++; 1478 q_vector->rx.itr_idx = map->rxitr_idx; 1479 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1480 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1481 q_vector->rx.itr_idx); 1482 } 1483 1484 qmap = map->txq_map; 1485 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1486 vsi_q_id = vsi_q_id_idx; 1487 1488 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1489 return VIRTCHNL_STATUS_ERR_PARAM; 1490 1491 q_vector->num_ring_tx++; 1492 q_vector->tx.itr_idx = map->txitr_idx; 1493 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1494 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1495 q_vector->tx.itr_idx); 1496 } 1497 1498 return VIRTCHNL_STATUS_SUCCESS; 1499 } 1500 1501 /** 1502 * ice_vc_cfg_irq_map_msg 1503 * @vf: pointer to the VF info 1504 * @msg: pointer to the msg buffer 1505 * 1506 * called from the VF to configure the IRQ to queue map 1507 */ 1508 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1509 { 1510 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1511 u16 num_q_vectors_mapped, vsi_id, vector_id; 1512 struct virtchnl_irq_map_info *irqmap_info; 1513 struct virtchnl_vector_map *map; 1514 struct ice_pf *pf = vf->pf; 1515 struct ice_vsi *vsi; 1516 int i; 1517 1518 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1519 num_q_vectors_mapped = irqmap_info->num_vectors; 1520 1521 /* Check to make sure number of VF vectors mapped is not greater than 1522 * number of VF vectors originally allocated, and check that 1523 * there is actually at least a single VF queue vector mapped 1524 */ 1525 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1526 pf->vfs.num_msix_per < num_q_vectors_mapped || 1527 !num_q_vectors_mapped) { 1528 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1529 goto error_param; 1530 } 1531 1532 vsi = ice_get_vf_vsi(vf); 1533 if (!vsi) { 1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1535 goto error_param; 1536 } 1537 1538 for (i = 0; i < num_q_vectors_mapped; i++) { 1539 struct ice_q_vector *q_vector; 1540 1541 map = &irqmap_info->vecmap[i]; 1542 1543 vector_id = map->vector_id; 1544 vsi_id = map->vsi_id; 1545 /* vector_id is always 0-based for each VF, and can never be 1546 * larger than or equal to the max allowed interrupts per VF 1547 */ 1548 if (!(vector_id < pf->vfs.num_msix_per) || 1549 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1550 (!vector_id && (map->rxq_map || map->txq_map))) { 1551 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1552 goto error_param; 1553 } 1554 1555 /* No need to map VF miscellaneous or rogue vector */ 1556 if (!vector_id) 1557 continue; 1558 1559 /* Subtract non queue vector from vector_id passed by VF 1560 * to get actual number of VSI queue vector array index 1561 */ 1562 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1563 if (!q_vector) { 1564 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1565 goto error_param; 1566 } 1567 1568 /* lookout for the invalid queue index */ 1569 v_ret = (enum virtchnl_status_code) 1570 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1571 if (v_ret) 1572 goto error_param; 1573 } 1574 1575 error_param: 1576 /* send the response to the VF */ 1577 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1578 NULL, 0); 1579 } 1580 1581 /** 1582 * ice_vc_cfg_qs_msg 1583 * @vf: pointer to the VF info 1584 * @msg: pointer to the msg buffer 1585 * 1586 * called from the VF to configure the Rx/Tx queues 1587 */ 1588 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1589 { 1590 struct virtchnl_vsi_queue_config_info *qci = 1591 (struct virtchnl_vsi_queue_config_info *)msg; 1592 struct virtchnl_queue_pair_info *qpi; 1593 struct ice_pf *pf = vf->pf; 1594 struct ice_lag *lag; 1595 struct ice_vsi *vsi; 1596 u8 act_prt, pri_prt; 1597 int i = -1, q_idx; 1598 1599 lag = pf->lag; 1600 mutex_lock(&pf->lag_mutex); 1601 act_prt = ICE_LAG_INVALID_PORT; 1602 pri_prt = pf->hw.port_info->lport; 1603 if (lag && lag->bonded && lag->primary) { 1604 act_prt = lag->active_port; 1605 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1606 lag->upper_netdev) 1607 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1608 else 1609 act_prt = ICE_LAG_INVALID_PORT; 1610 } 1611 1612 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1613 goto error_param; 1614 1615 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1616 goto error_param; 1617 1618 vsi = ice_get_vf_vsi(vf); 1619 if (!vsi) 1620 goto error_param; 1621 1622 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1623 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1624 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1625 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1626 goto error_param; 1627 } 1628 1629 for (i = 0; i < qci->num_queue_pairs; i++) { 1630 qpi = &qci->qpair[i]; 1631 if (qpi->txq.vsi_id != qci->vsi_id || 1632 qpi->rxq.vsi_id != qci->vsi_id || 1633 qpi->rxq.queue_id != qpi->txq.queue_id || 1634 qpi->txq.headwb_enabled || 1635 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1636 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1637 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1638 goto error_param; 1639 } 1640 1641 q_idx = qpi->rxq.queue_id; 1642 1643 /* make sure selected "q_idx" is in valid range of queues 1644 * for selected "vsi" 1645 */ 1646 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1647 goto error_param; 1648 } 1649 1650 /* copy Tx queue info from VF into VSI */ 1651 if (qpi->txq.ring_len > 0) { 1652 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1653 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1654 1655 /* Disable any existing queue first */ 1656 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1657 goto error_param; 1658 1659 /* Configure a queue with the requested settings */ 1660 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1661 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1662 vf->vf_id, i); 1663 goto error_param; 1664 } 1665 } 1666 1667 /* copy Rx queue info from VF into VSI */ 1668 if (qpi->rxq.ring_len > 0) { 1669 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1670 u32 rxdid; 1671 1672 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1673 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1674 1675 if (qpi->rxq.databuffer_size != 0 && 1676 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1677 qpi->rxq.databuffer_size < 1024)) 1678 goto error_param; 1679 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1680 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1681 if (qpi->rxq.max_pkt_size > max_frame_size || 1682 qpi->rxq.max_pkt_size < 64) 1683 goto error_param; 1684 1685 vsi->max_frame = qpi->rxq.max_pkt_size; 1686 /* add space for the port VLAN since the VF driver is 1687 * not expected to account for it in the MTU 1688 * calculation 1689 */ 1690 if (ice_vf_is_port_vlan_ena(vf)) 1691 vsi->max_frame += VLAN_HLEN; 1692 1693 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1694 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1695 vf->vf_id, i); 1696 goto error_param; 1697 } 1698 1699 /* If Rx flex desc is supported, select RXDID for Rx 1700 * queues. Otherwise, use legacy 32byte descriptor 1701 * format. Legacy 16byte descriptor is not supported. 1702 * If this RXDID is selected, return error. 1703 */ 1704 if (vf->driver_caps & 1705 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1706 rxdid = qpi->rxq.rxdid; 1707 if (!(BIT(rxdid) & pf->supported_rxdids)) 1708 goto error_param; 1709 } else { 1710 rxdid = ICE_RXDID_LEGACY_1; 1711 } 1712 1713 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1714 vsi->rxq_map[q_idx], 1715 rxdid, 0x03, false); 1716 } 1717 } 1718 1719 if (lag && lag->bonded && lag->primary && 1720 act_prt != ICE_LAG_INVALID_PORT) 1721 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1722 mutex_unlock(&pf->lag_mutex); 1723 1724 /* send the response to the VF */ 1725 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1726 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1727 error_param: 1728 /* disable whatever we can */ 1729 for (; i >= 0; i--) { 1730 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1731 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1732 vf->vf_id, i); 1733 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1734 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1735 vf->vf_id, i); 1736 } 1737 1738 if (lag && lag->bonded && lag->primary && 1739 act_prt != ICE_LAG_INVALID_PORT) 1740 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1741 mutex_unlock(&pf->lag_mutex); 1742 1743 ice_lag_move_new_vf_nodes(vf); 1744 1745 /* send the response to the VF */ 1746 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1747 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1748 } 1749 1750 /** 1751 * ice_can_vf_change_mac 1752 * @vf: pointer to the VF info 1753 * 1754 * Return true if the VF is allowed to change its MAC filters, false otherwise 1755 */ 1756 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1757 { 1758 /* If the VF MAC address has been set administratively (via the 1759 * ndo_set_vf_mac command), then deny permission to the VF to 1760 * add/delete unicast MAC addresses, unless the VF is trusted 1761 */ 1762 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1763 return false; 1764 1765 return true; 1766 } 1767 1768 /** 1769 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1770 * @vc_ether_addr: used to extract the type 1771 */ 1772 static u8 1773 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1774 { 1775 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1776 } 1777 1778 /** 1779 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1780 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1781 */ 1782 static bool 1783 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1784 { 1785 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1786 1787 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1788 } 1789 1790 /** 1791 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1792 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1793 * 1794 * This function should only be called when the MAC address in 1795 * virtchnl_ether_addr is a valid unicast MAC 1796 */ 1797 static bool 1798 