1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vlan_caps
364  * @hw: pointer to the hw
365  * @vf: pointer to the VF info
366  * @vsi: pointer to the VSI
367  * @driver_caps: current driver caps
368  *
369  * Return 0 if there is no VLAN caps supported, or VLAN caps value
370  */
371 static u32
372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 		     u32 driver_caps)
374 {
375 	if (ice_is_eswitch_mode_switchdev(vf->pf))
376 		/* In switchdev setting VLAN from VF isn't supported */
377 		return 0;
378 
379 	if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 		/* VLAN offloads based on current device configuration */
381 		return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 	} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 		 * these two conditions, which amounts to guest VLAN filtering
385 		 * and offloads being based on the inner VLAN or the
386 		 * inner/single VLAN respectively and don't allow VF to
387 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 		 */
389 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 			return VIRTCHNL_VF_OFFLOAD_VLAN;
391 		} else if (!ice_is_dvm_ena(hw) &&
392 			   !ice_vf_is_port_vlan_ena(vf)) {
393 			/* configure backward compatible support for VFs that
394 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 			 * configured in SVM, and no port VLAN is configured
396 			 */
397 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 			return VIRTCHNL_VF_OFFLOAD_VLAN;
399 		} else if (ice_is_dvm_ena(hw)) {
400 			/* configure software offloaded VLAN support when DVM
401 			 * is enabled, but no port VLAN is enabled
402 			 */
403 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 		}
405 	}
406 
407 	return 0;
408 }
409 
410 /**
411  * ice_vc_get_vf_res_msg
412  * @vf: pointer to the VF info
413  * @msg: pointer to the msg buffer
414  *
415  * called from the VF to request its resources
416  */
417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 	struct virtchnl_vf_resource *vfres = NULL;
421 	struct ice_hw *hw = &vf->pf->hw;
422 	struct ice_vsi *vsi;
423 	int len = 0;
424 	int ret;
425 
426 	if (ice_check_vf_init(vf)) {
427 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 		goto err;
429 	}
430 
431 	len = virtchnl_struct_size(vfres, vsi_res, 0);
432 
433 	vfres = kzalloc(len, GFP_KERNEL);
434 	if (!vfres) {
435 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 		len = 0;
437 		goto err;
438 	}
439 	if (VF_IS_V11(&vf->vf_ver))
440 		vf->driver_caps = *(u32 *)msg;
441 	else
442 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 				  VIRTCHNL_VF_OFFLOAD_VLAN;
444 
445 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
446 	vsi = ice_get_vf_vsi(vf);
447 	if (!vsi) {
448 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
449 		goto err;
450 	}
451 
452 	vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
453 						    vf->driver_caps);
454 
455 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF)
456 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
457 
458 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
459 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
460 
461 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
462 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
463 
464 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
465 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
466 
467 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
468 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
469 
470 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
471 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
472 
473 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
474 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
475 
476 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
477 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
478 
479 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
480 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
481 
482 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
483 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
484 
485 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
486 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
487 
488 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
489 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
490 
491 	vfres->num_vsis = 1;
492 	/* Tx and Rx queue are equal for VF */
493 	vfres->num_queue_pairs = vsi->num_txq;
494 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
495 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
496 	vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
497 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
498 
499 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
500 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
501 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
502 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
503 			vf->hw_lan_addr);
504 
505 	/* match guest capabilities */
506 	vf->driver_caps = vfres->vf_cap_flags;
507 
508 	ice_vc_set_caps_allowlist(vf);
509 	ice_vc_set_working_allowlist(vf);
510 
511 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
512 
513 err:
514 	/* send the response back to the VF */
515 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
516 				    (u8 *)vfres, len);
517 
518 	kfree(vfres);
519 	return ret;
520 }
521 
522 /**
523  * ice_vc_reset_vf_msg
524  * @vf: pointer to the VF info
525  *
526  * called from the VF to reset itself,
527  * unlike other virtchnl messages, PF driver
528  * doesn't send the response back to the VF
529  */
530 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
531 {
532 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
533 		ice_reset_vf(vf, 0);
534 }
535 
536 /**
537  * ice_vc_isvalid_vsi_id
538  * @vf: pointer to the VF info
539  * @vsi_id: VF relative VSI ID
540  *
541  * check for the valid VSI ID
542  */
543 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
544 {
545 	struct ice_pf *pf = vf->pf;
546 	struct ice_vsi *vsi;
547 
548 	vsi = ice_find_vsi(pf, vsi_id);
549 
550 	return (vsi && (vsi->vf == vf));
551 }
552 
553 /**
554  * ice_vc_isvalid_q_id
555  * @vf: pointer to the VF info
556  * @vsi_id: VSI ID
557  * @qid: VSI relative queue ID
558  *
559  * check for the valid queue ID
560  */
561 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
562 {
563 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
564 	/* allocated Tx and Rx queues should be always equal for VF VSI */
565 	return (vsi && (qid < vsi->alloc_txq));
566 }
567 
568 /**
569  * ice_vc_isvalid_ring_len
570  * @ring_len: length of ring
571  *
572  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
573  * or zero
574  */
575 static bool ice_vc_isvalid_ring_len(u16 ring_len)
576 {
577 	return ring_len == 0 ||
578 	       (ring_len >= ICE_MIN_NUM_DESC &&
579 		ring_len <= ICE_MAX_NUM_DESC &&
580 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
581 }
582 
583 /**
584  * ice_vc_validate_pattern
585  * @vf: pointer to the VF info
586  * @proto: virtchnl protocol headers
587  *
588  * validate the pattern is supported or not.
589  *
590  * Return: true on success, false on error.
591  */
592 bool
593 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
594 {
595 	bool is_ipv4 = false;
596 	bool is_ipv6 = false;
597 	bool is_udp = false;
598 	u16 ptype = -1;
599 	int i = 0;
600 
601 	while (i < proto->count &&
602 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
603 		switch (proto->proto_hdr[i].type) {
604 		case VIRTCHNL_PROTO_HDR_ETH:
605 			ptype = ICE_PTYPE_MAC_PAY;
606 			break;
607 		case VIRTCHNL_PROTO_HDR_IPV4:
608 			ptype = ICE_PTYPE_IPV4_PAY;
609 			is_ipv4 = true;
610 			break;
611 		case VIRTCHNL_PROTO_HDR_IPV6:
612 			ptype = ICE_PTYPE_IPV6_PAY;
613 			is_ipv6 = true;
614 			break;
615 		case VIRTCHNL_PROTO_HDR_UDP:
616 			if (is_ipv4)
617 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
618 			else if (is_ipv6)
619 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
620 			is_udp = true;
621 			break;
622 		case VIRTCHNL_PROTO_HDR_TCP:
623 			if (is_ipv4)
624 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
625 			else if (is_ipv6)
626 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
627 			break;
628 		case VIRTCHNL_PROTO_HDR_SCTP:
629 			if (is_ipv4)
630 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
631 			else if (is_ipv6)
632 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
633 			break;
634 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
635 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
636 			if (is_ipv4)
637 				ptype = ICE_MAC_IPV4_GTPU;
638 			else if (is_ipv6)
639 				ptype = ICE_MAC_IPV6_GTPU;
640 			goto out;
641 		case VIRTCHNL_PROTO_HDR_L2TPV3:
642 			if (is_ipv4)
643 				ptype = ICE_MAC_IPV4_L2TPV3;
644 			else if (is_ipv6)
645 				ptype = ICE_MAC_IPV6_L2TPV3;
646 			goto out;
647 		case VIRTCHNL_PROTO_HDR_ESP:
648 			if (is_ipv4)
649 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
650 						ICE_MAC_IPV4_ESP;
651 			else if (is_ipv6)
652 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
653 						ICE_MAC_IPV6_ESP;
654 			goto out;
655 		case VIRTCHNL_PROTO_HDR_AH:
656 			if (is_ipv4)
657 				ptype = ICE_MAC_IPV4_AH;
658 			else if (is_ipv6)
659 				ptype = ICE_MAC_IPV6_AH;
660 			goto out;
661 		case VIRTCHNL_PROTO_HDR_PFCP:
662 			if (is_ipv4)
663 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
664 			else if (is_ipv6)
665 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
666 			goto out;
667 		default:
668 			break;
669 		}
670 		i++;
671 	}
672 
673 out:
674 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
675 }
676 
677 /**
678  * ice_vc_parse_rss_cfg - parses hash fields and headers from
679  * a specific virtchnl RSS cfg
680  * @hw: pointer to the hardware
681  * @rss_cfg: pointer to the virtchnl RSS cfg
682  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
683  * to configure
684  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
685  *
686  * Return true if all the protocol header and hash fields in the RSS cfg could
687  * be parsed, else return false
688  *
689  * This function parses the virtchnl RSS cfg to be the intended
690  * hash fields and the intended header for RSS configuration
691  */
692 static bool
693 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
694 		     u32 *addl_hdrs, u64 *hash_flds)
695 {
696 	const struct ice_vc_hash_field_match_type *hf_list;
697 	const struct ice_vc_hdr_match_type *hdr_list;
698 	int i, hf_list_len, hdr_list_len;
699 
700 	hf_list = ice_vc_hash_field_list;
701 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
702 	hdr_list = ice_vc_hdr_list;
703 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
704 
705 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
706 		struct virtchnl_proto_hdr *proto_hdr =
707 					&rss_cfg->proto_hdrs.proto_hdr[i];
708 		bool hdr_found = false;
709 		int j;
710 
711 		/* Find matched ice headers according to virtchnl headers. */
712 		for (j = 0; j < hdr_list_len; j++) {
713 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
714 
715 			if (proto_hdr->type == hdr_map.vc_hdr) {
716 				*addl_hdrs |= hdr_map.ice_hdr;
717 				hdr_found = true;
718 			}
719 		}
720 
721 		if (!hdr_found)
722 			return false;
723 
724 		/* Find matched ice hash fields according to
725 		 * virtchnl hash fields.
726 		 */
727 		for (j = 0; j < hf_list_len; j++) {
728 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
729 
730 			if (proto_hdr->type == hf_map.vc_hdr &&
731 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
732 				*hash_flds |= hf_map.ice_hash_field;
733 				break;
734 			}
735 		}
736 	}
737 
738 	return true;
739 }
740 
741 /**
742  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
743  * RSS offloads
744  * @caps: VF driver negotiated capabilities
745  *
746  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
747  * else return false
748  */
749 static bool ice_vf_adv_rss_offload_ena(u32 caps)
750 {
751 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
752 }
753 
754 /**
755  * ice_vc_handle_rss_cfg
756  * @vf: pointer to the VF info
757  * @msg: pointer to the message buffer
758  * @add: add a RSS config if true, otherwise delete a RSS config
759  *
760  * This function adds/deletes a RSS config
761  */
762 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
763 {
764 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
765 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
766 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
767 	struct device *dev = ice_pf_to_dev(vf->pf);
768 	struct ice_hw *hw = &vf->pf->hw;
769 	struct ice_vsi *vsi;
770 
771 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
772 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
773 			vf->vf_id);
774 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
775 		goto error_param;
776 	}
777 
778 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
779 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
780 			vf->vf_id);
781 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
782 		goto error_param;
783 	}
784 
785 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
786 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
787 		goto error_param;
788 	}
789 
790 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
791 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
792 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
793 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
794 			vf->vf_id);
795 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
796 		goto error_param;
797 	}
798 
799 	vsi = ice_get_vf_vsi(vf);
800 	if (!vsi) {
801 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
802 		goto error_param;
803 	}
804 
805 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
806 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
807 		goto error_param;
808 	}
809 
810 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
811 		struct ice_vsi_ctx *ctx;
812 		u8 lut_type, hash_type;
813 		int status;
814 
815 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
816 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR :
817 				ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
818 
819 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
820 		if (!ctx) {
821 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
822 			goto error_param;
823 		}
824 
825 		ctx->info.q_opt_rss =
826 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
827 			FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
828 
829 		/* Preserve existing queueing option setting */
830 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
831 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
832 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
833 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
834 
835 		ctx->info.valid_sections =
836 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
837 
838 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
839 		if (status) {
840 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
841 				status, ice_aq_str(hw->adminq.sq_last_status));
842 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
843 		} else {
844 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
845 		}
846 
847 		kfree(ctx);
848 	} else {
849 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
850 		u64 hash_flds = ICE_HASH_INVALID;
851 
852 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
853 					  &hash_flds)) {
854 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
855 			goto error_param;
856 		}
857 
858 		if (add) {
859 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
860 					    addl_hdrs)) {
861 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
862 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
863 					vsi->vsi_num, v_ret);
864 			}
865 		} else {
866 			int status;
867 
868 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
869 						 addl_hdrs);
870 			/* We just ignore -ENOENT, because if two configurations
871 			 * share the same profile remove one of them actually
872 			 * removes both, since the profile is deleted.
