1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = sizeof(struct virtchnl_vf_resource); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 vfres->num_vsis = 1; 499 /* Tx and Rx queue are equal for VF */ 500 vfres->num_queue_pairs = vsi->num_txq; 501 vfres->max_vectors = vf->pf->vfs.num_msix_per; 502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 503 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 504 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 505 506 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 510 vf->hw_lan_addr); 511 512 /* match guest capabilities */ 513 vf->driver_caps = vfres->vf_cap_flags; 514 515 ice_vc_set_caps_allowlist(vf); 516 ice_vc_set_working_allowlist(vf); 517 518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 519 520 err: 521 /* send the response back to the VF */ 522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 523 (u8 *)vfres, len); 524 525 kfree(vfres); 526 return ret; 527 } 528 529 /** 530 * ice_vc_reset_vf_msg 531 * @vf: pointer to the VF info 532 * 533 * called from the VF to reset itself, 534 * unlike other virtchnl messages, PF driver 535 * doesn't send the response back to the VF 536 */ 537 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 538 { 539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 540 ice_reset_vf(vf, 0); 541 } 542 543 /** 544 * ice_vc_isvalid_vsi_id 545 * @vf: pointer to the VF info 546 * @vsi_id: VF relative VSI ID 547 * 548 * check for the valid VSI ID 549 */ 550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 551 { 552 struct ice_pf *pf = vf->pf; 553 struct ice_vsi *vsi; 554 555 vsi = ice_find_vsi(pf, vsi_id); 556 557 return (vsi && (vsi->vf == vf)); 558 } 559 560 /** 561 * ice_vc_isvalid_q_id 562 * @vf: pointer to the VF info 563 * @vsi_id: VSI ID 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 569 { 570 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 571 /* allocated Tx and Rx queues should be always equal for VF VSI */ 572 return (vsi && (qid < vsi->alloc_txq)); 573 } 574 575 /** 576 * ice_vc_isvalid_ring_len 577 * @ring_len: length of ring 578 * 579 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 580 * or zero 581 */ 582 static bool ice_vc_isvalid_ring_len(u16 ring_len) 583 { 584 return ring_len == 0 || 585 (ring_len >= ICE_MIN_NUM_DESC && 586 ring_len <= ICE_MAX_NUM_DESC && 587 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 588 } 589 590 /** 591 * ice_vc_validate_pattern 592 * @vf: pointer to the VF info 593 * @proto: virtchnl protocol headers 594 * 595 * validate the pattern is supported or not. 596 * 597 * Return: true on success, false on error. 598 */ 599 bool 600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 601 { 602 bool is_ipv4 = false; 603 bool is_ipv6 = false; 604 bool is_udp = false; 605 u16 ptype = -1; 606 int i = 0; 607 608 while (i < proto->count && 609 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 610 switch (proto->proto_hdr[i].type) { 611 case VIRTCHNL_PROTO_HDR_ETH: 612 ptype = ICE_PTYPE_MAC_PAY; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV4: 615 ptype = ICE_PTYPE_IPV4_PAY; 616 is_ipv4 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_IPV6: 619 ptype = ICE_PTYPE_IPV6_PAY; 620 is_ipv6 = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_UDP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_UDP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_UDP_PAY; 627 is_udp = true; 628 break; 629 case VIRTCHNL_PROTO_HDR_TCP: 630 if (is_ipv4) 631 ptype = ICE_PTYPE_IPV4_TCP_PAY; 632 else if (is_ipv6) 633 ptype = ICE_PTYPE_IPV6_TCP_PAY; 634 break; 635 case VIRTCHNL_PROTO_HDR_SCTP: 636 if (is_ipv4) 637 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 638 else if (is_ipv6) 639 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 640 break; 641 case VIRTCHNL_PROTO_HDR_GTPU_IP: 642 case VIRTCHNL_PROTO_HDR_GTPU_EH: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_GTPU; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_GTPU; 647 goto out; 648 case VIRTCHNL_PROTO_HDR_L2TPV3: 649 if (is_ipv4) 650 ptype = ICE_MAC_IPV4_L2TPV3; 651 else if (is_ipv6) 652 ptype = ICE_MAC_IPV6_L2TPV3; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_ESP: 655 if (is_ipv4) 656 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 657 ICE_MAC_IPV4_ESP; 658 else if (is_ipv6) 659 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 660 ICE_MAC_IPV6_ESP; 661 goto out; 662 case VIRTCHNL_PROTO_HDR_AH: 663 if (is_ipv4) 664 ptype = ICE_MAC_IPV4_AH; 665 else if (is_ipv6) 666 ptype = ICE_MAC_IPV6_AH; 667 goto out; 668 case VIRTCHNL_PROTO_HDR_PFCP: 669 if (is_ipv4) 670 ptype = ICE_MAC_IPV4_PFCP_SESSION; 671 else if (is_ipv6) 672 ptype = ICE_MAC_IPV6_PFCP_SESSION; 673 goto out; 674 default: 675 break; 676 } 677 i++; 678 } 679 680 out: 681 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 682 } 683 684 /** 685 * ice_vc_parse_rss_cfg - parses hash fields and headers from 686 * a specific virtchnl RSS cfg 687 * @hw: pointer to the hardware 688 * @rss_cfg: pointer to the virtchnl RSS cfg 689 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 690 * to configure 691 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 692 * 693 * Return true if all the protocol header and hash fields in the RSS cfg could 694 * be parsed, else return false 695 * 696 * This function parses the virtchnl RSS cfg to be the intended 697 * hash fields and the intended header for RSS configuration 698 */ 699 static bool 700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 701 u32 *addl_hdrs, u64 *hash_flds) 702 { 703 const struct ice_vc_hash_field_match_type *hf_list; 704 const struct ice_vc_hdr_match_type *hdr_list; 705 int i, hf_list_len, hdr_list_len; 706 707 hf_list = ice_vc_hash_field_list; 708 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 709 hdr_list = ice_vc_hdr_list; 710 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 711 712 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 713 struct virtchnl_proto_hdr *proto_hdr = 714 &rss_cfg->proto_hdrs.proto_hdr[i]; 715 bool hdr_found = false; 716 int j; 717 718 /* Find matched ice headers according to virtchnl headers. */ 719 for (j = 0; j < hdr_list_len; j++) { 720 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 721 722 if (proto_hdr->type == hdr_map.vc_hdr) { 723 *addl_hdrs |= hdr_map.ice_hdr; 724 hdr_found = true; 725 } 726 } 727 728 if (!hdr_found) 729 return false; 730 731 /* Find matched ice hash fields according to 732 * virtchnl hash fields. 733 */ 734 for (j = 0; j < hf_list_len; j++) { 735 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 736 737 if (proto_hdr->type == hf_map.vc_hdr && 738 proto_hdr->field_selector == hf_map.vc_hash_field) { 739 *hash_flds |= hf_map.ice_hash_field; 740 break; 741 } 742 } 743 } 744 745 return true; 746 } 747 748 /** 749 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 750 * RSS offloads 751 * @caps: VF driver negotiated capabilities 752 * 753 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 754 * else return false 755 */ 756 static bool ice_vf_adv_rss_offload_ena(u32 caps) 757 { 758 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 759 } 760 761 /** 762 * ice_vc_handle_rss_cfg 763 * @vf: pointer to the VF info 764 * @msg: pointer to the message buffer 765 * @add: add a RSS config if true, otherwise delete a RSS config 766 * 767 * This function adds/deletes a RSS config 768 */ 769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 770 { 771 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 772 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 773 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 774 struct device *dev = ice_pf_to_dev(vf->pf); 775 struct ice_hw *hw = &vf->pf->hw; 776 struct ice_vsi *vsi; 777 778 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 779 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 780 vf->vf_id); 781 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 782 goto error_param; 783 } 784 785 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 789 goto error_param; 790 } 791 792 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 793 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 794 goto error_param; 795 } 796 797 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 798 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 799 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 800 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 801 vf->vf_id); 802 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 803 goto error_param; 804 } 805 806 vsi = ice_get_vf_vsi(vf); 807 if (!vsi) { 808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 809 goto error_param; 810 } 811 812 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 814 goto error_param; 815 } 816 817 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 818 struct ice_vsi_ctx *ctx; 819 u8 lut_type, hash_type; 820 int status; 821 822 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 823 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 824 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 825 826 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 827 if (!ctx) { 828 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 829 goto error_param; 830 } 831 832 ctx->info.q_opt_rss = ((lut_type << 833 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 834 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 835 (hash_type & 836 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 837 838 /* Preserve existing queueing option setting */ 839 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 840 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 841 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 842 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 843 844 ctx->info.valid_sections = 845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 846 847 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 848 if (status) { 849 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 850 status, ice_aq_str(hw->adminq.sq_last_status)); 851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 852 } else { 853 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 854 } 855 856 kfree(ctx); 857 } else { 858 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 859 u64 hash_flds = ICE_HASH_INVALID; 860 861 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 862 &hash_flds)) { 863 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 864 goto error_param; 865 } 866 867 if (add) { 868 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 869 addl_hdrs)) { 870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 871 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 872 vsi->vsi_num, v_ret); 873 } 874 } else { 875 int status; 876 877 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 878 addl_hdrs); 879 /* We just ignore -ENOENT, because if two configurations 880 * share the same profile remove one of them actually 881 * removes both, since the profile is deleted. 882 */ 883 if (status && status != -ENOENT) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 886 vf->vf_id, status); 887 } 888 } 889 } 890 891 error_param: 892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 893 } 894 895 /** 896 * ice_vc_config_rss_key 897 * @vf: pointer to the VF info 898 * @msg: pointer to the msg buffer 899 * 900 * Configure the VF's RSS key 901 */ 902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 903 { 904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 905 struct virtchnl_rss_key *vrk = 906 (struct virtchnl_rss_key *)msg; 907 struct ice_vsi *vsi; 908 909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 910 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 911 goto error_param; 912 } 913 914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 vsi = ice_get_vf_vsi(vf); 930 if (!vsi) { 931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 932 goto error_param; 933 } 934 935 if (ice_set_rss_key(vsi, vrk->key)) 936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 937 error_param: 938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 939 NULL, 0); 940 } 941 942 /** 943 * ice_vc_config_rss_lut 944 * @vf: pointer to the VF info 945 * @msg: pointer to the msg buffer 946 * 947 * Configure the VF's RSS LUT 948 */ 949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 950 { 951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 953 struct ice_vsi *vsi; 954 955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 957 goto error_param; 958 } 959 960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 vsi = ice_get_vf_vsi(vf); 976 if (!vsi) { 977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 978 goto error_param; 979 } 980 981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 983 error_param: 984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 985 NULL, 0); 986 } 987 988 /** 989 * ice_vc_cfg_promiscuous_mode_msg 990 * @vf: pointer to the VF info 991 * @msg: pointer to the msg buffer 992 * 993 * called from the VF to configure VF VSIs promiscuous mode 994 */ 995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 996 { 997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 998 bool rm_promisc, alluni = false, allmulti = false; 999 struct virtchnl_promisc_info *info = 1000 (struct virtchnl_promisc_info *)msg; 1001 struct ice_vsi_vlan_ops *vlan_ops; 1002 int mcast_err = 0, ucast_err = 0; 1003 struct ice_pf *pf = vf->pf; 1004 struct