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1799 { 1800 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1801 1802 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1803 } 1804 1805 /** 1806 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1807 * @vf: VF to update 1808 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1809 */ 1810 static void 1811 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1812 { 1813 u8 *mac_addr = vc_ether_addr->addr; 1814 1815 if (!is_valid_ether_addr(mac_addr)) 1816 return; 1817 1818 /* only allow legacy VF drivers to set the device and hardware MAC if it 1819 * is zero and allow new VF drivers to set the hardware MAC if the type 1820 * was correctly specified over VIRTCHNL 1821 */ 1822 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1823 is_zero_ether_addr(vf->hw_lan_addr)) || 1824 ice_is_vc_addr_primary(vc_ether_addr)) { 1825 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1826 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1827 } 1828 1829 /* hardware and device MACs are already set, but its possible that the 1830 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1831 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1832 * away for the legacy VF driver case as it will be updated in the 1833 * delete flow for this case 1834 */ 1835 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1836 ether_addr_copy(vf->legacy_last_added_umac.addr, 1837 mac_addr); 1838 vf->legacy_last_added_umac.time_modified = jiffies; 1839 } 1840 } 1841 1842 /** 1843 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1844 * @vf: pointer to the VF info 1845 * @vsi: pointer to the VF's VSI 1846 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1847 */ 1848 static int 1849 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1850 struct virtchnl_ether_addr *vc_ether_addr) 1851 { 1852 struct device *dev = ice_pf_to_dev(vf->pf); 1853 u8 *mac_addr = vc_ether_addr->addr; 1854 int ret; 1855 1856 /* device MAC already added */ 1857 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1858 return 0; 1859 1860 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1861 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1862 return -EPERM; 1863 } 1864 1865 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1866 if (ret == -EEXIST) { 1867 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1868 vf->vf_id); 1869 /* don't return since we might need to update 1870 * the primary MAC in ice_vfhw_mac_add() below 1871 */ 1872 } else if (ret) { 1873 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1874 mac_addr, vf->vf_id, ret); 1875 return ret; 1876 } else { 1877 vf->num_mac++; 1878 } 1879 1880 ice_vfhw_mac_add(vf, vc_ether_addr); 1881 1882 return ret; 1883 } 1884 1885 /** 1886 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1887 * @last_added_umac: structure used to check expiration 1888 */ 1889 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1890 { 1891 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1892 return time_is_before_jiffies(last_added_umac->time_modified + 1893 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1894 } 1895 1896 /** 1897 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1898 * @vf: VF to update 1899 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1900 * 1901 * only update cached hardware MAC for legacy VF drivers on delete 1902 * because we cannot guarantee order/type of MAC from the VF driver 1903 */ 1904 static void 1905 ice_update_legacy_cached_mac(struct ice_vf *vf, 1906 struct virtchnl_ether_addr *vc_ether_addr) 1907 { 1908 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1909 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1910 return; 1911 1912 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1913 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1914 } 1915 1916 /** 1917 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1918 * @vf: VF to update 1919 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1920 */ 1921 static void 1922 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1923 { 1924 u8 *mac_addr = vc_ether_addr->addr; 1925 1926 if (!is_valid_ether_addr(mac_addr) || 1927 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1928 return; 1929 1930 /* allow the device MAC to be repopulated in the add flow and don't 1931 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1932 * to be persistent on VM reboot and across driver unload/load, which 1933 * won't work if we clear the hardware MAC here 1934 */ 1935 eth_zero_addr(vf->dev_lan_addr); 1936 1937 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1938 } 1939 1940 /** 1941 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1942 * @vf: pointer to the VF info 1943 * @vsi: pointer to the VF's VSI 1944 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1945 */ 1946 static int 1947 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1948 struct virtchnl_ether_addr *vc_ether_addr) 1949 { 1950 struct device *dev = ice_pf_to_dev(vf->pf); 1951 u8 *mac_addr = vc_ether_addr->addr; 1952 int status; 1953 1954 if (!ice_can_vf_change_mac(vf) && 1955 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1956 return 0; 1957 1958 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1959 if (status == -ENOENT) { 1960 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1961 vf->vf_id); 1962 return -ENOENT; 1963 } else if (status) { 1964 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1965 mac_addr, vf->vf_id, status); 1966 return -EIO; 1967 } 1968 1969 ice_vfhw_mac_del(vf, vc_ether_addr); 1970 1971 vf->num_mac--; 1972 1973 return 0; 1974 } 1975 1976 /** 1977 * ice_vc_handle_mac_addr_msg 1978 * @vf: pointer to the VF info 1979 * @msg: pointer to the msg buffer 1980 * @set: true if MAC filters are being set, false otherwise 1981 * 1982 * add guest MAC address filter 1983 */ 1984 static int 1985 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1986 { 1987 int (*ice_vc_cfg_mac) 1988 (struct ice_vf *vf, struct ice_vsi *vsi, 1989 struct virtchnl_ether_addr *virtchnl_ether_addr); 1990 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1991 struct virtchnl_ether_addr_list *al = 1992 (struct virtchnl_ether_addr_list *)msg; 1993 struct ice_pf *pf = vf->pf; 1994 enum virtchnl_ops vc_op; 1995 struct ice_vsi *vsi; 1996 int i; 1997 1998 if (set) { 1999 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2000 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2001 } else { 2002 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2003 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2004 } 2005 2006 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2007 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2008 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2009 goto handle_mac_exit; 2010 } 2011 2012 /* If this VF is not privileged, then we can't add more than a 2013 * limited number of addresses. Check to make sure that the 2014 * additions do not push us over the limit. 2015 */ 2016 if (set && !ice_is_vf_trusted(vf) && 2017 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2018 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2019 vf->vf_id); 2020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2021 goto handle_mac_exit; 2022 } 2023 2024 vsi = ice_get_vf_vsi(vf); 2025 if (!vsi) { 2026 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2027 goto handle_mac_exit; 2028 } 2029 2030 for (i = 0; i < al->num_elements; i++) { 2031 u8 *mac_addr = al->list[i].addr; 2032 int result; 2033 2034 if (is_broadcast_ether_addr(mac_addr) || 2035 is_zero_ether_addr(mac_addr)) 2036 continue; 2037 2038 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2039 if (result == -EEXIST || result == -ENOENT) { 2040 continue; 2041 } else if (result) { 2042 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2043 goto handle_mac_exit; 2044 } 2045 } 2046 2047 handle_mac_exit: 2048 /* send the response to the VF */ 2049 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2050 } 2051 2052 /** 2053 * ice_vc_add_mac_addr_msg 2054 * @vf: pointer to the VF info 2055 * @msg: pointer to the msg buffer 2056 * 2057 * add guest MAC address filter 2058 */ 2059 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2060 { 2061 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2062 } 2063 2064 /** 2065 * ice_vc_del_mac_addr_msg 2066 * @vf: pointer to the VF info 2067 * @msg: pointer to the msg buffer 2068 * 2069 * remove guest MAC address filter 2070 */ 2071 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2072 { 2073 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2074 } 2075 2076 /** 2077 * ice_vc_request_qs_msg 2078 * @vf: pointer to the VF info 2079 * @msg: pointer to the msg buffer 2080 * 2081 * VFs get a default number of queues but can use this message to request a 2082 * different number. If the request is successful, PF will reset the VF and 2083 * return 0. If unsuccessful, PF will send message informing VF of number of 2084 * available queue pairs via virtchnl message response to VF. 2085 */ 2086 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2087 { 2088 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2089 struct virtchnl_vf_res_request *vfres = 2090 (struct virtchnl_vf_res_request *)msg; 2091 u16 req_queues = vfres->num_queue_pairs; 2092 struct ice_pf *pf = vf->pf; 2093 u16 max_allowed_vf_queues; 2094 u16 tx_rx_queue_left; 2095 struct device *dev; 2096 u16 cur_queues; 2097 2098 dev = ice_pf_to_dev(pf); 2099 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2100 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2101 goto error_param; 2102 } 2103 2104 cur_queues = vf->num_vf_qs; 2105 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2106 ice_get_avail_rxq_count(pf)); 2107 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2108 if (!req_queues) { 2109 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2110 vf->vf_id); 2111 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2112 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2113 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2114 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2115 } else if (req_queues > cur_queues && 2116 req_queues - cur_queues > tx_rx_queue_left) { 2117 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2118 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2119 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2120 ICE_MAX_RSS_QS_PER_VF); 2121 } else { 2122 /* request is successful, then reset VF */ 2123 vf->num_req_qs = req_queues; 2124 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2125 dev_info(dev, "VF %d granted request of %u queues.