1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_VLAN; 444 445 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 446 vsi = ice_get_vf_vsi(vf); 447 if (!vsi) { 448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 449 goto err; 450 } 451 452 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 453 vf->driver_caps); 454 455 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) 456 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 457 458 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 459 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 460 461 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 463 464 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 465 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 466 467 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 468 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 469 470 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 471 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 472 473 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 474 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 475 476 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 477 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 478 479 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 480 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 481 482 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC) 483 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_CRC; 484 485 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 486 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 487 488 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 489 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 490 491 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 492 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 493 494 vfres->num_vsis = 1; 495 /* Tx and Rx queue are equal for VF */ 496 vfres->num_queue_pairs = vsi->num_txq; 497 vfres->max_vectors = vf->pf->vfs.num_msix_per; 498 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 499 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 500 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 501 502 vfres->vsi_res[0].vsi_id = ICE_VF_VSI_ID; 503 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 504 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 505 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 506 vf->hw_lan_addr); 507 508 /* match guest capabilities */ 509 vf->driver_caps = vfres->vf_cap_flags; 510 511 ice_vc_set_caps_allowlist(vf); 512 ice_vc_set_working_allowlist(vf); 513 514 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 515 516 err: 517 /* send the response back to the VF */ 518 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 519 (u8 *)vfres, len); 520 521 kfree(vfres); 522 return ret; 523 } 524 525 /** 526 * ice_vc_reset_vf_msg 527 * @vf: pointer to the VF info 528 * 529 * called from the VF to reset itself, 530 * unlike other virtchnl messages, PF driver 531 * doesn't send the response back to the VF 532 */ 533 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 534 { 535 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 536 ice_reset_vf(vf, 0); 537 } 538 539 /** 540 * ice_vc_isvalid_vsi_id 541 * @vf: pointer to the VF info 542 * @vsi_id: VF relative VSI ID 543 * 544 * check for the valid VSI ID 545 */ 546 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 547 { 548 return vsi_id == ICE_VF_VSI_ID; 549 } 550 551 /** 552 * ice_vc_isvalid_q_id 553 * @vsi: VSI to check queue ID against 554 * @qid: VSI relative queue ID 555 * 556 * check for the valid queue ID 557 */ 558 static bool ice_vc_isvalid_q_id(struct ice_vsi *vsi, u8 qid) 559 { 560 /* allocated Tx and Rx queues should be always equal for VF VSI */ 561 return qid < vsi->alloc_txq; 562 } 563 564 /** 565 * ice_vc_isvalid_ring_len 566 * @ring_len: length of ring 567 * 568 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 569 * or zero 570 */ 571 static bool ice_vc_isvalid_ring_len(u16 ring_len) 572 { 573 return ring_len == 0 || 574 (ring_len >= ICE_MIN_NUM_DESC && 575 ring_len <= ICE_MAX_NUM_DESC && 576 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 577 } 578 579 /** 580 * ice_vc_validate_pattern 581 * @vf: pointer to the VF info 582 * @proto: virtchnl protocol headers 583 * 584 * validate the pattern is supported or not. 585 * 586 * Return: true on success, false on error. 587 */ 588 bool 589 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 590 { 591 bool is_ipv4 = false; 592 bool is_ipv6 = false; 593 bool is_udp = false; 594 u16 ptype = -1; 595 int i = 0; 596 597 while (i < proto->count && 598 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 599 switch (proto->proto_hdr[i].type) { 600 case VIRTCHNL_PROTO_HDR_ETH: 601 ptype = ICE_PTYPE_MAC_PAY; 602 break; 603 case VIRTCHNL_PROTO_HDR_IPV4: 604 ptype = ICE_PTYPE_IPV4_PAY; 605 is_ipv4 = true; 606 break; 607 case VIRTCHNL_PROTO_HDR_IPV6: 608 ptype = ICE_PTYPE_IPV6_PAY; 609 is_ipv6 = true; 610 break; 611 case VIRTCHNL_PROTO_HDR_UDP: 612 if (is_ipv4) 613 ptype = ICE_PTYPE_IPV4_UDP_PAY; 614 else if (is_ipv6) 615 ptype = ICE_PTYPE_IPV6_UDP_PAY; 616 is_udp = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_TCP: 619 if (is_ipv4) 620 ptype = ICE_PTYPE_IPV4_TCP_PAY; 621 else if (is_ipv6) 622 ptype = ICE_PTYPE_IPV6_TCP_PAY; 623 break; 624 case VIRTCHNL_PROTO_HDR_SCTP: 625 if (is_ipv4) 626 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 627 else if (is_ipv6) 628 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 629 break; 630 case VIRTCHNL_PROTO_HDR_GTPU_IP: 631 case VIRTCHNL_PROTO_HDR_GTPU_EH: 632 if (is_ipv4) 633 ptype = ICE_MAC_IPV4_GTPU; 634 else if (is_ipv6) 635 ptype = ICE_MAC_IPV6_GTPU; 636 goto out; 637 case VIRTCHNL_PROTO_HDR_L2TPV3: 638 if (is_ipv4) 639 ptype = ICE_MAC_IPV4_L2TPV3; 640 else if (is_ipv6) 641 ptype = ICE_MAC_IPV6_L2TPV3; 642 goto out; 643 case VIRTCHNL_PROTO_HDR_ESP: 644 if (is_ipv4) 645 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 646 ICE_MAC_IPV4_ESP; 647 else if (is_ipv6) 648 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 649 ICE_MAC_IPV6_ESP; 650 goto out; 651 case VIRTCHNL_PROTO_HDR_AH: 652 if (is_ipv4) 653 ptype = ICE_MAC_IPV4_AH; 654 else if (is_ipv6) 655 ptype = ICE_MAC_IPV6_AH; 656 goto out; 657 case VIRTCHNL_PROTO_HDR_PFCP: 658 if (is_ipv4) 659 ptype = ICE_MAC_IPV4_PFCP_SESSION; 660 else if (is_ipv6) 661 ptype = ICE_MAC_IPV6_PFCP_SESSION; 662 goto out; 663 default: 664 break; 665 } 666 i++; 667 } 668 669 out: 670 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 671 } 672 673 /** 674 * ice_vc_parse_rss_cfg - parses hash fields and headers from 675 * a specific virtchnl RSS cfg 676 * @hw: pointer to the hardware 677 * @rss_cfg: pointer to the virtchnl RSS cfg 678 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 679 * to configure 680 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 681 * 682 * Return true if all the protocol header and hash fields in the RSS cfg could 683 * be parsed, else return false 684 * 685 * This function parses the virtchnl RSS cfg to be the intended 686 * hash fields and the intended header for RSS configuration 687 */ 688 static bool 689 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 690 u32 *addl_hdrs, u64 *hash_flds) 691 { 692 const struct ice_vc_hash_field_match_type *hf_list; 693 const struct ice_vc_hdr_match_type *hdr_list; 694 int i, hf_list_len, hdr_list_len; 695 696 hf_list = ice_vc_hash_field_list; 697 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 698 hdr_list = ice_vc_hdr_list; 699 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 700 701 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 702 struct virtchnl_proto_hdr *proto_hdr = 703 &rss_cfg->proto_hdrs.proto_hdr[i]; 704 bool hdr_found = false; 705 int j; 706 707 /* Find matched ice headers according to virtchnl headers. */ 708 for (j = 0; j < hdr_list_len; j++) { 709 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 710 711 if (proto_hdr->type == hdr_map.vc_hdr) { 712 *addl_hdrs |= hdr_map.ice_hdr; 713 hdr_found = true; 714 } 715 } 716 717 if (!hdr_found) 718 return false; 719 720 /* Find matched ice hash fields according to 721 * virtchnl hash fields. 722 */ 723 for (j = 0; j < hf_list_len; j++) { 724 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 725 726 if (proto_hdr->type == hf_map.vc_hdr && 727 proto_hdr->field_selector == hf_map.vc_hash_field) { 728 *hash_flds |= hf_map.ice_hash_field; 729 break; 730 } 731 } 732 } 733 734 return true; 735 } 736 737 /** 738 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 739 * RSS offloads 740 * @caps: VF driver negotiated capabilities 741 * 742 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 743 * else return false 744 */ 745 static bool ice_vf_adv_rss_offload_ena(u32 caps) 746 { 747 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 748 } 749 750 /** 751 * ice_vc_handle_rss_cfg 752 * @vf: pointer to the VF info 753 * @msg: pointer to the message buffer 754 * @add: add a RSS config if true, otherwise delete a RSS config 755 * 756 * This function adds/deletes a RSS config 757 */ 758 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 759 { 760 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 761 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 762 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 763 struct device *dev = ice_pf_to_dev(vf->pf); 764 struct ice_hw *hw = &vf->pf->hw; 765 struct ice_vsi *vsi; 766 767 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 768 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 769 vf->vf_id); 770 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 771 goto error_param; 772 } 773 774 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 775 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 776 vf->vf_id); 777 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 778 goto error_param; 779 } 780 781 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 783 goto error_param; 784 } 785 786 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 787 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 788 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 789 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 790 vf->vf_id); 791 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 792 goto error_param; 793 } 794 795 vsi = ice_get_vf_vsi(vf); 796 if (!vsi) { 797 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 798 goto error_param; 799 } 800 801 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 802 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 803 goto error_param; 804 } 805 806 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 807 struct ice_vsi_ctx *ctx; 808 u8 lut_type, hash_type; 809 int status; 810 811 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 812 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_HASH_XOR : 813 ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 814 815 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 816 if (!ctx) { 817 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 818 goto error_param; 819 } 820 821 ctx->info.q_opt_rss = 822 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 823 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 824 825 /* Preserve existing queueing option setting */ 826 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 827 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 828 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 829 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 830 831 ctx->info.valid_sections = 832 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 833 834 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 835 if (status) { 836 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 837 status, ice_aq_str(hw->adminq.sq_last_status)); 838 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 839 } else { 840 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 841 } 842 843 kfree(ctx); 844 } else { 845 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 846 u64 hash_flds = ICE_HASH_INVALID; 847 848 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 849 &hash_flds)) { 850 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 851 goto error_param; 852 } 853 854 if (add) { 855 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 856 addl_hdrs)) { 857 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 858 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 859 vsi->vsi_num, v_ret); 860 } 861 } else { 862 int status; 863 864 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 865 addl_hdrs); 866 /* We just ignore -ENOENT, because if two configurations 867 * share the same profile remove one of them actually 868 * removes both, since the profile is deleted. 