ice_vsi *vsi; 1005 u8 mcast_m, ucast_m; 1006 struct device *dev; 1007 int ret = 0; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 vsi = ice_get_vf_vsi(vf); 1020 if (!vsi) { 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 dev = ice_pf_to_dev(pf); 1026 if (!ice_is_vf_trusted(vf)) { 1027 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1028 vf->vf_id); 1029 /* Leave v_ret alone, lie to the VF on purpose. */ 1030 goto error_param; 1031 } 1032 1033 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1034 alluni = true; 1035 1036 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1037 allmulti = true; 1038 1039 rm_promisc = !allmulti && !alluni; 1040 1041 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1042 if (rm_promisc) 1043 ret = vlan_ops->ena_rx_filtering(vsi); 1044 else 1045 ret = vlan_ops->dis_rx_filtering(vsi); 1046 if (ret) { 1047 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1049 goto error_param; 1050 } 1051 1052 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1053 1054 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1055 if (alluni) { 1056 /* in this case we're turning on promiscuous mode */ 1057 ret = ice_set_dflt_vsi(vsi); 1058 } else { 1059 /* in this case we're turning off promiscuous mode */ 1060 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1061 ret = ice_clear_dflt_vsi(vsi); 1062 } 1063 1064 /* in this case we're turning on/off only 1065 * allmulticast 1066 */ 1067 if (allmulti) 1068 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1069 else 1070 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1071 1072 if (ret) { 1073 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1074 vf->vf_id, ret); 1075 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1076 goto error_param; 1077 } 1078 } else { 1079 if (alluni) 1080 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1081 else 1082 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1083 1084 if (allmulti) 1085 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1086 else 1087 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1088 1089 if (ucast_err || mcast_err) 1090 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1091 } 1092 1093 if (!mcast_err) { 1094 if (allmulti && 1095 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1096 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1097 vf->vf_id); 1098 else if (!allmulti && 1099 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1100 vf->vf_states)) 1101 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1102 vf->vf_id); 1103 } else { 1104 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1105 vf->vf_id, mcast_err); 1106 } 1107 1108 if (!ucast_err) { 1109 if (alluni && 1110 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1111 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1112 vf->vf_id); 1113 else if (!alluni && 1114 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1115 vf->vf_states)) 1116 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1117 vf->vf_id); 1118 } else { 1119 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1120 vf->vf_id, ucast_err); 1121 } 1122 1123 error_param: 1124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1125 v_ret, NULL, 0); 1126 } 1127 1128 /** 1129 * ice_vc_get_stats_msg 1130 * @vf: pointer to the VF info 1131 * @msg: pointer to the msg buffer 1132 * 1133 * called from the VF to get VSI stats 1134 */ 1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1136 { 1137 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1138 struct virtchnl_queue_select *vqs = 1139 (struct virtchnl_queue_select *)msg; 1140 struct ice_eth_stats stats = { 0 }; 1141 struct ice_vsi *vsi; 1142 1143 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1144 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1145 goto error_param; 1146 } 1147 1148 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1150 goto error_param; 1151 } 1152 1153 vsi = ice_get_vf_vsi(vf); 1154 if (!vsi) { 1155 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1156 goto error_param; 1157 } 1158 1159 ice_update_eth_stats(vsi); 1160 1161 stats = vsi->eth_stats; 1162 1163 error_param: 1164 /* send the response to the VF */ 1165 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1166 (u8 *)&stats, sizeof(stats)); 1167 } 1168 1169 /** 1170 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1171 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1172 * 1173 * Return true on successful validation, else false 1174 */ 1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1176 { 1177 if ((!vqs->rx_queues && !vqs->tx_queues) || 1178 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1179 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /** 1186 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1187 * @vsi: VSI of the VF to configure 1188 * @q_idx: VF queue index used to determine the queue in the PF's space 1189 */ 1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1191 { 1192 struct ice_hw *hw = &vsi->back->hw; 1193 u32 pfq = vsi->txq_map[q_idx]; 1194 u32 reg; 1195 1196 reg = rd32(hw, QINT_TQCTL(pfq)); 1197 1198 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1199 * this is most likely a poll mode VF driver, so don't enable an 1200 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1201 */ 1202 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1203 return; 1204 1205 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1206 } 1207 1208 /** 1209 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1210 * @vsi: VSI of the VF to configure 1211 * @q_idx: VF queue index used to determine the queue in the PF's space 1212 */ 1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1214 { 1215 struct ice_hw *hw = &vsi->back->hw; 1216 u32 pfq = vsi->rxq_map[q_idx]; 1217 u32 reg; 1218 1219 reg = rd32(hw, QINT_RQCTL(pfq)); 1220 1221 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1222 * this is most likely a poll mode VF driver, so don't enable an 1223 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1224 */ 1225 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1226 return; 1227 1228 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1229 } 1230 1231 /** 1232 * ice_vc_ena_qs_msg 1233 * @vf: pointer to the VF info 1234 * @msg: pointer to the msg buffer 1235 * 1236 * called from the VF to enable all or specific queue(s) 1237 */ 1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1239 { 1240 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1241 struct virtchnl_queue_select *vqs = 1242 (struct virtchnl_queue_select *)msg; 1243 struct ice_vsi *vsi; 1244 unsigned long q_map; 1245 u16 vf_q_id; 1246 1247 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1254 goto error_param; 1255 } 1256 1257 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 vsi = ice_get_vf_vsi(vf); 1263 if (!vsi) { 1264 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1265 goto error_param; 1266 } 1267 1268 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1269 * Tx queue group list was configured and the context bits were 1270 * programmed using ice_vsi_cfg_txqs 1271 */ 1272 q_map = vqs->rx_queues; 1273 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1274 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1275 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1276 goto error_param; 1277 } 1278 1279 /* Skip queue if enabled */ 1280 if (test_bit(vf_q_id, vf->rxq_ena)) 1281 continue; 1282 1283 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1284 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1285 vf_q_id, vsi->vsi_num); 1286 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1287 goto error_param; 1288 } 1289 1290 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1291 set_bit(vf_q_id, vf->rxq_ena); 1292 } 1293 1294 q_map = vqs->tx_queues; 1295 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1296 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1298 goto error_param; 1299 } 1300 1301 /* Skip queue if enabled */ 1302 if (test_bit(vf_q_id, vf->txq_ena)) 1303 continue; 1304 1305 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1306 set_bit(vf_q_id, vf->txq_ena); 1307 } 1308 1309 /* Set flag to indicate that queues are enabled */ 1310 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1311 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1312 1313 error_param: 1314 /* send the response to the VF */ 1315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1316 NULL, 0); 1317 } 1318 1319 /** 1320 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1321 * @vf: VF to disable queue for 1322 * @vsi: VSI for the VF 1323 * @q_id: VF relative (0-based) queue ID 1324 * 1325 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1326 * disabled then clear q_id bit in the enabled queues bitmap and return 1327 * success. Otherwise return error. 1328 */ 1329 static int 1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1331 { 1332 struct ice_txq_meta txq_meta = { 0 }; 1333 struct ice_tx_ring *ring; 1334 int err; 1335 1336 if (!test_bit(q_id, vf->txq_ena)) 1337 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1338 q_id, vsi->vsi_num); 1339 1340 ring = vsi->tx_rings[q_id]; 1341 if (!ring) 1342 return -EINVAL; 1343 1344 ice_fill_txq_meta(vsi, ring, &txq_meta); 1345 1346 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1347 if (err) { 1348 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1349 q_id, vsi->vsi_num); 1350 return err; 1351 } 1352 1353 /* Clear enabled queues flag */ 1354 clear_bit(q_id, vf->txq_ena); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * ice_vc_dis_qs_msg 1361 * @vf: pointer to the VF info 1362 * @msg: pointer to the msg buffer 1363 * 1364 * called from the VF to disable all or specific queue(s) 1365 */ 1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1367 { 1368 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1369 struct virtchnl_queue_select *vqs = 1370 (struct virtchnl_queue_select *)msg; 1371 struct ice_vsi *vsi; 1372 unsigned long q_map; 1373 u16 vf_q_id; 1374 1375 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1376 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1383 goto error_param; 1384 } 1385 1386 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1388 goto error_param; 1389 } 1390 1391 vsi = ice_get_vf_vsi(vf); 1392 if (!vsi) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 if (vqs->tx_queues) { 1398 q_map = vqs->tx_queues; 1399 1400 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1401 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1403 goto error_param; 1404 } 1405 1406 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 } 1411 } 1412 1413 q_map = vqs->rx_queues; 1414 /* speed up Rx queue disable by batching them if possible */ 1415 if (q_map && 1416 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1417 if (ice_vsi_stop_all_rx_rings(vsi)) { 1418 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1419 vsi->vsi_num); 1420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1421 goto error_param; 1422 } 1423 1424 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1425 } else if (q_map) { 1426 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1427 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1429 goto error_param; 1430 } 1431 1432 /* Skip queue if not enabled */ 1433 if (!test_bit(vf_q_id, vf->rxq_ena)) 1434 continue; 1435 1436 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1437 true)) { 1438 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1439 vf_q_id, vsi->vsi_num); 1440 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1441 goto error_param; 1442 } 1443 1444 /* Clear enabled queues flag */ 1445 clear_bit(vf_q_id, vf->rxq_ena); 1446 } 1447 } 1448 1449 /* Clear enabled queues flag */ 1450 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1451 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1452 1453 error_param: 1454 /* send the response to the VF */ 1455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1456 NULL, 0); 1457 } 1458 1459 /** 1460 * ice_cfg_interrupt 1461 * @vf: pointer to the VF info 1462 * @vsi: the VSI being configured 1463 * @vector_id: vector ID 1464 * @map: vector map for mapping vectors to queues 1465 * @q_vector: structure for interrupt vector 1466 * configure the IRQ to queue map 1467 */ 1468 static int 1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1470 struct virtchnl_vector_map *map, 1471 struct ice_q_vector *q_vector) 1472 { 1473 u16 vsi_q_id, vsi_q_id_idx; 1474 unsigned long qmap; 1475 1476 q_vector->num_ring_rx = 0; 1477 q_vector->num_ring_tx = 0; 1478 1479 qmap = map->rxq_map; 1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1481 vsi_q_id = vsi_q_id_idx; 1482 1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1484 return VIRTCHNL_STATUS_ERR_PARAM; 1485 1486 q_vector->num_ring_rx++; 1487 q_vector->rx.itr_idx = map->rxitr_idx; 1488 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1489 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1490 q_vector->rx.itr_idx); 1491 } 1492 1493 qmap = map->txq_map; 1494 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1495 vsi_q_id = vsi_q_id_idx; 1496 1497 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1498 return VIRTCHNL_STATUS_ERR_PARAM; 1499 1500 q_vector->num_ring_tx++; 1501 q_vector->tx.itr_idx = map->txitr_idx; 1502 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1503 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1504 q_vector->tx.itr_idx); 1505 } 1506 1507 return VIRTCHNL_STATUS_SUCCESS; 1508 } 1509 1510 /** 1511 * ice_vc_cfg_irq_map_msg 1512 * @vf: pointer to the VF info 1513 * @msg: pointer to the msg buffer 1514 * 1515 * called from the VF to configure the IRQ to queue map 1516 */ 1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1518 { 1519 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1520 u16 num_q_vectors_mapped, vsi_id, vector_id; 1521 struct virtchnl_irq_map_info *irqmap_info; 1522 struct virtchnl_vector_map *map; 1523 struct ice_pf *pf = vf->pf; 1524 struct ice_vsi *vsi; 1525 int i; 1526 1527 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1528 num_q_vectors_mapped = irqmap_info->num_vectors; 1529 1530 /* Check to make sure number of VF vectors mapped is not greater than 1531 * number of VF vectors originally allocated, and check that 1532 * there is actually at least a single VF queue vector mapped 1533 */ 1534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1535 pf->vfs.num_msix_per < num_q_vectors_mapped || 1536 !num_q_vectors_mapped) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 vsi = ice_get_vf_vsi(vf); 1542 if (!vsi) { 1543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1544 goto error_param; 1545 } 1546 1547 for (i = 0; i < num_q_vectors_mapped; i++) { 1548 struct ice_q_vector *q_vector; 1549 1550 map = &irqmap_info->vecmap[i]; 1551 1552 vector_id = map->vector_id; 1553 vsi_id = map->vsi_id; 1554 /* vector_id is always 0-based for each VF, and can never be 1555 * larger than or equal to the max allowed interrupts per VF 1556 */ 1557 if (!