\n", 2126 vf->vf_id, req_queues); 2127 return 0; 2128 } 2129 2130 error_param: 2131 /* send the response to the VF */ 2132 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2133 v_ret, (u8 *)vfres, sizeof(*vfres)); 2134 } 2135 2136 /** 2137 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2138 * @caps: VF driver negotiated capabilities 2139 * 2140 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2141 */ 2142 static bool ice_vf_vlan_offload_ena(u32 caps) 2143 { 2144 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2145 } 2146 2147 /** 2148 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2149 * @vf: VF used to determine if VLAN promiscuous config is allowed 2150 */ 2151 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2152 { 2153 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2154 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2155 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2156 return true; 2157 2158 return false; 2159 } 2160 2161 /** 2162 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2163 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2164 * @vlan: VLAN used to enable VLAN promiscuous 2165 * 2166 * This function should only be called if VLAN promiscuous mode is allowed, 2167 * which can be determined via ice_is_vlan_promisc_allowed(). 2168 */ 2169 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2170 { 2171 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2172 int status; 2173 2174 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2175 vlan->vid); 2176 if (status && status != -EEXIST) 2177 return status; 2178 2179 return 0; 2180 } 2181 2182 /** 2183 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2184 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2185 * @vlan: VLAN used to disable VLAN promiscuous 2186 * 2187 * This function should only be called if VLAN promiscuous mode is allowed, 2188 * which can be determined via ice_is_vlan_promisc_allowed(). 2189 */ 2190 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2191 { 2192 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2193 int status; 2194 2195 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2196 vlan->vid); 2197 if (status && status != -ENOENT) 2198 return status; 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2205 * @vf: VF to check against 2206 * @vsi: VF's VSI 2207 * 2208 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2209 * wants to, so return false. 2210 * 2211 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2212 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2213 */ 2214 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2215 { 2216 if (ice_is_vf_trusted(vf)) 2217 return false; 2218 2219 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2220 return ((ice_vsi_num_non_zero_vlans(vsi) + 2221 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2222 } 2223 2224 /** 2225 * ice_vc_process_vlan_msg 2226 * @vf: pointer to the VF info 2227 * @msg: pointer to the msg buffer 2228 * @add_v: Add VLAN if true, otherwise delete VLAN 2229 * 2230 * Process virtchnl op to add or remove programmed guest VLAN ID 2231 */ 2232 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2233 { 2234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2235 struct virtchnl_vlan_filter_list *vfl = 2236 (struct virtchnl_vlan_filter_list *)msg; 2237 struct ice_pf *pf = vf->pf; 2238 bool vlan_promisc = false; 2239 struct ice_vsi *vsi; 2240 struct device *dev; 2241 int status = 0; 2242 int i; 2243 2244 dev = ice_pf_to_dev(pf); 2245 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2246 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2247 goto error_param; 2248 } 2249 2250 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2252 goto error_param; 2253 } 2254 2255 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2256 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2257 goto error_param; 2258 } 2259 2260 for (i = 0; i < vfl->num_elements; i++) { 2261 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2262 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2263 dev_err(dev, "invalid VF VLAN id %d\n", 2264 vfl->vlan_id[i]); 2265 goto error_param; 2266 } 2267 } 2268 2269 vsi = ice_get_vf_vsi(vf); 2270 if (!vsi) { 2271 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2272 goto error_param; 2273 } 2274 2275 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2276 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2277 vf->vf_id); 2278 /* There is no need to let VF know about being not trusted, 2279 * so we can just return success message here 2280 */ 2281 goto error_param; 2282 } 2283 2284 /* in DVM a VF can add/delete inner VLAN filters when 2285 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2286 */ 2287 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2288 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2289 goto error_param; 2290 } 2291 2292 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2293 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2294 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2295 */ 2296 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2297 !ice_is_dvm_ena(&pf->hw) && 2298 !ice_vf_is_port_vlan_ena(vf); 2299 2300 if (add_v) { 2301 for (i = 0; i < vfl->num_elements; i++) { 2302 u16 vid = vfl->vlan_id[i]; 2303 struct ice_vlan vlan; 2304 2305 if (ice_vf_has_max_vlans(vf, vsi)) { 2306 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2307 vf->vf_id); 2308 /* There is no need to let VF know about being 2309 * not trusted, so we can just return success 2310 * message here as well. 2311 */ 2312 goto error_param; 2313 } 2314 2315 /* we add VLAN 0 by default for each VF so we can enable 2316 * Tx VLAN anti-spoof without triggering MDD events so 2317 * we don't need to add it again here 2318 */ 2319 if (!vid) 2320 continue; 2321 2322 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2323 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2324 if (status) { 2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2326 goto error_param; 2327 } 2328 2329 /* Enable VLAN filtering on first non-zero VLAN */ 2330 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2331 if (vf->spoofchk) { 2332 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2333 if (status) { 2334 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2335 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2336 vid, status); 2337 goto error_param; 2338 } 2339 } 2340 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2341 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2342 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2343 vid, status); 2344 goto error_param; 2345 } 2346 } else if (vlan_promisc) { 2347 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2348 if (status) { 2349 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2350 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2351 vid, status); 2352 } 2353 } 2354 } 2355 } else { 2356 /* In case of non_trusted VF, number of VLAN elements passed 2357 * to PF for removal might be greater than number of VLANs 2358 * filter programmed for that VF - So, use actual number of 2359 * VLANS added earlier with add VLAN opcode. In order to avoid 2360 * removing VLAN that doesn't exist, which result to sending 2361 * erroneous failed message back to the VF 2362 */ 2363 int num_vf_vlan; 2364 2365 num_vf_vlan = vsi->num_vlan; 2366 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2367 u16 vid = vfl->vlan_id[i]; 2368 struct ice_vlan vlan; 2369 2370 /* we add VLAN 0 by default for each VF so we can enable 2371 * Tx VLAN anti-spoof without triggering MDD events so 2372 * we don't want a VIRTCHNL request to remove it 2373 */ 2374 if (!vid) 2375 continue; 2376 2377 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2378 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2379 if (status) { 2380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2381 goto error_param; 2382 } 2383 2384 /* Disable VLAN filtering when only VLAN 0 is left */ 2385 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2386 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2387 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2388 } 2389 2390 if (vlan_promisc) 2391 ice_vf_dis_vlan_promisc(vsi, &vlan); 2392 } 2393 } 2394 2395 error_param: 2396 /* send the response to the VF */ 2397 if (add_v) 2398 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2399 NULL, 0); 2400 else 2401 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2402 NULL, 0); 2403 } 2404 2405 /** 2406 * ice_vc_add_vlan_msg 2407 * @vf: pointer to the VF info 2408 * @msg: pointer to the msg buffer 2409 * 2410 * Add and program guest VLAN ID 2411 */ 2412 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2413 { 2414 return ice_vc_process_vlan_msg(vf, msg, true); 2415 } 2416 2417 /** 2418 * ice_vc_remove_vlan_msg 2419 * @vf: pointer to the VF info 2420 * @msg: pointer to the msg buffer 2421 * 2422 * remove programmed guest VLAN ID 2423 */ 2424 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2425 { 2426 return ice_vc_process_vlan_msg(vf, msg, false); 2427 } 2428 2429 /** 2430 * ice_vc_ena_vlan_stripping 2431 * @vf: pointer to the VF info 2432 * 2433 * Enable VLAN header stripping for a given VF 2434 */ 2435 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2436 { 2437 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2438 struct ice_vsi *vsi; 2439 2440 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2442 goto error_param; 2443 } 2444 2445 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2446 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2447 goto error_param; 2448 } 2449 2450 vsi = ice_get_vf_vsi(vf); 2451 if (!vsi) { 2452 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2453 goto error_param; 2454 } 2455 2456 