873 			 */
874 			if (status && status != -ENOENT) {
875 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
876 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
877 					vf->vf_id, status);
878 			}
879 		}
880 	}
881 
882 error_param:
883 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
884 }
885 
886 /**
887  * ice_vc_config_rss_key
888  * @vf: pointer to the VF info
889  * @msg: pointer to the msg buffer
890  *
891  * Configure the VF's RSS key
892  */
893 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
894 {
895 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
896 	struct virtchnl_rss_key *vrk =
897 		(struct virtchnl_rss_key *)msg;
898 	struct ice_vsi *vsi;
899 
900 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
901 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
902 		goto error_param;
903 	}
904 
905 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
906 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
907 		goto error_param;
908 	}
909 
910 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
911 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
912 		goto error_param;
913 	}
914 
915 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
916 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
917 		goto error_param;
918 	}
919 
920 	vsi = ice_get_vf_vsi(vf);
921 	if (!vsi) {
922 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
923 		goto error_param;
924 	}
925 
926 	if (ice_set_rss_key(vsi, vrk->key))
927 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
928 error_param:
929 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
930 				     NULL, 0);
931 }
932 
933 /**
934  * ice_vc_config_rss_lut
935  * @vf: pointer to the VF info
936  * @msg: pointer to the msg buffer
937  *
938  * Configure the VF's RSS LUT
939  */
940 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
941 {
942 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
943 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
944 	struct ice_vsi *vsi;
945 
946 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
947 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
948 		goto error_param;
949 	}
950 
951 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
952 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
953 		goto error_param;
954 	}
955 
956 	if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
957 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
958 		goto error_param;
959 	}
960 
961 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
962 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
963 		goto error_param;
964 	}
965 
966 	vsi = ice_get_vf_vsi(vf);
967 	if (!vsi) {
968 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
969 		goto error_param;
970 	}
971 
972 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
973 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
974 error_param:
975 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
976 				     NULL, 0);
977 }
978 
979 /**
980  * ice_vc_cfg_promiscuous_mode_msg
981  * @vf: pointer to the VF info
982  * @msg: pointer to the msg buffer
983  *
984  * called from the VF to configure VF VSIs promiscuous mode
985  */
986 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
987 {
988 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
989 	bool rm_promisc, alluni = false, allmulti = false;
990 	struct virtchnl_promisc_info *info =
991 	    (struct virtchnl_promisc_info *)msg;
992 	struct ice_vsi_vlan_ops *vlan_ops;
993 	int mcast_err = 0, ucast_err = 0;
994 	struct ice_pf *pf = vf->pf;
995 	struct ice_vsi *vsi;
996 	u8 mcast_m, ucast_m;
997 	struct device *dev;
998 	int ret = 0;
999 
1000 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1001 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1002 		goto error_param;
1003 	}
1004 
1005 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1006 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1007 		goto error_param;
1008 	}
1009 
1010 	vsi = ice_get_vf_vsi(vf);
1011 	if (!vsi) {
1012 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1013 		goto error_param;
1014 	}
1015 
1016 	dev = ice_pf_to_dev(pf);
1017 	if (!ice_is_vf_trusted(vf)) {
1018 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1019 			vf->vf_id);
1020 		/* Leave v_ret alone, lie to the VF on purpose. */
1021 		goto error_param;
1022 	}
1023 
1024 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1025 		alluni = true;
1026 
1027 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1028 		allmulti = true;
1029 
1030 	rm_promisc = !allmulti && !alluni;
1031 
1032 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1033 	if (rm_promisc)
1034 		ret = vlan_ops->ena_rx_filtering(vsi);
1035 	else
1036 		ret = vlan_ops->dis_rx_filtering(vsi);
1037 	if (ret) {
1038 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1039 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1040 		goto error_param;
1041 	}
1042 
1043 	ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1044 
1045 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1046 		if (alluni) {
1047 			/* in this case we're turning on promiscuous mode */
1048 			ret = ice_set_dflt_vsi(vsi);
1049 		} else {
1050 			/* in this case we're turning off promiscuous mode */
1051 			if (ice_is_dflt_vsi_in_use(vsi->port_info))
1052 				ret = ice_clear_dflt_vsi(vsi);
1053 		}
1054 
1055 		/* in this case we're turning on/off only
1056 		 * allmulticast
1057 		 */
1058 		if (allmulti)
1059 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1060 		else
1061 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1062 
1063 		if (ret) {
1064 			dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1065 				vf->vf_id, ret);
1066 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1067 			goto error_param;
1068 		}
1069 	} else {
1070 		if (alluni)
1071 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1072 		else
1073 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1074 
1075 		if (allmulti)
1076 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1077 		else
1078 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1079 
1080 		if (ucast_err || mcast_err)
1081 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1082 	}
1083 
1084 	if (!mcast_err) {
1085 		if (allmulti &&
1086 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1087 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1088 				 vf->vf_id);
1089 		else if (!allmulti &&
1090 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1091 					    vf->vf_states))
1092 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1093 				 vf->vf_id);
1094 	} else {
1095 		dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1096 			vf->vf_id, mcast_err);
1097 	}
1098 
1099 	if (!ucast_err) {
1100 		if (alluni &&
1101 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1102 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1103 				 vf->vf_id);
1104 		else if (!alluni &&
1105 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1106 					    vf->vf_states))
1107 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1108 				 vf->vf_id);
1109 	} else {
1110 		dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1111 			vf->vf_id, ucast_err);
1112 	}
1113 
1114 error_param:
1115 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1116 				     v_ret, NULL, 0);
1117 }
1118 
1119 /**
1120  * ice_vc_get_stats_msg
1121  * @vf: pointer to the VF info
1122  * @msg: pointer to the msg buffer
1123  *
1124  * called from the VF to get VSI stats
1125  */
1126 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1127 {
1128 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1129 	struct virtchnl_queue_select *vqs =
1130 		(struct virtchnl_queue_select *)msg;
1131 	struct ice_eth_stats stats = { 0 };
1132 	struct ice_vsi *vsi;
1133 
1134 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1135 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1136 		goto error_param;
1137 	}
1138 
1139 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1140 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1141 		goto error_param;
1142 	}
1143 
1144 	vsi = ice_get_vf_vsi(vf);
1145 	if (!vsi) {
1146 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1147 		goto error_param;
1148 	}
1149 
1150 	ice_update_eth_stats(vsi);
1151 
1152 	stats = vsi->eth_stats;
1153 
1154 error_param:
1155 	/* send the response to the VF */
1156 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1157 				     (u8 *)&stats, sizeof(stats));
1158 }
1159 
1160 /**
1161  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1162  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1163  *
1164  * Return true on successful validation, else false
1165  */
1166 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1167 {
1168 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1169 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1170 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1171 		return false;
1172 
1173 	return true;
1174 }
1175 
1176 /**
1177  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1178  * @vsi: VSI of the VF to configure
1179  * @q_idx: VF queue index used to determine the queue in the PF's space
1180  */
1181 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1182 {
1183 	struct ice_hw *hw = &vsi->back->hw;
1184 	u32 pfq = vsi->txq_map[q_idx];
1185 	u32 reg;
1186 
1187 	reg = rd32(hw, QINT_TQCTL(pfq));
1188 
1189 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1190 	 * this is most likely a poll mode VF driver, so don't enable an
1191 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1192 	 */
1193 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1194 		return;
1195 
1196 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1197 }
1198 
1199 /**
1200  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1201  * @vsi: VSI of the VF to configure
1202  * @q_idx: VF queue index used to determine the queue in the PF's space
1203  */
1204 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1205 {
1206 	struct ice_hw *hw = &vsi->back->hw;
1207 	u32 pfq = vsi->rxq_map[q_idx];
1208 	u32 reg;
1209 
1210 	reg = rd32(hw, QINT_RQCTL(pfq));
1211 
1212 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1213 	 * this is most likely a poll mode VF driver, so don't enable an
1214 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1215 	 */
1216 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1217 		return;
1218 
1219 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1220 }
1221 
1222 /**
1223  * ice_vc_ena_qs_msg
1224  * @vf: pointer to the VF info
1225  * @msg: pointer to the msg buffer
1226  *
1227  * called from the VF to enable all or specific queue(s)
1228  */
1229 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1230 {
1231 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1232 	struct virtchnl_queue_select *vqs =
1233 	    (struct virtchnl_queue_select *)msg;
1234 	struct ice_vsi *vsi;
1235 	unsigned long q_map;
1236 	u16 vf_q_id;
1237 
1238 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1239 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1240 		goto error_param;
1241 	}
1242 
1243 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1244 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1245 		goto error_param;
1246 	}
1247 
1248 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1249 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1250 		goto error_param;
1251 	}
1252 
1253 	vsi = ice_get_vf_vsi(vf);
1254 	if (!vsi) {
1255 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1256 		goto error_param;
1257 	}
1258 
1259 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1260 	 * Tx queue group list was configured and the context bits were
1261 	 * programmed using ice_vsi_cfg_txqs
1262 	 */
1263 	q_map = vqs->rx_queues;
1264 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1265 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1266 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1267 			goto error_param;
1268 		}
1269 
1270 		/* Skip queue if enabled */
1271 		if (test_bit(vf_q_id, vf->rxq_ena))
1272 			continue;
1273 
1274 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1275 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1276 				vf_q_id, vsi->vsi_num);
1277 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1278 			goto error_param;
1279 		}
1280 
1281 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1282 		set_bit(vf_q_id, vf->rxq_ena);
1283 	}
1284 
1285 	q_map = vqs->tx_queues;
1286 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1287 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1288 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1289 			goto error_param;
1290 		}
1291 
1292 		/* Skip queue if enabled */
1293 		if (test_bit(vf_q_id, vf->txq_ena))
1294 			continue;
1295 
1296 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1297 		set_bit(vf_q_id, vf->txq_ena);
1298 	}
1299 
1300 	/* Set flag to indicate that queues are enabled */
1301 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1302 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1303 
1304 error_param:
1305 	/* send the response to the VF */
1306 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1307 				     NULL, 0);
1308 }
1309 
1310 /**
1311  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1312  * @vf: VF to disable queue for
1313  * @vsi: VSI for the VF
1314  * @q_id: VF relative (0-based) queue ID
1315  *
1316  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1317  * disabled then clear q_id bit in the enabled queues bitmap and return
1318  * success. Otherwise return error.