869 */ 870 if (status && status != -ENOENT) { 871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 872 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 873 vf->vf_id, status); 874 } 875 } 876 } 877 878 error_param: 879 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 880 } 881 882 /** 883 * ice_vc_config_rss_key 884 * @vf: pointer to the VF info 885 * @msg: pointer to the msg buffer 886 * 887 * Configure the VF's RSS key 888 */ 889 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 890 { 891 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 892 struct virtchnl_rss_key *vrk = 893 (struct virtchnl_rss_key *)msg; 894 struct ice_vsi *vsi; 895 896 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 897 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 898 goto error_param; 899 } 900 901 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 902 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 903 goto error_param; 904 } 905 906 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 907 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 908 goto error_param; 909 } 910 911 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 912 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 913 goto error_param; 914 } 915 916 vsi = ice_get_vf_vsi(vf); 917 if (!vsi) { 918 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 919 goto error_param; 920 } 921 922 if (ice_set_rss_key(vsi, vrk->key)) 923 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 924 error_param: 925 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 926 NULL, 0); 927 } 928 929 /** 930 * ice_vc_config_rss_lut 931 * @vf: pointer to the VF info 932 * @msg: pointer to the msg buffer 933 * 934 * Configure the VF's RSS LUT 935 */ 936 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 937 { 938 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 939 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 940 struct ice_vsi *vsi; 941 942 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 943 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 944 goto error_param; 945 } 946 947 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 948 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 949 goto error_param; 950 } 951 952 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 953 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 954 goto error_param; 955 } 956 957 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 958 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 959 goto error_param; 960 } 961 962 vsi = ice_get_vf_vsi(vf); 963 if (!vsi) { 964 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 965 goto error_param; 966 } 967 968 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 969 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 970 error_param: 971 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 972 NULL, 0); 973 } 974 975 /** 976 * ice_vc_cfg_promiscuous_mode_msg 977 * @vf: pointer to the VF info 978 * @msg: pointer to the msg buffer 979 * 980 * called from the VF to configure VF VSIs promiscuous mode 981 */ 982 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 983 { 984 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 985 bool rm_promisc, alluni = false, allmulti = false; 986 struct virtchnl_promisc_info *info = 987 (struct virtchnl_promisc_info *)msg; 988 struct ice_vsi_vlan_ops *vlan_ops; 989 int mcast_err = 0, ucast_err = 0; 990 struct ice_pf *pf = vf->pf; 991 struct ice_vsi *vsi; 992 u8 mcast_m, ucast_m; 993 struct device *dev; 994 int ret = 0; 995 996 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 997 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 998 goto error_param; 999 } 1000 1001 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1002 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1003 goto error_param; 1004 } 1005 1006 vsi = ice_get_vf_vsi(vf); 1007 if (!vsi) { 1008 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1009 goto error_param; 1010 } 1011 1012 dev = ice_pf_to_dev(pf); 1013 if (!ice_is_vf_trusted(vf)) { 1014 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1015 vf->vf_id); 1016 /* Leave v_ret alone, lie to the VF on purpose. */ 1017 goto error_param; 1018 } 1019 1020 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1021 alluni = true; 1022 1023 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1024 allmulti = true; 1025 1026 rm_promisc = !allmulti && !alluni; 1027 1028 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1029 if (rm_promisc) 1030 ret = vlan_ops->ena_rx_filtering(vsi); 1031 else 1032 ret = vlan_ops->dis_rx_filtering(vsi); 1033 if (ret) { 1034 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1035 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1036 goto error_param; 1037 } 1038 1039 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1040 1041 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1042 if (alluni) { 1043 /* in this case we're turning on promiscuous mode */ 1044 ret = ice_set_dflt_vsi(vsi); 1045 } else { 1046 /* in this case we're turning off promiscuous mode */ 1047 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1048 ret = ice_clear_dflt_vsi(vsi); 1049 } 1050 1051 /* in this case we're turning on/off only 1052 * allmulticast 1053 */ 1054 if (allmulti) 1055 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1056 else 1057 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1058 1059 if (ret) { 1060 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1061 vf->vf_id, ret); 1062 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1063 goto error_param; 1064 } 1065 } else { 1066 if (alluni) 1067 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1068 else 1069 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1070 1071 if (allmulti) 1072 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1073 else 1074 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1075 1076 if (ucast_err || mcast_err) 1077 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1078 } 1079 1080 if (!mcast_err) { 1081 if (allmulti && 1082 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1083 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1084 vf->vf_id); 1085 else if (!allmulti && 1086 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1087 vf->vf_states)) 1088 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1089 vf->vf_id); 1090 } else { 1091 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1092 vf->vf_id, mcast_err); 1093 } 1094 1095 if (!ucast_err) { 1096 if (alluni && 1097 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1098 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1099 vf->vf_id); 1100 else if (!alluni && 1101 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1102 vf->vf_states)) 1103 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1104 vf->vf_id); 1105 } else { 1106 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1107 vf->vf_id, ucast_err); 1108 } 1109 1110 error_param: 1111 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1112 v_ret, NULL, 0); 1113 } 1114 1115 /** 1116 * ice_vc_get_stats_msg 1117 * @vf: pointer to the VF info 1118 * @msg: pointer to the msg buffer 1119 * 1120 * called from the VF to get VSI stats 1121 */ 1122 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1123 { 1124 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1125 struct virtchnl_queue_select *vqs = 1126 (struct virtchnl_queue_select *)msg; 1127 struct ice_eth_stats stats = { 0 }; 1128 struct ice_vsi *vsi; 1129 1130 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1131 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1132 goto error_param; 1133 } 1134 1135 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1136 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1137 goto error_param; 1138 } 1139 1140 vsi = ice_get_vf_vsi(vf); 1141 if (!vsi) { 1142 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1143 goto error_param; 1144 } 1145 1146 ice_update_eth_stats(vsi); 1147 1148 stats = vsi->eth_stats; 1149 1150 error_param: 1151 /* send the response to the VF */ 1152 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1153 (u8 *)&stats, sizeof(stats)); 1154 } 1155 1156 /** 1157 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1158 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1159 * 1160 * Return true on successful validation, else false 1161 */ 1162 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1163 { 1164 if ((!vqs->rx_queues && !vqs->tx_queues) || 1165 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1166 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1167 return false; 1168 1169 return true; 1170 } 1171 1172 /** 1173 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1174 * @vsi: VSI of the VF to configure 1175 * @q_idx: VF queue index used to determine the queue in the PF's space 1176 */ 1177 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1178 { 1179 struct ice_hw *hw = &vsi->back->hw; 1180 u32 pfq = vsi->txq_map[q_idx]; 1181 u32 reg; 1182 1183 reg = rd32(hw, QINT_TQCTL(pfq)); 1184 1185 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1186 * this is most likely a poll mode VF driver, so don't enable an 1187 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1188 */ 1189 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1190 return; 1191 1192 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1193 } 1194 1195 /** 1196 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1197 * @vsi: VSI of the VF to configure 1198 * @q_idx: VF queue index used to determine the queue in the PF's space 1199 */ 1200 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1201 { 1202 struct ice_hw *hw = &vsi->back->hw; 1203 u32 pfq = vsi->rxq_map[q_idx]; 1204 u32 reg; 1205 1206 reg = rd32(hw, QINT_RQCTL(pfq)); 1207 1208 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1209 * this is most likely a poll mode VF driver, so don't enable an 1210 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1211 */ 1212 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1213 return; 1214 1215 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1216 } 1217 1218 /** 1219 * ice_vc_ena_qs_msg 1220 * @vf: pointer to the VF info 1221 * @msg: pointer to the msg buffer 1222 * 1223 * called from the VF to enable all or specific queue(s) 1224 */ 1225 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1226 { 1227 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1228 struct virtchnl_queue_select *vqs = 1229 (struct virtchnl_queue_select *)msg; 1230 struct ice_vsi *vsi; 1231 unsigned long q_map; 1232 u16 vf_q_id; 1233 1234 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1235 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1236 goto error_param; 1237 } 1238 1239 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1241 goto error_param; 1242 } 1243 1244 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1245 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1246 goto error_param; 1247 } 1248 1249 vsi = ice_get_vf_vsi(vf); 1250 if (!vsi) { 1251 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1252 goto error_param; 1253 } 1254 1255 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1256 * Tx queue group list was configured and the context bits were 1257 * programmed using ice_vsi_cfg_txqs 1258 */ 1259 q_map = vqs->rx_queues; 1260 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1261 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1262 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1263 goto error_param; 1264 } 1265 1266 /* Skip queue if enabled */ 1267 if (test_bit(vf_q_id, vf->rxq_ena)) 1268 continue; 1269 1270 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1271 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1272 vf_q_id, vsi->vsi_num); 1273 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1274 goto error_param; 1275 } 1276 1277 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1278 set_bit(vf_q_id, vf->rxq_ena); 1279 } 1280 1281 q_map = vqs->tx_queues; 1282 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1283 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1284 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1285 goto error_param; 1286 } 1287 1288 /* Skip queue if enabled */ 1289 if (test_bit(vf_q_id, vf->txq_ena)) 1290 continue; 1291 1292 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1293 set_bit(vf_q_id, vf->txq_ena); 1294 } 1295 1296 /* Set flag to indicate that queues are enabled */ 1297 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1298 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1299 1300 error_param: 1301 /* send the response to the VF */ 1302 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1303 NULL, 0); 1304 } 1305 1306 /** 1307 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1308 * @vf: VF to disable queue for 1309 * @vsi: VSI for the VF 1310 * @q_id: VF relative (0-based) queue ID 1311 * 1312 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1313 * disabled then clear q_id bit in the enabled queues bitmap and return 1314 * success. Otherwise return error. 1315 */ 1316 static int 1317 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1318 { 1319 struct ice_txq_meta txq_meta = { 0 }; 1320 struct ice_tx_ring *ring; 1321 int err; 1322 1323 if (!test_bit(q_id, vf->txq_ena)) 1324 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1325 q_id, vsi->vsi_num); 1326 1327 ring = vsi->tx_rings[q_id]; 1328 if (!ring) 1329 return -EINVAL; 1330 1331 ice_fill_txq_meta(vsi, ring, &txq_meta); 1332 1333 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1334 if (err) { 1335 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1336 q_id, vsi->vsi_num); 1337 return err; 1338 } 1339 1340 /* Clear enabled queues flag */ 1341 clear_bit(q_id, vf->txq_ena); 1342 1343 return 0; 1344 } 1345 1346 /** 1347 * ice_vc_dis_qs_msg 1348 * @vf: pointer to the VF info 1349 * @msg: pointer to the msg buffer 1350 * 1351 * called from the VF to disable all or specific queue(s) 1352 */ 1353 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1354 { 1355 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1356 struct virtchnl_queue_select *vqs = 1357 (struct virtchnl_queue_select *)msg; 1358 struct ice_vsi *vsi; 1359 unsigned long q_map; 1360 u16 vf_q_id; 1361 1362 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1363 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1364 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1365 goto error_param; 1366 } 1367 1368 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1369 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1370 goto error_param; 1371 } 1372 1373 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1374 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1375 goto error_param; 1376 } 1377 1378 vsi = ice_get_vf_vsi(vf); 1379 if (!vsi) { 1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1381 goto error_param; 1382 } 1383 1384 if (vqs->tx_queues) { 1385 q_map = vqs->tx_queues; 1386 1387 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1388 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1390 goto error_param; 1391 } 1392 1393 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1394 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1395 goto error_param; 1396 } 1397 } 1398 } 1399 1400 q_map = vqs->rx_queues; 1401 /* speed up Rx queue disable by batching them if possible */ 1402 if (q_map && 1403 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1404 if (ice_vsi_stop_all_rx_rings(vsi)) { 1405 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1406 vsi->vsi_num); 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 1411 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1412 } else if (q_map) { 1413 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1414 if (!ice_vc_isvalid_q_id(vsi, vf_q_id)) { 1415 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1416 goto error_param; 1417 } 1418 1419 /* Skip queue if not enabled */ 1420 if (!test_bit(vf_q_id, vf->rxq_ena)) 1421 continue; 1422 1423 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1424 true)) { 1425 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1426 vf_q_id, vsi->vsi_num); 1427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1428 goto error_param; 1429 } 1430 1431 /* Clear enabled queues flag */ 1432 clear_bit(vf_q_id, vf->rxq_ena); 1433 } 1434 } 1435 1436 /* Clear enabled queues flag */ 1437 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1438 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1439 1440 error_param: 1441 /* send the response to the VF */ 1442 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1443 NULL, 0); 1444 } 1445 1446 /** 1447 * ice_cfg_interrupt 1448 * @vf: pointer to the VF info 1449 * @vsi: the VSI being configured 1450 * @vector_id: vector ID 1451 * @map: vector map for mapping vectors to queues 1452 * @q_vector: structure for interrupt vector 1453 * configure the IRQ to queue map 1454 */ 1455 static int 1456 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1457 struct virtchnl_vector_map *map, 1458 struct ice_q_vector *q_vector) 1459 { 1460 u16 vsi_q_id, vsi_q_id_idx; 1461 unsigned long qmap; 1462 1463 q_vector->num_ring_rx = 0; 1464 q_vector->num_ring_tx = 0; 1465 1466 qmap = map->rxq_map; 1467 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1468 vsi_q_id = vsi_q_id_idx; 1469 1470 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1471 return VIRTCHNL_STATUS_ERR_PARAM; 1472 1473 q_vector->num_ring_rx++; 1474 q_vector->rx.itr_idx = map->rxitr_idx; 1475 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1476 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1477 q_vector->rx.itr_idx); 1478 } 1479 1480 qmap = map->txq_map; 1481 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1482 vsi_q_id = vsi_q_id_idx; 1483 1484 if (!ice_vc_isvalid_q_id(vsi, vsi_q_id)) 1485 return VIRTCHNL_STATUS_ERR_PARAM; 1486 1487 q_vector->num_ring_tx++; 1488 q_vector->tx.itr_idx = map->txitr_idx; 1489 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1490 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1491 q_vector->tx.itr_idx); 1492 } 1493 1494 return VIRTCHNL_STATUS_SUCCESS; 1495 } 1496 1497 /** 1498 * ice_vc_cfg_irq_map_msg 1499 * @vf: pointer to the VF info 1500 * @msg: pointer to the msg buffer 1501 * 1502 * called from the VF to configure the IRQ to queue map 1503 */ 1504 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1505 { 1506 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1507 u16 num_q_vectors_mapped, vsi_id, vector_id; 1508 struct virtchnl_irq_map_info *irqmap_info; 1509 struct virtchnl_vector_map *map; 1510 struct ice_pf *pf = vf->pf; 1511 struct ice_vsi *vsi; 1512 int i; 1513 1514 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1515 num_q_vectors_mapped = irqmap_info->num_vectors; 1516 1517 /* Check to make sure number of VF vectors mapped is not greater than 1518 * number of VF vectors originally allocated, and check that 1519 * there is actually at least a single VF queue vector mapped 1520 */ 1521 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1522 pf->vfs.num_msix_per < num_q_vectors_mapped || 1523 !num_q_vectors_mapped) { 1524 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1525 goto error_param; 1526 } 1527 1528 vsi = ice_get_vf_vsi(vf); 1529 if (!vsi) { 1530 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1531 goto error_param; 1532 } 1533 1534 for (i = 0; i < num_q_vectors_mapped; i++) { 1535 struct ice_q_vector *q_vector; 1536 1537 map = &irqmap_info->vecmap[i]; 1538 1539 vector_id = map->vector_id; 1540 vsi_id = map->vsi_id; 1541 /* vector_id is always 0-based for each VF, and can never be 1542 * larger than or equal to the max allowed interrupts per VF 1543 */ 1544 if (!(vector_id < pf->vfs.num_msix_per) || 1545 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1546 (!vector_id && (map->rxq_map || map->txq_map))) { 1547 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1548 goto error_param; 1549 } 1550 1551 /* No need to map VF miscellaneous or rogue vector */ 1552 if (!vector_id) 1553 continue; 1554 1555 /* Subtract non queue vector from vector_id passed by VF 1556 * to get actual number of VSI queue vector array index 1557 */ 1558 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1559 if (!q_vector) { 1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1561 goto error_param; 1562 } 1563 1564 /* lookout for the invalid queue index */ 1565 v_ret = (enum virtchnl_status_code) 1566 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1567 if (v_ret) 1568 goto error_param; 1569 } 1570 1571 error_param: 1572 /* send the response to the VF */ 1573 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1574 NULL, 0); 1575 } 1576 1577 /** 1578 * ice_vc_cfg_qs_msg 1579 * @vf: pointer to the VF info 1580 * @msg: pointer to the msg buffer 1581 * 1582 * called from the VF to configure the Rx/Tx queues 1583 */ 1584 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1585 { 1586 struct virtchnl_vsi_queue_config_info *qci = 1587 (struct virtchnl_vsi_queue_config_info *)msg; 1588 struct virtchnl_queue_pair_info *qpi; 1589 struct ice_pf *pf = vf->pf; 1590 struct ice_lag *lag; 1591 struct ice_vsi *vsi; 1592 u8 act_prt, pri_prt; 1593 int i = -1, q_idx; 1594 1595 lag = pf->lag; 1596 mutex_lock(&pf->lag_mutex); 1597 act_prt = ICE_LAG_INVALID_PORT; 1598 pri_prt = pf->hw.port_info->lport; 1599 if (lag && lag->bonded && lag->primary) { 1600 act_prt = lag->active_port; 1601 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1602 lag->upper_netdev) 1603 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1604 else 1605 act_prt = ICE_LAG_INVALID_PORT; 1606 } 1607 1608 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1609 goto error_param; 1610 1611 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1612 goto error_param; 1613 1614 vsi = ice_get_vf_vsi(vf); 1615 if (!vsi) 1616 goto error_param; 1617 1618 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1619 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1620 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1621 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1622 goto error_param; 1623 } 1624 1625 for (i = 0; i < qci->num_queue_pairs; i++) { 1626 qpi = &qci->qpair[i]; 1627 if (qpi->txq.vsi_id != qci->vsi_id || 1628 qpi->rxq.vsi_id != qci->vsi_id || 1629 qpi->rxq.queue_id != qpi->txq.queue_id || 1630 qpi->txq.headwb_enabled || 1631 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1632 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1633 !ice_vc_isvalid_q_id(vsi, qpi->txq.queue_id)) { 1634 goto error_param; 1635 } 1636 1637 q_idx = qpi->rxq.queue_id; 1638 1639 /* make sure selected "q_idx" is in valid range of queues 1640 * for selected "vsi" 1641 */ 1642 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1643 goto error_param; 1644 } 1645 1646 /* copy Tx queue info from VF into VSI */ 1647 if (qpi->txq.ring_len > 0) { 1648 vsi->tx_rings[q_idx]->dma = qpi->txq.dma_ring_addr; 1649 vsi->tx_rings[q_idx]->count = qpi->txq.ring_len; 1650 1651 /* Disable any existing queue first */ 1652 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1653 goto error_param; 1654 1655 /* Configure a queue with the requested settings */ 1656 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1657 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1658 vf->vf_id, q_idx); 1659 goto error_param; 1660 } 1661 } 1662 1663 /* copy Rx queue info from VF into VSI */ 1664 if (qpi->rxq.ring_len > 0) { 1665 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1666 struct ice_rx_ring *ring = vsi->rx_rings[q_idx]; 1667 u32 rxdid; 1668 1669 ring->dma = qpi->rxq.dma_ring_addr; 1670 ring->count = qpi->rxq.ring_len; 1671 1672 if (qpi->rxq.crc_disable && 1673 !(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_CRC)) { 1674 goto error_param; 1675 } 1676 1677 if (qpi->rxq.crc_disable) 1678 ring->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1679 else 1680 ring->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1681 1682 if (qpi->rxq.databuffer_size != 0 && 1683 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1684 qpi->rxq.databuffer_size < 1024)) 1685 goto error_param; 1686 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1687 ring->rx_buf_len = vsi->rx_buf_len; 1688 if (qpi->rxq.max_pkt_size > max_frame_size || 1689 qpi->rxq.max_pkt_size < 64) 1690 goto error_param; 1691 1692 vsi->max_frame = qpi->rxq.max_pkt_size; 1693 /* add space for the port VLAN since the VF driver is 1694 * not expected to account for it in the MTU 1695 * calculation 1696 */ 1697 if (ice_vf_is_port_vlan_ena(vf)) 1698 vsi->max_frame += VLAN_HLEN; 1699 1700 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1701 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1702 vf->vf_id, q_idx); 1703 goto error_param; 1704 } 1705 1706 /* If Rx flex desc is supported, select RXDID for Rx 1707 * queues. Otherwise, use legacy 32byte descriptor 1708 * format. Legacy 16byte descriptor is not supported. 1709 * If this RXDID is selected, return error. 1710 */ 1711 if (vf->driver_caps & 1712 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1713 rxdid = qpi->rxq.rxdid; 1714 if (!(BIT(rxdid) & pf->supported_rxdids)) 1715 goto error_param; 1716 } else { 1717 rxdid = ICE_RXDID_LEGACY_1; 1718 } 1719 1720 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1721 vsi->rxq_map[q_idx], 1722 rxdid, 0x03, false); 1723 } 1724 } 1725 1726 if (lag && lag->bonded && lag->primary && 1727 act_prt != ICE_LAG_INVALID_PORT) 1728 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1729 mutex_unlock(&pf->lag_mutex); 1730 1731 /* send the response to the VF */ 1732 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1733 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1734 error_param: 1735 /* disable whatever we can */ 1736 for (; i >= 0; i--) { 1737 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1738 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1739 vf->vf_id, i); 1740 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1741 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1742 vf->vf_id, i); 1743 } 1744 1745 if (lag && lag->bonded && lag->primary && 1746 act_prt != ICE_LAG_INVALID_PORT) 1747 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1748 mutex_unlock(&pf->lag_mutex); 1749 1750 ice_lag_move_new_vf_nodes(vf); 1751 1752 /* send the response to the VF */ 1753 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1754 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1755 } 1756 1757 /** 1758 * ice_can_vf_change_mac 1759 * @vf: pointer to the VF info 1760 * 1761 * Return true if the VF is allowed to change its MAC filters, false otherwise 1762 */ 1763 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1764 { 1765 /* If the VF MAC address has been set administratively (via the 1766 * ndo_set_vf_mac command), then deny permission to the VF to 1767 * add/delete unicast MAC addresses, unless the VF is trusted 1768 */ 1769 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1770 return false; 1771 1772 return true; 1773 } 1774 1775 /** 1776 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1777 * @vc_ether_addr: used to extract the type 1778 */ 1779 static u8 1780 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1781 { 1782 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1783 } 1784 1785 /** 1786 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1787 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1788 */ 1789 static bool 1790 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1791 { 1792 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1793 1794 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1795 } 1796 1797 /** 1798 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1799 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1800 * 1801 * This function should only be called when the MAC address in 1802 * virtchnl_ether_addr is a valid unicast MAC 1803 */ 1804 static bool 1805 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1806 { 1807 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1808 1809 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1810 } 1811 1812 /** 1813 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1814 * @vf: VF to update 1815 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1816 */ 1817 static void 1818 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1819 { 1820 u8 *mac_addr = vc_ether_addr->addr; 1821 1822 if (!is_valid_ether_addr(mac_addr)) 1823 return; 1824 1825 /* only allow legacy VF drivers to set the device and hardware MAC if it 1826 * is zero and allow new VF drivers to set the hardware MAC if the type 1827 * was correctly specified over VIRTCHNL 1828 */ 1829 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1830 is_zero_ether_addr(vf->hw_lan_addr)) || 1831 ice_is_vc_addr_primary(vc_ether_addr)) { 1832 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1833 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1834 } 1835 1836 /* hardware and device MACs are already set, but its possible that the 1837 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1838 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1839 * away for the legacy VF driver case as it will be updated in the 1840 * delete flow for this case 1841 */ 1842 