(vector_id < pf->vfs.num_msix_per) || 1558 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1559 (!vector_id && (map->rxq_map || map->txq_map))) { 1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1561 goto error_param; 1562 } 1563 1564 /* No need to map VF miscellaneous or rogue vector */ 1565 if (!vector_id) 1566 continue; 1567 1568 /* Subtract non queue vector from vector_id passed by VF 1569 * to get actual number of VSI queue vector array index 1570 */ 1571 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1572 if (!q_vector) { 1573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1574 goto error_param; 1575 } 1576 1577 /* lookout for the invalid queue index */ 1578 v_ret = (enum virtchnl_status_code) 1579 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1580 if (v_ret) 1581 goto error_param; 1582 } 1583 1584 error_param: 1585 /* send the response to the VF */ 1586 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1587 NULL, 0); 1588 } 1589 1590 /** 1591 * ice_vc_cfg_qs_msg 1592 * @vf: pointer to the VF info 1593 * @msg: pointer to the msg buffer 1594 * 1595 * called from the VF to configure the Rx/Tx queues 1596 */ 1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1598 { 1599 struct virtchnl_vsi_queue_config_info *qci = 1600 (struct virtchnl_vsi_queue_config_info *)msg; 1601 struct virtchnl_queue_pair_info *qpi; 1602 struct ice_pf *pf = vf->pf; 1603 struct ice_vsi *vsi; 1604 int i = -1, q_idx; 1605 1606 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1607 goto error_param; 1608 1609 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1610 goto error_param; 1611 1612 vsi = ice_get_vf_vsi(vf); 1613 if (!vsi) 1614 goto error_param; 1615 1616 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1617 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1618 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1619 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1620 goto error_param; 1621 } 1622 1623 for (i = 0; i < qci->num_queue_pairs; i++) { 1624 qpi = &qci->qpair[i]; 1625 if (qpi->txq.vsi_id != qci->vsi_id || 1626 qpi->rxq.vsi_id != qci->vsi_id || 1627 qpi->rxq.queue_id != qpi->txq.queue_id || 1628 qpi->txq.headwb_enabled || 1629 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1630 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1631 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1632 goto error_param; 1633 } 1634 1635 q_idx = qpi->rxq.queue_id; 1636 1637 /* make sure selected "q_idx" is in valid range of queues 1638 * for selected "vsi" 1639 */ 1640 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1641 goto error_param; 1642 } 1643 1644 /* copy Tx queue info from VF into VSI */ 1645 if (qpi->txq.ring_len > 0) { 1646 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1647 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1648 1649 /* Disable any existing queue first */ 1650 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1651 goto error_param; 1652 1653 /* Configure a queue with the requested settings */ 1654 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1655 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1656 vf->vf_id, i); 1657 goto error_param; 1658 } 1659 } 1660 1661 /* copy Rx queue info from VF into VSI */ 1662 if (qpi->rxq.ring_len > 0) { 1663 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1664 u32 rxdid; 1665 1666 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1667 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1668 1669 if (qpi->rxq.databuffer_size != 0 && 1670 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1671 qpi->rxq.databuffer_size < 1024)) 1672 goto error_param; 1673 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1674 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1675 if (qpi->rxq.max_pkt_size > max_frame_size || 1676 qpi->rxq.max_pkt_size < 64) 1677 goto error_param; 1678 1679 vsi->max_frame = qpi->rxq.max_pkt_size; 1680 /* add space for the port VLAN since the VF driver is 1681 * not expected to account for it in the MTU 1682 * calculation 1683 */ 1684 if (ice_vf_is_port_vlan_ena(vf)) 1685 vsi->max_frame += VLAN_HLEN; 1686 1687 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1688 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1689 vf->vf_id, i); 1690 goto error_param; 1691 } 1692 1693 /* If Rx flex desc is supported, select RXDID for Rx 1694 * queues. Otherwise, use legacy 32byte descriptor 1695 * format. Legacy 16byte descriptor is not supported. 1696 * If this RXDID is selected, return error. 1697 */ 1698 if (vf->driver_caps & 1699 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1700 rxdid = qpi->rxq.rxdid; 1701 if (!(BIT(rxdid) & pf->supported_rxdids)) 1702 goto error_param; 1703 } else { 1704 rxdid = ICE_RXDID_LEGACY_1; 1705 } 1706 1707 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1708 vsi->rxq_map[q_idx], 1709 rxdid, 0x03, false); 1710 } 1711 } 1712 1713 /* send the response to the VF */ 1714 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1715 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1716 error_param: 1717 /* disable whatever we can */ 1718 for (; i >= 0; i--) { 1719 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1720 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1721 vf->vf_id, i); 1722 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1723 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1724 vf->vf_id, i); 1725 } 1726 1727 /* send the response to the VF */ 1728 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1729 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1730 } 1731 1732 /** 1733 * ice_can_vf_change_mac 1734 * @vf: pointer to the VF info 1735 * 1736 * Return true if the VF is allowed to change its MAC filters, false otherwise 1737 */ 1738 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1739 { 1740 /* If the VF MAC address has been set administratively (via the 1741 * ndo_set_vf_mac command), then deny permission to the VF to 1742 * add/delete unicast MAC addresses, unless the VF is trusted 1743 */ 1744 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1745 return false; 1746 1747 return true; 1748 } 1749 1750 /** 1751 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1752 * @vc_ether_addr: used to extract the type 1753 */ 1754 static u8 1755 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1756 { 1757 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1758 } 1759 1760 /** 1761 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1762 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1763 */ 1764 static bool 1765 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1766 { 1767 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1768 1769 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1770 } 1771 1772 /** 1773 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1774 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1775 * 1776 * This function should only be called when the MAC address in 1777 * virtchnl_ether_addr is a valid unicast MAC 1778 */ 1779 static bool 1780 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1781 { 1782 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1783 1784 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1785 } 1786 1787 /** 1788 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1789 * @vf: VF to update 1790 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1791 */ 1792 static void 1793 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1794 { 1795 u8 *mac_addr = vc_ether_addr->addr; 1796 1797 if (!is_valid_ether_addr(mac_addr)) 1798 return; 1799 1800 /* only allow legacy VF drivers to set the device and hardware MAC if it 1801 * is zero and allow new VF drivers to set the hardware MAC if the type 1802 * was correctly specified over VIRTCHNL 1803 */ 1804 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1805 is_zero_ether_addr(vf->hw_lan_addr)) || 1806 ice_is_vc_addr_primary(vc_ether_addr)) { 1807 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1808 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1809 } 1810 1811 /* hardware and device MACs are already set, but its possible that the 1812 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1813 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1814 * away for the legacy VF driver case as it will be updated in the 1815 * delete flow for this case 1816 */ 1817 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1818 ether_addr_copy(vf->legacy_last_added_umac.addr, 1819 mac_addr); 1820 vf->legacy_last_added_umac.time_modified = jiffies; 1821 } 1822 } 1823 1824 /** 1825 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1826 * @vf: pointer to the VF info 1827 * @vsi: pointer to the VF's VSI 1828 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1829 */ 1830 static int 1831 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1832 struct virtchnl_ether_addr *vc_ether_addr) 1833 { 1834 struct device *dev = ice_pf_to_dev(vf->pf); 1835 u8 *mac_addr = vc_ether_addr->addr; 1836 int ret; 1837 1838 /* device MAC already added */ 1839 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1840 return 0; 1841 1842 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1843 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1844 return -EPERM; 1845 } 1846 1847 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1848 if (ret == -EEXIST) { 1849 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1850 vf->vf_id); 1851 /* don't return since we might need to update 1852 * the primary MAC in ice_vfhw_mac_add() below 1853 */ 1854 } else if (ret) { 1855 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1856 mac_addr, vf->vf_id, ret); 1857 return ret; 1858 } else { 1859 vf->num_mac++; 1860 } 1861 1862 ice_vfhw_mac_add(vf, vc_ether_addr); 1863 1864 return ret; 1865 } 1866 1867 /** 1868 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1869 * @last_added_umac: structure used to check expiration 1870 */ 1871 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1872 { 1873 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1874 return time_is_before_jiffies(last_added_umac->time_modified + 1875 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1876 } 1877 1878 /** 1879 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1880 * @vf: VF to update 1881 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1882 * 1883 * only update cached hardware MAC for legacy VF drivers on delete 1884 * because we cannot guarantee order/type of MAC from the VF driver 1885 */ 1886 static void 1887 ice_update_legacy_cached_mac(struct ice_vf *vf, 1888 struct virtchnl_ether_addr *vc_ether_addr) 1889 { 1890 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1891 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1892 return; 1893 1894 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1895 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1896 } 1897 1898 /** 1899 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1900 * @vf: VF to update 1901 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1902 */ 1903 static void 1904 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1905 { 1906 u8 *mac_addr = vc_ether_addr->addr; 1907 1908 if (!is_valid_ether_addr(mac_addr) || 1909 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1910 return; 1911 1912 /* allow the device MAC to be repopulated in the add flow and don't 1913 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1914 * to be persistent on VM reboot and across driver unload/load, which 1915 * won't work if we clear the hardware MAC here 1916 */ 1917 eth_zero_addr(vf->dev_lan_addr); 1918 1919 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1920 } 1921 1922 /** 1923 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1924 * @vf: pointer to the VF info 1925 * @vsi: pointer to the VF's