1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = sizeof(struct virtchnl_vf_resource); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 485 486 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 488 489 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 494 495 vfres->num_vsis = 1; 496 /* Tx and Rx queue are equal for VF */ 497 vfres->num_queue_pairs = vsi->num_txq; 498 vfres->max_vectors = vf->pf->vfs.num_msix_per; 499 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 500 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 501 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 502 503 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 504 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 505 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 506 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 507 vf->hw_lan_addr.addr); 508 509 /* match guest capabilities */ 510 vf->driver_caps = vfres->vf_cap_flags; 511 512 ice_vc_set_caps_allowlist(vf); 513 ice_vc_set_working_allowlist(vf); 514 515 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 516 517 err: 518 /* send the response back to the VF */ 519 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 520 (u8 *)vfres, len); 521 522 kfree(vfres); 523 return ret; 524 } 525 526 /** 527 * ice_vc_reset_vf_msg 528 * @vf: pointer to the VF info 529 * 530 * called from the VF to reset itself, 531 * unlike other virtchnl messages, PF driver 532 * doesn't send the response back to the VF 533 */ 534 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 535 { 536 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 537 ice_reset_vf(vf, 0); 538 } 539 540 /** 541 * ice_vc_isvalid_vsi_id 542 * @vf: pointer to the VF info 543 * @vsi_id: VF relative VSI ID 544 * 545 * check for the valid VSI ID 546 */ 547 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 548 { 549 struct ice_pf *pf = vf->pf; 550 struct ice_vsi *vsi; 551 552 vsi = ice_find_vsi(pf, vsi_id); 553 554 return (vsi && (vsi->vf == vf)); 555 } 556 557 /** 558 * ice_vc_isvalid_q_id 559 * @vf: pointer to the VF info 560 * @vsi_id: VSI ID 561 * @qid: VSI relative queue ID 562 * 563 * check for the valid queue ID 564 */ 565 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 566 { 567 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 568 /* allocated Tx and Rx queues should be always equal for VF VSI */ 569 return (vsi && (qid < vsi->alloc_txq)); 570 } 571 572 /** 573 * ice_vc_isvalid_ring_len 574 * @ring_len: length of ring 575 * 576 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 577 * or zero 578 */ 579 static bool ice_vc_isvalid_ring_len(u16 ring_len) 580 { 581 return ring_len == 0 || 582 (ring_len >= ICE_MIN_NUM_DESC && 583 ring_len <= ICE_MAX_NUM_DESC && 584 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 585 } 586 587 /** 588 * ice_vc_validate_pattern 589 * @vf: pointer to the VF info 590 * @proto: virtchnl protocol headers 591 * 592 * validate the pattern is supported or not. 593 * 594 * Return: true on success, false on error. 595 */ 596 bool 597 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 598 { 599 bool is_ipv4 = false; 600 bool is_ipv6 = false; 601 bool is_udp = false; 602 u16 ptype = -1; 603 int i = 0; 604 605 while (i < proto->count && 606 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 607 switch (proto->proto_hdr[i].type) { 608 case VIRTCHNL_PROTO_HDR_ETH: 609 ptype = ICE_PTYPE_MAC_PAY; 610 break; 611 case VIRTCHNL_PROTO_HDR_IPV4: 612 ptype = ICE_PTYPE_IPV4_PAY; 613 is_ipv4 = true; 614 break; 615 case VIRTCHNL_PROTO_HDR_IPV6: 616 ptype = ICE_PTYPE_IPV6_PAY; 617 is_ipv6 = true; 618 break; 619 case VIRTCHNL_PROTO_HDR_UDP: 620 if (is_ipv4) 621 ptype = ICE_PTYPE_IPV4_UDP_PAY; 622 else if (is_ipv6) 623 ptype = ICE_PTYPE_IPV6_UDP_PAY; 624 is_udp = true; 625 break; 626 case VIRTCHNL_PROTO_HDR_TCP: 627 if (is_ipv4) 628 ptype = ICE_PTYPE_IPV4_TCP_PAY; 629 else if (is_ipv6) 630 ptype = ICE_PTYPE_IPV6_TCP_PAY; 631 break; 632 case VIRTCHNL_PROTO_HDR_SCTP: 633 if (is_ipv4) 634 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 635 else if (is_ipv6) 636 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 637 break; 638 case VIRTCHNL_PROTO_HDR_GTPU_IP: 639 case VIRTCHNL_PROTO_HDR_GTPU_EH: 640 if (is_ipv4) 641 ptype = ICE_MAC_IPV4_GTPU; 642 else if (is_ipv6) 643 ptype = ICE_MAC_IPV6_GTPU; 644 goto out; 645 case VIRTCHNL_PROTO_HDR_L2TPV3: 646 if (is_ipv4) 647 ptype = ICE_MAC_IPV4_L2TPV3; 648 else if (is_ipv6) 649 ptype = ICE_MAC_IPV6_L2TPV3; 650 goto out; 651 case VIRTCHNL_PROTO_HDR_ESP: 652 if (is_ipv4) 653 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 654 ICE_MAC_IPV4_ESP; 655 else if (is_ipv6) 656 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 657 ICE_MAC_IPV6_ESP; 658 