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1843 ether_addr_copy(vf->legacy_last_added_umac.addr, 1844 mac_addr); 1845 vf->legacy_last_added_umac.time_modified = jiffies; 1846 } 1847 } 1848 1849 /** 1850 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1851 * @vf: pointer to the VF info 1852 * @vsi: pointer to the VF's VSI 1853 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1854 */ 1855 static int 1856 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1857 struct virtchnl_ether_addr *vc_ether_addr) 1858 { 1859 struct device *dev = ice_pf_to_dev(vf->pf); 1860 u8 *mac_addr = vc_ether_addr->addr; 1861 int ret; 1862 1863 /* device MAC already added */ 1864 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1865 return 0; 1866 1867 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1868 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1869 return -EPERM; 1870 } 1871 1872 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1873 if (ret == -EEXIST) { 1874 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1875 vf->vf_id); 1876 /* don't return since we might need to update 1877 * the primary MAC in ice_vfhw_mac_add() below 1878 */ 1879 } else if (ret) { 1880 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1881 mac_addr, vf->vf_id, ret); 1882 return ret; 1883 } else { 1884 vf->num_mac++; 1885 } 1886 1887 ice_vfhw_mac_add(vf, vc_ether_addr); 1888 1889 return ret; 1890 } 1891 1892 /** 1893 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1894 * @last_added_umac: structure used to check expiration 1895 */ 1896 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1897 { 1898 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1899 return time_is_before_jiffies(last_added_umac->time_modified + 1900 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1901 } 1902 1903 /** 1904 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1905 * @vf: VF to update 1906 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1907 * 1908 * only update cached hardware MAC for legacy VF drivers on delete 1909 * because we cannot guarantee order/type of MAC from the VF driver 1910 */ 1911 static void 1912 ice_update_legacy_cached_mac(struct ice_vf *vf, 1913 struct virtchnl_ether_addr *vc_ether_addr) 1914 { 1915 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1916 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1917 return; 1918 1919 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1920 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1921 } 1922 1923 /** 1924 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1925 * @vf: VF to update 1926 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1927 */ 1928 static void 1929 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1930 { 1931 u8 *mac_addr = vc_ether_addr->addr; 1932 1933 if (!is_valid_ether_addr(mac_addr) || 1934 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1935 return; 1936 1937 /* allow the device MAC to be repopulated in the add flow and don't 1938 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1939 * to be persistent on VM reboot and across driver unload/load, which 1940 * won't work if we clear the hardware MAC here 1941 */ 1942 eth_zero_addr(vf->dev_lan_addr); 1943 1944 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1945 } 1946 1947 /** 1948 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1949 * @vf: pointer to the VF info 1950 * @vsi: pointer to the VF's VSI 1951 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1952 */ 1953 static int 1954 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1955 struct virtchnl_ether_addr *vc_ether_addr) 1956 { 1957 struct device *dev = ice_pf_to_dev(vf->pf); 1958 u8 *mac_addr = vc_ether_addr->addr; 1959 int status; 1960 1961 if (!ice_can_vf_change_mac(vf) && 1962 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1963 return 0; 1964 1965 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1966 if (status == -ENOENT) { 1967 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1968 vf->vf_id); 1969 return -ENOENT; 1970 } else if (status) { 1971 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1972 mac_addr, vf->vf_id, status); 1973 return -EIO; 1974 } 1975 1976 ice_vfhw_mac_del(vf, vc_ether_addr); 1977 1978 vf->num_mac--; 1979 1980 return 0; 1981 } 1982 1983 /** 1984 * ice_vc_handle_mac_addr_msg 1985 * @vf: pointer to the VF info 1986 * @msg: pointer to the msg buffer 1987 * @set: true if MAC filters are being set, false otherwise 1988 * 1989 * add guest MAC address filter 1990 */ 1991 static int 1992 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1993 { 1994 int (*ice_vc_cfg_mac) 1995 (struct ice_vf *vf, struct ice_vsi *vsi, 1996 struct virtchnl_ether_addr *virtchnl_ether_addr); 1997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1998 struct virtchnl_ether_addr_list *al = 1999 (struct virtchnl_ether_addr_list *)msg; 2000 struct ice_pf *pf = vf->pf; 2001 enum virtchnl_ops vc_op; 2002 struct ice_vsi *vsi; 2003 int i; 2004 2005 if (set) { 2006 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2007 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2008 } else { 2009 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2010 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2011 } 2012 2013 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2014 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2016 goto handle_mac_exit; 2017 } 2018 2019 /* If this VF is not privileged, then we can't add more than a 2020 * limited number of addresses. Check to make sure that the 2021 * additions do not push us over the limit. 2022 */ 2023 if (set && !ice_is_vf_trusted(vf) && 2024 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2025 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2026 vf->vf_id); 2027 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2028 goto handle_mac_exit; 2029 } 2030 2031 vsi = ice_get_vf_vsi(vf); 2032 if (!vsi) { 2033 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2034 goto handle_mac_exit; 2035 } 2036 2037 for (i = 0; i < al->num_elements; i++) { 2038 u8 *mac_addr = al->list[i].addr; 2039 int result; 2040 2041 if (is_broadcast_ether_addr(mac_addr) || 2042 is_zero_ether_addr(mac_addr)) 2043 continue; 2044 2045 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2046 if (result == -EEXIST || result == -ENOENT) { 2047 continue; 2048 } else if (result) { 2049 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2050 goto handle_mac_exit; 2051 } 2052 } 2053 2054 handle_mac_exit: 2055 /* send the response to the VF */ 2056 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2057 } 2058 2059 /** 2060 * ice_vc_add_mac_addr_msg 2061 * @vf: pointer to the VF info 2062 * @msg: pointer to the msg buffer 2063 * 2064 * add guest MAC address filter 2065 */ 2066 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2067 { 2068 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2069 } 2070 2071 /** 2072 * ice_vc_del_mac_addr_msg 2073 * @vf: pointer to the VF info 2074 * @msg: pointer to the msg buffer 2075 * 2076 * remove guest MAC address filter 2077 */ 2078 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2079 { 2080 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2081 } 2082 2083 /** 2084 * ice_vc_request_qs_msg 2085 * @vf: pointer to the VF info 2086 * @msg: pointer to the msg buffer 2087 * 2088 * VFs get a default number of queues but can use this message to request a 2089 * different number. If the request is successful, PF will reset the VF and 2090 * return 0. If unsuccessful, PF will send message informing VF of number of 2091 * available queue pairs via virtchnl message response to VF. 2092 */ 2093 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2094 { 2095 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2096 struct virtchnl_vf_res_request *vfres = 2097 (struct virtchnl_vf_res_request *)msg; 2098 u16 req_queues = vfres->num_queue_pairs; 2099 struct ice_pf *pf = vf->pf; 2100 u16 max_allowed_vf_queues; 2101 u16 tx_rx_queue_left; 2102 struct device *dev; 2103 u16 cur_queues; 2104 2105 dev = ice_pf_to_dev(pf); 2106 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2107 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2108 goto error_param; 2109 } 2110 2111 cur_queues = vf->num_vf_qs; 2112 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2113 ice_get_avail_rxq_count(pf)); 2114 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2115 if (!req_queues) { 2116 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2117 vf->vf_id); 2118 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2119 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2120 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2121 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2122 } else if (req_queues > cur_queues && 2123 req_queues - cur_queues > tx_rx_queue_left) { 2124 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2125 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2126 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2127 ICE_MAX_RSS_QS_PER_VF); 2128 } else { 2129 /* request is successful, then reset VF */ 2130 vf->num_req_qs = req_queues; 2131 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2132 dev_info(dev, "VF %d granted request of %u queues.\n", 2133 vf->vf_id, req_queues); 2134 return 0; 2135 } 2136 2137 error_param: 2138 /* send the response to the VF */ 2139 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2140 v_ret, (u8 *)vfres, sizeof(*vfres)); 2141 } 2142 2143 /** 2144 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2145 * @caps: VF driver negotiated capabilities 2146 * 2147 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2148 */ 2149 static bool ice_vf_vlan_offload_ena(u32 caps) 2150 { 2151 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2152 } 2153 2154 /** 2155 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2156 * @vf: VF used to determine if VLAN promiscuous config is allowed 2157 */ 2158 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2159 { 2160 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2161 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2162 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2163 return true; 2164 2165 return false; 2166 } 2167 2168 /** 2169 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2170 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2171 * @vlan: VLAN used to enable VLAN promiscuous 2172 * 2173 * This function should only be called if VLAN promiscuous mode is allowed, 2174 * which can be determined via ice_is_vlan_promisc_allowed(). 2175 */ 2176 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2177 { 2178 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2179 int status; 2180 2181 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2182 vlan->vid); 2183 if (status && status != -EEXIST) 2184 return status; 2185 2186 return 0; 2187 } 2188 2189 /** 2190 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2191 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2192 * @vlan: VLAN used to disable VLAN promiscuous 2193 * 2194 * This function should only be called if VLAN promiscuous mode is allowed, 2195 * which can be determined via ice_is_vlan_promisc_allowed(). 2196 */ 2197 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2198 { 2199 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2200 int status; 2201 2202 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2203 vlan->vid); 2204 if (status && status != -ENOENT) 2205 return status; 2206 2207 return 0; 2208 } 2209 2210 /** 2211 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2212 * @vf: VF to check against 2213 * @vsi: VF's VSI 2214 * 2215 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2216 * wants to, so return false. 2217 * 2218 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2219 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2220 */ 2221 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2222 { 2223 if (ice_is_vf_trusted(vf)) 2224 return false; 2225 2226 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2227 return ((ice_vsi_num_non_zero_vlans(vsi) + 2228 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2229 } 2230 2231 /** 2232 * ice_vc_process_vlan_msg 2233 * @vf: pointer to the VF info 2234 * @msg: pointer to the msg buffer 2235 * @add_v: Add VLAN if true, otherwise delete VLAN 2236 * 2237 * Process virtchnl op to add or remove programmed guest VLAN ID 2238 */ 2239 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2240 { 2241 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2242 struct virtchnl_vlan_filter_list *vfl = 2243 (struct virtchnl_vlan_filter_list *)msg; 2244 struct ice_pf *pf = vf->pf; 2245 bool vlan_promisc = false; 2246 struct ice_vsi *vsi; 2247 struct device *dev; 2248 int status = 0; 2249 int i; 2250 2251 dev = ice_pf_to_dev(pf); 2252 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2254 goto error_param; 2255 } 2256 2257 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2259 goto error_param; 2260 } 2261 2262 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2263 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2264 goto error_param; 2265 } 2266 2267 for (i = 0; i < vfl->num_elements; i++) { 2268 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2269 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2270 dev_err(dev, "invalid VF VLAN id %d\n", 2271 vfl->vlan_id[i]); 2272 goto error_param; 2273 } 2274 } 2275 2276 vsi = ice_get_vf_vsi(vf); 2277 if (!vsi) { 2278 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2279 goto error_param; 2280 } 2281 2282 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2283 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2284 vf->vf_id); 2285 /* There is no need to let VF know about being not trusted, 2286 * so we can just return success message here 2287 */ 2288 goto error_param; 2289 } 2290 2291 /* in DVM a VF can add/delete inner VLAN filters when 2292 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2293 */ 2294 