VSI 1926 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1927 */ 1928 static int 1929 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1930 struct virtchnl_ether_addr *vc_ether_addr) 1931 { 1932 struct device *dev = ice_pf_to_dev(vf->pf); 1933 u8 *mac_addr = vc_ether_addr->addr; 1934 int status; 1935 1936 if (!ice_can_vf_change_mac(vf) && 1937 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1938 return 0; 1939 1940 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1941 if (status == -ENOENT) { 1942 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1943 vf->vf_id); 1944 return -ENOENT; 1945 } else if (status) { 1946 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1947 mac_addr, vf->vf_id, status); 1948 return -EIO; 1949 } 1950 1951 ice_vfhw_mac_del(vf, vc_ether_addr); 1952 1953 vf->num_mac--; 1954 1955 return 0; 1956 } 1957 1958 /** 1959 * ice_vc_handle_mac_addr_msg 1960 * @vf: pointer to the VF info 1961 * @msg: pointer to the msg buffer 1962 * @set: true if MAC filters are being set, false otherwise 1963 * 1964 * add guest MAC address filter 1965 */ 1966 static int 1967 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1968 { 1969 int (*ice_vc_cfg_mac) 1970 (struct ice_vf *vf, struct ice_vsi *vsi, 1971 struct virtchnl_ether_addr *virtchnl_ether_addr); 1972 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1973 struct virtchnl_ether_addr_list *al = 1974 (struct virtchnl_ether_addr_list *)msg; 1975 struct ice_pf *pf = vf->pf; 1976 enum virtchnl_ops vc_op; 1977 struct ice_vsi *vsi; 1978 int i; 1979 1980 if (set) { 1981 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1982 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1983 } else { 1984 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1985 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1986 } 1987 1988 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1989 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1990 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1991 goto handle_mac_exit; 1992 } 1993 1994 /* If this VF is not privileged, then we can't add more than a 1995 * limited number of addresses. Check to make sure that the 1996 * additions do not push us over the limit. 1997 */ 1998 if (set && !ice_is_vf_trusted(vf) && 1999 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2000 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2001 vf->vf_id); 2002 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2003 goto handle_mac_exit; 2004 } 2005 2006 vsi = ice_get_vf_vsi(vf); 2007 if (!vsi) { 2008 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2009 goto handle_mac_exit; 2010 } 2011 2012 for (i = 0; i < al->num_elements; i++) { 2013 u8 *mac_addr = al->list[i].addr; 2014 int result; 2015 2016 if (is_broadcast_ether_addr(mac_addr) || 2017 is_zero_ether_addr(mac_addr)) 2018 continue; 2019 2020 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2021 if (result == -EEXIST || result == -ENOENT) { 2022 continue; 2023 } else if (result) { 2024 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2025 goto handle_mac_exit; 2026 } 2027 } 2028 2029 handle_mac_exit: 2030 /* send the response to the VF */ 2031 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2032 } 2033 2034 /** 2035 * ice_vc_add_mac_addr_msg 2036 * @vf: pointer to the VF info 2037 * @msg: pointer to the msg buffer 2038 * 2039 * add guest MAC address filter 2040 */ 2041 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2042 { 2043 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2044 } 2045 2046 /** 2047 * ice_vc_del_mac_addr_msg 2048 * @vf: pointer to the VF info 2049 * @msg: pointer to the msg buffer 2050 * 2051 * remove guest MAC address filter 2052 */ 2053 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2054 { 2055 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2056 } 2057 2058 /** 2059 * ice_vc_request_qs_msg 2060 * @vf: pointer to the VF info 2061 * @msg: pointer to the msg buffer 2062 * 2063 * VFs get a default number of queues but can use this message to request a 2064 * different number. If the request is successful, PF will reset the VF and 2065 * return 0. If unsuccessful, PF will send message informing VF of number of 2066 * available queue pairs via virtchnl message response to VF. 2067 */ 2068 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2069 { 2070 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2071 struct virtchnl_vf_res_request *vfres = 2072 (struct virtchnl_vf_res_request *)msg; 2073 u16 req_queues = vfres->num_queue_pairs; 2074 struct ice_pf *pf = vf->pf; 2075 u16 max_allowed_vf_queues; 2076 u16 tx_rx_queue_left; 2077 struct device *dev; 2078 u16 cur_queues; 2079 2080 dev = ice_pf_to_dev(pf); 2081 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2082 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2083 goto error_param; 2084 } 2085 2086 cur_queues = vf->num_vf_qs; 2087 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2088 ice_get_avail_rxq_count(pf)); 2089 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2090 if (!req_queues) { 2091 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2092 vf->vf_id); 2093 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2094 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2095 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2096 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2097 } else if (req_queues > cur_queues && 2098 req_queues - cur_queues > tx_rx_queue_left) { 2099 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2100 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2101 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2102 ICE_MAX_RSS_QS_PER_VF); 2103 } else { 2104 /* request is successful, then reset VF */ 2105 vf->num_req_qs = req_queues; 2106 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2107 dev_info(dev, "VF %d granted request of %u queues.\n", 2108 vf->vf_id, req_queues); 2109 return 0; 2110 } 2111 2112 error_param: 2113 /* send the response to the VF */ 2114 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2115 v_ret, (u8 *)vfres, sizeof(*vfres)); 2116 } 2117 2118 /** 2119 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2120 * @caps: VF driver negotiated capabilities 2121 * 2122 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2123 */ 2124 static bool ice_vf_vlan_offload_ena(u32 caps) 2125 { 2126 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2127 } 2128 2129 /** 2130 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2131 * @vf: VF used to determine if VLAN promiscuous config is allowed 2132 */ 2133 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2134 { 2135 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2136 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2137 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2138 return true; 2139 2140 return false; 2141 } 2142 2143 /** 2144 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2145 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2146 * @vlan: VLAN used to enable VLAN promiscuous 2147 * 2148 * This function should only be called if VLAN promiscuous mode is allowed, 2149 * which can be determined via ice_is_vlan_promisc_allowed(). 2150 */ 2151 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2152 { 2153 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2154 int status; 2155 2156 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2157 vlan->vid); 2158 if (status && status != -EEXIST) 2159 return status; 2160 2161 return 0; 2162 } 2163 2164 /** 2165 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2166 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2167 * @vlan: VLAN used to disable VLAN promiscuous 2168 * 2169 * This function should only be called if VLAN promiscuous mode is allowed, 2170 * which can be determined via ice_is_vlan_promisc_allowed(). 2171 */ 2172 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2173 { 2174 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2175 int status; 2176 2177 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2178 vlan->vid); 2179 if (status && status != -ENOENT) 2180 return status; 2181 2182 return 0; 2183 } 2184 2185 /** 2186 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2187 * @vf: VF to check against 2188 * @vsi: VF's VSI 2189 * 2190 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2191 * wants to, so return false. 2192 * 2193 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2194 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2195 */ 2196 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2197 { 2198 if (ice_is_vf_trusted(vf)) 2199 return false; 2200 2201 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2202 return ((ice_vsi_num_non_zero_vlans(vsi) + 2203 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2204 } 2205 2206 /** 2207 * ice_vc_process_vlan_msg 2208 * @vf: pointer to the VF info 2209 * @msg: pointer to the msg buffer 2210 * @add_v: Add VLAN if true, otherwise delete VLAN 2211 * 2212 * Process virtchnl op to add or remove programmed guest VLAN ID 2213 */ 2214 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2215 { 2216 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2217 struct virtchnl_vlan_filter_list *vfl = 2218 (struct virtchnl_vlan_filter_list *)msg; 2219 struct ice_pf *pf = vf->pf; 2220 bool vlan_promisc = false; 2221 struct ice_vsi *vsi; 2222 struct device *dev; 2223 int status = 0; 2224 int i; 2225 2226 dev = ice_pf_to_dev(pf); 2227 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2228 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2229 goto error_param; 2230 } 2231 2232 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2233 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2234 goto error_param; 2235 } 2236 2237 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2238 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2239 goto error_param; 2240 } 2241 2242 for (i = 0; i < vfl->num_elements; i++) { 2243 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2244 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2245 dev_err(dev, "invalid VF VLAN id %d\n", 2246 vfl->vlan_id[i]); 2247 goto error_param; 2248 } 2249 } 2250 2251 vsi = ice_get_vf_vsi(vf); 2252 if (!vsi) { 2253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2254 goto error_param; 2255 } 2256 2257 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2258 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2259 vf->vf_id); 2260 /* There is no need to let VF know about being not trusted, 2261 * so we can just return success message here 2262 */ 2263 goto error_param; 2264 } 2265 2266 /* in DVM a VF can add/delete inner VLAN filters when 2267 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2268 */ 2269 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2271 goto error_param; 2272 } 2273 2274 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2275 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2276 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2277 */ 2278 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2279 !ice_is_dvm_ena(&pf->hw) && 2280 !ice_vf_is_port_vlan_ena(vf); 2281 2282 if (add_v) { 2283 for (i = 0; i < vfl->num_elements; i++) { 2284 u16 vid = vfl->vlan_id[i]; 2285 struct ice_vlan vlan; 2286 2287 if (ice_vf_has_max_vlans(vf, vsi)) { 2288 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2289 vf->vf_id); 2290 /* There is no need to let VF know about being 2291 * not trusted, so we can just return success 2292 * message here as well. 2293 */ 2294 goto error_param; 2295 } 2296 2297 /* we add VLAN 0 by default for each VF so we can enable 2298 * Tx VLAN anti-spoof without triggering MDD events so 2299 * we don't need to add it again here 2300 */ 2301 if (!vid) 2302 continue; 2303 2304 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2305 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2306 if (status) { 2307 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2308 goto error_param; 2309 } 2310 2311 /* Enable VLAN filtering on first non-zero VLAN */ 2312 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2313 if (vf->spoofchk) { 2314 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2315 if (status) { 2316 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2317 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2318 vid, status); 2319 goto error_param; 2320 } 2321 } 2322 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2323 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2324 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2325 vid, status); 2326 goto error_param; 2327 } 2328 } else if (vlan_promisc) { 2329 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2330 if (status) { 2331 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2332 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2333 vid, status); 2334 } 2335 } 2336 } 2337 } else { 2338 /* In case of non_trusted VF, number of VLAN elements passed 2339 * to PF for removal might be greater than number of VLANs 2340 * filter programmed for that VF - So, use actual number of 2341 * VLANS added earlier with add VLAN opcode. In order to avoid 2342 * removing VLAN that doesn't exist, which result to sending 2343 * erroneous failed message back to the VF 2344 */ 2345 int num_vf_vlan; 2346 2347 num_vf_vlan = vsi->num_vlan; 2348 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2349 u16 vid = vfl->vlan_id[i]; 2350 