goto out; 659 case VIRTCHNL_PROTO_HDR_AH: 660 if (is_ipv4) 661 ptype = ICE_MAC_IPV4_AH; 662 else if (is_ipv6) 663 ptype = ICE_MAC_IPV6_AH; 664 goto out; 665 case VIRTCHNL_PROTO_HDR_PFCP: 666 if (is_ipv4) 667 ptype = ICE_MAC_IPV4_PFCP_SESSION; 668 else if (is_ipv6) 669 ptype = ICE_MAC_IPV6_PFCP_SESSION; 670 goto out; 671 default: 672 break; 673 } 674 i++; 675 } 676 677 out: 678 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 679 } 680 681 /** 682 * ice_vc_parse_rss_cfg - parses hash fields and headers from 683 * a specific virtchnl RSS cfg 684 * @hw: pointer to the hardware 685 * @rss_cfg: pointer to the virtchnl RSS cfg 686 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 687 * to configure 688 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 689 * 690 * Return true if all the protocol header and hash fields in the RSS cfg could 691 * be parsed, else return false 692 * 693 * This function parses the virtchnl RSS cfg to be the intended 694 * hash fields and the intended header for RSS configuration 695 */ 696 static bool 697 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 698 u32 *addl_hdrs, u64 *hash_flds) 699 { 700 const struct ice_vc_hash_field_match_type *hf_list; 701 const struct ice_vc_hdr_match_type *hdr_list; 702 int i, hf_list_len, hdr_list_len; 703 704 hf_list = ice_vc_hash_field_list; 705 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 706 hdr_list = ice_vc_hdr_list; 707 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 708 709 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 710 struct virtchnl_proto_hdr *proto_hdr = 711 &rss_cfg->proto_hdrs.proto_hdr[i]; 712 bool hdr_found = false; 713 int j; 714 715 /* Find matched ice headers according to virtchnl headers. */ 716 for (j = 0; j < hdr_list_len; j++) { 717 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 718 719 if (proto_hdr->type == hdr_map.vc_hdr) { 720 *addl_hdrs |= hdr_map.ice_hdr; 721 hdr_found = true; 722 } 723 } 724 725 if (!hdr_found) 726 return false; 727 728 /* Find matched ice hash fields according to 729 * virtchnl hash fields. 730 */ 731 for (j = 0; j < hf_list_len; j++) { 732 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 733 734 if (proto_hdr->type == hf_map.vc_hdr && 735 proto_hdr->field_selector == hf_map.vc_hash_field) { 736 *hash_flds |= hf_map.ice_hash_field; 737 break; 738 } 739 } 740 } 741 742 return true; 743 } 744 745 /** 746 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 747 * RSS offloads 748 * @caps: VF driver negotiated capabilities 749 * 750 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 751 * else return false 752 */ 753 static bool ice_vf_adv_rss_offload_ena(u32 caps) 754 { 755 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 756 } 757 758 /** 759 * ice_vc_handle_rss_cfg 760 * @vf: pointer to the VF info 761 * @msg: pointer to the message buffer 762 * @add: add a RSS config if true, otherwise delete a RSS config 763 * 764 * This function adds/deletes a RSS config 765 */ 766 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 767 { 768 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 769 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 770 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 771 struct device *dev = ice_pf_to_dev(vf->pf); 772 struct ice_hw *hw = &vf->pf->hw; 773 struct ice_vsi *vsi; 774 775 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 776 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 777 vf->vf_id); 778 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 779 goto error_param; 780 } 781 782 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 783 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 784 vf->vf_id); 785 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 786 goto error_param; 787 } 788 789 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 790 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 791 goto error_param; 792 } 793 794 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 795 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 796 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 797 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 798 vf->vf_id); 799 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 800 goto error_param; 801 } 802 803 vsi = ice_get_vf_vsi(vf); 804 if (!vsi) { 805 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 806 goto error_param; 807 } 808 809 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 810 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 811 goto error_param; 812 } 813 814 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 815 struct ice_vsi_ctx *ctx; 816 u8 lut_type, hash_type; 817 int status; 818 819 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 