1319  */
1320 static int
1321 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1322 {
1323 	struct ice_txq_meta txq_meta = { 0 };
1324 	struct ice_tx_ring *ring;
1325 	int err;
1326 
1327 	if (!test_bit(q_id, vf->txq_ena))
1328 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1329 			q_id, vsi->vsi_num);
1330 
1331 	ring = vsi->tx_rings[q_id];
1332 	if (!ring)
1333 		return -EINVAL;
1334 
1335 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1336 
1337 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1338 	if (err) {
1339 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1340 			q_id, vsi->vsi_num);
1341 		return err;
1342 	}
1343 
1344 	/* Clear enabled queues flag */
1345 	clear_bit(q_id, vf->txq_ena);
1346 
1347 	return 0;
1348 }
1349 
1350 /**
1351  * ice_vc_dis_qs_msg
1352  * @vf: pointer to the VF info
1353  * @msg: pointer to the msg buffer
1354  *
1355  * called from the VF to disable all or specific queue(s)
1356  */
1357 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1358 {
1359 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1360 	struct virtchnl_queue_select *vqs =
1361 	    (struct virtchnl_queue_select *)msg;
1362 	struct ice_vsi *vsi;
1363 	unsigned long q_map;
1364 	u16 vf_q_id;
1365 
1366 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1367 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1368 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1369 		goto error_param;
1370 	}
1371 
1372 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1373 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1374 		goto error_param;
1375 	}
1376 
1377 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1378 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1379 		goto error_param;
1380 	}
1381 
1382 	vsi = ice_get_vf_vsi(vf);
1383 	if (!vsi) {
1384 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1385 		goto error_param;
1386 	}
1387 
1388 	if (vqs->tx_queues) {
1389 		q_map = vqs->tx_queues;
1390 
1391 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1392 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1393 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 				goto error_param;
1395 			}
1396 
1397 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1398 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1399 				goto error_param;
1400 			}
1401 		}
1402 	}
1403 
1404 	q_map = vqs->rx_queues;
1405 	/* speed up Rx queue disable by batching them if possible */
1406 	if (q_map &&
1407 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1408 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1409 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1410 				vsi->vsi_num);
1411 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1412 			goto error_param;
1413 		}
1414 
1415 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1416 	} else if (q_map) {
1417 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1418 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1419 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1420 				goto error_param;
1421 			}
1422 
1423 			/* Skip queue if not enabled */
1424 			if (!test_bit(vf_q_id, vf->rxq_ena))
1425 				continue;
1426 
1427 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1428 						     true)) {
1429 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1430 					vf_q_id, vsi->vsi_num);
1431 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1432 				goto error_param;
1433 			}
1434 
1435 			/* Clear enabled queues flag */
1436 			clear_bit(vf_q_id, vf->rxq_ena);
1437 		}
1438 	}
1439 
1440 	/* Clear enabled queues flag */
1441 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1442 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1443 
1444 error_param:
1445 	/* send the response to the VF */
1446 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1447 				     NULL, 0);
1448 }
1449 
1450 /**
1451  * ice_cfg_interrupt
1452  * @vf: pointer to the VF info
1453  * @vsi: the VSI being configured
1454  * @vector_id: vector ID
1455  * @map: vector map for mapping vectors to queues
1456  * @q_vector: structure for interrupt vector
1457  * configure the IRQ to queue map
1458  */
1459 static int
1460 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1461 		  struct virtchnl_vector_map *map,
1462 		  struct ice_q_vector *q_vector)
1463 {
1464 	u16 vsi_q_id, vsi_q_id_idx;
1465 	unsigned long qmap;
1466 
1467 	q_vector->num_ring_rx = 0;
1468 	q_vector->num_ring_tx = 0;
1469 
1470 	qmap = map->rxq_map;
1471 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1472 		vsi_q_id = vsi_q_id_idx;
1473 
1474 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1475 			return VIRTCHNL_STATUS_ERR_PARAM;
1476 
1477 		q_vector->num_ring_rx++;
1478 		q_vector->rx.itr_idx = map->rxitr_idx;
1479 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1480 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1481 				      q_vector->rx.itr_idx);
1482 	}
1483 
1484 	qmap = map->txq_map;
1485 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1486 		vsi_q_id = vsi_q_id_idx;
1487 
1488 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1489 			return VIRTCHNL_STATUS_ERR_PARAM;
1490 
1491 		q_vector->num_ring_tx++;
1492 		q_vector->tx.itr_idx = map->txitr_idx;
1493 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1494 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1495 				      q_vector->tx.itr_idx);
1496 	}
1497 
1498 	return VIRTCHNL_STATUS_SUCCESS;
1499 }
1500 
1501 /**
1502  * ice_vc_cfg_irq_map_msg
1503  * @vf: pointer to the VF info
1504  * @msg: pointer to the msg buffer
1505  *
1506  * called from the VF to configure the IRQ to queue map
1507  */
1508 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1509 {
1510 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1511 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1512 	struct virtchnl_irq_map_info *irqmap_info;
1513 	struct virtchnl_vector_map *map;
1514 	struct ice_pf *pf = vf->pf;
1515 	struct ice_vsi *vsi;
1516 	int i;
1517 
1518 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1519 	num_q_vectors_mapped = irqmap_info->num_vectors;
1520 
1521 	/* Check to make sure number of VF vectors mapped is not greater than
1522 	 * number of VF vectors originally allocated, and check that
1523 	 * there is actually at least a single VF queue vector mapped
1524 	 */
1525 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1526 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1527 	    !num_q_vectors_mapped) {
1528 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1529 		goto error_param;
1530 	}
1531 
1532 	vsi = ice_get_vf_vsi(vf);
1533 	if (!vsi) {
1534 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1535 		goto error_param;
1536 	}
1537 
1538 	for (i = 0; i < num_q_vectors_mapped; i++) {
1539 		struct ice_q_vector *q_vector;
1540 
1541 		map = &irqmap_info->vecmap[i];
1542 
1543 		vector_id = map->vector_id;
1544 		vsi_id = map->vsi_id;
1545 		/* vector_id is always 0-based for each VF, and can never be
1546 		 * larger than or equal to the max allowed interrupts per VF
1547 		 */
1548 		if (!(vector_id < pf->vfs.num_msix_per) ||
1549 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1550 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1551 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1552 			goto error_param;
1553 		}
1554 
1555 		/* No need to map VF miscellaneous or rogue vector */
1556 		if (!vector_id)
1557 			continue;
1558 
1559 		/* Subtract non queue vector from vector_id passed by VF
1560 		 * to get actual number of VSI queue vector array index
1561 		 */
1562 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1563 		if (!q_vector) {
1564 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1565 			goto error_param;
1566 		}
1567 
1568 		/* lookout for the invalid queue index */
1569 		v_ret = (enum virtchnl_status_code)
1570 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1571 		if (v_ret)
1572 			goto error_param;
1573 	}
1574 
1575 error_param:
1576 	/* send the response to the VF */
1577 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1578 				     NULL, 0);
1579 }
1580 
1581 /**
1582  * ice_vc_cfg_qs_msg
1583  * @vf: pointer to the VF info
1584  * @msg: pointer to the msg buffer
1585  *
1586  * called from the VF to configure the Rx/Tx queues
1587  */
1588 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1589 {
1590 	struct virtchnl_vsi_queue_config_info *qci =
1591 	    (struct virtchnl_vsi_queue_config_info *)msg;
1592 	struct virtchnl_queue_pair_info *qpi;
1593 	struct ice_pf *pf = vf->pf;
1594 	struct ice_lag *lag;
1595 	struct ice_vsi *vsi;
1596 	u8 act_prt, pri_prt;
1597 	int i = -1, q_idx;
1598 
1599 	lag = pf->lag;
1600 	mutex_lock(&pf->lag_mutex);
1601 	act_prt = ICE_LAG_INVALID_PORT;
1602 	pri_prt = pf->hw.port_info->lport;
1603 	if (lag && lag->bonded && lag->primary) {
1604 		act_prt = lag->active_port;
1605 		if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT &&
1606 		    lag->upper_netdev)
1607 			ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt);
1608 		else
1609 			act_prt = ICE_LAG_INVALID_PORT;
1610 	}
1611 
1612 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1613 		goto error_param;
1614 
1615 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1616 		goto error_param;
1617 
1618 	vsi = ice_get_vf_vsi(vf);
1619 	if (!vsi)
1620 		goto error_param;
1621 
1622 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1623 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1624 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1625 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1626 		goto error_param;
1627 	}
1628 
1629 	for (i = 0; i < qci->num_queue_pairs; i++) {
1630 		qpi = &qci->qpair[i];
1631 		if (qpi->txq.vsi_id != qci->vsi_id ||
1632 		    qpi->rxq.vsi_id != qci->vsi_id ||
1633 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1634 		    qpi->txq.headwb_enabled ||
1635 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1636 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1637 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1638 			goto error_param;
1639 		}
1640 
1641 		q_idx = qpi->rxq.queue_id;
1642 
1643 		/* make sure selected "q_idx" is in valid range of queues
1644 		 * for selected "vsi"
1645 		 */
1646 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1647 			goto error_param;
1648 		}
1649 
1650 		/* copy Tx queue info from VF into VSI */
1651 		if (qpi->txq.ring_len > 0) {
1652 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1653 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1654 
1655 			/* Disable any existing queue first */
1656 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1657 				goto error_param;
1658 
1659 			/* Configure a queue with the requested settings */
1660 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1661 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1662 					 vf->vf_id, i);
1663 				goto error_param;
1664 			}
1665 		}
1666 
1667 		/* copy Rx queue info from VF into VSI */
1668 		if (qpi->rxq.ring_len > 0) {
1669 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1670 			u32 rxdid;
1671 
1672 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1673 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1674 
1675 			if (qpi->rxq.databuffer_size != 0 &&
1676 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1677 			     qpi->rxq.databuffer_size < 1024))
1678 				goto error_param;
1679 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1680 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1681 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1682 			    qpi->rxq.max_pkt_size < 64)
1683 				goto error_param;
1684 
1685 			vsi->max_frame = qpi->rxq.max_pkt_size;
1686 			/* add space for the port VLAN since the VF driver is
1687 			 * not expected to account for it in the MTU
1688 			 * calculation
1689 			 */
1690 			if (ice_vf_is_port_vlan_ena(vf))
1691 				vsi->max_frame += VLAN_HLEN;
1692 
1693 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1694 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1695 					 vf->vf_id, i);
1696 				goto error_param;
1697 			}
1698 
1699 			/* If Rx flex desc is supported, select RXDID for Rx
1700 			 * queues. Otherwise, use legacy 32byte descriptor
1701 			 * format. Legacy 16byte descriptor is not supported.
1702 			 * If this RXDID is selected, return error.