struct ice_vlan vlan; 2351 2352 /* we add VLAN 0 by default for each VF so we can enable 2353 * Tx VLAN anti-spoof without triggering MDD events so 2354 * we don't want a VIRTCHNL request to remove it 2355 */ 2356 if (!vid) 2357 continue; 2358 2359 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2360 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2361 if (status) { 2362 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2363 goto error_param; 2364 } 2365 2366 /* Disable VLAN filtering when only VLAN 0 is left */ 2367 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2368 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2369 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2370 } 2371 2372 if (vlan_promisc) 2373 ice_vf_dis_vlan_promisc(vsi, &vlan); 2374 } 2375 } 2376 2377 error_param: 2378 /* send the response to the VF */ 2379 if (add_v) 2380 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2381 NULL, 0); 2382 else 2383 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2384 NULL, 0); 2385 } 2386 2387 /** 2388 * ice_vc_add_vlan_msg 2389 * @vf: pointer to the VF info 2390 * @msg: pointer to the msg buffer 2391 * 2392 * Add and program guest VLAN ID 2393 */ 2394 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2395 { 2396 return ice_vc_process_vlan_msg(vf, msg, true); 2397 } 2398 2399 /** 2400 * ice_vc_remove_vlan_msg 2401 * @vf: pointer to the VF info 2402 * @msg: pointer to the msg buffer 2403 * 2404 * remove programmed guest VLAN ID 2405 */ 2406 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2407 { 2408 return ice_vc_process_vlan_msg(vf, msg, false); 2409 } 2410 2411 /** 2412 * ice_vc_ena_vlan_stripping 2413 * @vf: pointer to the VF info 2414 * 2415 * Enable VLAN header stripping for a given VF 2416 */ 2417 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2418 { 2419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2420 struct ice_vsi *vsi; 2421 2422 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2423 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2424 goto error_param; 2425 } 2426 2427 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2429 goto error_param; 2430 } 2431 2432 vsi = ice_get_vf_vsi(vf); 2433 if (!vsi) { 2434 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2435 goto error_param; 2436 } 2437 2438 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2439 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2440 2441 error_param: 2442 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2443 v_ret, NULL, 0); 2444 } 2445 2446 /** 2447 * ice_vc_dis_vlan_stripping 2448 * @vf: pointer to the VF info 2449 * 2450 * Disable VLAN header stripping for a given VF 2451 */ 2452 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2453 { 2454 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2455 struct ice_vsi *vsi; 2456 2457 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2458 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2459 goto error_param; 2460 } 2461 2462 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2463 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2464 goto error_param; 2465 } 2466 2467 vsi = ice_get_vf_vsi(vf); 2468 if (!vsi) { 2469 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2470 goto error_param; 2471 } 2472 2473 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2474 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2475 2476 error_param: 2477 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2478 v_ret, NULL, 0); 2479 } 2480 2481 /** 2482 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2483 * @vf: pointer to the VF info 2484 */ 2485 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2486 { 2487 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2488 struct virtchnl_rss_hena *vrh = NULL; 2489 int len = 0, ret; 2490 2491 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2492 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2493 goto err; 2494 } 2495 2496 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2497 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2498 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2499 goto err; 2500 } 2501 2502 len = sizeof(struct virtchnl_rss_hena); 2503 vrh = kzalloc(len, GFP_KERNEL); 2504 if (!vrh) { 2505 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2506 len = 0; 2507 goto err; 2508 } 2509 2510 vrh->hena = ICE_DEFAULT_RSS_HENA; 2511 err: 2512 /* send the response back to the VF */ 2513 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2514 (u8 *)vrh, len); 2515 kfree(vrh); 2516 return ret; 2517 } 2518 2519 /** 2520 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2521 * @vf: pointer to the VF info 2522 * @msg: pointer to the msg buffer 2523 */ 2524 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2525 { 2526 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2527 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2528 struct ice_pf *pf = vf->pf; 2529 struct ice_vsi *vsi; 2530 struct device *dev; 2531 int status; 2532 2533 dev = ice_pf_to_dev(pf); 2534 2535 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2536 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2537 goto err; 2538 } 2539 2540 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2541 dev_err(dev, "RSS not supported by PF\n"); 2542 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2543 goto err; 2544 } 2545 2546 vsi = ice_get_vf_vsi(vf); 2547 if (!vsi) { 2548 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2549 goto err; 2550 } 2551 2552 /* clear all previously programmed RSS configuration to allow VF drivers 2553 * the ability to customize the RSS configuration and/or completely 2554 * disable RSS 2555 */ 2556 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2557 if (status && !vrh->hena) { 2558 /* only report failure to clear the current RSS configuration if 2559 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2560 */ 2561 v_ret = ice_err_to_virt_err(status); 2562 goto err; 2563 } else if (status) { 2564 /* allow the VF to update the RSS configuration even on failure 2565 * to clear the current RSS confguration in an attempt to keep 2566 * RSS in a working state 2567 */ 2568 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2569 vf->vf_id); 2570 } 2571 2572 if (vrh->hena) { 2573 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2574 v_ret = ice_err_to_virt_err(status); 2575 } 2576 2577 /* send the response to the VF */ 2578 err: 2579 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2580 NULL, 0); 2581 } 2582 2583 /** 2584 * ice_vc_query_rxdid - query RXDID supported by DDP package 2585 * @vf: pointer to VF info 2586 * 2587 * Called from VF to query a bitmap of supported flexible 2588 * descriptor RXDIDs of a DDP package. 2589 */ 2590 static int ice_vc_query_rxdid(struct ice_vf *vf) 2591 { 2592 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2593 struct virtchnl_supported_rxdids *rxdid = NULL; 2594 struct ice_hw *hw = &vf->pf->hw; 2595 struct ice_pf *pf = vf->pf; 2596 int len = 0; 2597 int ret, i; 2598 u32 regval; 2599 2600 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2601 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2602 goto err; 2603 } 2604 2605 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2606 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2607 goto err; 2608 } 2609 2610 len = sizeof(struct virtchnl_supported_rxdids); 2611 rxdid = kzalloc(len, GFP_KERNEL); 2612 if (!rxdid) { 2613 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2614 len = 0; 2615 goto err; 2616 } 2617 2618 /* Read flexiflag registers to determine whether the 2619 * corresponding RXDID is configured and supported or not. 2620 * Since Legacy 16byte descriptor format is not supported, 2621 * start from Legacy 32byte descriptor. 2622 */ 2623 for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2624 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2625 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2626 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2627 rxdid->supported_rxdids |= BIT(i); 2628 } 2629 2630 pf->supported_rxdids = rxdid->supported_rxdids; 2631 2632 err: 2633 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2634 v_ret, (u8 *)rxdid, len); 2635 kfree(rxdid); 2636 return ret; 2637 } 2638 2639 /** 2640 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2641 * @vf: VF to enable/disable VLAN stripping for on initialization 2642 * 2643 * Set the default for VLAN stripping based on whether a port VLAN is configured 2644 * and the current VLAN mode of the device. 2645 */ 2646 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2647 { 2648 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2649 2650 if (!vsi) 2651 return -EINVAL; 2652 2653 /* don't modify stripping if port VLAN is configured in SVM since the 2654 * port VLAN is based on the inner/single VLAN in SVM 2655 */ 2656 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2657 return 0; 2658 2659 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2660 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2661 else 2662 return vsi->inner_vlan_ops.dis_stripping(vsi); 2663 } 2664 2665 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2666 { 2667 if (vf->trusted) 2668 return VLAN_N_VID; 2669 else 2670 return ICE_MAX_VLAN_PER_VF; 2671 } 2672 2673 /** 2674 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2675 * @vf: VF that being checked for 2676 * 2677 * When the device is in double VLAN mode, check whether or not the outer VLAN 2678 * is allowed. 2679 */ 2680 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2681 { 2682 if (ice_vf_is_port_vlan_ena(vf)) 2683 return true; 2684 2685 return false; 2686 } 2687 2688 /** 2689 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2690 * @vf: VF that capabilities are being set for 2691 * @caps: VLAN capabilities to populate 2692 * 2693 * Determine VLAN capabilities support based on whether a port VLAN is 2694 * configured. If a port VLAN is configured then the VF should use the inner 2695 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2696 * capabilies. 2697 */ 2698 static void 2699 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2700 { 2701 struct virtchnl_vlan_supported_caps *supported_caps; 2702 2703 if (ice_vf_outer_vlan_not_allowed(vf)) { 2704 /* until support for inner VLAN filtering is added when a port 2705 * VLAN is configured, only support software offloaded inner 2706 * VLANs when a port VLAN is confgured in DVM 2707 */ 2708 supported_caps = &caps->filtering.filtering_support; 2709 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2710 2711 supported_caps = &caps->offloads.stripping_support; 2712 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2713 VIRTCHNL_VLAN_TOGGLE | 2714 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2715 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2716 2717 supported_caps = &caps->offloads.insertion_support; 2718 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2719 VIRTCHNL_VLAN_TOGGLE | 2720 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2721 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2722 2723 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2724 caps->offloads.ethertype_match = 2725 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2726 } else { 2727 supported_caps = &caps->filtering.filtering_support; 2728 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2729 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2730 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2731 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2732 VIRTCHNL_VLAN_ETHERTYPE_AND; 2733 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2734 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2735 VIRTCHNL_VLAN_ETHERTYPE_9100; 2736 2737 supported_caps = &caps->offloads.stripping_support; 2738 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2739 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2740 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2741 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2742 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2743 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2744 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2745 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2746 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2747 2748 supported_caps = &caps->offloads.insertion_support; 2749 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2750 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2751 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2752 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2753 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2754 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2755 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2756 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2757 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2758 2759 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2760 2761 caps->offloads.ethertype_match = 2762 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2763 } 2764 2765 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2766 } 2767 2768 /** 2769 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2770 * @vf: VF that capabilities are being set for 2771 * @caps: VLAN capabilities to populate 2772 * 2773 * Determine VLAN capabilities support based on whether a port VLAN is 2774 * configured. If a port VLAN is configured then the VF does not have any VLAN 2775 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2776 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2777 * VLAN fitlering and offload capabilities. 