820 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 821 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 822 823 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 824 if (!ctx) { 825 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 826 goto error_param; 827 } 828 829 ctx->info.q_opt_rss = ((lut_type << 830 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 831 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 832 (hash_type & 833 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 834 835 /* Preserve existing queueing option setting */ 836 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 837 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 838 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 839 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 840 841 ctx->info.valid_sections = 842 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 843 844 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 845 if (status) { 846 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 847 status, ice_aq_str(hw->adminq.sq_last_status)); 848 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 849 } else { 850 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 851 } 852 853 kfree(ctx); 854 } else { 855 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 856 u64 hash_flds = ICE_HASH_INVALID; 857 858 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 859 &hash_flds)) { 860 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 861 goto error_param; 862 } 863 864 if (add) { 865 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 866 addl_hdrs)) { 867 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 868 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 869 vsi->vsi_num, v_ret); 870 } 871 } else { 872 int status; 873 874 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 875 addl_hdrs); 876 /* We just ignore -ENOENT, because if two configurations 877 * share the same profile remove one of them actually 878 * removes both, since the profile is deleted. 879 */ 880 if (status && status != -ENOENT) { 881 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 882 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 883 vf->vf_id, status); 884 } 885 } 886 } 887 888 error_param: 889 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 890 } 891 892 /** 893 * ice_vc_config_rss_key 894 * @vf: pointer to the VF info 895 * @msg: pointer to the msg buffer 896 * 897 * Configure the VF's RSS key 898 */ 899 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 900 { 901 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 902 struct virtchnl_rss_key *vrk = 903 (struct virtchnl_rss_key *)msg; 904 struct ice_vsi *vsi; 905 906 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 907 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 908 goto error_param; 909 } 910 911 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 912 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 913 goto error_param; 914 } 915 916 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 917 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 918 goto error_param; 919 } 920 921 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 922 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 923 goto error_param; 924 } 925 926 vsi = ice_get_vf_vsi(vf); 927 if (!vsi) { 928 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 929 goto error_param; 930 } 931 932 if (ice_set_rss_key(vsi, vrk->key)) 933 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 934 error_param: 935 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 936 NULL, 0); 937 } 938 939 /** 940 * ice_vc_config_rss_lut 941 * @vf: pointer to the VF info 942 * @msg: pointer to the msg buffer 943 * 944 * Configure the VF's RSS LUT 945 */ 946 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 947 { 948 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 949 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 950 struct ice_vsi *vsi; 951 952 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 953 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 954 goto error_param; 955 } 956 957 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 958 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 959 goto error_param; 960 } 961 962 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 964 goto error_param; 965 } 966 967 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 969 goto error_param; 970 } 971 972 vsi = ice_get_vf_vsi(vf); 973 if (!vsi) { 974 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 975 goto error_param; 976 } 977 978 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 979 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 980 error_param: 981 