1703 			 */
1704 			if (vf->driver_caps &
1705 			    VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1706 				rxdid = qpi->rxq.rxdid;
1707 				if (!(BIT(rxdid) & pf->supported_rxdids))
1708 					goto error_param;
1709 			} else {
1710 				rxdid = ICE_RXDID_LEGACY_1;
1711 			}
1712 
1713 			ice_write_qrxflxp_cntxt(&vsi->back->hw,
1714 						vsi->rxq_map[q_idx],
1715 						rxdid, 0x03, false);
1716 		}
1717 	}
1718 
1719 	if (lag && lag->bonded && lag->primary &&
1720 	    act_prt != ICE_LAG_INVALID_PORT)
1721 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1722 	mutex_unlock(&pf->lag_mutex);
1723 
1724 	/* send the response to the VF */
1725 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1726 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1727 error_param:
1728 	/* disable whatever we can */
1729 	for (; i >= 0; i--) {
1730 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1731 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1732 				vf->vf_id, i);
1733 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1734 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1735 				vf->vf_id, i);
1736 	}
1737 
1738 	if (lag && lag->bonded && lag->primary &&
1739 	    act_prt != ICE_LAG_INVALID_PORT)
1740 		ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt);
1741 	mutex_unlock(&pf->lag_mutex);
1742 
1743 	ice_lag_move_new_vf_nodes(vf);
1744 
1745 	/* send the response to the VF */
1746 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1747 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1748 }
1749 
1750 /**
1751  * ice_can_vf_change_mac
1752  * @vf: pointer to the VF info
1753  *
1754  * Return true if the VF is allowed to change its MAC filters, false otherwise
1755  */
1756 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1757 {
1758 	/* If the VF MAC address has been set administratively (via the
1759 	 * ndo_set_vf_mac command), then deny permission to the VF to
1760 	 * add/delete unicast MAC addresses, unless the VF is trusted
1761 	 */
1762 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1763 		return false;
1764 
1765 	return true;
1766 }
1767 
1768 /**
1769  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1770  * @vc_ether_addr: used to extract the type
1771  */
1772 static u8
1773 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1774 {
1775 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1776 }
1777 
1778 /**
1779  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1780  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1781  */
1782 static bool
1783 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1784 {
1785 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1786 
1787 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1788 }
1789 
1790 /**
1791  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1792  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1793  *
1794  * This function should only be called when the MAC address in
1795  * virtchnl_ether_addr is a valid unicast MAC
1796  */
1797 static bool
1798 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1799 {
1800 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1801 
1802 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1803 }
1804 
1805 /**
1806  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1807  * @vf: VF to update
1808  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1809  */
1810 static void
1811 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1812 {
1813 	u8 *mac_addr = vc_ether_addr->addr;
1814 
1815 	if (!is_valid_ether_addr(mac_addr))
1816 		return;
1817 
1818 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1819 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1820 	 * was correctly specified over VIRTCHNL
1821 	 */
1822 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1823 	     is_zero_ether_addr(vf->hw_lan_addr)) ||
1824 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1825 		ether_addr_copy(vf->dev_lan_addr, mac_addr);
1826 		ether_addr_copy(vf->hw_lan_addr, mac_addr);
1827 	}
1828 
1829 	/* hardware and device MACs are already set, but its possible that the
1830 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1831 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1832 	 * away for the legacy VF driver case as it will be updated in the
1833 	 * delete flow for this case
1834 	 */
1835 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1836 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1837 				mac_addr);
1838 		vf->legacy_last_added_umac.time_modified = jiffies;
1839 	}
1840 }
1841 
1842 /**
1843  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1844  * @vf: pointer to the VF info
1845  * @vsi: pointer to the VF's VSI
1846  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1847  */
1848 static int
1849 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1850 		    struct virtchnl_ether_addr *vc_ether_addr)
1851 {
1852 	struct device *dev = ice_pf_to_dev(vf->pf);
1853 	u8 *mac_addr = vc_ether_addr->addr;
1854 	int ret;
1855 
1856 	/* device MAC already added */
1857 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1858 		return 0;
1859 
1860 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1861 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1862 		return -EPERM;
1863 	}
1864 
1865 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1866 	if (ret == -EEXIST) {
1867 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1868 			vf->vf_id);
1869 		/* don't return since we might need to update
1870 		 * the primary MAC in ice_vfhw_mac_add() below
1871 		 */
1872 	} else if (ret) {
1873 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1874 			mac_addr, vf->vf_id, ret);
1875 		return ret;
1876 	} else {
1877 		vf->num_mac++;
1878 	}
1879 
1880 	ice_vfhw_mac_add(vf, vc_ether_addr);
1881 
1882 	return ret;
1883 }
1884 
1885 /**
1886  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1887  * @last_added_umac: structure used to check expiration
1888  */
1889 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1890 {
1891 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1892 	return time_is_before_jiffies(last_added_umac->time_modified +
1893 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1894 }
1895 
1896 /**
1897  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1898  * @vf: VF to update
1899  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1900  *
1901  * only update cached hardware MAC for legacy VF drivers on delete
1902  * because we cannot guarantee order/type of MAC from the VF driver
1903  */
1904 static void
1905 ice_update_legacy_cached_mac(struct ice_vf *vf,
1906 			     struct virtchnl_ether_addr *vc_ether_addr)
1907 {
1908 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1909 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1910 		return;
1911 
1912 	ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1913 	ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1914 }
1915 
1916 /**
1917  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1918  * @vf: VF to update
1919  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1920  */
1921 static void
1922 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1923 {
1924 	u8 *mac_addr = vc_ether_addr->addr;
1925 
1926 	if (!is_valid_ether_addr(mac_addr) ||
1927 	    !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1928 		return;
1929 
1930 	/* allow the device MAC to be repopulated in the add flow and don't
1931 	 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1932 	 * to be persistent on VM reboot and across driver unload/load, which
1933 	 * won't work if we clear the hardware MAC here
1934 	 */
1935 	eth_zero_addr(vf->dev_lan_addr);
1936 
1937 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1938 }
1939 
1940 /**
1941  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1942  * @vf: pointer to the VF info
1943  * @vsi: pointer to the VF's VSI
1944  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1945  */
1946 static int
1947 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1948 		    struct virtchnl_ether_addr *vc_ether_addr)
1949 {
1950 	struct device *dev = ice_pf_to_dev(vf->pf);
1951 	u8 *mac_addr = vc_ether_addr->addr;
1952 	int status;
1953 
1954 	if (!ice_can_vf_change_mac(vf) &&
1955 	    ether_addr_equal(vf->dev_lan_addr, mac_addr))
1956 		return 0;
1957 
1958 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1959 	if (status == -ENOENT) {
1960 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1961 			vf->vf_id);
1962 		return -ENOENT;
1963 	} else if (status) {
1964 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1965 			mac_addr, vf->vf_id, status);
1966 		return -EIO;
1967 	}
1968 
1969 	ice_vfhw_mac_del(vf, vc_ether_addr);
1970 
1971 	vf->num_mac--;
1972 
1973 	return 0;
1974 }
1975 
1976 /**
1977  * ice_vc_handle_mac_addr_msg
1978  * @vf: pointer to the VF info
1979  * @msg: pointer to the msg buffer
1980  * @set: true if MAC filters are being set, false otherwise
1981  *
1982  * add guest MAC address filter
1983  */
1984 static int
1985 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1986 {
1987 	int (*ice_vc_cfg_mac)
1988 		(struct ice_vf *vf, struct ice_vsi *vsi,
1989 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1990 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1991 	struct virtchnl_ether_addr_list *al =
1992 	    (struct virtchnl_ether_addr_list *)msg;
1993 	struct ice_pf *pf = vf->pf;
1994 	enum virtchnl_ops vc_op;
1995 	struct ice_vsi *vsi;
1996 	int i;
1997 
1998 	if (set) {
1999 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
2000 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
2001 	} else {
2002 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
2003 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
2004 	}
2005 
2006 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
2007 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
2008 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2009 		goto handle_mac_exit;
2010 	}
2011 
2012 	/* If this VF is not privileged, then we can't add more than a
2013 	 * limited number of addresses. Check to make sure that the
2014 	 * additions do not push us over the limit.
2015 	 */
2016 	if (set && !ice_is_vf_trusted(vf) &&
2017 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2018 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2019 			vf->vf_id);
2020 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2021 		goto handle_mac_exit;
2022 	}
2023 
2024 	vsi = ice_get_vf_vsi(vf);
2025 	if (!vsi) {
2026 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2027 		goto handle_mac_exit;
2028 	}
2029 
2030 	for (i = 0; i < al->num_elements; i++) {
2031 		u8 *mac_addr = al->list[i].addr;
2032 		int result;
2033 
2034 		if (is_broadcast_ether_addr(mac_addr) ||
2035 		    is_zero_ether_addr(mac_addr))
2036 			continue;
2037 
2038 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2039 		if (result == -EEXIST || result == -ENOENT) {
2040 			continue;
2041 		} else if (result) {
2042 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2043 			goto handle_mac_exit;
2044 		}
2045 	}
2046 
2047 handle_mac_exit:
2048 	/* send the response to the VF */
2049 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2050 }
2051 
2052 /**
2053  * ice_vc_add_mac_addr_msg
2054  * @vf: pointer to the VF info
2055  * @msg: pointer to the msg buffer
2056  *
2057  * add guest MAC address filter
2058  */
2059 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2060 {
2061 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
2062 }
2063 
2064 /**
2065  * ice_vc_del_mac_addr_msg
2066  * @vf: pointer to the VF info
2067  * @msg: pointer to the msg buffer
2068  *
2069  * remove guest MAC address filter
2070  */
2071 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2072 {
2073 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2074 }
2075 
2076 /**
2077  * ice_vc_request_qs_msg
2078  * @vf: pointer to the VF info
2079  * @msg: pointer to the msg buffer
2080  *
2081  * VFs get a default number of queues but can use this message to request a
2082  * different number. If the request is successful, PF will reset the VF and
2083  * return 0. If unsuccessful, PF will send message informing VF of number of
2084  * available queue pairs via virtchnl message response to VF.
2085  */
2086 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2087 {
2088 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2089 	struct virtchnl_vf_res_request *vfres =
2090 		(struct virtchnl_vf_res_request *)msg;
2091 	u16 req_queues = vfres->num_queue_pairs;
2092 	struct ice_pf *pf = vf->pf;
2093 	u16 max_allowed_vf_queues;
2094 	u16 tx_rx_queue_left;
2095 	struct device *dev;
2096 	u16 cur_queues;
2097 
2098 	dev = ice_pf_to_dev(pf);
2099 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2100 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2101 		goto error_param;
2102 	}
2103 
2104 	cur_queues = vf->num_vf_qs;
2105 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2106 				 ice_get_avail_rxq_count(pf));
2107 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2108 	if (!req_queues) {
2109 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2110 			vf->vf_id);
2111 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2112 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2113 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2114 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2115 	} else if (req_queues > cur_queues &&
2116 		   req_queues - cur_queues > tx_rx_queue_left) {
2117 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2118 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2119 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2120 					       ICE_MAX_RSS_QS_PER_VF);
2121 	} else {
2122 		/* request is successful, then reset VF */
2123 		vf->num_req_qs = req_queues;
2124 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2125 		dev_info(dev, "VF %d granted request of %u queues.\n",
2126 			 vf->vf_id, req_queues);
2127 		return 0;
2128 	}
2129 
2130 error_param:
2131 	/* send the response to the VF */
2132 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2133 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2134 }
2135 
2136 /**
2137  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2138  * @caps: VF driver negotiated capabilities
2139  *
2140  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2141  */
2142 static bool ice_vf_vlan_offload_ena(u32 caps)
2143 {
2144 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2145 }
2146 
2147 /**
2148  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2149  * @vf: VF used to determine if VLAN promiscuous config is allowed
2150  */
2151 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2152 {
2153 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2154 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2155 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2156 		return true;
2157 
2158 	return false;
2159 }
2160 
2161 /**
2162  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2163  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2164  * @vlan: VLAN used to enable VLAN promiscuous
2165  *
2166  * This function should only be called if VLAN promiscuous mode is allowed,
2167  * which can be determined via ice_is_vlan_promisc_allowed().
2168  */
2169 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2170 {
2171 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2172 	int status;
2173 
2174 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2175 					  vlan->vid);
2176 	if (status && status != -EEXIST)
2177 		return status;
2178 
2179 	return 0;
2180 }
2181 
2182 /**
2183  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2184  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2185  * @vlan: VLAN used to disable VLAN promiscuous
2186  *
2187  * This function should only be called if VLAN promiscuous mode is allowed,
2188  * which can be determined via ice_is_vlan_promisc_allowed().
2189  */
2190 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2191 {
2192 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2193 	int status;
2194 
2195 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2196 					    vlan->vid);
2197 	if (status && status != -ENOENT)
2198 		return status;
2199 
2200 	return 0;
2201 }
2202 
2203 /**
2204  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2205  * @vf: VF to check against
2206  * @vsi: VF's VSI
2207  *
2208  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2209  * wants to, so return false.