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2295 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2296 goto error_param; 2297 } 2298 2299 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2300 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2301 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2302 */ 2303 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2304 !ice_is_dvm_ena(&pf->hw) && 2305 !ice_vf_is_port_vlan_ena(vf); 2306 2307 if (add_v) { 2308 for (i = 0; i < vfl->num_elements; i++) { 2309 u16 vid = vfl->vlan_id[i]; 2310 struct ice_vlan vlan; 2311 2312 if (ice_vf_has_max_vlans(vf, vsi)) { 2313 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2314 vf->vf_id); 2315 /* There is no need to let VF know about being 2316 * not trusted, so we can just return success 2317 * message here as well. 2318 */ 2319 goto error_param; 2320 } 2321 2322 /* we add VLAN 0 by default for each VF so we can enable 2323 * Tx VLAN anti-spoof without triggering MDD events so 2324 * we don't need to add it again here 2325 */ 2326 if (!vid) 2327 continue; 2328 2329 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2330 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2331 if (status) { 2332 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2333 goto error_param; 2334 } 2335 2336 /* Enable VLAN filtering on first non-zero VLAN */ 2337 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2338 if (vf->spoofchk) { 2339 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2340 if (status) { 2341 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2342 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2343 vid, status); 2344 goto error_param; 2345 } 2346 } 2347 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2348 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2349 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2350 vid, status); 2351 goto error_param; 2352 } 2353 } else if (vlan_promisc) { 2354 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2355 if (status) { 2356 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2357 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2358 vid, status); 2359 } 2360 } 2361 } 2362 } else { 2363 /* In case of non_trusted VF, number of VLAN elements passed 2364 * to PF for removal might be greater than number of VLANs 2365 * filter programmed for that VF - So, use actual number of 2366 * VLANS added earlier with add VLAN opcode. In order to avoid 2367 * removing VLAN that doesn't exist, which result to sending 2368 * erroneous failed message back to the VF 2369 */ 2370 int num_vf_vlan; 2371 2372 num_vf_vlan = vsi->num_vlan; 2373 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2374 u16 vid = vfl->vlan_id[i]; 2375 struct ice_vlan vlan; 2376 2377 /* we add VLAN 0 by default for each VF so we can enable 2378 * Tx VLAN anti-spoof without triggering MDD events so 2379 * we don't want a VIRTCHNL request to remove it 2380 */ 2381 if (!vid) 2382 continue; 2383 2384 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2385 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2386 if (status) { 2387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2388 goto error_param; 2389 } 2390 2391 /* Disable VLAN filtering when only VLAN 0 is left */ 2392 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2393 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2394 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2395 } 2396 2397 if (vlan_promisc) 2398 ice_vf_dis_vlan_promisc(vsi, &vlan); 2399 } 2400 } 2401 2402 error_param: 2403 /* send the response to the VF */ 2404 if (add_v) 2405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2406 NULL, 0); 2407 else 2408 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2409 NULL, 0); 2410 } 2411 2412 /** 2413 * ice_vc_add_vlan_msg 2414 * @vf: pointer to the VF info 2415 * @msg: pointer to the msg buffer 2416 * 2417 * Add and program guest VLAN ID 2418 */ 2419 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2420 { 2421 return ice_vc_process_vlan_msg(vf, msg, true); 2422 } 2423 2424 /** 2425 * ice_vc_remove_vlan_msg 2426 * @vf: pointer to the VF info 2427 * @msg: pointer to the msg buffer 2428 * 2429 * remove programmed guest VLAN ID 2430 */ 2431 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2432 { 2433 return ice_vc_process_vlan_msg(vf, msg, false); 2434 } 2435 2436 /** 2437 * ice_vc_ena_vlan_stripping 2438 * @vf: pointer to the VF info 2439 * 2440 * Enable VLAN header stripping for a given VF 2441 */ 2442 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2443 { 2444 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2445 struct ice_vsi *vsi; 2446 2447 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2448 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2449 goto error_param; 2450 } 2451 2452 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2453 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2454 goto error_param; 2455 } 2456 2457 vsi = ice_get_vf_vsi(vf); 2458 if (!vsi) { 2459 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2460 goto error_param; 2461 } 2462 2463 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2464 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2465 2466 error_param: 2467 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2468 v_ret, NULL, 0); 2469 } 2470 2471 /** 2472 * ice_vc_dis_vlan_stripping 2473 * @vf: pointer to the VF info 2474 * 2475 * Disable VLAN header stripping for a given VF 2476 */ 2477 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2478 { 2479 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2480 struct ice_vsi *vsi; 2481 2482 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2483 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2484 goto error_param; 2485 } 2486 2487 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2488 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2489 goto error_param; 2490 } 2491 2492 vsi = ice_get_vf_vsi(vf); 2493 if (!vsi) { 2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2495 goto error_param; 2496 } 2497 2498 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2499 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2500 2501 error_param: 2502 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2503 v_ret, NULL, 0); 2504 } 2505 2506 /** 2507 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2508 * @vf: pointer to the VF info 2509 */ 2510 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2511 { 2512 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2513 struct virtchnl_rss_hena *vrh = NULL; 2514 int len = 0, ret; 2515 2516 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2517 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2518 goto err; 2519 } 2520 2521 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2522 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2523 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2524 goto err; 2525 } 2526 2527 len = sizeof(struct virtchnl_rss_hena); 2528 vrh = kzalloc(len, GFP_KERNEL); 2529 if (!vrh) { 2530 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2531 len = 0; 2532 goto err; 2533 } 2534 2535 vrh->hena = ICE_DEFAULT_RSS_HENA; 2536 err: 2537 /* send the response back to the VF */ 2538 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2539 (u8 *)vrh, len); 2540 kfree(vrh); 2541 return ret; 2542 } 2543 2544 /** 2545 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2546 * @vf: pointer to the VF info 2547 * @msg: pointer to the msg buffer 2548 */ 2549 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2550 { 2551 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2552 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2553 struct ice_pf *pf = vf->pf; 2554 struct ice_vsi *vsi; 2555 struct device *dev; 2556 int status; 2557 2558 dev = ice_pf_to_dev(pf); 2559 2560 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2561 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2562 goto err; 2563 } 2564 2565 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2566 dev_err(dev, "RSS not supported by PF\n"); 2567 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2568 goto err; 2569 } 2570 2571 vsi = ice_get_vf_vsi(vf); 2572 if (!vsi) { 2573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2574 goto err; 2575 } 2576 2577 /* clear all previously programmed RSS configuration to allow VF drivers 2578 * the ability to customize the RSS configuration and/or completely 2579 * disable RSS 2580 */ 2581 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2582 if (status && !vrh->hena) { 2583 /* only report failure to clear the current RSS configuration if 2584 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2585 */ 2586 v_ret = ice_err_to_virt_err(status); 2587 goto err; 2588 } else if (status) { 2589 /* allow the VF to update the RSS configuration even on failure 2590 * to clear the current RSS confguration in an attempt to keep 2591 * RSS in a working state 2592 */ 2593 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2594 vf->vf_id); 2595 } 2596 2597 if (vrh->hena) { 2598 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2599 v_ret = ice_err_to_virt_err(status); 2600 } 2601 2602 /* send the response to the VF */ 2603 err: 2604 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2605 NULL, 0); 2606 } 2607 2608 /** 2609 * ice_vc_query_rxdid - query RXDID supported by DDP package 2610 * @vf: pointer to VF info 2611 * 2612 * Called from VF to query a bitmap of supported flexible 2613 * descriptor RXDIDs of a DDP package. 2614 */ 2615 static int ice_vc_query_rxdid(struct ice_vf *vf) 2616 { 2617 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2618 struct virtchnl_supported_rxdids *rxdid = NULL; 2619 struct ice_hw *hw = &vf->pf->hw; 2620 struct ice_pf *pf = vf->pf; 2621 int len = 0; 2622 int ret, i; 2623 u32 regval; 2624 2625 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2626 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2627 goto err; 2628 } 2629 2630 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2631 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2632 goto err; 2633 } 2634 2635 len = sizeof(struct virtchnl_supported_rxdids); 2636 rxdid = kzalloc(len, GFP_KERNEL); 2637 if (!rxdid) { 2638 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2639 len = 0; 2640 goto err; 2641 } 2642 2643 /* RXDIDs supported by DDP package can be read from the register 2644 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2645 * is not listed in DDP package, add it in the bitmap manually. 2646 * Legacy 16byte descriptor is not supported. 2647 */ 2648 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2649 2650 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2651 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2652 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2653 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2654 rxdid->supported_rxdids |= BIT(i); 2655 } 2656 2657 pf->supported_rxdids = rxdid->supported_rxdids; 2658 2659 err: 2660 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2661 v_ret, (u8 *)rxdid, len); 2662 kfree(rxdid); 2663 return ret; 2664 } 2665 2666 /** 2667 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2668 * @vf: VF to enable/disable VLAN stripping for on initialization 2669 * 2670 * Set the default for VLAN stripping based on whether a port VLAN is configured 2671 * and the current VLAN mode of the device. 2672 */ 2673 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2674 { 2675 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2676 2677 if (!vsi) 2678 return -EINVAL; 2679 2680 /* don't modify stripping if port VLAN is configured in SVM since the 2681 * port VLAN is based on the inner/single VLAN in SVM 2682 */ 2683 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2684 return 0; 2685 2686 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2687 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2688 else 2689 return vsi->inner_vlan_ops.dis_stripping(vsi); 2690 } 2691 2692 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2693 { 2694 if (vf->trusted) 2695 return VLAN_N_VID; 2696 else 2697 return ICE_MAX_VLAN_PER_VF; 2698 } 2699 2700 /** 2701 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2702 * @vf: VF that being checked for 2703 * 2704 * When the device is in double VLAN mode, check whether or not the outer VLAN 2705 * is allowed. 2706 */ 2707 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2708 { 2709 if (ice_vf_is_port_vlan_ena(vf)) 2710 return true; 2711 2712 return false; 2713 } 2714 2715 /** 2716 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2717 * @vf: VF that capabilities are being set for 2718 * @caps: VLAN capabilities to populate 2719 * 2720 * Determine VLAN capabilities support based on whether a port VLAN is 2721 * configured. If a port VLAN is configured then the VF should use the inner 2722 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2723 * capabilies. 