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 982 NULL, 0); 983 } 984 985 /** 986 * ice_vc_cfg_promiscuous_mode_msg 987 * @vf: pointer to the VF info 988 * @msg: pointer to the msg buffer 989 * 990 * called from the VF to configure VF VSIs promiscuous mode 991 */ 992 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 993 { 994 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 995 bool rm_promisc, alluni = false, allmulti = false; 996 struct virtchnl_promisc_info *info = 997 (struct virtchnl_promisc_info *)msg; 998 struct ice_vsi_vlan_ops *vlan_ops; 999 int mcast_err = 0, ucast_err = 0; 1000 struct ice_pf *pf = vf->pf; 1001 struct ice_vsi *vsi; 1002 u8 mcast_m, ucast_m; 1003 struct device *dev; 1004 int ret = 0; 1005 1006 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1007 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1008 goto error_param; 1009 } 1010 1011 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1012 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1013 goto error_param; 1014 } 1015 1016 vsi = ice_get_vf_vsi(vf); 1017 if (!vsi) { 1018 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1019 goto error_param; 1020 } 1021 1022 dev = ice_pf_to_dev(pf); 1023 if (!ice_is_vf_trusted(vf)) { 1024 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1025 vf->vf_id); 1026 /* Leave v_ret alone, lie to the VF on purpose. */ 1027 goto error_param; 1028 } 1029 1030 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1031 alluni = true; 1032 1033 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1034 allmulti = true; 1035 1036 rm_promisc = !allmulti && !alluni; 1037 1038 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1039 if (rm_promisc) 1040 ret = vlan_ops->ena_rx_filtering(vsi); 1041 else 1042 ret = vlan_ops->dis_rx_filtering(vsi); 1043 if (ret) { 1044 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1045 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1046 goto error_param; 1047 } 1048 1049 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1050 1051 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1052 if (alluni) { 1053 /* in this case we're turning on promiscuous mode */ 1054 ret = ice_set_dflt_vsi(vsi); 1055 } else { 1056 /* in this case we're turning off promiscuous mode */ 1057 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1058 ret = ice_clear_dflt_vsi(vsi); 1059 } 1060 1061 /* in this case we're turning on/off only 1062 * allmulticast 1063 */ 1064 if (allmulti) 1065 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1066 else 1067 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1068 1069 if (ret) { 1070 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1071 vf->vf_id, ret); 1072 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1073 goto error_param; 1074 } 1075 } else { 1076 if (alluni) 1077 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1078 else 1079 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1080 1081 if (allmulti) 1082 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1083 else 1084 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1085 1086 if (ucast_err || mcast_err) 1087 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1088 } 1089 1090 if (!mcast_err) { 1091 if (allmulti && 1092 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1093 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1094 vf->vf_id); 1095 else if (!allmulti && 1096 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1097 vf->vf_states)) 1098 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1099 vf->vf_id); 1100 } else { 1101 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1102 vf->vf_id, mcast_err); 1103 } 1104 1105 if (!ucast_err) { 1106 if (alluni && 1107 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1108 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1109 vf->vf_id); 1110 else if (!alluni && 1111 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1112 vf->vf_states)) 1113 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1114 vf->vf_id); 1115 } else { 1116 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1117 vf->vf_id, ucast_err); 1118 } 1119 1120 error_param: 1121 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1122 v_ret, NULL, 0); 1123 } 1124 1125 /** 1126 * ice_vc_get_stats_msg 1127 * @vf: pointer to the VF info 1128 * @msg: pointer to the msg buffer 1129 * 1130 * called from the VF to get VSI stats 1131 */ 1132 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1133 { 1134 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1135 struct virtchnl_queue_select *vqs = 1136 (struct virtchnl_queue_select *)msg; 1137 struct ice_eth_stats stats = { 0 }; 1138 struct ice_vsi *vsi; 1139 1140 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1141 