2778 */ 2779 static void 2780 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2781 { 2782 struct virtchnl_vlan_supported_caps *supported_caps; 2783 2784 if (ice_vf_is_port_vlan_ena(vf)) { 2785 supported_caps = &caps->filtering.filtering_support; 2786 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2787 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2788 2789 supported_caps = &caps->offloads.stripping_support; 2790 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2791 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2792 2793 supported_caps = &caps->offloads.insertion_support; 2794 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2795 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2796 2797 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2798 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2799 caps->filtering.max_filters = 0; 2800 } else { 2801 supported_caps = &caps->filtering.filtering_support; 2802 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2803 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2804 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2805 2806 supported_caps = &caps->offloads.stripping_support; 2807 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2808 VIRTCHNL_VLAN_TOGGLE | 2809 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2810 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2811 2812 supported_caps = &caps->offloads.insertion_support; 2813 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2814 VIRTCHNL_VLAN_TOGGLE | 2815 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2816 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2817 2818 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2819 caps->offloads.ethertype_match = 2820 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2821 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2822 } 2823 } 2824 2825 /** 2826 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2827 * @vf: VF to determine VLAN capabilities for 2828 * 2829 * This will only be called if the VF and PF successfully negotiated 2830 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2831 * 2832 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2833 * is configured or not. 2834 */ 2835 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2836 { 2837 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2838 struct virtchnl_vlan_caps *caps = NULL; 2839 int err, len = 0; 2840 2841 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2842 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2843 goto out; 2844 } 2845 2846 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2847 if (!caps) { 2848 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2849 goto out; 2850 } 2851 len = sizeof(*caps); 2852 2853 if (ice_is_dvm_ena(&vf->pf->hw)) 2854 ice_vc_set_dvm_caps(vf, caps); 2855 else 2856 ice_vc_set_svm_caps(vf, caps); 2857 2858 /* store negotiated caps to prevent invalid VF messages */ 2859 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2860 2861 out: 2862 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2863 v_ret, (u8 *)caps, len); 2864 kfree(caps); 2865 return err; 2866 } 2867 2868 /** 2869 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2870 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2871 * @tpid: VLAN TPID used for validation 2872 * 2873 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2874 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2875 */ 2876 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2877 { 2878 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2879 2880 switch (tpid) { 2881 case ETH_P_8021Q: 2882 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2883 break; 2884 case ETH_P_8021AD: 2885 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2886 break; 2887 case ETH_P_QINQ1: 2888 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2889 break; 2890 } 2891 2892 if (!(filtering_caps & vlan_ethertype)) 2893 return false; 2894 2895 return true; 2896 } 2897 2898 /** 2899 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2900 * @vc_vlan: virtchnl_vlan to validate 2901 * 2902 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2903 * false. Otherwise return true. 2904 */ 2905 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2906 { 2907 if (!vc_vlan->tci || !vc_vlan->tpid) 2908 return false; 2909 2910 return true; 2911 } 2912 2913 /** 2914 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2915 * @vfc: negotiated/supported VLAN filtering capabilities 2916 * @vfl: VLAN filter list from VF to validate 2917 * 2918 * Validate all of the filters in the VLAN filter list from the VF. If any of 2919 * the checks fail then return false. Otherwise return true. 2920 */ 2921 static bool 2922 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2923 struct virtchnl_vlan_filter_list_v2 *vfl) 2924 { 2925 u16 i; 2926 2927 if (!vfl->num_elements) 2928 return false; 2929 2930 for (i = 0; i < vfl->num_elements; i++) { 2931 struct virtchnl_vlan_supported_caps *filtering_support = 2932 &vfc->filtering_support; 2933 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2934 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2935 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2936 2937 if ((ice_vc_is_valid_vlan(outer) && 2938 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2939 (ice_vc_is_valid_vlan(inner) && 2940 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2941 return false; 2942 2943 if ((outer->tci_mask && 2944 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2945 (inner->tci_mask && 2946 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2947 return false; 2948 2949 if (((outer->tci & VLAN_PRIO_MASK) && 2950 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2951 ((inner->tci & VLAN_PRIO_MASK) && 2952 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2953 return false; 2954 2955 if ((ice_vc_is_valid_vlan(outer) && 2956 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2957 outer->tpid)) || 2958 (ice_vc_is_valid_vlan(inner) && 2959 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2960 inner->tpid))) 2961 return false; 2962 } 2963 2964 return true; 2965 } 2966 2967 /** 2968 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2969 * @vc_vlan: struct virtchnl_vlan to transform 2970 */ 2971 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2972 { 2973 struct ice_vlan vlan = { 0 }; 2974 2975 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2976 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2977 vlan.tpid = vc_vlan->tpid; 2978 2979 return vlan; 2980 } 2981 2982 /** 2983 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2984 * @vsi: VF's VSI used to perform the action 2985 * @vlan_action: function to perform the action with (i.e. add/del) 2986 * @vlan: VLAN filter to perform the action with 2987 */ 2988 static int 2989 ice_vc_vlan_action(struct ice_vsi *vsi, 2990 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2991 struct ice_vlan *vlan) 2992 { 2993 int err; 2994 2995 err = vlan_action(vsi, vlan); 2996 if (err) 2997 return err; 2998 2999 return 0; 3000 } 3001 3002 /** 3003 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3004 * @vf: VF used to delete the VLAN(s) 3005 * @vsi: VF's VSI used to delete the VLAN(s) 3006 * @vfl: virthchnl filter list used to delete the filters 3007 */ 3008 static int 3009 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3010 struct virtchnl_vlan_filter_list_v2 *vfl) 3011 { 3012 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3013 int err; 3014 u16 i; 3015 3016 for (i = 0; i < vfl->num_elements; i++) { 3017 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3018 struct virtchnl_vlan *vc_vlan; 3019 3020 vc_vlan = &vlan_fltr->outer; 3021 if (ice_vc_is_valid_vlan(vc_vlan)) { 3022 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3023 3024 err = ice_vc_vlan_action(vsi, 3025 vsi->outer_vlan_ops.del_vlan, 3026 &vlan); 3027 if (err) 3028 return err; 3029 3030 if (vlan_promisc) 3031 ice_vf_dis_vlan_promisc(vsi, &vlan); 3032 3033 /* Disable VLAN filtering when only VLAN 0 is left */ 3034 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3035 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3036 if (err) 3037 return err; 3038 } 3039 } 3040 3041 vc_vlan = &vlan_fltr->inner; 3042 if (ice_vc_is_valid_vlan(vc_vlan)) { 3043 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3044 3045 err = ice_vc_vlan_action(vsi, 3046 vsi->inner_vlan_ops.del_vlan, 3047 &vlan); 3048 if (err) 3049 return err; 3050 3051 /* no support for VLAN promiscuous on inner VLAN unless 3052 * we are in Single VLAN Mode (SVM) 3053 */ 3054 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3055 if (vlan_promisc) 3056 ice_vf_dis_vlan_promisc(vsi, &vlan); 3057 3058 /* Disable VLAN filtering when only VLAN 0 is left */ 3059 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3060 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3061 if (err) 3062 return err; 3063 } 3064 } 3065 } 3066 } 3067 3068 return 0; 3069 } 3070 3071 /** 3072 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3073 * @vf: VF the message was received from 3074 * @msg: message received from the VF 3075 */ 3076 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3077 { 3078 struct virtchnl_vlan_filter_list_v2 *vfl = 3079 (struct virtchnl_vlan_filter_list_v2 *)msg; 3080 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3081 struct ice_vsi *vsi; 3082 3083 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3084 vfl)) { 3085 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3086 goto out; 3087 } 3088 3089 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3090 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3091 goto out; 3092 } 3093 3094 vsi = ice_get_vf_vsi(vf); 3095 if (!vsi) { 3096 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3097 goto out; 3098 } 3099 3100 if (ice_vc_del_vlans(vf, vsi, vfl)) 3101 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3102 3103 out: 3104 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3105 0); 3106 } 3107 3108 /** 3109 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3110 * @vf: VF used to add the VLAN(s) 3111 * @vsi: VF's VSI used to add the VLAN(s) 3112 * @vfl: virthchnl filter list used to add the filters 3113 */ 3114 static int 3115 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3116 struct virtchnl_vlan_filter_list_v2 *vfl) 3117 { 3118 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3119 int err; 3120 u16 i; 3121 3122 for (i = 0; i < vfl->num_elements; i++) { 3123 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3124 struct virtchnl_vlan *vc_vlan; 3125 3126 vc_vlan = &vlan_fltr->outer; 3127 if (ice_vc_is_valid_vlan(vc_vlan)) { 3128 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3129 3130 err = ice_vc_vlan_action(vsi, 3131 vsi->outer_vlan_ops.add_vlan, 3132 &vlan); 3133 if (err) 3134 return err; 3135 3136 if (vlan_promisc) { 3137 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3138 if (err) 3139 return err; 3140 } 3141 3142 /* Enable VLAN filtering on first non-zero VLAN */ 3143 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3144 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3145 if (err) 3146 return err; 3147 } 3148 } 3149 3150 vc_vlan = &vlan_fltr->inner; 3151 if (ice_vc_is_valid_vlan(vc_vlan)) { 3152 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3153 3154 err = ice_vc_vlan_action(vsi, 3155 vsi->inner_vlan_ops.add_vlan, 3156 &vlan); 3157 if (err) 3158 return err; 3159 3160 /* no support for VLAN promiscuous on inner VLAN unless 3161 * we are in Single VLAN Mode (SVM) 3162 */ 3163 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3164 if (vlan_promisc) { 3165 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3166 if (err) 3167 return err; 3168 } 3169 3170 /* Enable VLAN filtering on first non-zero VLAN */ 3171 if (vf->spoofchk && vlan.vid) { 3172 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3173 if (err) 3174 return err; 3175 } 3176 } 3177 } 3178 } 3179 3180 return 0; 3181 } 3182 3183 /** 3184 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3185 * @vsi: VF VSI used to get number of existing VLAN filters 3186 * @vfc: negotiated/supported VLAN filtering capabilities 3187 * @vfl: VLAN filter list from VF to validate 3188 * 3189 * Validate all of the filters in the VLAN filter list from the VF during the 3190 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3191 * Otherwise return true. 3192 */ 3193 static bool 3194 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3195 struct virtchnl_vlan_filtering_caps *vfc, 3196 struct virtchnl_vlan_filter_list_v2 *vfl) 3197 { 3198 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3199 vfl->num_elements; 3200 3201 if (num_requested_filters > vfc->max_filters) 3202 return false; 3203 3204 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3205 } 3206 3207 /** 3208 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3209 * @vf: VF the message was received from 3210 * @msg: message received from the VF 3211 */ 3212 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3213 { 3214 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3215 