2724 */ 2725 static void 2726 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2727 { 2728 struct virtchnl_vlan_supported_caps *supported_caps; 2729 2730 if (ice_vf_outer_vlan_not_allowed(vf)) { 2731 /* until support for inner VLAN filtering is added when a port 2732 * VLAN is configured, only support software offloaded inner 2733 * VLANs when a port VLAN is confgured in DVM 2734 */ 2735 supported_caps = &caps->filtering.filtering_support; 2736 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2737 2738 supported_caps = &caps->offloads.stripping_support; 2739 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2740 VIRTCHNL_VLAN_TOGGLE | 2741 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2742 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2743 2744 supported_caps = &caps->offloads.insertion_support; 2745 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2746 VIRTCHNL_VLAN_TOGGLE | 2747 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2748 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2749 2750 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2751 caps->offloads.ethertype_match = 2752 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2753 } else { 2754 supported_caps = &caps->filtering.filtering_support; 2755 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2756 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2757 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2758 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2759 VIRTCHNL_VLAN_ETHERTYPE_AND; 2760 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2761 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2762 VIRTCHNL_VLAN_ETHERTYPE_9100; 2763 2764 supported_caps = &caps->offloads.stripping_support; 2765 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2766 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2767 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2768 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2769 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2770 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2771 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2772 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2773 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2774 2775 supported_caps = &caps->offloads.insertion_support; 2776 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2777 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2778 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2779 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2780 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2781 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2782 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2783 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2784 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2785 2786 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2787 2788 caps->offloads.ethertype_match = 2789 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2790 } 2791 2792 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2793 } 2794 2795 /** 2796 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2797 * @vf: VF that capabilities are being set for 2798 * @caps: VLAN capabilities to populate 2799 * 2800 * Determine VLAN capabilities support based on whether a port VLAN is 2801 * configured. If a port VLAN is configured then the VF does not have any VLAN 2802 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2803 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2804 * VLAN fitlering and offload capabilities. 2805 */ 2806 static void 2807 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2808 { 2809 struct virtchnl_vlan_supported_caps *supported_caps; 2810 2811 if (ice_vf_is_port_vlan_ena(vf)) { 2812 supported_caps = &caps->filtering.filtering_support; 2813 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2814 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2815 2816 supported_caps = &caps->offloads.stripping_support; 2817 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2818 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2819 2820 supported_caps = &caps->offloads.insertion_support; 2821 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2822 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2823 2824 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2825 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2826 caps->filtering.max_filters = 0; 2827 } else { 2828 supported_caps = &caps->filtering.filtering_support; 2829 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2830 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2831 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2832 2833 supported_caps = &caps->offloads.stripping_support; 2834 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2835 VIRTCHNL_VLAN_TOGGLE | 2836 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2837 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2838 2839 supported_caps = &caps->offloads.insertion_support; 2840 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2841 VIRTCHNL_VLAN_TOGGLE | 2842 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2843 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2844 2845 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2846 caps->offloads.ethertype_match = 2847 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2848 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2849 } 2850 } 2851 2852 /** 2853 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2854 * @vf: VF to determine VLAN capabilities for 2855 * 2856 * This will only be called if the VF and PF successfully negotiated 2857 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2858 * 2859 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2860 * is configured or not. 2861 */ 2862 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2863 { 2864 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2865 struct virtchnl_vlan_caps *caps = NULL; 2866 int err, len = 0; 2867 2868 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2869 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2870 goto out; 2871 } 2872 2873 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2874 if (!caps) { 2875 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2876 goto out; 2877 } 2878 len = sizeof(*caps); 2879 2880 if (ice_is_dvm_ena(&vf->pf->hw)) 2881 ice_vc_set_dvm_caps(vf, caps); 2882 else 2883 ice_vc_set_svm_caps(vf, caps); 2884 2885 /* store negotiated caps to prevent invalid VF messages */ 2886 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2887 2888 out: 2889 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2890 v_ret, (u8 *)caps, len); 2891 kfree(caps); 2892 return err; 2893 } 2894 2895 /** 2896 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2897 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2898 * @tpid: VLAN TPID used for validation 2899 * 2900 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2901 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2902 */ 2903 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2904 { 2905 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2906 2907 switch (tpid) { 2908 case ETH_P_8021Q: 2909 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2910 break; 2911 case ETH_P_8021AD: 2912 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2913 break; 2914 case ETH_P_QINQ1: 2915 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2916 break; 2917 } 2918 2919 if (!(filtering_caps & vlan_ethertype)) 2920 return false; 2921 2922 return true; 2923 } 2924 2925 /** 2926 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2927 * @vc_vlan: virtchnl_vlan to validate 2928 * 2929 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2930 * false. Otherwise return true. 2931 */ 2932 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2933 { 2934 if (!vc_vlan->tci || !vc_vlan->tpid) 2935 return false; 2936 2937 return true; 2938 } 2939 2940 /** 2941 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2942 * @vfc: negotiated/supported VLAN filtering capabilities 2943 * @vfl: VLAN filter list from VF to validate 2944 * 2945 * Validate all of the filters in the VLAN filter list from the VF. If any of 2946 * the checks fail then return false. Otherwise return true. 2947 */ 2948 static bool 2949 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2950 struct virtchnl_vlan_filter_list_v2 *vfl) 2951 { 2952 u16 i; 2953 2954 if (!vfl->num_elements) 2955 return false; 2956 2957 for (i = 0; i < vfl->num_elements; i++) { 2958 struct virtchnl_vlan_supported_caps *filtering_support = 2959 &vfc->filtering_support; 2960 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2961 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2962 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2963 2964 if ((ice_vc_is_valid_vlan(outer) && 2965 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2966 (ice_vc_is_valid_vlan(inner) && 2967 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2968 return false; 2969 2970 if ((outer->tci_mask && 2971 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2972 (inner->tci_mask && 2973 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2974 return false; 2975 2976 if (((outer->tci & VLAN_PRIO_MASK) && 2977 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2978 ((inner->tci & VLAN_PRIO_MASK) && 2979 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2980 return false; 2981 2982 if ((ice_vc_is_valid_vlan(outer) && 2983 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2984 outer->tpid)) || 2985 (ice_vc_is_valid_vlan(inner) && 2986 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2987 inner->tpid))) 2988 return false; 2989 } 2990 2991 return true; 2992 } 2993 2994 /** 2995 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2996 * @vc_vlan: struct virtchnl_vlan to transform 2997 */ 2998 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2999 { 3000 struct ice_vlan vlan = { 0 }; 3001 3002 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3003 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3004 vlan.tpid = vc_vlan->tpid; 3005 3006 return vlan; 3007 } 3008 3009 /** 3010 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3011 * @vsi: VF's VSI used to perform the action 3012 * @vlan_action: function to perform the action with (i.e. add/del) 3013 * @vlan: VLAN filter to perform the action with 3014 */ 3015 static int 3016 ice_vc_vlan_action(struct ice_vsi *vsi, 3017 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3018 struct ice_vlan *vlan) 3019 { 3020 int err; 3021 3022 err = vlan_action(vsi, vlan); 3023 if (err) 3024 return err; 3025 3026 return 0; 3027 } 3028 3029 /** 3030 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3031 * @vf: VF used to delete the VLAN(s) 3032 * @vsi: VF's VSI used to delete the VLAN(s) 3033 * @vfl: virthchnl filter list used to delete the filters 3034 */ 3035 static int 3036 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3037 struct virtchnl_vlan_filter_list_v2 *vfl) 3038 { 3039 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3040 int err; 3041 u16 i; 3042 3043 for (i = 0; i < vfl->num_elements; i++) { 3044 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3045 struct virtchnl_vlan *vc_vlan; 3046 3047 vc_vlan = &vlan_fltr->outer; 3048 if (ice_vc_is_valid_vlan(vc_vlan)) { 3049 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3050 3051 err = ice_vc_vlan_action(vsi, 3052 vsi->outer_vlan_ops.del_vlan, 3053 &vlan); 3054 if (err) 3055 return err; 3056 3057 if (vlan_promisc) 3058 ice_vf_dis_vlan_promisc(vsi, &vlan); 3059 3060 /* Disable VLAN filtering when only VLAN 0 is left */ 3061 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3062 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3063 if (err) 3064 return err; 3065 } 3066 } 3067 3068 vc_vlan = &vlan_fltr->inner; 3069 if (ice_vc_is_valid_vlan(vc_vlan)) { 3070 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3071 3072 err = ice_vc_vlan_action(vsi, 3073 vsi->inner_vlan_ops.del_vlan, 3074 &vlan); 3075 if (err) 3076 return err; 3077 3078 /* no support for VLAN promiscuous on inner VLAN unless 3079 * we are in Single VLAN Mode (SVM) 3080 */ 3081 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3082 if (vlan_promisc) 3083 ice_vf_dis_vlan_promisc(vsi, &vlan); 3084 3085 /* Disable VLAN filtering when only VLAN 0 is left */ 3086 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3087 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3088 if (err) 3089 return err; 3090 } 3091 } 3092 } 3093 } 3094 3095 return 0; 3096 } 3097 3098 /** 3099 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3100 * @vf: VF the message was received from 3101 * @msg: message received from the VF 3102 */ 3103 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3104 { 3105 struct virtchnl_vlan_filter_list_v2 *vfl = 3106 (struct virtchnl_vlan_filter_list_v2 *)msg; 3107 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3108 struct ice_vsi *vsi; 3109 3110 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3111 vfl)) { 3112 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3113 goto out; 3114 } 3115 3116 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3117 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3118 goto out; 3119 } 3120 3121 vsi = ice_get_vf_vsi(vf); 3122 if (!vsi) { 3123 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3124 goto out; 3125 } 3126 3127 if (ice_vc_del_vlans(vf, vsi, vfl)) 3128 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3129 3130 out: 3131 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3132 0); 3133 } 3134 3135 /** 3136 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3137 * @vf: VF used to add the VLAN(s) 3138 * @vsi: VF's VSI used to add the VLAN(s) 3139 * @vfl: virthchnl filter list used to add the filters 3140 */ 3141 static int 3142 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3143 struct virtchnl_vlan_filter_list_v2 *vfl) 3144 { 3145 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3146 int err; 3147 u16 i; 3148 3149 for (i = 0; i < vfl->num_elements; i++) { 3150 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3151 struct virtchnl_vlan *vc_vlan; 3152 3153 vc_vlan = &vlan_fltr->outer; 3154 if (ice_vc_is_valid_vlan(vc_vlan)) { 3155 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3156 3157 err = ice_vc_vlan_action(vsi, 3158 vsi->outer_vlan_ops.add_vlan, 3159 &vlan); 3160 if (err) 3161 return err; 3162 3163 if (vlan_promisc) { 3164 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3165 if (err) 3166 return err; 3167 } 3168 3169 /* Enable VLAN filtering on first non-zero VLAN */ 3170 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3171 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3172 if (err) 3173 return err; 3174 } 3175 } 3176 3177 vc_vlan = &vlan_fltr->inner; 3178 if (ice_vc_is_valid_vlan(vc_vlan)) { 3179 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3180 3181 err = ice_vc_vlan_action(vsi, 3182 vsi->inner_vlan_ops.add_vlan, 3183 &vlan); 3184 if (err) 3185 return err; 3186 3187 /* no support for VLAN promiscuous