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1142 goto error_param; 1143 } 1144 1145 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1146 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1147 goto error_param; 1148 } 1149 1150 vsi = ice_get_vf_vsi(vf); 1151 if (!vsi) { 1152 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1153 goto error_param; 1154 } 1155 1156 ice_update_eth_stats(vsi); 1157 1158 stats = vsi->eth_stats; 1159 1160 error_param: 1161 /* send the response to the VF */ 1162 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1163 (u8 *)&stats, sizeof(stats)); 1164 } 1165 1166 /** 1167 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1168 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1169 * 1170 * Return true on successful validation, else false 1171 */ 1172 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1173 { 1174 if ((!vqs->rx_queues && !vqs->tx_queues) || 1175 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1176 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 /** 1183 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1184 * @vsi: VSI of the VF to configure 1185 * @q_idx: VF queue index used to determine the queue in the PF's space 1186 */ 1187 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1188 { 1189 struct ice_hw *hw = &vsi->back->hw; 1190 u32 pfq = vsi->txq_map[q_idx]; 1191 u32 reg; 1192 1193 reg = rd32(hw, QINT_TQCTL(pfq)); 1194 1195 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1196 * this is most likely a poll mode VF driver, so don't enable an 1197 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1198 */ 1199 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1200 return; 1201 1202 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1203 } 1204 1205 /** 1206 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1207 * @vsi: VSI of the VF to configure 1208 * @q_idx: VF queue index used to determine the queue in the PF's space 1209 */ 1210 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1211 { 1212 struct ice_hw *hw = &vsi->back->hw; 1213 u32 pfq = vsi->rxq_map[q_idx]; 1214 u32 reg; 1215 1216 reg = rd32(hw, QINT_RQCTL(pfq)); 1217 1218 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1219 * this is most likely a poll mode VF driver, so don't enable an 1220 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1221 */ 1222 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1223 return; 1224 1225 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1226 } 1227 1228 /** 1229 * ice_vc_ena_qs_msg 1230 * @vf: pointer to the VF info 1231 * @msg: pointer to the msg buffer 1232 * 1233 * called from the VF to enable all or specific queue(s) 1234 */ 1235 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1236 { 1237 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1238 struct virtchnl_queue_select *vqs = 1239 (struct virtchnl_queue_select *)msg; 1240 struct ice_vsi *vsi; 1241 unsigned long q_map; 1242 u16 vf_q_id; 1243 1244 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1245 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1246 goto error_param; 1247 } 1248 1249 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1250 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1251 goto error_param; 1252 } 1253 1254 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1256 goto error_param; 1257 } 1258 1259 vsi = ice_get_vf_vsi(vf); 1260 if (!vsi) { 1261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1262 goto error_param; 1263 } 1264 1265 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1266 * Tx queue group list was configured and the context bits were 1267 * programmed using ice_vsi_cfg_txqs 1268 */ 1269 q_map = vqs->rx_queues; 1270 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1271 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1272 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1273 goto error_param; 1274 } 1275 1276 /* Skip queue if enabled */ 1277 if (test_bit(vf_q_id, vf->rxq_ena)) 1278 continue; 1279 1280 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1281 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1282 vf_q_id, vsi->vsi_num); 1283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1284 goto error_param; 1285 } 1286 1287 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1288 set_bit(vf_q_id, vf->rxq_ena); 1289 } 1290 1291 q_map = vqs->tx_queues; 1292 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1293 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1294 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1295 goto error_param; 1296 } 1297 1298 /* Skip queue if enabled */ 1299 if (test_bit(vf_q_id, vf->txq_ena)) 1300 continue; 1301 1302 