2210  *
2211  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2212  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2213  */
2214 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2215 {
2216 	if (ice_is_vf_trusted(vf))
2217 		return false;
2218 
2219 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2220 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2221 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2222 }
2223 
2224 /**
2225  * ice_vc_process_vlan_msg
2226  * @vf: pointer to the VF info
2227  * @msg: pointer to the msg buffer
2228  * @add_v: Add VLAN if true, otherwise delete VLAN
2229  *
2230  * Process virtchnl op to add or remove programmed guest VLAN ID
2231  */
2232 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2233 {
2234 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2235 	struct virtchnl_vlan_filter_list *vfl =
2236 	    (struct virtchnl_vlan_filter_list *)msg;
2237 	struct ice_pf *pf = vf->pf;
2238 	bool vlan_promisc = false;
2239 	struct ice_vsi *vsi;
2240 	struct device *dev;
2241 	int status = 0;
2242 	int i;
2243 
2244 	dev = ice_pf_to_dev(pf);
2245 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2246 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2247 		goto error_param;
2248 	}
2249 
2250 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2251 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2252 		goto error_param;
2253 	}
2254 
2255 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2256 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2257 		goto error_param;
2258 	}
2259 
2260 	for (i = 0; i < vfl->num_elements; i++) {
2261 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2262 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2263 			dev_err(dev, "invalid VF VLAN id %d\n",
2264 				vfl->vlan_id[i]);
2265 			goto error_param;
2266 		}
2267 	}
2268 
2269 	vsi = ice_get_vf_vsi(vf);
2270 	if (!vsi) {
2271 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2272 		goto error_param;
2273 	}
2274 
2275 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2276 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2277 			 vf->vf_id);
2278 		/* There is no need to let VF know about being not trusted,
2279 		 * so we can just return success message here
2280 		 */
2281 		goto error_param;
2282 	}
2283 
2284 	/* in DVM a VF can add/delete inner VLAN filters when
2285 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2286 	 */
2287 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2288 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2289 		goto error_param;
2290 	}
2291 
2292 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2293 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2294 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2295 	 */
2296 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2297 		!ice_is_dvm_ena(&pf->hw) &&
2298 		!ice_vf_is_port_vlan_ena(vf);
2299 
2300 	if (add_v) {
2301 		for (i = 0; i < vfl->num_elements; i++) {
2302 			u16 vid = vfl->vlan_id[i];
2303 			struct ice_vlan vlan;
2304 
2305 			if (ice_vf_has_max_vlans(vf, vsi)) {
2306 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2307 					 vf->vf_id);
2308 				/* There is no need to let VF know about being
2309 				 * not trusted, so we can just return success
2310 				 * message here as well.
2311 				 */
2312 				goto error_param;
2313 			}
2314 
2315 			/* we add VLAN 0 by default for each VF so we can enable
2316 			 * Tx VLAN anti-spoof without triggering MDD events so
2317 			 * we don't need to add it again here
2318 			 */
2319 			if (!vid)
2320 				continue;
2321 
2322 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2323 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2324 			if (status) {
2325 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326 				goto error_param;
2327 			}
2328 
2329 			/* Enable VLAN filtering on first non-zero VLAN */
2330 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2331 				if (vf->spoofchk) {
2332 					status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2333 					if (status) {
2334 						v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2335 						dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2336 							vid, status);
2337 						goto error_param;
2338 					}
2339 				}
2340 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2341 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2342 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2343 						vid, status);
2344 					goto error_param;
2345 				}
2346 			} else if (vlan_promisc) {
2347 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2348 				if (status) {
2349 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2350 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2351 						vid, status);
2352 				}
2353 			}
2354 		}
2355 	} else {
2356 		/* In case of non_trusted VF, number of VLAN elements passed
2357 		 * to PF for removal might be greater than number of VLANs
2358 		 * filter programmed for that VF - So, use actual number of
2359 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2360 		 * removing VLAN that doesn't exist, which result to sending
2361 		 * erroneous failed message back to the VF
2362 		 */
2363 		int num_vf_vlan;
2364 
2365 		num_vf_vlan = vsi->num_vlan;
2366 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2367 			u16 vid = vfl->vlan_id[i];
2368 			struct ice_vlan vlan;
2369 
2370 			/* we add VLAN 0 by default for each VF so we can enable
2371 			 * Tx VLAN anti-spoof without triggering MDD events so
2372 			 * we don't want a VIRTCHNL request to remove it
2373 			 */
2374 			if (!vid)
2375 				continue;
2376 
2377 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2378 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2379 			if (status) {
2380 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2381 				goto error_param;
2382 			}
2383 
2384 			/* Disable VLAN filtering when only VLAN 0 is left */
2385 			if (!ice_vsi_has_non_zero_vlans(vsi)) {
2386 				vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2387 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2388 			}
2389 
2390 			if (vlan_promisc)
2391 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2392 		}
2393 	}
2394 
2395 error_param:
2396 	/* send the response to the VF */
2397 	if (add_v)
2398 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2399 					     NULL, 0);
2400 	else
2401 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2402 					     NULL, 0);
2403 }
2404 
2405 /**
2406  * ice_vc_add_vlan_msg
2407  * @vf: pointer to the VF info
2408  * @msg: pointer to the msg buffer
2409  *
2410  * Add and program guest VLAN ID
2411  */
2412 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2413 {
2414 	return ice_vc_process_vlan_msg(vf, msg, true);
2415 }
2416 
2417 /**
2418  * ice_vc_remove_vlan_msg
2419  * @vf: pointer to the VF info
2420  * @msg: pointer to the msg buffer
2421  *
2422  * remove programmed guest VLAN ID
2423  */
2424 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2425 {
2426 	return ice_vc_process_vlan_msg(vf, msg, false);
2427 }
2428 
2429 /**
2430  * ice_vc_ena_vlan_stripping
2431  * @vf: pointer to the VF info
2432  *
2433  * Enable VLAN header stripping for a given VF
2434  */
2435 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2436 {
2437 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2438 	struct ice_vsi *vsi;
2439 
2440 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2441 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2442 		goto error_param;
2443 	}
2444 
2445 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2446 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2447 		goto error_param;
2448 	}
2449 
2450 	vsi = ice_get_vf_vsi(vf);
2451 	if (!vsi) {
2452 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2453 		goto error_param;
2454 	}
2455 
2456 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2457 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2458 
2459 error_param:
2460 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2461 				     v_ret, NULL, 0);
2462 }
2463 
2464 /**
2465  * ice_vc_dis_vlan_stripping
2466  * @vf: pointer to the VF info
2467  *
2468  * Disable VLAN header stripping for a given VF
2469  */
2470 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2471 {
2472 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2473 	struct ice_vsi *vsi;
2474 
2475 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2476 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2477 		goto error_param;
2478 	}
2479 
2480 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2481 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2482 		goto error_param;
2483 	}
2484 
2485 	vsi = ice_get_vf_vsi(vf);
2486 	if (!vsi) {
2487 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2488 		goto error_param;
2489 	}
2490 
2491 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2492 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2493 
2494 error_param:
2495 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2496 				     v_ret, NULL, 0);
2497 }
2498 
2499 /**
2500  * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2501  * @vf: pointer to the VF info
2502  */
2503 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2504 {
2505 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2506 	struct virtchnl_rss_hena *vrh = NULL;
2507 	int len = 0, ret;
2508 
2509 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2510 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2511 		goto err;
2512 	}
2513 
2514 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2515 		dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2516 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2517 		goto err;
2518 	}
2519 
2520 	len = sizeof(struct virtchnl_rss_hena);
2521 	vrh = kzalloc(len, GFP_KERNEL);
2522 	if (!vrh) {
2523 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2524 		len = 0;
2525 		goto err;
2526 	}
2527 
2528 	vrh->hena = ICE_DEFAULT_RSS_HENA;
2529 err:
2530 	/* send the response back to the VF */
2531 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2532 				    (u8 *)vrh, len);
2533 	kfree(vrh);
2534 	return ret;
2535 }
2536 
2537 /**
2538  * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2539  * @vf: pointer to the VF info
2540  * @msg: pointer to the msg buffer
2541  */
2542 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2543 {
2544 	struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2545 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2546 	struct ice_pf *pf = vf->pf;
2547 	struct ice_vsi *vsi;
2548 	struct device *dev;
2549 	int status;
2550 
2551 	dev = ice_pf_to_dev(pf);
2552 
2553 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2554 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2555 		goto err;
2556 	}
2557 
2558 	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2559 		dev_err(dev, "RSS not supported by PF\n");
2560 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2561 		goto err;
2562 	}
2563 
2564 	vsi = ice_get_vf_vsi(vf);
2565 	if (!vsi) {
2566 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2567 		goto err;
2568 	}
2569 
2570 	/* clear all previously programmed RSS configuration to allow VF drivers
2571 	 * the ability to customize the RSS configuration and/or completely
2572 	 * disable RSS
2573 	 */
2574 	status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2575 	if (status && !vrh->hena) {
2576 		/* only report failure to clear the current RSS configuration if
2577 		 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2578 		 */
2579 		v_ret = ice_err_to_virt_err(status);
2580 		goto err;
2581 	} else if (status) {
2582 		/* allow the VF to update the RSS configuration even on failure
2583 		 * to clear the current RSS confguration in an attempt to keep
2584 		 * RSS in a working state
2585 		 */
2586 		dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2587 			 vf->vf_id);
2588 	}
2589 
2590 	if (vrh->hena) {
2591 		status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2592 		v_ret = ice_err_to_virt_err(status);
2593 	}
2594 
2595 	/* send the response to the VF */
2596 err:
2597 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2598 				     NULL, 0);
2599 }
2600 
2601 /**
2602  * ice_vc_query_rxdid - query RXDID supported by DDP package
2603  * @vf: pointer to VF info
2604  *
2605  * Called from VF to query a bitmap of supported flexible
2606  * descriptor RXDIDs of a DDP package.
2607  */
2608 static int ice_vc_query_rxdid(struct ice_vf *vf)
2609 {
2610 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2611 	struct virtchnl_supported_rxdids *rxdid = NULL;
2612 	struct ice_hw *hw = &vf->pf->hw;
2613 	struct ice_pf *pf = vf->pf;
2614 	int len = 0;
2615 	int ret, i;
2616 	u32 regval;
2617 
2618 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2619 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2620 		goto err;
2621 	}
2622 
2623 	if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2624 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2625 		goto err;
2626 	}
2627 
2628 	len = sizeof(struct virtchnl_supported_rxdids);
2629 	rxdid = kzalloc(len, GFP_KERNEL);
2630 	if (!rxdid) {
2631 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2632 		len = 0;
2633 		goto err;
2634 	}
2635 
2636 	/* RXDIDs supported by DDP package can be read from the register
2637 	 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2638 	 * is not listed in DDP package, add it in the bitmap manually.
2639 	 * Legacy 16byte descriptor is not supported.
2640 	 */
2641 	rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2642 
2643 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2644 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2645 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2646 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2647 			rxdid->supported_rxdids |= BIT(i);
2648 	}
2649 
2650 	pf->supported_rxdids = rxdid->supported_rxdids;
2651 
2652 err:
2653 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2654 				    v_ret, (u8 *)rxdid, len);
2655 	kfree(rxdid);
2656 	return ret;
2657 }
2658 
2659 /**
2660  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2661  * @vf: VF to enable/disable VLAN stripping for on initialization
2662  *
2663  * Set the default for VLAN stripping based on whether a port VLAN is configured
2664  * and the current VLAN mode of the device.
2665  */
2666 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2667 {
2668 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2669 
2670 	if (!vsi)
2671 		return -EINVAL;
2672 
2673 	/* don't modify stripping if port VLAN is configured in SVM since the
2674 	 * port VLAN is based on the inner/single VLAN in SVM
2675 	 */
2676 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2677 		return 0;
2678 
2679 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2680 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2681 	else
2682 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2683 }
2684 
2685 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2686 {
2687 	if (vf->trusted)
2688 		return VLAN_N_VID;
2689 	else
2690 		return ICE_MAX_VLAN_PER_VF;
2691 }
2692 
2693 /**
2694  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2695  * @vf: VF that being checked for
2696  *
2697  * When the device is in double VLAN mode, check whether or not the outer VLAN
2698  * is allowed.