on inner VLAN unless 3188 * we are in Single VLAN Mode (SVM) 3189 */ 3190 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3191 if (vlan_promisc) { 3192 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3193 if (err) 3194 return err; 3195 } 3196 3197 /* Enable VLAN filtering on first non-zero VLAN */ 3198 if (vf->spoofchk && vlan.vid) { 3199 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3200 if (err) 3201 return err; 3202 } 3203 } 3204 } 3205 } 3206 3207 return 0; 3208 } 3209 3210 /** 3211 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3212 * @vsi: VF VSI used to get number of existing VLAN filters 3213 * @vfc: negotiated/supported VLAN filtering capabilities 3214 * @vfl: VLAN filter list from VF to validate 3215 * 3216 * Validate all of the filters in the VLAN filter list from the VF during the 3217 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3218 * Otherwise return true. 3219 */ 3220 static bool 3221 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3222 struct virtchnl_vlan_filtering_caps *vfc, 3223 struct virtchnl_vlan_filter_list_v2 *vfl) 3224 { 3225 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3226 vfl->num_elements; 3227 3228 if (num_requested_filters > vfc->max_filters) 3229 return false; 3230 3231 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3232 } 3233 3234 /** 3235 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3236 * @vf: VF the message was received from 3237 * @msg: message received from the VF 3238 */ 3239 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3240 { 3241 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3242 struct virtchnl_vlan_filter_list_v2 *vfl = 3243 (struct virtchnl_vlan_filter_list_v2 *)msg; 3244 struct ice_vsi *vsi; 3245 3246 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3248 goto out; 3249 } 3250 3251 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3252 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3253 goto out; 3254 } 3255 3256 vsi = ice_get_vf_vsi(vf); 3257 if (!vsi) { 3258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3259 goto out; 3260 } 3261 3262 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3263 &vf->vlan_v2_caps.filtering, 3264 vfl)) { 3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3266 goto out; 3267 } 3268 3269 if (ice_vc_add_vlans(vf, vsi, vfl)) 3270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3271 3272 out: 3273 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3274 0); 3275 } 3276 3277 /** 3278 * ice_vc_valid_vlan_setting - validate VLAN setting 3279 * @negotiated_settings: negotiated VLAN settings during VF init 3280 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3281 */ 3282 static bool 3283 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3284 { 3285 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3286 return false; 3287 3288 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3289 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3290 */ 3291 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3292 hweight32(ethertype_setting) > 1) 3293 return false; 3294 3295 /* ability to modify the VLAN setting was not negotiated */ 3296 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3297 return false; 3298 3299 return true; 3300 } 3301 3302 /** 3303 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3304 * @caps: negotiated VLAN settings during VF init 3305 * @msg: message to validate 3306 * 3307 * Used to validate any VLAN virtchnl message sent as a 3308 * virtchnl_vlan_setting structure. Validates the message against the 3309 * negotiated/supported caps during VF driver init. 3310 */ 3311 static bool 3312 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3313 struct virtchnl_vlan_setting *msg) 3314 { 3315 if ((!msg->outer_ethertype_setting && 3316 !msg->inner_ethertype_setting) || 3317 (!caps->outer && !caps->inner)) 3318 return false; 3319 3320 if (msg->outer_ethertype_setting && 3321 !ice_vc_valid_vlan_setting(caps->outer, 3322 msg->outer_ethertype_setting)) 3323 return false; 3324 3325 if (msg->inner_ethertype_setting && 3326 !ice_vc_valid_vlan_setting(caps->inner, 3327 msg->inner_ethertype_setting)) 3328 return false; 3329 3330 return true; 3331 } 3332 3333 /** 3334 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3335 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3336 * @tpid: VLAN TPID to populate 3337 */ 3338 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3339 { 3340 switch (ethertype_setting) { 3341 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3342 *tpid = ETH_P_8021Q; 3343 break; 3344 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3345 *tpid = ETH_P_8021AD; 3346 break; 3347 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3348 *tpid = ETH_P_QINQ1; 3349 break; 3350 default: 3351 *tpid = 0; 3352 return -EINVAL; 3353 } 3354 3355 return 0; 3356 } 3357 3358 /** 3359 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3360 * @vsi: VF's VSI used to enable the VLAN offload 3361 * @ena_offload: function used to enable the VLAN offload 3362 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3363 */ 3364 static int 3365 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3366 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3367 u32 ethertype_setting) 3368 { 3369 u16 tpid; 3370 int err; 3371 3372 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3373 if (err) 3374 return err; 3375 3376 err = ena_offload(vsi, tpid); 3377 if (err) 3378 return err; 3379 3380 return 0; 3381 } 3382 3383 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3384 #define ICE_L2TSEL_BIT_OFFSET 23 3385 enum ice_l2tsel { 3386 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3387 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3388 }; 3389 3390 /** 3391 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3392 * @vsi: VSI used to update l2tsel on 3393 * @l2tsel: l2tsel setting requested 3394 * 3395 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3396 * This will modify which descriptor field the first offloaded VLAN will be 3397 * stripped into. 3398 */ 3399 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3400 { 3401 struct ice_hw *hw = &vsi->back->hw; 3402 u32 l2tsel_bit; 3403 int i; 3404 3405 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3406 l2tsel_bit = 0; 3407 else 3408 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3409 3410 for (i = 0; i < vsi->alloc_rxq; i++) { 3411 u16 pfq = vsi->rxq_map[i]; 3412 u32 qrx_context_offset; 3413 u32 regval; 3414 3415 qrx_context_offset = 3416 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3417 3418 regval = rd32(hw, qrx_context_offset); 3419 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3420 regval |= l2tsel_bit; 3421 wr32(hw, qrx_context_offset, regval); 3422 } 3423 } 3424 3425 /** 3426 * ice_vc_ena_vlan_stripping_v2_msg 3427 * @vf: VF the message was received from 3428 * @msg: message received from the VF 3429 * 3430 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3431 */ 3432 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3433 { 3434 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3435 struct virtchnl_vlan_supported_caps *stripping_support; 3436 struct virtchnl_vlan_setting *strip_msg = 3437 (struct virtchnl_vlan_setting *)msg; 3438 u32 ethertype_setting; 3439 struct ice_vsi *vsi; 3440 3441 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3442 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3443 goto out; 3444 } 3445 3446 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3447 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3448 goto out; 3449 } 3450 3451 vsi = ice_get_vf_vsi(vf); 3452 if (!vsi) { 3453 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3454 goto out; 3455 } 3456 3457 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3458 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3459 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3460 goto out; 3461 } 3462 3463 ethertype_setting = strip_msg->outer_ethertype_setting; 3464 if (ethertype_setting) { 3465 if (ice_vc_ena_vlan_offload(vsi, 3466 vsi->outer_vlan_ops.ena_stripping, 3467 ethertype_setting)) { 3468 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3469 goto out; 3470 } else { 3471 enum ice_l2tsel l2tsel = 3472 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3473 3474 /* PF tells the VF that the outer VLAN tag is always 3475 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3476 * inner is always extracted to 3477 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3478 * support outer stripping so the first tag always ends 3479 * up in L2TAG2_2ND and the second/inner tag, if 3480 * enabled, is extracted in L2TAG1. 3481 */ 3482 ice_vsi_update_l2tsel(vsi, l2tsel); 3483 } 3484 } 3485 3486 ethertype_setting = strip_msg->inner_ethertype_setting; 3487 if (ethertype_setting && 3488 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3489 ethertype_setting)) { 3490 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3491 goto out; 3492 } 3493 3494 out: 3495 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3496 v_ret, NULL, 0); 3497 } 3498 3499 /** 3500 * ice_vc_dis_vlan_stripping_v2_msg 3501 * @vf: VF the message was received from 3502 * @msg: message received from the VF 3503 * 3504 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3505 */ 3506 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3507 { 3508 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3509 struct virtchnl_vlan_supported_caps *stripping_support; 3510 struct virtchnl_vlan_setting *strip_msg = 3511 (struct virtchnl_vlan_setting *)msg; 3512 u32 ethertype_setting; 3513 struct ice_vsi *vsi; 3514 3515 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3516 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3517 goto out; 3518 } 3519 3520 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3521 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3522 goto out; 3523 } 3524 3525 vsi = ice_get_vf_vsi(vf); 3526 if (!vsi) { 3527 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3528 goto out; 3529 } 3530 3531 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3532 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3534 goto out; 3535 } 3536 3537 ethertype_setting = strip_msg->outer_ethertype_setting; 3538 if (ethertype_setting) { 3539 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3541 goto out; 3542 } else { 3543 enum ice_l2tsel l2tsel = 3544 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3545 3546 /* PF tells the VF that the outer VLAN tag is always 3547 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3548 * inner is always extracted to 3549 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3550 * support inner stripping while outer stripping is 3551 * disabled so that the first and only tag is extracted 3552 * in L2TAG1. 3553 */ 3554 ice_vsi_update_l2tsel(vsi, l2tsel); 3555 } 3556 } 3557 3558 ethertype_setting = strip_msg->inner_ethertype_setting; 3559 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3561 goto out; 3562 } 3563 3564 out: 3565 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3566 v_ret, NULL, 0); 3567 } 3568 3569 /** 3570 * ice_vc_ena_vlan_insertion_v2_msg 3571 * @vf: VF the message was received from 3572 * @msg: message received from the VF 3573 * 3574 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3575 */ 3576 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3577 { 3578 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3579 struct virtchnl_vlan_supported_caps *insertion_support; 3580 struct virtchnl_vlan_setting *insertion_msg = 3581 (struct virtchnl_vlan_setting *)msg; 3582 u32 ethertype_setting; 3583 struct ice_vsi *vsi; 3584 3585 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3587 goto out; 3588 } 3589 3590 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3591 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3592 goto out; 3593 } 3594 3595 vsi = ice_get_vf_vsi(vf); 3596 if (!vsi) { 3597 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3598 goto out; 3599 } 3600 3601 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3602 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3603 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3604 goto out; 3605 } 3606 3607 ethertype_setting = insertion_msg->outer_ethertype_setting; 3608 if (ethertype_setting && 3609 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3610 ethertype_setting)) { 3611 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3612 goto out; 3613 } 3614 3615 ethertype_setting = insertion_msg->inner_ethertype_setting; 3616 if (ethertype_setting && 3617 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3618 ethertype_setting)) { 3619 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3620 goto out; 3621 } 3622 3623 out: 3624 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3625 v_ret, NULL, 0); 3626 } 3627 3628 /** 3629 * ice_vc_dis_vlan_insertion_v2_msg 3630 * @vf: VF the message was received from 3631 * @msg: message received from the VF 3632 * 3633 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3634 */ 3635 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3636 { 3637 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3638 struct virtchnl_vlan_supported_caps *insertion_support; 3639 struct virtchnl_vlan_setting *insertion_msg = 3640 (struct virtchnl_vlan_setting *)msg; 3641 u32 ethertype_setting; 3642 struct ice_vsi *vsi; 3643 3644 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3645 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3646 goto out; 3647 } 3648 3649 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3650 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3651 goto out; 3652 } 3653 3654 vsi = ice_get_vf_vsi(vf); 3655 if (!vsi) { 3656 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3657 goto out; 3658 } 3659 3660 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3661 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3662 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3663 goto