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1303 set_bit(vf_q_id, vf->txq_ena); 1304 } 1305 1306 /* Set flag to indicate that queues are enabled */ 1307 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1308 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1309 1310 error_param: 1311 /* send the response to the VF */ 1312 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1313 NULL, 0); 1314 } 1315 1316 /** 1317 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1318 * @vf: VF to disable queue for 1319 * @vsi: VSI for the VF 1320 * @q_id: VF relative (0-based) queue ID 1321 * 1322 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1323 * disabled then clear q_id bit in the enabled queues bitmap and return 1324 * success. Otherwise return error. 1325 */ 1326 static int 1327 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1328 { 1329 struct ice_txq_meta txq_meta = { 0 }; 1330 struct ice_tx_ring *ring; 1331 int err; 1332 1333 if (!test_bit(q_id, vf->txq_ena)) 1334 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1335 q_id, vsi->vsi_num); 1336 1337 ring = vsi->tx_rings[q_id]; 1338 if (!ring) 1339 return -EINVAL; 1340 1341 ice_fill_txq_meta(vsi, ring, &txq_meta); 1342 1343 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1344 if (err) { 1345 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1346 q_id, vsi->vsi_num); 1347 return err; 1348 } 1349 1350 /* Clear enabled queues flag */ 1351 clear_bit(q_id, vf->txq_ena); 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * ice_vc_dis_qs_msg 1358 * @vf: pointer to the VF info 1359 * @msg: pointer to the msg buffer 1360 * 1361 * called from the VF to disable all or specific queue(s) 1362 */ 1363 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1364 { 1365 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1366 struct virtchnl_queue_select *vqs = 1367 (struct virtchnl_queue_select *)msg; 1368 struct ice_vsi *vsi; 1369 unsigned long q_map; 1370 u16 vf_q_id; 1371 1372 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1373 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1374 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1375 goto error_param; 1376 } 1377 1378 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1380 goto error_param; 1381 } 1382 1383 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1384 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1385 goto error_param; 1386 } 1387 1388 vsi = ice_get_vf_vsi(vf); 1389 if (!vsi) { 1390 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1391 goto error_param; 1392 } 1393 1394 if (vqs->tx_queues) { 1395 q_map = vqs->tx_queues; 1396 1397 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1398 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1399 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1400 goto error_param; 1401 } 1402 1403 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1404 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1405 goto error_param; 1406 } 1407 } 1408 } 1409 1410 q_map = vqs->rx_queues; 1411 /* speed up Rx queue disable by batching them if possible */ 1412 if (q_map && 1413 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1414 if (ice_vsi_stop_all_rx_rings(vsi)) { 1415 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1416 vsi->vsi_num); 1417 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1418 goto error_param; 1419 } 1420 1421 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1422 } else if (q_map) { 1423 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1424 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1425 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1426 goto error_param; 1427 } 1428 1429 /* Skip queue if not enabled */ 1430 if (!test_bit(vf_q_id, vf->rxq_ena)) 1431 continue; 1432 1433 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1434 true)) { 1435 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1436 vf_q_id, vsi->vsi_num); 1437 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1438 goto error_param; 1439 } 1440 1441 /* Clear enabled queues flag */ 1442 clear_bit(vf_q_id, vf->rxq_ena); 1443 } 1444 } 1445 1446 /* Clear enabled queues flag */ 1447 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1448 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1449 1450 error_param: 1451 /* send the response to the VF */ 1452 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1453 NULL, 0); 1454 } 1455 1456 /** 1457 * ice_cfg_interrupt 1458 * @vf: pointer to the VF info 1459 * @vsi: the VSI being configured 1460 * @vector_id: vector ID 1461 * @map: vector map for mapping vectors to queues 1462 * @q_vector: structure for interrupt vector 1463 * configure the IRQ to queue map 1464 */ 1465 static int 1466 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1467 