2699  */
2700 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2701 {
2702 	if (ice_vf_is_port_vlan_ena(vf))
2703 		return true;
2704 
2705 	return false;
2706 }
2707 
2708 /**
2709  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2710  * @vf: VF that capabilities are being set for
2711  * @caps: VLAN capabilities to populate
2712  *
2713  * Determine VLAN capabilities support based on whether a port VLAN is
2714  * configured. If a port VLAN is configured then the VF should use the inner
2715  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2716  * capabilies.
2717  */
2718 static void
2719 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2720 {
2721 	struct virtchnl_vlan_supported_caps *supported_caps;
2722 
2723 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2724 		/* until support for inner VLAN filtering is added when a port
2725 		 * VLAN is configured, only support software offloaded inner
2726 		 * VLANs when a port VLAN is confgured in DVM
2727 		 */
2728 		supported_caps = &caps->filtering.filtering_support;
2729 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2730 
2731 		supported_caps = &caps->offloads.stripping_support;
2732 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2733 					VIRTCHNL_VLAN_TOGGLE |
2734 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2735 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2736 
2737 		supported_caps = &caps->offloads.insertion_support;
2738 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2739 					VIRTCHNL_VLAN_TOGGLE |
2740 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2741 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2742 
2743 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2744 		caps->offloads.ethertype_match =
2745 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2746 	} else {
2747 		supported_caps = &caps->filtering.filtering_support;
2748 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2749 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2750 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2751 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2752 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2753 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2754 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2755 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2756 
2757 		supported_caps = &caps->offloads.stripping_support;
2758 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2759 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2760 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2761 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2762 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2763 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2764 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2765 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2766 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2767 
2768 		supported_caps = &caps->offloads.insertion_support;
2769 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2770 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2771 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2772 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2773 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2774 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2775 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2776 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2777 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2778 
2779 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2780 
2781 		caps->offloads.ethertype_match =
2782 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2783 	}
2784 
2785 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2786 }
2787 
2788 /**
2789  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2790  * @vf: VF that capabilities are being set for
2791  * @caps: VLAN capabilities to populate
2792  *
2793  * Determine VLAN capabilities support based on whether a port VLAN is
2794  * configured. If a port VLAN is configured then the VF does not have any VLAN
2795  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2796  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2797  * VLAN fitlering and offload capabilities.
2798  */
2799 static void
2800 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2801 {
2802 	struct virtchnl_vlan_supported_caps *supported_caps;
2803 
2804 	if (ice_vf_is_port_vlan_ena(vf)) {
2805 		supported_caps = &caps->filtering.filtering_support;
2806 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2807 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2808 
2809 		supported_caps = &caps->offloads.stripping_support;
2810 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2811 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2812 
2813 		supported_caps = &caps->offloads.insertion_support;
2814 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2815 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2816 
2817 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2818 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2819 		caps->filtering.max_filters = 0;
2820 	} else {
2821 		supported_caps = &caps->filtering.filtering_support;
2822 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2823 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2824 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2825 
2826 		supported_caps = &caps->offloads.stripping_support;
2827 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2828 					VIRTCHNL_VLAN_TOGGLE |
2829 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2830 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2831 
2832 		supported_caps = &caps->offloads.insertion_support;
2833 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2834 					VIRTCHNL_VLAN_TOGGLE |
2835 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2836 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2837 
2838 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2839 		caps->offloads.ethertype_match =
2840 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2841 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2842 	}
2843 }
2844 
2845 /**
2846  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2847  * @vf: VF to determine VLAN capabilities for
2848  *
2849  * This will only be called if the VF and PF successfully negotiated
2850  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2851  *
2852  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2853  * is configured or not.
2854  */
2855 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2856 {
2857 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2858 	struct virtchnl_vlan_caps *caps = NULL;
2859 	int err, len = 0;
2860 
2861 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2862 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2863 		goto out;
2864 	}
2865 
2866 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2867 	if (!caps) {
2868 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2869 		goto out;
2870 	}
2871 	len = sizeof(*caps);
2872 
2873 	if (ice_is_dvm_ena(&vf->pf->hw))
2874 		ice_vc_set_dvm_caps(vf, caps);
2875 	else
2876 		ice_vc_set_svm_caps(vf, caps);
2877 
2878 	/* store negotiated caps to prevent invalid VF messages */
2879 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2880 
2881 out:
2882 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2883 				    v_ret, (u8 *)caps, len);
2884 	kfree(caps);
2885 	return err;
2886 }
2887 
2888 /**
2889  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2890  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2891  * @tpid: VLAN TPID used for validation
2892  *
2893  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2894  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2895  */
2896 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2897 {
2898 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2899 
2900 	switch (tpid) {
2901 	case ETH_P_8021Q:
2902 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2903 		break;
2904 	case ETH_P_8021AD:
2905 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2906 		break;
2907 	case ETH_P_QINQ1:
2908 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2909 		break;
2910 	}
2911 
2912 	if (!(filtering_caps & vlan_ethertype))
2913 		return false;
2914 
2915 	return true;
2916 }
2917 
2918 /**
2919  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2920  * @vc_vlan: virtchnl_vlan to validate
2921  *
2922  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2923  * false. Otherwise return true.
2924  */
2925 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2926 {
2927 	if (!vc_vlan->tci || !vc_vlan->tpid)
2928 		return false;
2929 
2930 	return true;
2931 }
2932 
2933 /**
2934  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2935  * @vfc: negotiated/supported VLAN filtering capabilities
2936  * @vfl: VLAN filter list from VF to validate
2937  *
2938  * Validate all of the filters in the VLAN filter list from the VF. If any of
2939  * the checks fail then return false. Otherwise return true.
2940  */
2941 static bool
2942 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2943 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2944 {
2945 	u16 i;
2946 
2947 	if (!vfl->num_elements)
2948 		return false;
2949 
2950 	for (i = 0; i < vfl->num_elements; i++) {
2951 		struct virtchnl_vlan_supported_caps *filtering_support =
2952 			&vfc->filtering_support;
2953 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2954 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2955 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2956 
2957 		if ((ice_vc_is_valid_vlan(outer) &&
2958 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2959 		    (ice_vc_is_valid_vlan(inner) &&
2960 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2961 			return false;
2962 
2963 		if ((outer->tci_mask &&
2964 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2965 		    (inner->tci_mask &&
2966 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2967 			return false;
2968 
2969 		if (((outer->tci & VLAN_PRIO_MASK) &&
2970 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2971 		    ((inner->tci & VLAN_PRIO_MASK) &&
2972 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2973 			return false;
2974 
2975 		if ((ice_vc_is_valid_vlan(outer) &&
2976 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2977 						outer->tpid)) ||
2978 		    (ice_vc_is_valid_vlan(inner) &&
2979 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2980 						inner->tpid)))
2981 			return false;
2982 	}
2983 
2984 	return true;
2985 }
2986 
2987 /**
2988  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2989  * @vc_vlan: struct virtchnl_vlan to transform
2990  */
2991 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2992 {
2993 	struct ice_vlan vlan = { 0 };
2994 
2995 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2996 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2997 	vlan.tpid = vc_vlan->tpid;
2998 
2999 	return vlan;
3000 }
3001 
3002 /**
3003  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
3004  * @vsi: VF's VSI used to perform the action
3005  * @vlan_action: function to perform the action with (i.e. add/del)
3006  * @vlan: VLAN filter to perform the action with
3007  */
3008 static int
3009 ice_vc_vlan_action(struct ice_vsi *vsi,
3010 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
3011 		   struct ice_vlan *vlan)
3012 {
3013 	int err;
3014 
3015 	err = vlan_action(vsi, vlan);
3016 	if (err)
3017 		return err;
3018 
3019 	return 0;
3020 }
3021 
3022 /**
3023  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3024  * @vf: VF used to delete the VLAN(s)
3025  * @vsi: VF's VSI used to delete the VLAN(s)
3026  * @vfl: virthchnl filter list used to delete the filters
3027  */
3028 static int
3029 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3030 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3031 {
3032 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3033 	int err;
3034 	u16 i;
3035 
3036 	for (i = 0; i < vfl->num_elements; i++) {
3037 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3038 		struct virtchnl_vlan *vc_vlan;
3039 
3040 		vc_vlan = &vlan_fltr->outer;
3041 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3042 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3043 
3044 			err = ice_vc_vlan_action(vsi,
3045 						 vsi->outer_vlan_ops.del_vlan,
3046 						 &vlan);
3047 			if (err)
3048 				return err;
3049 
3050 			if (vlan_promisc)
3051 				ice_vf_dis_vlan_promisc(vsi, &vlan);
3052 
3053 			/* Disable VLAN filtering when only VLAN 0 is left */
3054 			if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3055 				err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3056 				if (err)
3057 					return err;
3058 			}
3059 		}
3060 
3061 		vc_vlan = &vlan_fltr->inner;
3062 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3063 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3064 
3065 			err = ice_vc_vlan_action(vsi,
3066 						 vsi->inner_vlan_ops.del_vlan,
3067 						 &vlan);
3068 			if (err)
3069 				return err;
3070 
3071 			/* no support for VLAN promiscuous on inner VLAN unless
3072 			 * we are in Single VLAN Mode (SVM)
3073 			 */
3074 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3075 				if (vlan_promisc)
3076 					ice_vf_dis_vlan_promisc(vsi, &vlan);
3077 
3078 				/* Disable VLAN filtering when only VLAN 0 is left */
3079 				if (!ice_vsi_has_non_zero_vlans(vsi)) {
3080 					err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3081 					if (err)
3082 						return err;
3083 				}
3084 			}
3085 		}
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /**
3092  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3093  * @vf: VF the message was received from
3094  * @msg: message received from the VF
3095  */
3096 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3097 {
3098 	struct virtchnl_vlan_filter_list_v2 *vfl =
3099 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3100 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3101 	struct ice_vsi *vsi;
3102 
3103 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3104 					      vfl)) {
3105 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3106 		goto out;
3107 	}
3108 
3109 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3110 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3111 		goto out;
3112 	}
3113 
3114 	vsi = ice_get_vf_vsi(vf);
3115 	if (!vsi) {
3116 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3117 		goto out;
3118 	}
3119 
3120 	if (ice_vc_del_vlans(vf, vsi, vfl))
3121 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3122 
3123 out:
3124 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3125 				     0);
3126 }
3127 
3128 /**
3129  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3130  * @vf: VF used to add the VLAN(s)
3131  * @vsi: VF's VSI used to add the VLAN(s)
3132  * @vfl: virthchnl filter list used to add the filters
3133  */
3134 static int
3135 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3136 		 struct virtchnl_vlan_filter_list_v2 *vfl)
3137 {
3138 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3139 	int err;
3140 	u16 i;
3141 
3142 	for (i = 0; i < vfl->num_elements; i++) {
3143 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3144 		struct virtchnl_vlan *vc_vlan;
3145 
3146 		vc_vlan = &vlan_fltr->outer;
3147 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3148 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3149 
3150 			err = ice_vc_vlan_action(vsi,
3151 						 vsi->outer_vlan_ops.add_vlan,
3152 						 &vlan);
3153 			if (err)
3154 				return err;
3155 
3156 			if (vlan_promisc) {
3157 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3158 				if (err)
3159 					return err;
3160 			}
3161 
3162 			/* Enable VLAN filtering on first non-zero VLAN */
3163 			if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3164 				err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3165 				if (err)
3166 					return err;
3167 			}
3168 		}
3169 
3170 		vc_vlan = &vlan_fltr->inner;
3171 		if (ice_vc_is_valid_vlan(vc_vlan)) {
3172 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3173 
3174 			err = ice_vc_vlan_action(vsi,
3175 						 vsi->inner_vlan_ops.add_vlan,
3176 						 &vlan);
3177 			if (err)
3178 				return err;
3179 
3180 			/* no support for VLAN promiscuous on inner VLAN unless
3181 			 * we are in Single VLAN Mode (SVM)
3182 			 */
3183 			if (!ice_is_dvm_ena(&vsi->back->hw)) {
3184 				if (vlan_promisc) {
3185 					err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3186 					if (err)
3187 						return err;
3188 				}
3189 
3190 				/* Enable VLAN filtering on first non-zero VLAN */
3191 				if (vf->spoofchk && vlan.vid) {
3192 					err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3193 					if (err)
3194 						return err;
3195 				}
3196 			}
3197 		}
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3205  * @vsi: VF VSI used to get number of existing VLAN filters
3206  * @vfc: negotiated/supported VLAN filtering capabilities
3207  * @vfl: VLAN filter list from VF to validate
3208  *
3209  * Validate all of the filters in the VLAN filter list from the VF during the
3210  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3211  * Otherwise return true.