out; 3664 } 3665 3666 ethertype_setting = insertion_msg->outer_ethertype_setting; 3667 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3668 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3669 goto out; 3670 } 3671 3672 ethertype_setting = insertion_msg->inner_ethertype_setting; 3673 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3674 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3675 goto out; 3676 } 3677 3678 out: 3679 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3680 v_ret, NULL, 0); 3681 } 3682 3683 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3684 .get_ver_msg = ice_vc_get_ver_msg, 3685 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3686 .reset_vf = ice_vc_reset_vf_msg, 3687 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3688 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3689 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3690 .ena_qs_msg = ice_vc_ena_qs_msg, 3691 .dis_qs_msg = ice_vc_dis_qs_msg, 3692 .request_qs_msg = ice_vc_request_qs_msg, 3693 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3694 .config_rss_key = ice_vc_config_rss_key, 3695 .config_rss_lut = ice_vc_config_rss_lut, 3696 .get_stats_msg = ice_vc_get_stats_msg, 3697 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3698 .add_vlan_msg = ice_vc_add_vlan_msg, 3699 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3700 .query_rxdid = ice_vc_query_rxdid, 3701 .get_rss_hena = ice_vc_get_rss_hena, 3702 .set_rss_hena_msg = ice_vc_set_rss_hena, 3703 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3704 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3705 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3706 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3707 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3708 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3709 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3710 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3711 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3712 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3713 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3714 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3715 }; 3716 3717 /** 3718 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3719 * @vf: the VF to switch ops 3720 */ 3721 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3722 { 3723 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3724 } 3725 3726 /** 3727 * ice_vc_repr_add_mac 3728 * @vf: pointer to VF 3729 * @msg: virtchannel message 3730 * 3731 * When port representors are created, we do not add MAC rule 3732 * to firmware, we store it so that PF could report same 3733 * MAC as VF. 3734 */ 3735 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3736 { 3737 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3738 struct virtchnl_ether_addr_list *al = 3739 (struct virtchnl_ether_addr_list *)msg; 3740 struct ice_vsi *vsi; 3741 struct ice_pf *pf; 3742 int i; 3743 3744 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3745 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3746 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3747 goto handle_mac_exit; 3748 } 3749 3750 pf = vf->pf; 3751 3752 vsi = ice_get_vf_vsi(vf); 3753 if (!vsi) { 3754 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3755 goto handle_mac_exit; 3756 } 3757 3758 for (i = 0; i < al->num_elements; i++) { 3759 u8 *mac_addr = al->list[i].addr; 3760 3761 if (!is_unicast_ether_addr(mac_addr) || 3762 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3763 continue; 3764 3765 if (vf->pf_set_mac) { 3766 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3767 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3768 goto handle_mac_exit; 3769 } 3770 3771 ice_vfhw_mac_add(vf, &al->list[i]); 3772 vf->num_mac++; 3773 break; 3774 } 3775 3776 handle_mac_exit: 3777 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3778 v_ret, NULL, 0); 3779 } 3780 3781 /** 3782 * ice_vc_repr_del_mac - response with success for deleting MAC 3783 * @vf: pointer to VF 3784 * @msg: virtchannel message 3785 * 3786 * Respond with success to not break normal VF flow. 3787 * For legacy VF driver try to update cached MAC address. 3788 */ 3789 static int 3790 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3791 { 3792 struct virtchnl_ether_addr_list *al = 3793 (struct virtchnl_ether_addr_list *)msg; 3794 3795 ice_update_legacy_cached_mac(vf, &al->list[0]); 3796 3797 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3798 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3799 } 3800 3801 static int 3802 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3803 { 3804 dev_dbg(ice_pf_to_dev(vf->pf), 3805 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3806 vf->vf_id); 3807 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3808 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3809 NULL, 0); 3810 } 3811 3812 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3813 .get_ver_msg = ice_vc_get_ver_msg, 3814 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3815 .reset_vf = ice_vc_reset_vf_msg, 3816 .add_mac_addr_msg = ice_vc_repr_add_mac, 3817 .del_mac_addr_msg = ice_vc_repr_del_mac, 3818 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3819 .ena_qs_msg = ice_vc_ena_qs_msg, 3820 .dis_qs_msg = ice_vc_dis_qs_msg, 3821 .request_qs_msg = ice_vc_request_qs_msg, 3822 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3823 .config_rss_key = ice_vc_config_rss_key, 3824 .config_rss_lut = ice_vc_config_rss_lut, 3825 .get_stats_msg = ice_vc_get_stats_msg, 3826 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3827 .add_vlan_msg = ice_vc_add_vlan_msg, 3828 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3829 .query_rxdid = ice_vc_query_rxdid, 3830 .get_rss_hena = ice_vc_get_rss_hena, 3831 .set_rss_hena_msg = ice_vc_set_rss_hena, 3832 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3833 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3834 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3835 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3836 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3837 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3838 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3839 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3840 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3841 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3842 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3843 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3844 }; 3845 3846 /** 3847 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3848 * @vf: the VF to switch ops 3849 */ 3850 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3851 { 3852 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3853 } 3854 3855 /** 3856 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3857 * @vf: the VF to check 3858 * @mbxdata: data about the state of the mailbox 3859 * 3860 * Detect if a given VF might be malicious and attempting to overflow the PF 3861 * mailbox. If so, log a warning message and ignore this event. 3862 */ 3863 static bool 3864 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3865 { 3866 bool report_malvf = false; 3867 struct device *dev; 3868 struct ice_pf *pf; 3869 int status; 3870 3871 pf = vf->pf; 3872 dev = ice_pf_to_dev(pf); 3873 3874 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3875 return vf->mbx_info.malicious; 3876 3877 /* check to see if we have a newly malicious VF */ 3878 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3879 &report_malvf); 3880 if (status) 3881 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3882 vf->vf_id, vf->dev_lan_addr, status); 3883 3884 if (report_malvf) { 3885 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3886 u8 zero_addr[ETH_ALEN] = {}; 3887 3888 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3889 vf->dev_lan_addr, 3890 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3891 } 3892 3893 return vf->mbx_info.malicious; 3894 } 3895 3896 /** 3897 * ice_vc_process_vf_msg - Process request from VF 3898 * @pf: pointer to the PF structure 3899 * @event: pointer to the AQ event 3900 * @mbxdata: information used to detect VF attempting mailbox overflow 3901 * 3902 * called from the common asq/arq handler to 3903 * process request from VF 3904 */ 3905 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3906 struct ice_mbx_data *mbxdata) 3907 { 3908 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3909 s16 vf_id = le16_to_cpu(event->desc.retval); 3910 const struct ice_virtchnl_ops *ops; 3911 u16 msglen = event->msg_len; 3912 u8 *msg = event->msg_buf; 3913 struct ice_vf *vf = NULL; 3914 struct device *dev; 3915 int err = 0; 3916 3917 dev = ice_pf_to_dev(pf); 3918 3919 vf = ice_get_vf_by_id(pf, vf_id); 3920 if (!vf) { 3921 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3922 vf_id, v_opcode, msglen); 3923 return; 3924 } 3925 3926 mutex_lock(&vf->cfg_lock); 3927 3928 /* Check if the VF is trying to overflow the mailbox */ 3929 if (ice_is_malicious_vf(vf, mbxdata)) 3930 goto finish; 3931 3932 /* Check if VF is disabled. */ 3933 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3934 err = -EPERM; 3935 goto error_handler; 3936 } 3937 3938 ops = vf->virtchnl_ops; 3939 3940 /* Perform basic checks on the msg */ 3941 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3942 if (err) { 3943 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3944 err = -EPERM; 3945 else 3946 err = -EINVAL; 3947 } 3948 3949 error_handler: 3950 if (err) { 3951 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3952 NULL, 0); 3953 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3954 vf_id, v_opcode, msglen, err); 3955 goto finish; 3956 } 3957 3958 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3959 ice_vc_send_msg_to_vf(vf, v_opcode, 3960 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3961 0); 3962 goto finish; 3963 } 3964 3965 switch (v_opcode) { 3966 case VIRTCHNL_OP_VERSION: 3967 err = ops->get_ver_msg(vf, msg); 3968 break; 3969 case VIRTCHNL_OP_GET_VF_RESOURCES: 3970 err = ops->get_vf_res_msg(vf, msg); 3971 if (ice_vf_init_vlan_stripping(vf)) 3972 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3973 vf->vf_id); 3974 ice_vc_notify_vf_link_state(vf); 3975 break; 3976 case VIRTCHNL_OP_RESET_VF: 3977 ops->reset_vf(vf); 3978 break; 3979 case VIRTCHNL_OP_ADD_ETH_ADDR: 3980 err = ops->add_mac_addr_msg(vf, msg); 3981 break; 3982 case VIRTCHNL_OP_DEL_ETH_ADDR: 3983 err = ops->del_mac_addr_msg(vf, msg); 3984 break; 3985 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3986 err = ops->cfg_qs_msg(vf, msg); 3987 break; 3988 case VIRTCHNL_OP_ENABLE_QUEUES: 3989 err = ops->ena_qs_msg(vf, msg); 3990 ice_vc_notify_vf_link_state(vf); 3991 break; 3992 case VIRTCHNL_OP_DISABLE_QUEUES: 3993 err = ops->dis_qs_msg(vf, msg); 3994 break; 3995 case VIRTCHNL_OP_REQUEST_QUEUES: 3996 err = ops->request_qs_msg(vf, msg); 3997 break; 3998 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3999 err = ops->cfg_irq_map_msg(vf, msg); 4000 break; 4001 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4002 err = ops->config_rss_key(vf, msg); 4003 break; 4004 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4005 err = ops->config_rss_lut(vf, msg); 4006 break; 4007 case VIRTCHNL_OP_GET_STATS: 4008 err = ops->get_stats_msg(vf, msg); 4009 break; 4010 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4011 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4012 break; 4013 case VIRTCHNL_OP_ADD_VLAN: 4014 err = ops->add_vlan_msg(vf, msg); 4015 break; 4016 case VIRTCHNL_OP_DEL_VLAN: 4017 err = ops->remove_vlan_msg(vf, msg); 4018 break; 4019 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4020 err = ops->query_rxdid(vf); 4021 break; 4022 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4023 err = ops->get_rss_hena(vf); 4024 break; 4025 case VIRTCHNL_OP_SET_RSS_HENA: 4026 err = ops->set_rss_hena_msg(vf, msg); 4027 break; 4028 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4029 err = ops->ena_vlan_stripping(vf); 4030 break; 4031 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4032 err = ops->dis_vlan_stripping(vf); 4033 break; 4034 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4035 err = ops->add_fdir_fltr_msg(vf, msg); 4036 break; 4037 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4038 err = ops->del_fdir_fltr_msg(vf, msg); 4039 break; 4040 case VIRTCHNL_OP_ADD_RSS_CFG: 4041 err = ops->handle_rss_cfg_msg(vf, msg, true); 4042 break; 4043 case VIRTCHNL_OP_DEL_RSS_CFG: 4044 err = ops->handle_rss_cfg_msg(vf, msg, false); 4045 break; 4046 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4047 err = ops->get_offload_vlan_v2_caps(vf); 4048 break; 4049 case VIRTCHNL_OP_ADD_VLAN_V2: 4050 err = ops->add_vlan_v2_msg(vf, msg); 4051 break; 4052 case VIRTCHNL_OP_DEL_VLAN_V2: 4053 err = ops->remove_vlan_v2_msg(vf, msg); 4054 break; 4055 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4056 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4057 break; 4058 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4059 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4060 break; 4061 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4062 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4063 break; 4064 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4065 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4066 break; 4067 case VIRTCHNL_OP_UNKNOWN: 4068 default: 4069 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4070 vf_id); 4071 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4072 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4073 NULL, 0); 4074 break; 4075 } 4076 if (err) { 4077 /* Helper function cares less about error return values here 4078 * as it is busy with pending work. 4079 */ 4080 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4081 vf_id, v_opcode, err); 4082 } 4083 4084 finish: 4085 mutex_unlock(&vf->cfg_lock); 4086 ice_put_vf(vf); 4087 } 4088