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2457 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2458 2459 error_param: 2460 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2461 v_ret, NULL, 0); 2462 } 2463 2464 /** 2465 * ice_vc_dis_vlan_stripping 2466 * @vf: pointer to the VF info 2467 * 2468 * Disable VLAN header stripping for a given VF 2469 */ 2470 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2471 { 2472 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2473 struct ice_vsi *vsi; 2474 2475 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2477 goto error_param; 2478 } 2479 2480 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2481 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2482 goto error_param; 2483 } 2484 2485 vsi = ice_get_vf_vsi(vf); 2486 if (!vsi) { 2487 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2488 goto error_param; 2489 } 2490 2491 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2492 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2493 2494 error_param: 2495 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2496 v_ret, NULL, 0); 2497 } 2498 2499 /** 2500 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2501 * @vf: pointer to the VF info 2502 */ 2503 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2504 { 2505 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2506 struct virtchnl_rss_hena *vrh = NULL; 2507 int len = 0, ret; 2508 2509 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2510 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2511 goto err; 2512 } 2513 2514 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2515 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2516 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2517 goto err; 2518 } 2519 2520 len = sizeof(struct virtchnl_rss_hena); 2521 vrh = kzalloc(len, GFP_KERNEL); 2522 if (!vrh) { 2523 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2524 len = 0; 2525 goto err; 2526 } 2527 2528 vrh->hena = ICE_DEFAULT_RSS_HENA; 2529 err: 2530 /* send the response back to the VF */ 2531 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2532 (u8 *)vrh, len); 2533 kfree(vrh); 2534 return ret; 2535 } 2536 2537 /** 2538 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2539 * @vf: pointer to the VF info 2540 * @msg: pointer to the msg buffer 2541 */ 2542 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2543 { 2544 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2545 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2546 struct ice_pf *pf = vf->pf; 2547 struct ice_vsi *vsi; 2548 struct device *dev; 2549 int status; 2550 2551 dev = ice_pf_to_dev(pf); 2552 2553 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2554 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2555 goto err; 2556 } 2557 2558 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2559 dev_err(dev, "RSS not supported by PF\n"); 2560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2561 goto err; 2562 } 2563 2564 vsi = ice_get_vf_vsi(vf); 2565 if (!vsi) { 2566 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2567 goto err; 2568 } 2569 2570 /* clear all previously programmed RSS configuration to allow VF drivers 2571 * the ability to customize the RSS configuration and/or completely 2572 * disable RSS 2573 */ 2574 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2575 if (status && !vrh->hena) { 2576 /* only report failure to clear the current RSS configuration if 2577 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2578 */ 2579 v_ret = ice_err_to_virt_err(status); 2580 goto err; 2581 } else if (status) { 2582 /* allow the VF to update the RSS configuration even on failure 2583 * to clear the current RSS confguration in an attempt to keep 2584 * RSS in a working state 2585 */ 2586 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2587 vf->vf_id); 2588 } 2589 2590 if (vrh->hena) { 2591 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2592 v_ret = ice_err_to_virt_err(status); 2593 } 2594 2595 /* send the response to the VF */ 2596 err: 2597 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2598 NULL, 0); 2599 } 2600 2601 /** 2602 * ice_vc_query_rxdid - query RXDID supported by DDP package 2603 * @vf: pointer to VF info 2604 * 2605 * Called from VF to query a bitmap of supported flexible 2606 * descriptor RXDIDs of a DDP package. 2607 */ 2608 static int ice_vc_query_rxdid(struct ice_vf *vf) 2609 { 2610 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2611 struct virtchnl_supported_rxdids *rxdid = NULL; 2612 struct ice_hw *hw = &vf->pf->hw; 2613 struct ice_pf *pf = vf->pf; 2614 int len = 0; 2615 int ret, i; 2616 u32 regval; 2617 2618 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2620 goto err; 2621 } 2622 2623 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2624 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2625 goto err; 2626 } 2627 2628 len = sizeof(struct virtchnl_supported_rxdids); 2629 rxdid = kzalloc(len, GFP_KERNEL); 2630 if (!rxdid) { 2631 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2632 len = 0; 2633 goto err; 2634 } 2635 2636 /* RXDIDs supported by DDP package can be read from the register 2637 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2638 * is not listed in DDP package, add it in the bitmap manually. 2639 * Legacy 16byte descriptor is not supported. 2640 */ 2641 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2642 2643 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2644 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2645 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2646 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2647 rxdid->supported_rxdids |= BIT(i); 2648 } 2649 2650 pf->supported_rxdids = rxdid->supported_rxdids; 2651 2652 err: 2653 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2654 v_ret, (u8 *)rxdid, len); 2655 kfree(rxdid); 2656 return ret; 2657 } 2658 2659 /** 2660 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2661 * @vf: VF to enable/disable VLAN stripping for on initialization 2662 * 2663 * Set the default for VLAN stripping based on whether a port VLAN is configured 2664 * and the current VLAN mode of the device. 2665 */ 2666 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2667 { 2668 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2669 2670 if (!vsi) 2671 return -EINVAL; 2672 2673 /* don't modify stripping if port VLAN is configured in SVM since the 2674 * port VLAN is based on the inner/single VLAN in SVM 2675 */ 2676 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2677 return 0; 2678 2679 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2680 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2681 else 2682 return vsi->inner_vlan_ops.dis_stripping(vsi); 2683 } 2684 2685 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2686 { 2687 if (vf->trusted) 2688 return VLAN_N_VID; 2689 else 2690 return ICE_MAX_VLAN_PER_VF; 2691 } 2692 2693 /** 2694 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2695 * @vf: VF that being checked for 2696 * 2697 * When the device is in double VLAN mode, check whether or not the outer VLAN 2698 * is allowed. 2699 */ 2700 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2701 { 2702 if (ice_vf_is_port_vlan_ena(vf)) 2703 return true; 2704 2705 return false; 2706 } 2707 2708 /** 2709 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2710 * @vf: VF that capabilities are being set for 2711 * @caps: VLAN capabilities to populate 2712 * 2713 * Determine VLAN capabilities support based on whether a port VLAN is 2714 * configured. If a port VLAN is configured then the VF should use the inner 2715 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2716 * capabilies. 2717 */ 2718 static void 2719 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2720 { 2721 struct virtchnl_vlan_supported_caps *supported_caps; 2722 2723 if (ice_vf_outer_vlan_not_allowed(vf)) { 2724 /* until support for inner VLAN filtering is added when a port 2725 * VLAN is configured, only support software offloaded inner 2726 * VLANs when a port VLAN is confgured in DVM 2727 */ 2728 supported_caps = &caps->filtering.filtering_support; 2729 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2730 2731 supported_caps = &caps->offloads.stripping_support; 2732 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2733 VIRTCHNL_VLAN_TOGGLE | 2734 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2735 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2736 2737 supported_caps = &caps->offloads.insertion_support; 2738 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2739 VIRTCHNL_VLAN_TOGGLE | 2740 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2741 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2742 2743 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2744 caps->offloads.ethertype_match = 2745 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2746 } else { 2747 supported_caps = &caps->filtering.filtering_support; 2748 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2749 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2750 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2751 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2752 VIRTCHNL_VLAN_ETHERTYPE_AND; 2753 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2754 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2755 VIRTCHNL_VLAN_ETHERTYPE_9100; 2756 2757 supported_caps = &caps->offloads.stripping_support; 2758 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2759 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2760 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2761 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2762 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2763 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2764 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2765 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2766 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2767 2768 supported_caps = &caps->offloads.insertion_support; 2769 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2770 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2771 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2772 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2773 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2774 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2775 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2776 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2777 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2778 2779 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2780 2781 caps->offloads.ethertype_match = 2782 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2783 } 2784 2785 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2786 } 2787 2788 /** 2789 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2790 * @vf: VF that capabilities are being set for 2791 * @caps: VLAN capabilities to populate 2792 * 2793 * Determine VLAN capabilities support based on whether a port VLAN is 2794 * configured. If a port VLAN is configured then the VF does not have any VLAN 2795 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2796 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2797 * VLAN fitlering and offload capabilities. 