3212  */
3213 static bool
3214 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3215 				     struct virtchnl_vlan_filtering_caps *vfc,
3216 				     struct virtchnl_vlan_filter_list_v2 *vfl)
3217 {
3218 	u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3219 		vfl->num_elements;
3220 
3221 	if (num_requested_filters > vfc->max_filters)
3222 		return false;
3223 
3224 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
3225 }
3226 
3227 /**
3228  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3229  * @vf: VF the message was received from
3230  * @msg: message received from the VF
3231  */
3232 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3233 {
3234 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3235 	struct virtchnl_vlan_filter_list_v2 *vfl =
3236 		(struct virtchnl_vlan_filter_list_v2 *)msg;
3237 	struct ice_vsi *vsi;
3238 
3239 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3240 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3241 		goto out;
3242 	}
3243 
3244 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3245 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3246 		goto out;
3247 	}
3248 
3249 	vsi = ice_get_vf_vsi(vf);
3250 	if (!vsi) {
3251 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3252 		goto out;
3253 	}
3254 
3255 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
3256 						  &vf->vlan_v2_caps.filtering,
3257 						  vfl)) {
3258 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3259 		goto out;
3260 	}
3261 
3262 	if (ice_vc_add_vlans(vf, vsi, vfl))
3263 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3264 
3265 out:
3266 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3267 				     0);
3268 }
3269 
3270 /**
3271  * ice_vc_valid_vlan_setting - validate VLAN setting
3272  * @negotiated_settings: negotiated VLAN settings during VF init
3273  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3274  */
3275 static bool
3276 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3277 {
3278 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3279 		return false;
3280 
3281 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3282 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3283 	 */
3284 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3285 	    hweight32(ethertype_setting) > 1)
3286 		return false;
3287 
3288 	/* ability to modify the VLAN setting was not negotiated */
3289 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3290 		return false;
3291 
3292 	return true;
3293 }
3294 
3295 /**
3296  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3297  * @caps: negotiated VLAN settings during VF init
3298  * @msg: message to validate
3299  *
3300  * Used to validate any VLAN virtchnl message sent as a
3301  * virtchnl_vlan_setting structure. Validates the message against the
3302  * negotiated/supported caps during VF driver init.
3303  */
3304 static bool
3305 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3306 			      struct virtchnl_vlan_setting *msg)
3307 {
3308 	if ((!msg->outer_ethertype_setting &&
3309 	     !msg->inner_ethertype_setting) ||
3310 	    (!caps->outer && !caps->inner))
3311 		return false;
3312 
3313 	if (msg->outer_ethertype_setting &&
3314 	    !ice_vc_valid_vlan_setting(caps->outer,
3315 				       msg->outer_ethertype_setting))
3316 		return false;
3317 
3318 	if (msg->inner_ethertype_setting &&
3319 	    !ice_vc_valid_vlan_setting(caps->inner,
3320 				       msg->inner_ethertype_setting))
3321 		return false;
3322 
3323 	return true;
3324 }
3325 
3326 /**
3327  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3328  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3329  * @tpid: VLAN TPID to populate
3330  */
3331 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3332 {
3333 	switch (ethertype_setting) {
3334 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3335 		*tpid = ETH_P_8021Q;
3336 		break;
3337 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3338 		*tpid = ETH_P_8021AD;
3339 		break;
3340 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3341 		*tpid = ETH_P_QINQ1;
3342 		break;
3343 	default:
3344 		*tpid = 0;
3345 		return -EINVAL;
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 /**
3352  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3353  * @vsi: VF's VSI used to enable the VLAN offload
3354  * @ena_offload: function used to enable the VLAN offload
3355  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3356  */
3357 static int
3358 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3359 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3360 			u32 ethertype_setting)
3361 {
3362 	u16 tpid;
3363 	int err;
3364 
3365 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3366 	if (err)
3367 		return err;
3368 
3369 	err = ena_offload(vsi, tpid);
3370 	if (err)
3371 		return err;
3372 
3373 	return 0;
3374 }
3375 
3376 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3377 #define ICE_L2TSEL_BIT_OFFSET		23
3378 enum ice_l2tsel {
3379 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3380 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3381 };
3382 
3383 /**
3384  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3385  * @vsi: VSI used to update l2tsel on
3386  * @l2tsel: l2tsel setting requested
3387  *
3388  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3389  * This will modify which descriptor field the first offloaded VLAN will be
3390  * stripped into.
3391  */
3392 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3393 {
3394 	struct ice_hw *hw = &vsi->back->hw;
3395 	u32 l2tsel_bit;
3396 	int i;
3397 
3398 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3399 		l2tsel_bit = 0;
3400 	else
3401 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3402 
3403 	for (i = 0; i < vsi->alloc_rxq; i++) {
3404 		u16 pfq = vsi->rxq_map[i];
3405 		u32 qrx_context_offset;
3406 		u32 regval;
3407 
3408 		qrx_context_offset =
3409 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3410 
3411 		regval = rd32(hw, qrx_context_offset);
3412 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3413 		regval |= l2tsel_bit;
3414 		wr32(hw, qrx_context_offset, regval);
3415 	}
3416 }
3417 
3418 /**
3419  * ice_vc_ena_vlan_stripping_v2_msg
3420  * @vf: VF the message was received from
3421  * @msg: message received from the VF
3422  *
3423  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3424  */
3425 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3426 {
3427 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3428 	struct virtchnl_vlan_supported_caps *stripping_support;
3429 	struct virtchnl_vlan_setting *strip_msg =
3430 		(struct virtchnl_vlan_setting *)msg;
3431 	u32 ethertype_setting;
3432 	struct ice_vsi *vsi;
3433 
3434 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3435 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3436 		goto out;
3437 	}
3438 
3439 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3440 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3441 		goto out;
3442 	}
3443 
3444 	vsi = ice_get_vf_vsi(vf);
3445 	if (!vsi) {
3446 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3447 		goto out;
3448 	}
3449 
3450 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3451 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3452 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3453 		goto out;
3454 	}
3455 
3456 	ethertype_setting = strip_msg->outer_ethertype_setting;
3457 	if (ethertype_setting) {
3458 		if (ice_vc_ena_vlan_offload(vsi,
3459 					    vsi->outer_vlan_ops.ena_stripping,
3460 					    ethertype_setting)) {
3461 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3462 			goto out;
3463 		} else {
3464 			enum ice_l2tsel l2tsel =
3465 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3466 
3467 			/* PF tells the VF that the outer VLAN tag is always
3468 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3469 			 * inner is always extracted to
3470 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3471 			 * support outer stripping so the first tag always ends
3472 			 * up in L2TAG2_2ND and the second/inner tag, if
3473 			 * enabled, is extracted in L2TAG1.
3474 			 */
3475 			ice_vsi_update_l2tsel(vsi, l2tsel);
3476 		}
3477 	}
3478 
3479 	ethertype_setting = strip_msg->inner_ethertype_setting;
3480 	if (ethertype_setting &&
3481 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3482 				    ethertype_setting)) {
3483 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3484 		goto out;
3485 	}
3486 
3487 out:
3488 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3489 				     v_ret, NULL, 0);
3490 }
3491 
3492 /**
3493  * ice_vc_dis_vlan_stripping_v2_msg
3494  * @vf: VF the message was received from
3495  * @msg: message received from the VF
3496  *
3497  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3498  */
3499 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3500 {
3501 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3502 	struct virtchnl_vlan_supported_caps *stripping_support;
3503 	struct virtchnl_vlan_setting *strip_msg =
3504 		(struct virtchnl_vlan_setting *)msg;
3505 	u32 ethertype_setting;
3506 	struct ice_vsi *vsi;
3507 
3508 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3509 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3510 		goto out;
3511 	}
3512 
3513 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3514 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3515 		goto out;
3516 	}
3517 
3518 	vsi = ice_get_vf_vsi(vf);
3519 	if (!vsi) {
3520 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3521 		goto out;
3522 	}
3523 
3524 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3525 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3526 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3527 		goto out;
3528 	}
3529 
3530 	ethertype_setting = strip_msg->outer_ethertype_setting;
3531 	if (ethertype_setting) {
3532 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3533 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3534 			goto out;
3535 		} else {
3536 			enum ice_l2tsel l2tsel =
3537 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3538 
3539 			/* PF tells the VF that the outer VLAN tag is always
3540 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3541 			 * inner is always extracted to
3542 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3543 			 * support inner stripping while outer stripping is
3544 			 * disabled so that the first and only tag is extracted
3545 			 * in L2TAG1.
3546 			 */
3547 			ice_vsi_update_l2tsel(vsi, l2tsel);
3548 		}
3549 	}
3550 
3551 	ethertype_setting = strip_msg->inner_ethertype_setting;
3552 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3553 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3554 		goto out;
3555 	}
3556 
3557 out:
3558 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3559 				     v_ret, NULL, 0);
3560 }
3561 
3562 /**
3563  * ice_vc_ena_vlan_insertion_v2_msg
3564  * @vf: VF the message was received from
3565  * @msg: message received from the VF
3566  *
3567  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3568  */
3569 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3570 {
3571 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3572 	struct virtchnl_vlan_supported_caps *insertion_support;
3573 	struct virtchnl_vlan_setting *insertion_msg =
3574 		(struct virtchnl_vlan_setting *)msg;
3575 	u32 ethertype_setting;
3576 	struct ice_vsi *vsi;
3577 
3578 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3579 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3580 		goto out;
3581 	}
3582 
3583 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3584 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3585 		goto out;
3586 	}
3587 
3588 	vsi = ice_get_vf_vsi(vf);
3589 	if (!vsi) {
3590 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3591 		goto out;
3592 	}
3593 
3594 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3595 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3596 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3597 		goto out;
3598 	}
3599 
3600 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3601 	if (ethertype_setting &&
3602 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3603 				    ethertype_setting)) {
3604 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3605 		goto out;
3606 	}
3607 
3608 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3609 	if (ethertype_setting &&
3610 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3611 				    ethertype_setting)) {
3612 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3613 		goto out;
3614 	}
3615 
3616 out:
3617 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3618 				     v_ret, NULL, 0);
3619 }
3620 
3621 /**
3622  * ice_vc_dis_vlan_insertion_v2_msg
3623  * @vf: VF the message was received from
3624  * @msg: message received from the VF
3625  *
3626  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3627  */
3628 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3629 {
3630 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3631 	struct virtchnl_vlan_supported_caps *insertion_support;
3632 	struct virtchnl_vlan_setting *insertion_msg =
3633 		(struct virtchnl_vlan_setting *)msg;
3634 	u32 ethertype_setting;
3635 	struct ice_vsi *vsi;
3636 
3637 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3638 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3639 		goto out;
3640 	}
3641 
3642 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3643 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3644 		goto out;
3645 	}
3646 
3647 	vsi = ice_get_vf_vsi(vf);
3648 	if (!vsi) {
3649 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3650 		goto out;
3651 	}
3652 
3653 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3654 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3655 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3656 		goto out;
3657 	}
3658 
3659 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3660 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3661 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3662 		goto out;
3663 	}
3664 
3665 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3666 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3667 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3668 		goto out;
3669 	}
3670 
3671 out:
3672 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3673 				     v_ret, NULL, 0);
3674 }
3675 
3676 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3677 	.get_ver_msg = ice_vc_get_ver_msg,
3678 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3679 	.reset_vf = ice_vc_reset_vf_msg,
3680 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3681 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3682 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3683 	.ena_qs_msg = ice_vc_ena_qs_msg,
3684 	.dis_qs_msg = ice_vc_dis_qs_msg,
3685 	.request_qs_msg = ice_vc_request_qs_msg,
3686 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3687 	.config_rss_key = ice_vc_config_rss_key,
3688 	.config_rss_lut = ice_vc_config_rss_lut,
3689 	.get_stats_msg = ice_vc_get_stats_msg,
3690 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3691 	.add_vlan_msg = ice_vc_add_vlan_msg,
3692 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3693 	.query_rxdid = ice_vc_query_rxdid,
3694 	.get_rss_hena = ice_vc_get_rss_hena,
3695 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3696 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3697 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3698 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3699 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3700 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3701 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3702 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3703 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3704 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3705 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3706 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3707 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3708 };
3709 
3710 /**
3711  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3712  * @vf: the VF to switch ops
3713  */
3714 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3715 {
3716 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3717 }
3718 
3719 /**
3720  * ice_vc_repr_add_mac
3721  * @vf: pointer to VF
3722  * @msg: virtchannel message
3723  *
3724  * When port representors are created, we do not add MAC rule
3725  * to firmware, we store it so that PF could report same
3726  * MAC as VF.