struct virtchnl_vector_map *map, 1468 struct ice_q_vector *q_vector) 1469 { 1470 u16 vsi_q_id, vsi_q_id_idx; 1471 unsigned long qmap; 1472 1473 q_vector->num_ring_rx = 0; 1474 q_vector->num_ring_tx = 0; 1475 1476 qmap = map->rxq_map; 1477 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1478 vsi_q_id = vsi_q_id_idx; 1479 1480 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1481 return VIRTCHNL_STATUS_ERR_PARAM; 1482 1483 q_vector->num_ring_rx++; 1484 q_vector->rx.itr_idx = map->rxitr_idx; 1485 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1486 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1487 q_vector->rx.itr_idx); 1488 } 1489 1490 qmap = map->txq_map; 1491 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1492 vsi_q_id = vsi_q_id_idx; 1493 1494 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1495 return VIRTCHNL_STATUS_ERR_PARAM; 1496 1497 q_vector->num_ring_tx++; 1498 q_vector->tx.itr_idx = map->txitr_idx; 1499 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1500 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1501 q_vector->tx.itr_idx); 1502 } 1503 1504 return VIRTCHNL_STATUS_SUCCESS; 1505 } 1506 1507 /** 1508 * ice_vc_cfg_irq_map_msg 1509 * @vf: pointer to the VF info 1510 * @msg: pointer to the msg buffer 1511 * 1512 * called from the VF to configure the IRQ to queue map 1513 */ 1514 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1515 { 1516 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1517 u16 num_q_vectors_mapped, vsi_id, vector_id; 1518 struct virtchnl_irq_map_info *irqmap_info; 1519 struct virtchnl_vector_map *map; 1520 struct ice_pf *pf = vf->pf; 1521 struct ice_vsi *vsi; 1522 int i; 1523 1524 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1525 num_q_vectors_mapped = irqmap_info->num_vectors; 1526 1527 /* Check to make sure number of VF vectors mapped is not greater than 1528 * number of VF vectors originally allocated, and check that 1529 * there is actually at least a single VF queue vector mapped 1530 */ 1531 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1532 pf->vfs.num_msix_per < num_q_vectors_mapped || 1533 !num_q_vectors_mapped) { 1534 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1535 goto error_param; 1536 } 1537 1538 vsi = ice_get_vf_vsi(vf); 1539 if (!vsi) { 1540 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1541 goto error_param; 1542 } 1543 1544 for (i = 0; i < num_q_vectors_mapped; i++) { 1545 struct ice_q_vector *q_vector; 1546 1547 map = &irqmap_info->vecmap[i]; 1548 1549 vector_id = map->vector_id; 1550 vsi_id = map->vsi_id; 1551 /* vector_id is always 0-based for each VF, and can never be 1552 * larger than or equal to the max allowed interrupts per VF 1553 */ 1554 if (!(vector_id < pf->vfs.num_msix_per) || 1555 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1556 (!vector_id && (map->rxq_map || map->txq_map))) { 1557 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1558 goto error_param; 1559 } 1560 1561 /* No need to map VF miscellaneous or rogue vector */ 1562 if (!vector_id) 1563 continue; 1564 1565 /* Subtract non queue vector from vector_id passed by VF 1566 * to get actual number of VSI queue vector array index 1567 */ 1568 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1569 if (!q_vector) { 1570 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1571 goto error_param; 1572 } 1573 1574 /* lookout for the invalid queue index */ 1575 v_ret = (enum virtchnl_status_code) 1576 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1577 if (v_ret) 1578 goto error_param; 1579 } 1580 1581 error_param: 1582 /* send the response to the VF */ 1583 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1584 NULL, 0); 1585 } 1586 1587 /** 1588 * ice_vc_cfg_qs_msg 1589 * @vf: pointer to the VF info 1590 * @msg: pointer to the msg buffer 1591 * 1592 * called from the VF to configure the Rx/Tx queues 1593 */ 1594 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1595 { 1596 struct virtchnl_vsi_queue_config_info *qci = 1597 (struct virtchnl_vsi_queue_config_info *)msg; 1598 struct virtchnl_queue_pair_info *qpi; 1599 struct ice_pf *pf = vf->pf; 1600 struct ice_vsi *vsi; 1601 int i = -1, q_idx; 1602 1603 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1604 goto error_param; 1605 1606 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1607 goto error_param; 1608 1609 vsi = ice_get_vf_vsi(vf); 1610 if (!vsi) 1611 goto error_param; 1612 1613 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1614 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1615 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1616 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1617 goto error_param; 1618 } 1619 1620 for (i = 