2798 */ 2799 static void 2800 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2801 { 2802 struct virtchnl_vlan_supported_caps *supported_caps; 2803 2804 if (ice_vf_is_port_vlan_ena(vf)) { 2805 supported_caps = &caps->filtering.filtering_support; 2806 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2807 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2808 2809 supported_caps = &caps->offloads.stripping_support; 2810 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2811 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2812 2813 supported_caps = &caps->offloads.insertion_support; 2814 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2815 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2816 2817 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2818 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2819 caps->filtering.max_filters = 0; 2820 } else { 2821 supported_caps = &caps->filtering.filtering_support; 2822 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2823 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2824 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2825 2826 supported_caps = &caps->offloads.stripping_support; 2827 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2828 VIRTCHNL_VLAN_TOGGLE | 2829 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2830 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2831 2832 supported_caps = &caps->offloads.insertion_support; 2833 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2834 VIRTCHNL_VLAN_TOGGLE | 2835 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2836 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2837 2838 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2839 caps->offloads.ethertype_match = 2840 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2841 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2842 } 2843 } 2844 2845 /** 2846 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2847 * @vf: VF to determine VLAN capabilities for 2848 * 2849 * This will only be called if the VF and PF successfully negotiated 2850 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2851 * 2852 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2853 * is configured or not. 2854 */ 2855 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2856 { 2857 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2858 struct virtchnl_vlan_caps *caps = NULL; 2859 int err, len = 0; 2860 2861 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2862 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2863 goto out; 2864 } 2865 2866 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2867 if (!caps) { 2868 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2869 goto out; 2870 } 2871 len = sizeof(*caps); 2872 2873 if (ice_is_dvm_ena(&vf->pf->hw)) 2874 ice_vc_set_dvm_caps(vf, caps); 2875 else 2876 ice_vc_set_svm_caps(vf, caps); 2877 2878 /* store negotiated caps to prevent invalid VF messages */ 2879 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2880 2881 out: 2882 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2883 v_ret, (u8 *)caps, len); 2884 kfree(caps); 2885 return err; 2886 } 2887 2888 /** 2889 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2890 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2891 * @tpid: VLAN TPID used for validation 2892 * 2893 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2894 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2895 */ 2896 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2897 { 2898 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2899 2900 switch (tpid) { 2901 case ETH_P_8021Q: 2902 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2903 break; 2904 case ETH_P_8021AD: 2905 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2906 break; 2907 case ETH_P_QINQ1: 2908 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2909 break; 2910 } 2911 2912 if (!(filtering_caps & vlan_ethertype)) 2913 return false; 2914 2915 return true; 2916 } 2917 2918 /** 2919 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2920 * @vc_vlan: virtchnl_vlan to validate 2921 * 2922 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2923 * false. Otherwise return true. 2924 */ 2925 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2926 { 2927 if (!vc_vlan->tci || !vc_vlan->tpid) 2928 return false; 2929 2930 return true; 2931 } 2932 2933 /** 2934 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2935 * @vfc: negotiated/supported VLAN filtering capabilities 2936 * @vfl: VLAN filter list from VF to validate 2937 * 2938 * Validate all of the filters in the VLAN filter list from the VF. If any of 2939 * the checks fail then return false. Otherwise return true. 2940 */ 2941 static bool 2942 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2943 struct virtchnl_vlan_filter_list_v2 *vfl) 2944 { 2945 u16 i; 2946 2947 if (!vfl->num_elements) 2948 return false; 2949 2950 for (i = 0; i < vfl->num_elements; i++) { 2951 struct virtchnl_vlan_supported_caps *filtering_support = 2952 &vfc->filtering_support; 2953 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2954 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2955 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2956 2957 if ((ice_vc_is_valid_vlan(outer) && 2958 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2959 (ice_vc_is_valid_vlan(inner) && 2960 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2961 return false; 2962 2963 if ((outer->tci_mask && 2964 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2965 (inner->tci_mask && 2966 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2967 return false; 2968 2969 if (((outer->tci & VLAN_PRIO_MASK) && 2970 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2971 ((inner->tci & VLAN_PRIO_MASK) && 2972 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2973 return false; 2974 2975 if ((ice_vc_is_valid_vlan(outer) && 2976 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2977 outer->tpid)) || 2978 (ice_vc_is_valid_vlan(inner) && 2979 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2980 inner->tpid))) 2981 return false; 2982 } 2983 2984 return true; 2985 } 2986 2987 /** 2988 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2989 * @vc_vlan: struct virtchnl_vlan to transform 2990 */ 2991 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2992 { 2993 struct ice_vlan vlan = { 0 }; 2994 2995 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2996 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2997 vlan.tpid = vc_vlan->tpid; 2998 2999 return vlan; 3000 } 3001 3002 /** 3003 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3004 * @vsi: VF's VSI used to perform the action 3005 * @vlan_action: function to perform the action with (i.e. add/del) 3006 * @vlan: VLAN filter to perform the action with 3007 */ 3008 static int 3009 ice_vc_vlan_action(struct ice_vsi *vsi, 3010 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3011 struct ice_vlan *vlan) 3012 { 3013 int err; 3014 3015 err = vlan_action(vsi, vlan); 3016 if (err) 3017 return err; 3018 3019 return 0; 3020 } 3021 3022 /** 3023 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3024 * @vf: VF used to delete the VLAN(s) 3025 * @vsi: VF's VSI used to delete the VLAN(s) 3026 * @vfl: virthchnl filter list used to delete the filters 3027 */ 3028 static int 3029 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3030 struct virtchnl_vlan_filter_list_v2 *vfl) 3031 { 3032 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3033 int err; 3034 u16 i; 3035 3036 for (i = 0; i < vfl->num_elements; i++) { 3037 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3038 struct virtchnl_vlan *vc_vlan; 3039 3040 vc_vlan = &vlan_fltr->outer; 3041 if (ice_vc_is_valid_vlan(vc_vlan)) { 3042 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3043 3044 err = ice_vc_vlan_action(vsi, 3045 vsi->outer_vlan_ops.del_vlan, 3046 &vlan); 3047 if (err) 3048 return err; 3049 3050 if (vlan_promisc) 3051 ice_vf_dis_vlan_promisc(vsi, &vlan); 3052 3053 /* Disable VLAN filtering when only VLAN 0 is left */ 3054 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3055 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3056 if (err) 3057 return err; 3058 } 3059 } 3060 3061 vc_vlan = &vlan_fltr->inner; 3062 if (ice_vc_is_valid_vlan(vc_vlan)) { 3063 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3064 3065 err = ice_vc_vlan_action(vsi, 3066 vsi->inner_vlan_ops.del_vlan, 3067 &vlan); 3068 if (err) 3069 return err; 3070 3071 /* no support for VLAN promiscuous on inner VLAN unless 3072 * we are in Single VLAN Mode (SVM) 3073 */ 3074 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3075 if (vlan_promisc) 3076 ice_vf_dis_vlan_promisc(vsi, &vlan); 3077 3078 /* Disable VLAN filtering when only VLAN 0 is left */ 3079 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3080 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3081 if (err) 3082 return err; 3083 } 3084 } 3085 } 3086 } 3087 3088 return 0; 3089 } 3090 3091 /** 3092 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3093 * @vf: VF the message was received