3727  */
3728 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3729 {
3730 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3731 	struct virtchnl_ether_addr_list *al =
3732 	    (struct virtchnl_ether_addr_list *)msg;
3733 	struct ice_vsi *vsi;
3734 	struct ice_pf *pf;
3735 	int i;
3736 
3737 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3738 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3739 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3740 		goto handle_mac_exit;
3741 	}
3742 
3743 	pf = vf->pf;
3744 
3745 	vsi = ice_get_vf_vsi(vf);
3746 	if (!vsi) {
3747 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3748 		goto handle_mac_exit;
3749 	}
3750 
3751 	for (i = 0; i < al->num_elements; i++) {
3752 		u8 *mac_addr = al->list[i].addr;
3753 
3754 		if (!is_unicast_ether_addr(mac_addr) ||
3755 		    ether_addr_equal(mac_addr, vf->hw_lan_addr))
3756 			continue;
3757 
3758 		if (vf->pf_set_mac) {
3759 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3760 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3761 			goto handle_mac_exit;
3762 		}
3763 
3764 		ice_vfhw_mac_add(vf, &al->list[i]);
3765 		vf->num_mac++;
3766 		break;
3767 	}
3768 
3769 handle_mac_exit:
3770 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3771 				     v_ret, NULL, 0);
3772 }
3773 
3774 /**
3775  * ice_vc_repr_del_mac - response with success for deleting MAC
3776  * @vf: pointer to VF
3777  * @msg: virtchannel message
3778  *
3779  * Respond with success to not break normal VF flow.
3780  * For legacy VF driver try to update cached MAC address.
3781  */
3782 static int
3783 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3784 {
3785 	struct virtchnl_ether_addr_list *al =
3786 		(struct virtchnl_ether_addr_list *)msg;
3787 
3788 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3789 
3790 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3791 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3792 }
3793 
3794 static int
3795 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3796 {
3797 	dev_dbg(ice_pf_to_dev(vf->pf),
3798 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3799 		vf->vf_id);
3800 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3801 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3802 				     NULL, 0);
3803 }
3804 
3805 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3806 	.get_ver_msg = ice_vc_get_ver_msg,
3807 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3808 	.reset_vf = ice_vc_reset_vf_msg,
3809 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3810 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3811 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3812 	.ena_qs_msg = ice_vc_ena_qs_msg,
3813 	.dis_qs_msg = ice_vc_dis_qs_msg,
3814 	.request_qs_msg = ice_vc_request_qs_msg,
3815 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3816 	.config_rss_key = ice_vc_config_rss_key,
3817 	.config_rss_lut = ice_vc_config_rss_lut,
3818 	.get_stats_msg = ice_vc_get_stats_msg,
3819 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3820 	.add_vlan_msg = ice_vc_add_vlan_msg,
3821 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3822 	.query_rxdid = ice_vc_query_rxdid,
3823 	.get_rss_hena = ice_vc_get_rss_hena,
3824 	.set_rss_hena_msg = ice_vc_set_rss_hena,
3825 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3826 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3827 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3828 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3829 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3830 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3831 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3832 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3833 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3834 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3835 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3836 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3837 };
3838 
3839 /**
3840  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3841  * @vf: the VF to switch ops
3842  */
3843 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3844 {
3845 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3846 }
3847 
3848 /**
3849  * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3850  * @vf: the VF to check
3851  * @mbxdata: data about the state of the mailbox
3852  *
3853  * Detect if a given VF might be malicious and attempting to overflow the PF
3854  * mailbox. If so, log a warning message and ignore this event.
3855  */
3856 static bool
3857 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3858 {
3859 	bool report_malvf = false;
3860 	struct device *dev;
3861 	struct ice_pf *pf;
3862 	int status;
3863 
3864 	pf = vf->pf;
3865 	dev = ice_pf_to_dev(pf);
3866 
3867 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3868 		return vf->mbx_info.malicious;
3869 
3870 	/* check to see if we have a newly malicious VF */
3871 	status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3872 					  &report_malvf);
3873 	if (status)
3874 		dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3875 				     vf->vf_id, vf->dev_lan_addr, status);
3876 
3877 	if (report_malvf) {
3878 		struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3879 		u8 zero_addr[ETH_ALEN] = {};
3880 
3881 		dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3882 			 vf->dev_lan_addr,
3883 			 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3884 	}
3885 
3886 	return vf->mbx_info.malicious;
3887 }
3888 
3889 /**
3890  * ice_vc_process_vf_msg - Process request from VF
3891  * @pf: pointer to the PF structure
3892  * @event: pointer to the AQ event
3893  * @mbxdata: information used to detect VF attempting mailbox overflow
3894  *
3895  * called from the common asq/arq handler to
3896  * process request from VF
3897  */
3898 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3899 			   struct ice_mbx_data *mbxdata)
3900 {
3901 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3902 	s16 vf_id = le16_to_cpu(event->desc.retval);
3903 	const struct ice_virtchnl_ops *ops;
3904 	u16 msglen = event->msg_len;
3905 	u8 *msg = event->msg_buf;
3906 	struct ice_vf *vf = NULL;
3907 	struct device *dev;
3908 	int err = 0;
3909 
3910 	dev = ice_pf_to_dev(pf);
3911 
3912 	vf = ice_get_vf_by_id(pf, vf_id);
3913 	if (!vf) {
3914 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3915 			vf_id, v_opcode, msglen);
3916 		return;
3917 	}
3918 
3919 	mutex_lock(&vf->cfg_lock);
3920 
3921 	/* Check if the VF is trying to overflow the mailbox */
3922 	if (ice_is_malicious_vf(vf, mbxdata))
3923 		goto finish;
3924 
3925 	/* Check if VF is disabled. */
3926 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3927 		err = -EPERM;
3928 		goto error_handler;
3929 	}
3930 
3931 	ops = vf->virtchnl_ops;
3932 
3933 	/* Perform basic checks on the msg */
3934 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3935 	if (err) {
3936 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3937 			err = -EPERM;
3938 		else
3939 			err = -EINVAL;
3940 	}
3941 
3942 error_handler:
3943 	if (err) {
3944 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3945 				      NULL, 0);
3946 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3947 			vf_id, v_opcode, msglen, err);
3948 		goto finish;
3949 	}
3950 
3951 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3952 		ice_vc_send_msg_to_vf(vf, v_opcode,
3953 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3954 				      0);
3955 		goto finish;
3956 	}
3957 
3958 	switch (v_opcode) {
3959 	case VIRTCHNL_OP_VERSION:
3960 		err = ops->get_ver_msg(vf, msg);
3961 		break;
3962 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3963 		err = ops->get_vf_res_msg(vf, msg);
3964 		if (ice_vf_init_vlan_stripping(vf))
3965 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3966 				vf->vf_id);
3967 		ice_vc_notify_vf_link_state(vf);
3968 		break;
3969 	case VIRTCHNL_OP_RESET_VF:
3970 		ops->reset_vf(vf);
3971 		break;
3972 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3973 		err = ops->add_mac_addr_msg(vf, msg);
3974 		break;
3975 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3976 		err = ops->del_mac_addr_msg(vf, msg);
3977 		break;
3978 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3979 		err = ops->cfg_qs_msg(vf, msg);
3980 		break;
3981 	case VIRTCHNL_OP_ENABLE_QUEUES:
3982 		err = ops->ena_qs_msg(vf, msg);
3983 		ice_vc_notify_vf_link_state(vf);
3984 		break;
3985 	case VIRTCHNL_OP_DISABLE_QUEUES:
3986 		err = ops->dis_qs_msg(vf, msg);
3987 		break;
3988 	case VIRTCHNL_OP_REQUEST_QUEUES:
3989 		err = ops->request_qs_msg(vf, msg);
3990 		break;
3991 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3992 		err = ops->cfg_irq_map_msg(vf, msg);
3993 		break;
3994 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3995 		err = ops->config_rss_key(vf, msg);
3996 		break;
3997 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3998 		err = ops->config_rss_lut(vf, msg);
3999 		break;
4000 	case VIRTCHNL_OP_GET_STATS:
4001 		err = ops->get_stats_msg(vf, msg);
4002 		break;
4003 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
4004 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
4005 		break;
4006 	case VIRTCHNL_OP_ADD_VLAN:
4007 		err = ops->add_vlan_msg(vf, msg);
4008 		break;
4009 	case VIRTCHNL_OP_DEL_VLAN:
4010 		err = ops->remove_vlan_msg(vf, msg);
4011 		break;
4012 	case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
4013 		err = ops->query_rxdid(vf);
4014 		break;
4015 	case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4016 		err = ops->get_rss_hena(vf);
4017 		break;
4018 	case VIRTCHNL_OP_SET_RSS_HENA:
4019 		err = ops->set_rss_hena_msg(vf, msg);
4020 		break;
4021 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4022 		err = ops->ena_vlan_stripping(vf);
4023 		break;
4024 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4025 		err = ops->dis_vlan_stripping(vf);
4026 		break;
4027 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
4028 		err = ops->add_fdir_fltr_msg(vf, msg);
4029 		break;
4030 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
4031 		err = ops->del_fdir_fltr_msg(vf, msg);
4032 		break;
4033 	case VIRTCHNL_OP_ADD_RSS_CFG:
4034 		err = ops->handle_rss_cfg_msg(vf, msg, true);
4035 		break;
4036 	case VIRTCHNL_OP_DEL_RSS_CFG:
4037 		err = ops->handle_rss_cfg_msg(vf, msg, false);
4038 		break;
4039 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4040 		err = ops->get_offload_vlan_v2_caps(vf);
4041 		break;
4042 	case VIRTCHNL_OP_ADD_VLAN_V2:
4043 		err = ops->add_vlan_v2_msg(vf, msg);
4044 		break;
4045 	case VIRTCHNL_OP_DEL_VLAN_V2:
4046 		err = ops->remove_vlan_v2_msg(vf, msg);
4047 		break;
4048 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4049 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4050 		break;
4051 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4052 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4053 		break;
4054 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4055 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4056 		break;
4057 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4058 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4059 		break;
4060 	case VIRTCHNL_OP_UNKNOWN:
4061 	default:
4062 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4063 			vf_id);
4064 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
4065 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4066 					    NULL, 0);
4067 		break;
4068 	}
4069 	if (err) {
4070 		/* Helper function cares less about error return values here
4071 		 * as it is busy with pending work.
4072 		 */
4073 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4074 			 vf_id, v_opcode, err);
4075 	}
4076 
4077 finish:
4078 	mutex_unlock(&vf->cfg_lock);
4079 	ice_put_vf(vf);
4080 }
4081