struct virtchnl_vlan_filter_list_v2 *vfl = 3216 (struct virtchnl_vlan_filter_list_v2 *)msg; 3217 struct ice_vsi *vsi; 3218 3219 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3220 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3221 goto out; 3222 } 3223 3224 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3225 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3226 goto out; 3227 } 3228 3229 vsi = ice_get_vf_vsi(vf); 3230 if (!vsi) { 3231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3232 goto out; 3233 } 3234 3235 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3236 &vf->vlan_v2_caps.filtering, 3237 vfl)) { 3238 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3239 goto out; 3240 } 3241 3242 if (ice_vc_add_vlans(vf, vsi, vfl)) 3243 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3244 3245 out: 3246 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3247 0); 3248 } 3249 3250 /** 3251 * ice_vc_valid_vlan_setting - validate VLAN setting 3252 * @negotiated_settings: negotiated VLAN settings during VF init 3253 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3254 */ 3255 static bool 3256 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3257 { 3258 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3259 return false; 3260 3261 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3262 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3263 */ 3264 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3265 hweight32(ethertype_setting) > 1) 3266 return false; 3267 3268 /* ability to modify the VLAN setting was not negotiated */ 3269 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3270 return false; 3271 3272 return true; 3273 } 3274 3275 /** 3276 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3277 * @caps: negotiated VLAN settings during VF init 3278 * @msg: message to validate 3279 * 3280 * Used to validate any VLAN virtchnl message sent as a 3281 * virtchnl_vlan_setting structure. Validates the message against the 3282 * negotiated/supported caps during VF driver init. 3283 */ 3284 static bool 3285 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3286 struct virtchnl_vlan_setting *msg) 3287 { 3288 if ((!msg->outer_ethertype_setting && 3289 !msg->inner_ethertype_setting) || 3290 (!caps->outer && !caps->inner)) 3291 return false; 3292 3293 if (msg->outer_ethertype_setting && 3294 !ice_vc_valid_vlan_setting(caps->outer, 3295 msg->outer_ethertype_setting)) 3296 return false; 3297 3298 if (msg->inner_ethertype_setting && 3299 !ice_vc_valid_vlan_setting(caps->inner, 3300 msg->inner_ethertype_setting)) 3301 return false; 3302 3303 return true; 3304 } 3305 3306 /** 3307 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3308 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3309 * @tpid: VLAN TPID to populate 3310 */ 3311 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3312 { 3313 switch (ethertype_setting) { 3314 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3315 *tpid = ETH_P_8021Q; 3316 break; 3317 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3318 *tpid = ETH_P_8021AD; 3319 break; 3320 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3321 *tpid = ETH_P_QINQ1; 3322 break; 3323 default: 3324 *tpid = 0; 3325 return -EINVAL; 3326 } 3327 3328 return 0; 3329 } 3330 3331 /** 3332 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3333 * @vsi: VF's VSI used to enable the VLAN offload 3334 * @ena_offload: function used to enable the VLAN offload 3335 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3336 */ 3337 static int 3338 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3339 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3340 u32 ethertype_setting) 3341 { 3342 u16 tpid; 3343 int err; 3344 3345 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3346 if (err) 3347 return err; 3348 3349 err = ena_offload(vsi, tpid); 3350 if (err) 3351 return err; 3352 3353 return 0; 3354 } 3355 3356 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3357 #define ICE_L2TSEL_BIT_OFFSET 23 3358 enum ice_l2tsel { 3359 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3360 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3361 }; 3362 3363 /** 3364 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3365 * @vsi: VSI used to update l2tsel on 3366 * @l2tsel: l2tsel setting requested 3367 * 3368 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3369 * This will modify which descriptor field the first offloaded VLAN will be 3370 * stripped into. 3371 */ 3372 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3373 { 3374 struct ice_hw *hw = &vsi->back->hw; 3375 u32 l2tsel_bit; 3376 int i; 3377 3378 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3379 l2tsel_bit = 0; 3380 else 3381 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3382 3383 for (i = 0; i < vsi->alloc_rxq; i++) { 3384 u16 pfq = vsi->rxq_map[i]; 3385 u32 qrx_context_offset; 3386 u32 regval; 3387 3388 qrx_context_offset = 3389 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3390 3391 regval = rd32(hw, qrx_context_offset); 3392 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3393 regval |= l2tsel_bit; 3394 wr32(hw, qrx_context_offset, regval); 3395 } 3396 } 3397 3398 /** 3399 * ice_vc_ena_vlan_stripping_v2_msg 3400 * @vf: VF the message was received from 3401 * @msg: message received from the VF 3402 * 3403 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3404 */ 3405 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3406 { 3407 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3408 struct virtchnl_vlan_supported_caps *stripping_support; 3409 struct virtchnl_vlan_setting *strip_msg = 3410 (struct virtchnl_vlan_setting *)msg; 3411 u32 ethertype_setting; 3412 struct ice_vsi *vsi; 3413 3414 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3415 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3416 goto out; 3417 } 3418 3419 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3421 goto out; 3422 } 3423 3424 vsi = ice_get_vf_vsi(vf); 3425 if (!vsi) { 3426 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3427 goto out; 3428 } 3429 3430 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3431 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3432 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3433 goto out; 3434 } 3435 3436 ethertype_setting = strip_msg->outer_ethertype_setting; 3437 if (ethertype_setting) { 3438 if (ice_vc_ena_vlan_offload(vsi, 3439 vsi->outer_vlan_ops.ena_stripping, 3440 ethertype_setting)) { 3441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3442 goto out; 3443 } else { 3444 enum ice_l2tsel l2tsel = 3445 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3446 3447 /* PF tells the VF that the outer VLAN tag is always 3448 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3449 * inner is always extracted to 3450 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3451 * support outer stripping so the first tag always ends 3452 * up in L2TAG2_2ND and the second/inner tag, if 3453 * enabled, is extracted in L2TAG1. 3454 */ 3455 ice_vsi_update_l2tsel(vsi, l2tsel); 3456 } 3457 } 3458 3459 ethertype_setting = strip_msg->inner_ethertype_setting; 3460 if (ethertype_setting && 3461 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3462 ethertype_setting)) { 3463 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3464 goto out; 3465 } 3466 3467 out: 3468 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3469 v_ret, NULL, 0); 3470 } 3471 3472 /** 3473 * ice_vc_dis_vlan_stripping_v2_msg 3474 * @vf: VF the message was received from 3475 * @msg: message received from the VF 3476 * 3477 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3478 */ 3479 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3480 { 3481 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3482 struct virtchnl_vlan_supported_caps *stripping_support; 3483 struct virtchnl_vlan_setting *strip_msg = 3484 (struct virtchnl_vlan_setting *)msg; 3485 u32 ethertype_setting; 3486 struct ice_vsi *vsi; 3487 3488 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3489 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3490 goto out; 3491 } 3492 3493 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3495 goto out; 3496 } 3497 3498 vsi = ice_get_vf_vsi(vf); 3499 if (!vsi) { 3500 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3501 goto out; 3502 } 3503 3504 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3505 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3506 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3507 goto out; 3508 } 3509 3510 ethertype_setting = strip_msg->outer_ethertype_setting; 3511 if (ethertype_setting) { 3512 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3513 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3514 goto out; 3515 } else { 3516 enum ice_l2tsel l2tsel = 3517 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3518 3519 /* PF tells the VF that the outer VLAN tag is always 3520 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3521 * inner is always extracted to 3522 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3523 * support inner stripping while outer stripping is 3524 * disabled so that the first and only tag is extracted 3525 * in L2TAG1. 3526 */ 3527 ice_vsi_update_l2tsel(vsi, l2tsel); 3528 } 3529 } 3530 3531 ethertype_setting = strip_msg->inner_ethertype_setting; 3532 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3534 goto out; 3535 } 3536 3537 out: 3538 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3539 v_ret, NULL, 0); 3540 } 3541 3542 /** 3543 * ice_vc_ena_vlan_insertion_v2_msg 3544 * @vf: VF the message was received from 3545 * @msg: message received from the VF 3546 * 3547 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3548 */ 3549 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3550 { 3551 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3552 struct virtchnl_vlan_supported_caps *insertion_support; 3553 struct virtchnl_vlan_setting *insertion_msg = 3554 (struct virtchnl_vlan_setting *)msg; 3555 u32 ethertype_setting; 3556 struct ice_vsi *vsi; 3557 3558 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3559 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3560 goto out; 3561 } 3562 3563 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3564 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3565 goto out; 3566 } 3567 3568 vsi = ice_get_vf_vsi(vf); 3569 if (!vsi) { 3570 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3571 goto out; 3572 } 3573 3574 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3575 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3576 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3577 goto out; 3578 } 3579 3580 ethertype_setting = insertion_msg->outer_ethertype_setting; 3581 if (ethertype_setting && 3582 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3583 ethertype_setting)) { 3584 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3585 goto out; 3586 } 3587 3588 ethertype_setting = insertion_msg->inner_ethertype_setting; 3589 if (ethertype_setting && 3590 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3591 ethertype_setting)) { 3592 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3593 goto out; 3594 } 3595 3596 out: 3597 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3598 v_ret, NULL, 0); 3599 } 3600 3601 /** 3602 * ice_vc_dis_vlan_insertion_v2_msg 3603 * @vf: VF the message was received from 3604 * @msg: message received from the VF 3605 * 3606 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3607 */ 3608 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3609 { 3610 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3611 struct virtchnl_vlan_supported_caps *insertion_support; 3612 struct virtchnl_vlan_setting *insertion_msg = 3613 (struct virtchnl_vlan_setting *)msg; 3614 u32 ethertype_setting; 3615 struct ice_vsi *vsi; 3616 3617 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3618 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3619 goto out; 3620 } 3621 3622 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3623 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3624 goto out; 3625 } 3626 3627 vsi = ice_get_vf_vsi(vf); 3628 if (!vsi) { 3629 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3630 goto out; 3631 } 3632 3633 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3634 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3635 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3636 goto out; 3637 } 3638 3639 ethertype_setting = insertion_msg->outer_ethertype_setting; 3640 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3641 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3642 goto out; 3643 } 3644 3645 ethertype_setting = insertion_msg->inner_ethertype_setting; 3646 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3647 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3648 goto out; 3649 } 3650 3651 out: 3652 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3653 v_ret, NULL, 0); 3654 } 3655 3656 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3657 .get_ver_msg = ice_vc_get_ver_msg, 3658 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3659 .reset_vf = ice_vc_reset_vf_msg, 3660 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3661 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3662 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3663 .ena_qs_msg = ice_vc_ena_qs_msg, 3664 .dis_qs_msg = ice_vc_dis_qs_msg, 3665 .request_qs_msg = ice_vc_request_qs_msg, 3666 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3667 .config_rss_key = ice_vc_config_rss_key, 3668 .config_rss_lut = ice_vc_config_rss_lut, 3669 .get_stats_msg = ice_vc_get_stats_msg, 3670 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3671 .add_vlan_msg = ice_vc_add_vlan_msg, 3672 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3673 .query_rxdid = ice_vc_query_rxdid, 3674 .get_rss_hena = ice_vc_get_rss_hena, 3675 .set_rss_hena_msg = ice_vc_set_rss_hena, 3676 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3677 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3678 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3679 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3680 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3681 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3682 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3683 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3684 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3685 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3686 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3687 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3688 }; 3689 3690 /** 3691 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3692 * @vf: the VF to switch ops 3693 */ 3694 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3695 { 3696 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3697 } 3698 3699 /** 3700 * ice_vc_repr_add_mac 3701 * @vf: pointer to VF 3702 * @msg: virtchannel message 3703 * 3704 * When port representors are created, we do not add MAC rule 3705 * to firmware, we store it so that PF could report same 3706 * MAC as VF. 3707 */ 3708 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3709 { 3710 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3711 struct virtchnl_ether_addr_list *al = 3712 (struct virtchnl_ether_addr_list *)msg; 3713 struct ice_vsi *vsi; 3714 struct ice_pf *pf; 3715 int i; 3716 3717 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3718 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3719 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3720 goto handle_mac_exit; 3721 } 3722 3723 pf = vf->pf; 3724 3725 vsi = ice_get_vf_vsi(vf); 3726 if (!vsi) { 3727 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3728 goto handle_mac_exit; 3729 } 3730 3731 for (i = 0; i < al->num_elements; i++) { 3732 u8 *mac_addr = al->list[i].addr; 3733 int result; 3734 3735 if (!is_unicast_ether_addr(mac_addr) || 3736 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3737 continue; 3738 3739 if (vf->pf_set_mac) { 3740 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3741 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3742 goto handle_mac_exit; 3743 } 3744 3745 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3746 if (result) { 3747 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3748 mac_addr, vf->vf_id, result); 3749 goto handle_mac_exit; 3750 } 3751 3752 ice_vfhw_mac_add(vf, &al->list[i]); 3753 vf->num_mac++; 3754 break; 3755 } 3756 3757 handle_mac_exit: 3758 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3759 v_ret, NULL, 0); 3760 } 3761 3762 /** 3763 * ice_vc_repr_del_mac - response with success for deleting MAC 3764 * @vf: pointer to VF 3765 * @msg: virtchannel message 3766 * 3767 * Respond with success to not break normal VF flow. 3768 * For legacy VF driver try to update cached MAC address. 3769 */ 3770 static int 3771 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3772 { 3773 struct virtchnl_ether_addr_list *al = 3774 (struct virtchnl_ether_addr_list *)msg; 3775 3776 ice_update_legacy_cached_mac(vf, &al->list[0]); 3777 3778 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3779 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3780 } 3781 3782 static int 3783 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3784 { 3785 dev_dbg(ice_pf_to_dev(vf->pf), 3786 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3787 vf->vf_id); 3788 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3789 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3790 NULL, 0); 3791 } 3792 3793 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3794 .get_ver_msg = ice_vc_get_ver_msg, 3795 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3796 .reset_vf = ice_vc_reset_vf_msg, 3797 .add_mac_addr_msg = ice_vc_repr_add_mac, 3798 .del_mac_addr_msg = ice_vc_repr_del_mac, 3799 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3800 .ena_qs_msg = ice_vc_ena_qs_msg, 3801 .dis_qs_msg = ice_vc_dis_qs_msg, 3802 .request_qs_msg = ice_vc_request_qs_msg, 3803 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3804 .config_rss_key = ice_vc_config_rss_key, 3805 .config_rss_lut = ice_vc_config_rss_lut, 3806 .get_stats_msg = ice_vc_get_stats_msg, 3807 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3808 .add_vlan_msg = ice_vc_add_vlan_msg, 3809 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3810 .query_rxdid = ice_vc_query_rxdid, 3811 .get_rss_hena = ice_vc_get_rss_hena, 3812 .set_rss_hena_msg = ice_vc_set_rss_hena, 3813 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3814 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3815 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3816 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3817 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3818 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3819 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3820 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3821 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3822 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3823 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3824 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3825 }; 3826 3827 /** 3828 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3829 * @vf: the VF to switch ops 3830 */ 3831 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3832 { 3833 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3834 } 3835 3836 /** 3837 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3838 * @vf: the VF to check 3839 * @mbxdata: data about the state of the mailbox 3840 * 3841 * Detect if a given VF might be malicious and attempting to overflow the PF 3842 * mailbox. If so, log a warning message and ignore this event. 3843 */ 3844 static bool 3845 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3846 { 3847 bool report_malvf = false; 3848 struct device *dev; 3849 struct ice_pf *pf; 3850 int status; 3851 3852 pf = vf->pf; 3853 dev = ice_pf_to_dev(pf); 3854 3855 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3856 return vf->mbx_info.malicious; 3857 3858 /* check to see if we have a newly malicious VF */ 3859 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3860 &report_malvf); 3861 if (status) 3862 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3863 vf->vf_id, vf->dev_lan_addr, status); 3864 3865 if (report_malvf) { 3866 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3867 u8 zero_addr[ETH_ALEN] = {}; 3868 3869 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3870 vf->dev_lan_addr, 3871 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3872 } 3873 3874 return vf->mbx_info.malicious; 3875 } 3876 3877 /** 3878 * ice_vc_process_vf_msg - Process request from VF 3879 * @pf: pointer to the PF structure 3880 * @event: pointer to the AQ event 3881 * @mbxdata: information used to detect VF attempting mailbox overflow 3882 * 3883 * called from the common asq/arq handler to 3884 * process request from VF 3885 */ 3886 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3887 struct ice_mbx_data *mbxdata) 3888 { 3889 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3890 s16 vf_id = le16_to_cpu(event->desc.retval); 3891 const struct ice_virtchnl_ops *ops; 3892 u16 msglen = event->msg_len; 3893 u8 *msg = event->msg_buf; 3894 struct ice_vf *vf = NULL; 3895 struct device *dev; 3896 int err = 0; 3897 3898 dev = ice_pf_to_dev(pf); 3899 3900 vf = ice_get_vf_by_id(pf, vf_id); 3901 if (!vf) { 3902 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3903 vf_id, v_opcode, msglen); 3904 return; 3905 } 3906 3907 mutex_lock(&vf->cfg_lock); 3908 3909 /* Check if the VF is trying to overflow the mailbox */ 3910 if (ice_is_malicious_vf(vf, mbxdata)) 3911 goto finish; 3912 3913 /* Check if VF is disabled. */ 3914 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3915 err = -EPERM; 3916 goto error_handler; 3917 } 3918 3919 ops = vf->virtchnl_ops; 3920 3921 /* Perform basic checks on the msg */ 3922 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3923 if (err) { 3924 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3925 err = -EPERM; 3926 else 3927 err = -EINVAL; 3928 } 3929 3930 error_handler: 3931 if (err) { 3932 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3933 NULL, 0); 3934 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3935 vf_id, v_opcode, msglen, err); 3936 goto finish; 3937 } 3938 3939 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3940 ice_vc_send_msg_to_vf(vf, v_opcode, 3941 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3942 0); 3943 goto finish; 3944 } 3945 3946 switch (v_opcode) { 3947 case VIRTCHNL_OP_VERSION: 3948 err = ops->get_ver_msg(vf, msg); 3949 break; 3950 case VIRTCHNL_OP_GET_VF_RESOURCES: 3951 err = ops->get_vf_res_msg(vf, msg); 3952 if (ice_vf_init_vlan_stripping(vf)) 3953 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3954 vf->vf_id); 3955 ice_vc_notify_vf_link_state(vf); 3956 break; 3957 case VIRTCHNL_OP_RESET_VF: 3958 clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 3959 ops->reset_vf(vf); 3960 break; 3961 case VIRTCHNL_OP_ADD_ETH_ADDR: 3962 err = ops->add_mac_addr_msg(vf, msg); 3963 break; 3964 case VIRTCHNL_OP_DEL_ETH_ADDR: 3965 err = ops->del_mac_addr_msg(vf, msg); 3966 break; 3967 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3968 err = ops->cfg_qs_msg(vf, msg); 3969 break; 3970 case VIRTCHNL_OP_ENABLE_QUEUES: 3971 err = ops->ena_qs_msg(vf, msg); 3972 ice_vc_notify_vf_link_state(vf); 3973 break; 3974 case VIRTCHNL_OP_DISABLE_QUEUES: 3975 err = ops->dis_qs_msg(vf, msg); 3976 break; 3977 case VIRTCHNL_OP_REQUEST_QUEUES: 3978 err = ops->request_qs_msg(vf, msg); 3979 break; 3980 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3981 err = ops->cfg_irq_map_msg(vf, msg); 3982 break; 3983 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3984 err = ops->config_rss_key(vf, msg); 3985 break; 3986 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3987 err = ops->config_rss_lut(vf, msg); 3988 break; 3989 case VIRTCHNL_OP_GET_STATS: 3990 err = ops->get_stats_msg(vf, msg); 3991 break; 3992 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3993 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3994 break; 3995 case VIRTCHNL_OP_ADD_VLAN: 3996 err = ops->add_vlan_msg(vf, msg); 3997 break; 3998 case VIRTCHNL_OP_DEL_VLAN: 3999 err = ops->remove_vlan_msg(vf, msg); 4000 break; 4001 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4002 err = ops->query_rxdid(vf); 4003 break; 4004 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4005 err = ops->get_rss_hena(vf); 4006 break; 4007 case VIRTCHNL_OP_SET_RSS_HENA: 4008 err = ops->set_rss_hena_msg(vf, msg); 4009 break; 4010 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4011 err = ops->ena_vlan_stripping(vf); 4012 break; 4013 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4014 err = ops->dis_vlan_stripping(vf); 4015 break; 4016 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4017 err = ops->add_fdir_fltr_msg(vf, msg); 4018 break; 4019 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4020 err = ops->del_fdir_fltr_msg(vf, msg); 4021 break; 4022 case VIRTCHNL_OP_ADD_RSS_CFG: 4023 err = ops->handle_rss_cfg_msg(vf, msg, true); 4024 break; 4025 case VIRTCHNL_OP_DEL_RSS_CFG: 4026 err = ops->handle_rss_cfg_msg(vf, msg, false); 4027 break; 4028 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4029 err = ops->get_offload_vlan_v2_caps(vf); 4030 break; 4031 case VIRTCHNL_OP_ADD_VLAN_V2: 4032 err = ops->add_vlan_v2_msg(vf, msg); 4033 break; 4034 case VIRTCHNL_OP_DEL_VLAN_V2: 4035 err = ops->remove_vlan_v2_msg(vf, msg); 4036 break; 4037 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4038 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4039 break; 4040 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4041 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4042 break; 4043 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4044 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4045 break; 4046 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4047 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4048 break; 4049 case VIRTCHNL_OP_UNKNOWN: 4050 default: 4051 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4052 vf_id); 4053 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4054 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4055 NULL, 0); 4056 break; 4057 } 4058 if (err) { 4059 /* Helper function cares less about error return values here 4060 * as it is busy with pending work. 4061 */ 4062 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4063 vf_id, v_opcode, err); 4064 } 4065 4066 finish: 4067 mutex_unlock(&vf->cfg_lock); 4068 ice_put_vf(vf); 4069 } 4070