from 3094 * @msg: message received from the VF 3095 */ 3096 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3097 { 3098 struct virtchnl_vlan_filter_list_v2 *vfl = 3099 (struct virtchnl_vlan_filter_list_v2 *)msg; 3100 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3101 struct ice_vsi *vsi; 3102 3103 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3104 vfl)) { 3105 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3106 goto out; 3107 } 3108 3109 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3110 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3111 goto out; 3112 } 3113 3114 vsi = ice_get_vf_vsi(vf); 3115 if (!vsi) { 3116 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3117 goto out; 3118 } 3119 3120 if (ice_vc_del_vlans(vf, vsi, vfl)) 3121 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3122 3123 out: 3124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3125 0); 3126 } 3127 3128 /** 3129 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3130 * @vf: VF used to add the VLAN(s) 3131 * @vsi: VF's VSI used to add the VLAN(s) 3132 * @vfl: virthchnl filter list used to add the filters 3133 */ 3134 static int 3135 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3136 struct virtchnl_vlan_filter_list_v2 *vfl) 3137 { 3138 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3139 int err; 3140 u16 i; 3141 3142 for (i = 0; i < vfl->num_elements; i++) { 3143 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3144 struct virtchnl_vlan *vc_vlan; 3145 3146 vc_vlan = &vlan_fltr->outer; 3147 if (ice_vc_is_valid_vlan(vc_vlan)) { 3148 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3149 3150 err = ice_vc_vlan_action(vsi, 3151 vsi->outer_vlan_ops.add_vlan, 3152 &vlan); 3153 if (err) 3154 return err; 3155 3156 if (vlan_promisc) { 3157 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3158 if (err) 3159 return err; 3160 } 3161 3162 /* Enable VLAN filtering on first non-zero VLAN */ 3163 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3164 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3165 if (err) 3166 return err; 3167 } 3168 } 3169 3170 vc_vlan = &vlan_fltr->inner; 3171 if (ice_vc_is_valid_vlan(vc_vlan)) { 3172 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3173 3174 err = ice_vc_vlan_action(vsi, 3175 vsi->inner_vlan_ops.add_vlan, 3176 &vlan); 3177 if (err) 3178 return err; 3179 3180 /* no support for VLAN promiscuous on inner VLAN unless 3181 * we are in Single VLAN Mode (SVM) 3182 */ 3183 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3184 if (vlan_promisc) { 3185 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3186 if (err) 3187 return err; 3188 } 3189 3190 /* Enable VLAN filtering on first non-zero VLAN */ 3191 if (vf->spoofchk && vlan.vid) { 3192 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3193 if (err) 3194 return err; 3195 } 3196 } 3197 } 3198 } 3199 3200 return 0; 3201 } 3202 3203 /** 3204 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3205 * @vsi: VF VSI used to get number of existing VLAN filters 3206 * @vfc: negotiated/supported VLAN filtering capabilities 3207 * @vfl: VLAN filter list from VF to validate 3208 * 3209 * Validate all of the filters in the VLAN filter list from the VF during the 3210 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3211 * Otherwise return true. 3212 */ 3213 static bool 3214 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3215 struct virtchnl_vlan_filtering_caps *vfc, 3216 struct virtchnl_vlan_filter_list_v2 *vfl) 3217 { 3218 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3219 vfl->num_elements; 3220 3221 if (num_requested_filters > vfc->max_filters) 3222 return false; 3223 3224 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3225 } 3226 3227 /** 3228 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3229 * @vf: VF the message was received from 3230 * @msg: message received from the VF 3231 */ 3232 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3233 { 3234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3235 struct virtchnl_vlan_filter_list_v2 *vfl = 3236 (struct virtchnl_vlan_filter_list_v2 *)msg; 3237 struct ice_vsi *vsi; 3238 3239 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3241 goto out; 3242 } 3243 3244 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3245 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3246 goto out; 3247 } 3248 3249 vsi = ice_get_vf_vsi(vf); 3250 if (!vsi) { 3251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3252 goto out; 3253 } 3254 3255 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3256 &vf->vlan_v2_caps.filtering, 3257 vfl)) { 3258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3259 goto out; 3260 } 3261 3262 if (ice_vc_add_vlans(vf, vsi, vfl)) 3263 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3264 3265 out: 3266 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3267 0); 3268 } 3269 3270 /** 3271 * ice_vc_valid_vlan_setting - validate VLAN setting 3272 * @negotiated_settings: negotiated VLAN settings during VF init 3273 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3274 */ 3275 static bool 3276 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3277 { 3278 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3279 return false; 3280 3281 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3282 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3283 */ 3284 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3285 hweight32(ethertype_setting) > 1) 3286 return false; 3287 3288 /* ability to modify the VLAN setting was not negotiated */ 3289 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3290 return false; 3291 3292 return true; 3293 } 3294 3295 /** 3296 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3297 * @caps: negotiated VLAN settings during VF init 3298 * @msg: message to validate 3299 * 3300 * Used to validate any VLAN virtchnl message sent as a 3301 * virtchnl_vlan_setting structure. Validates the message against the 3302 * negotiated/supported caps during VF driver init. 3303 */ 3304 static bool 3305 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3306 struct virtchnl_vlan_setting *msg) 3307 { 3308 if ((!msg->outer_ethertype_setting && 3309 !msg->inner_ethertype_setting) || 3310 (!caps->outer && !caps->inner)) 3311 return false; 3312 3313 if (msg->outer_ethertype_setting && 3314 !ice_vc_valid_vlan_setting(caps->outer, 3315 msg->outer_ethertype_setting)) 3316 return false; 3317 3318 if (msg->inner_ethertype_setting && 3319 !ice_vc_valid_vlan_setting(caps->inner, 3320 msg->inner_ethertype_setting)) 3321 return false; 3322 3323 return true; 3324 } 3325 3326 /** 3327 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3328 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3329 * @tpid: VLAN TPID to populate 3330 */ 3331 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3332 { 3333 switch (ethertype_setting) { 3334 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3335 *tpid = ETH_P_8021Q; 3336 break; 3337 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3338 *tpid = ETH_P_8021AD; 3339 break; 3340 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3341 *tpid = ETH_P_QINQ1; 3342 break; 3343 default: 3344 *tpid = 0; 3345 return -EINVAL; 3346 } 3347 3348 return 0; 3349 } 3350 3351 /** 3352 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3353 * @vsi: VF's VSI used to enable the VLAN offload 3354 * @ena_offload: function used to enable the VLAN offload 3355 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3356 */ 3357 static int 3358 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3359 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3360 u32 ethertype_setting) 3361 { 3362 u16 tpid; 3363 int err; 3364 3365 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3366 if (err) 3367 return err; 3368 3369 err = ena_offload(vsi, tpid); 3370 if (err) 3371 return err; 3372 3373 return 0; 3374 } 3375 3376 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3377 #define ICE_L2TSEL_BIT_OFFSET 23 3378 enum ice_l2tsel { 3379 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3380 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3381 }; 3382 3383 /** 3384 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3385 * @vsi: VSI used to update l2tsel on 3386 * @l2tsel: l2tsel setting requested 3387 * 3388 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3389 * This will modify which descriptor field the first offloaded VLAN will be 3390 * stripped into. 3391 */ 3392 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3393 { 3394 struct ice_hw *hw = &vsi->back->hw; 3395 u32 l2tsel_bit; 3396 int i; 3397 3398 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3399 l2tsel_bit = 0; 3400 else 3401 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3402 3403 for (i = 0; i < vsi->alloc_rxq; i++) { 3404 u16 pfq = vsi->rxq_map[i]; 3405 u32 qrx_context_offset; 3406 u32 regval; 3407 3408 qrx_context_offset = 3409 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3410 3411 regval = rd32(hw, qrx_context_offset); 3412 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3413 regval |= l2tsel_bit; 3414 wr32(hw, qrx_context_offset, regval); 3415 } 3416 } 3417 3418 /** 3419 * ice_vc_ena_vlan_stripping_v2_msg 3420 * @vf: VF the message was received from 3421 * @msg: message received from the VF 3422 * 3423 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3424 */ 3425 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3426 { 3427 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3428 struct virtchnl_vlan_supported_caps *stripping_support; 3429 struct virtchnl_vlan_setting *strip_msg = 3430 (struct virtchnl_vlan_setting *)msg; 3431 u32 ethertype_setting; 3432 struct ice_vsi *vsi; 3433 3434 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3435 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3436 goto out; 3437 } 3438 3439 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3440 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3441 goto out; 3442 } 3443 3444 vsi = ice_get_vf_vsi(vf); 3445 if (!vsi) { 3446 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3447 goto out; 3448 } 3449 3450 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3451 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3452 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3453 goto out; 3454 } 3455 3456 ethertype_setting = strip_msg->outer_ethertype_setting; 3457 if (ethertype_setting) { 3458 if (ice_vc_ena_vlan_offload(vsi, 3459 vsi->outer_vlan_ops.ena_stripping, 3460 ethertype_setting)) { 3461 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3462 goto out; 3463 } else { 3464 enum ice_l2tsel l2tsel = 3465 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3466 3467 /* PF tells the VF that the outer VLAN tag is always 3468 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3469 * inner is always extracted to 3470 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3471 * support outer stripping so the first tag always ends 3472 * up in L2TAG2_2ND and the second/inner tag, if 3473 * enabled, is extracted in L2TAG1. 3474 */ 3475 ice_vsi_update_l2tsel(vsi, l2tsel); 3476 } 3477 } 3478 3479 ethertype_setting = strip_msg->inner_ethertype_setting; 3480 if (ethertype_setting && 3481 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3482 ethertype_setting)) { 3483 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3484 goto out; 3485 } 3486 3487 out: 3488 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3489 v_ret, NULL, 0); 3490 } 3491 3492 /** 3493 * ice_vc_dis_vlan_stripping_v2_msg 3494 * @vf: VF the message was received from 3495 * @msg: message received from the VF 3496 * 3497 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3498 */ 3499 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3500 { 3501 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3502 struct virtchnl_vlan_supported_caps *stripping_support; 3503 struct virtchnl_vlan_setting *strip_msg = 3504 (struct virtchnl_vlan_setting *)msg; 3505 u32 ethertype_setting; 3506 struct ice_vsi *vsi; 3507 3508 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3509 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3510 goto out; 3511 } 3512 3513 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3514 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3515 goto out; 3516 } 3517 3518 vsi = ice_get_vf_vsi(vf); 3519 if (!vsi) { 3520 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3521 goto out; 3522 } 3523 3524 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3525 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3526 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3527 goto out; 3528 } 3529 3530 ethertype_setting = strip_msg->outer_ethertype_setting; 3531 if (ethertype_setting) { 3532 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3534 goto out; 3535 } else { 3536 enum ice_l2tsel l2tsel = 3537 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3538 3539 /* PF tells the VF that the outer VLAN tag is always 3540 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3541 * inner is always extracted to 3542 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3543 * support inner stripping while outer stripping is 3544 * disabled so that the first and only tag is extracted 3545 * in L2TAG1. 3546 */ 3547 ice_vsi_update_l2tsel(vsi, l2tsel); 3548 } 3549 } 3550 3551 ethertype_setting = strip_msg->inner_ethertype_setting; 3552 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3553 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3554 goto out; 3555 } 3556 3557 out: 3558 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3559 v_ret, NULL, 0); 3560 } 3561 3562 /** 3563 * ice_vc_ena_vlan_insertion_v2_msg 3564 * @vf: VF the message was received from 3565 * @msg: message received from the VF 3566 * 3567 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3568 */ 3569 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3570 { 3571 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3572 struct virtchnl_vlan_supported_caps *insertion_support; 3573 struct virtchnl_vlan_setting *insertion_msg = 3574 (struct virtchnl_vlan_setting *)msg; 3575 u32 ethertype_setting; 3576 struct ice_vsi *vsi; 3577 3578 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3579 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3580 goto out; 3581 } 3582 3583 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3584 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3585 goto out; 3586 } 3587 3588 vsi = ice_get_vf_vsi(vf); 3589 if (!vsi) { 3590 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3591 goto out; 3592 } 3593 3594 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3595 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3596 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3597 goto out; 3598 } 3599 3600 ethertype_setting = insertion_msg->outer_ethertype_setting; 3601 if (ethertype_setting && 3602 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3603 ethertype_setting)) { 3604 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3605 goto out; 3606 } 3607 3608 ethertype_setting = insertion_msg->inner_ethertype_setting; 3609 if (ethertype_setting && 3610 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3611 ethertype_setting)) { 3612 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3613 goto out; 3614 } 3615 3616 out: 3617 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3618 v_ret, NULL, 0); 3619 } 3620 3621 /** 3622 * ice_vc_dis_vlan_insertion_v2_msg 3623 * @vf: VF the message was received from 3624 * @msg: message received from the VF 3625 * 3626 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3627 */ 3628 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3629 { 3630 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3631 struct virtchnl_vlan_supported_caps *insertion_support; 3632 struct virtchnl_vlan_setting *insertion_msg = 3633 (struct virtchnl_vlan_setting *)msg; 3634 u32 ethertype_setting; 3635 struct ice_vsi *vsi; 3636 3637 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3638 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3639 goto out; 3640 } 3641 3642 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3643 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3644 goto out; 3645 } 3646 3647 vsi = ice_get_vf_vsi(vf); 3648 if (!vsi) { 3649 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3650 goto out; 3651 } 3652 3653 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3654 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3655 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3656 goto out; 3657 } 3658 3659 ethertype_setting = insertion_msg->outer_ethertype_setting; 3660 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3661 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3662 goto out; 3663 } 3664 3665 ethertype_setting = insertion_msg->inner_ethertype_setting; 3666 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3667 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3668 goto out; 3669 } 3670 3671 out: 3672 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3673 v_ret, NULL, 0); 3674 } 3675 3676 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3677 .get_ver_msg = ice_vc_get_ver_msg, 3678 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3679 .reset_vf = ice_vc_reset_vf_msg, 3680 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3681 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3682 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3683 .ena_qs_msg = ice_vc_ena_qs_msg, 3684 .dis_qs_msg = ice_vc_dis_qs_msg, 3685 .request_qs_msg = ice_vc_request_qs_msg, 3686 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3687 .config_rss_key = ice_vc_config_rss_key, 3688 .config_rss_lut = ice_vc_config_rss_lut, 3689 .get_stats_msg = ice_vc_get_stats_msg, 3690 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3691 .add_vlan_msg = ice_vc_add_vlan_msg, 3692 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3693 .query_rxdid = ice_vc_query_rxdid, 3694 .get_rss_hena = ice_vc_get_rss_hena, 3695 .set_rss_hena_msg = ice_vc_set_rss_hena, 3696 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3697 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3698 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3699 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3700 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3701 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3702 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3703 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3704 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3705 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3706 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3707 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3708 }; 3709 3710 /** 3711 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3712 * @vf: the VF to switch ops 3713 */ 3714 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3715 { 3716 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3717 } 3718 3719 /** 3720 * ice_vc_repr_add_mac 3721 * @vf: pointer to VF 3722 * @msg: virtchannel message 3723 * 3724 * When port representors are created, we do not add MAC rule 3725 * to firmware, we store it so that PF could report same 3726 * MAC as VF. 3727 */ 3728 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3729 { 3730 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3731 struct virtchnl_ether_addr_list *al = 3732 (struct virtchnl_ether_addr_list *)msg; 3733 struct ice_vsi *vsi; 3734 struct ice_pf *pf; 3735 int i; 3736 3737 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3738 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3739 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3740 goto handle_mac_exit; 3741 } 3742 3743 pf = vf->pf; 3744 3745 vsi = ice_get_vf_vsi(vf); 3746 if (!vsi) { 3747 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3748 goto handle_mac_exit; 3749 } 3750 3751 for (i = 0; i < al->num_elements; i++) { 3752 u8 *mac_addr = al->list[i].addr; 3753 3754 if (!is_unicast_ether_addr(mac_addr) || 3755 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3756 continue; 3757 3758 if (vf->pf_set_mac) { 3759 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3760 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3761 goto handle_mac_exit; 3762 } 3763 3764 ice_vfhw_mac_add(vf, &al->list[i]); 3765 vf->num_mac++; 3766 break; 3767 } 3768 3769 handle_mac_exit: 3770 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3771 v_ret, NULL, 0); 3772 } 3773 3774 /** 3775 * ice_vc_repr_del_mac - response with success for deleting MAC 3776 * @vf: pointer to VF 3777 * @msg: virtchannel message 3778 * 3779 * Respond with success to not break normal VF flow. 3780 * For legacy VF driver try to update cached MAC address. 3781 */ 3782 static int 3783 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3784 { 3785 struct virtchnl_ether_addr_list *al = 3786 (struct virtchnl_ether_addr_list *)msg; 3787 3788 ice_update_legacy_cached_mac(vf, &al->list[0]); 3789 3790 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3791 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3792 } 3793 3794 static int 3795 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3796 { 3797 dev_dbg(ice_pf_to_dev(vf->pf), 3798 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3799 vf->vf_id); 3800 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3801 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3802 NULL, 0); 3803 } 3804 3805 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3806 .get_ver_msg = ice_vc_get_ver_msg, 3807 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3808 .reset_vf = ice_vc_reset_vf_msg, 3809 .add_mac_addr_msg = ice_vc_repr_add_mac, 3810 .del_mac_addr_msg = ice_vc_repr_del_mac, 3811 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3812 .ena_qs_msg = ice_vc_ena_qs_msg, 3813 .dis_qs_msg = ice_vc_dis_qs_msg, 3814 .request_qs_msg = ice_vc_request_qs_msg, 3815 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3816 .config_rss_key = ice_vc_config_rss_key, 3817 .config_rss_lut = ice_vc_config_rss_lut, 3818 .get_stats_msg = ice_vc_get_stats_msg, 3819 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3820 .add_vlan_msg = ice_vc_add_vlan_msg, 3821 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3822 .query_rxdid = ice_vc_query_rxdid, 3823 .get_rss_hena = ice_vc_get_rss_hena, 3824 .set_rss_hena_msg = ice_vc_set_rss_hena, 3825 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3826 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3827 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3828 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3829 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3830 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3831 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3832 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3833 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3834 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3835 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3836 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3837 }; 3838 3839 /** 3840 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3841 * @vf: the VF to switch ops 3842 */ 3843 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3844 { 3845 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3846 } 3847 3848 /** 3849 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3850 * @vf: the VF to check 3851 * @mbxdata: data about the state of the mailbox 3852 * 3853 * Detect if a given VF might be malicious and attempting to overflow the PF 3854 * mailbox. If so, log a warning message and ignore this event. 3855 */ 3856 static bool 3857 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3858 { 3859 bool report_malvf = false; 3860 struct device *dev; 3861 struct ice_pf *pf; 3862 int status; 3863 3864 pf = vf->pf; 3865 dev = ice_pf_to_dev(pf); 3866 3867 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3868 return vf->mbx_info.malicious; 3869 3870 /* check to see if we have a newly malicious VF */ 3871 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3872 &report_malvf); 3873 if (status) 3874 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3875 vf->vf_id, vf->dev_lan_addr, status); 3876 3877 if (report_malvf) { 3878 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3879 u8 zero_addr[ETH_ALEN] = {}; 3880 3881 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3882 vf->dev_lan_addr, 3883 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3884 } 3885 3886 return vf->mbx_info.malicious; 3887 } 3888 3889 /** 3890 * ice_vc_process_vf_msg - Process request from VF 3891 * @pf: pointer to the PF structure 3892 * @event: pointer to the AQ event 3893 * @mbxdata: information used to detect VF attempting mailbox overflow 3894 * 3895 * called from the common asq/arq handler to 3896 * process request from VF 3897 */ 3898 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3899 struct ice_mbx_data *mbxdata) 3900 { 3901 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3902 s16 vf_id = le16_to_cpu(event->desc.retval); 3903 const struct ice_virtchnl_ops *ops; 3904 u16 msglen = event->msg_len; 3905 u8 *msg = event->msg_buf; 3906 struct ice_vf *vf = NULL; 3907 struct device *dev; 3908 int err = 0; 3909 3910 dev = ice_pf_to_dev(pf); 3911 3912 vf = ice_get_vf_by_id(pf, vf_id); 3913 if (!vf) { 3914 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3915 vf_id, v_opcode, msglen); 3916 return; 3917 } 3918 3919 mutex_lock(&vf->cfg_lock); 3920 3921 /* Check if the VF is trying to overflow the mailbox */ 3922 if (ice_is_malicious_vf(vf, mbxdata)) 3923 goto finish; 3924 3925 /* Check if VF is disabled. */ 3926 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3927 err = -EPERM; 3928 goto error_handler; 3929 } 3930 3931 ops = vf->virtchnl_ops; 3932 3933 /* Perform basic checks on the msg */ 3934 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3935 if (err) { 3936 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3937 err = -EPERM; 3938 else 3939 err = -EINVAL; 3940 } 3941 3942 error_handler: 3943 if (err) { 3944 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3945 NULL, 0); 3946 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3947 vf_id, v_opcode, msglen, err); 3948 goto finish; 3949 } 3950 3951 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3952 ice_vc_send_msg_to_vf(vf, v_opcode, 3953 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3954 0); 3955 goto finish; 3956 } 3957 3958 switch (v_opcode) { 3959 case VIRTCHNL_OP_VERSION: 3960 err = ops->get_ver_msg(vf, msg); 3961 break; 3962 case VIRTCHNL_OP_GET_VF_RESOURCES: 3963 err = ops->get_vf_res_msg(vf, msg); 3964 if (ice_vf_init_vlan_stripping(vf)) 3965 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3966 vf->vf_id); 3967 ice_vc_notify_vf_link_state(vf); 3968 break; 3969 case VIRTCHNL_OP_RESET_VF: 3970 ops->reset_vf(vf); 3971 break; 3972 case VIRTCHNL_OP_ADD_ETH_ADDR: 3973 err = ops->add_mac_addr_msg(vf, msg); 3974 break; 3975 case VIRTCHNL_OP_DEL_ETH_ADDR: 3976 err = ops->del_mac_addr_msg(vf, msg); 3977 break; 3978 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3979 err = ops->cfg_qs_msg(vf, msg); 3980 break; 3981 case VIRTCHNL_OP_ENABLE_QUEUES: 3982 err = ops->ena_qs_msg(vf, msg); 3983 ice_vc_notify_vf_link_state(vf); 3984 break; 3985 case VIRTCHNL_OP_DISABLE_QUEUES: 3986 err = ops->dis_qs_msg(vf, msg); 3987 break; 3988 case VIRTCHNL_OP_REQUEST_QUEUES: 3989 err = ops->request_qs_msg(vf, msg); 3990 break; 3991 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3992 err = ops->cfg_irq_map_msg(vf, msg); 3993 break; 3994 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3995 err = ops->config_rss_key(vf, msg); 3996 break; 3997 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3998 err = ops->config_rss_lut(vf, msg); 3999 break; 4000 case VIRTCHNL_OP_GET_STATS: 4001 err = ops->get_stats_msg(vf, msg); 4002 break; 4003 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4004 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4005 break; 4006 case VIRTCHNL_OP_ADD_VLAN: 4007 err = ops->add_vlan_msg(vf, msg); 4008 break; 4009 case VIRTCHNL_OP_DEL_VLAN: 4010 err = ops->remove_vlan_msg(vf, msg); 4011 break; 4012 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4013 err = ops->query_rxdid(vf); 4014 break; 4015 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4016 err = ops->get_rss_hena(vf); 4017 break; 4018 case VIRTCHNL_OP_SET_RSS_HENA: 4019 err = ops->set_rss_hena_msg(vf, msg); 4020 break; 4021 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4022 err = ops->ena_vlan_stripping(vf); 4023 break; 4024 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4025 err = ops->dis_vlan_stripping(vf); 4026 break; 4027 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4028 err = ops->add_fdir_fltr_msg(vf, msg); 4029 break; 4030 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4031 err = ops->del_fdir_fltr_msg(vf, msg); 4032 break; 4033 case VIRTCHNL_OP_ADD_RSS_CFG: 4034 err = ops->handle_rss_cfg_msg(vf, msg, true); 4035 break; 4036 case VIRTCHNL_OP_DEL_RSS_CFG: 4037 err = ops->handle_rss_cfg_msg(vf, msg, false); 4038 break; 4039 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4040 err = ops->get_offload_vlan_v2_caps(vf); 4041 break; 4042 case VIRTCHNL_OP_ADD_VLAN_V2: 4043 err = ops->add_vlan_v2_msg(vf, msg); 4044 break; 4045 case VIRTCHNL_OP_DEL_VLAN_V2: 4046 err = ops->remove_vlan_v2_msg(vf, msg); 4047 break; 4048 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4049 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4050 break; 4051 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4052 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4053 break; 4054 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4055 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4056 break; 4057 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4058 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4059 break; 4060 case VIRTCHNL_OP_UNKNOWN: 4061 default: 4062 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4063 vf_id); 4064 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4065 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4066 NULL, 0); 4067 break; 4068 } 4069 if (err) { 4070 /* Helper function cares less about error return values here 4071 * as it is busy with pending work. 4072 */ 4073 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4074 vf_id, v_opcode, err); 4075 } 4076 4077 finish: 4078 mutex_unlock(&vf->cfg_lock); 4079 ice_put_vf(vf); 4080 } 4081