0; i < qci->num_queue_pairs; i++) { 1621 qpi = &qci->qpair[i]; 1622 if (qpi->txq.vsi_id != qci->vsi_id || 1623 qpi->rxq.vsi_id != qci->vsi_id || 1624 qpi->rxq.queue_id != qpi->txq.queue_id || 1625 qpi->txq.headwb_enabled || 1626 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1627 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1628 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1629 goto error_param; 1630 } 1631 1632 q_idx = qpi->rxq.queue_id; 1633 1634 /* make sure selected "q_idx" is in valid range of queues 1635 * for selected "vsi" 1636 */ 1637 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1638 goto error_param; 1639 } 1640 1641 /* copy Tx queue info from VF into VSI */ 1642 if (qpi->txq.ring_len > 0) { 1643 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1644 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1645 1646 /* Disable any existing queue first */ 1647 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1648 goto error_param; 1649 1650 /* Configure a queue with the requested settings */ 1651 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1652 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1653 vf->vf_id, i); 1654 goto error_param; 1655 } 1656 } 1657 1658 /* copy Rx queue info from VF into VSI */ 1659 if (qpi->rxq.ring_len > 0) { 1660 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1661 1662 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1663 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1664 1665 if (qpi->rxq.databuffer_size != 0 && 1666 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1667 qpi->rxq.databuffer_size < 1024)) 1668 goto error_param; 1669 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1670 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1671 if (qpi->rxq.max_pkt_size > max_frame_size || 1672 qpi->rxq.max_pkt_size < 64) 1673 goto error_param; 1674 1675 vsi->max_frame = qpi->rxq.max_pkt_size; 1676 /* add space for the port VLAN since the VF driver is 1677 * not expected to account for it in the MTU 1678 * calculation 1679 */ 1680 if (ice_vf_is_port_vlan_ena(vf)) 1681 vsi->max_frame += VLAN_HLEN; 1682 1683 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1684 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1685 vf->vf_id, i); 1686 goto error_param; 1687 } 1688 } 1689 } 1690 1691 /* send the response to the VF */ 1692 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1693 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1694 error_param: 1695 /* disable whatever we can */ 1696 for (; i >= 0; i--) { 1697 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1698 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1699 vf->vf_id, i); 1700 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1701 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1702 vf->vf_id, i); 1703 } 1704 1705 /* send the response to the VF */ 1706 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1707 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1708 } 1709 1710 /** 1711 * ice_can_vf_change_mac 1712 * @vf: pointer to the VF info 1713 * 1714 * Return true if the VF is allowed to change its MAC filters, false otherwise 1715 */ 1716 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1717 { 1718 /* If the VF MAC address has been set administratively (via the 1719 * ndo_set_vf_mac command), then deny permission to the VF to 1720 * add/delete unicast MAC addresses, unless the VF is trusted 1721 */ 1722 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1723 return false; 1724 1725 return true; 1726 } 1727 1728 /** 1729 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1730 * @vc_ether_addr: used to extract the type 1731 */ 1732 static u8 1733 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1734 { 1735 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1736 } 1737 1738 /** 1739 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1740 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1741 */ 1742 static bool 1743 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1744 { 1745 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1746 1747 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1748 } 1749 1750 /** 1751 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1752 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1753 * 1754 * This function should only be called when the MAC address in 1755 * virtchnl_ether_addr is a valid unicast MAC 1756 */ 1757 static bool 1758 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1759 { 1760 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1761 1762 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1763 } 1764 1765 /** 1766 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1767 * @vf: VF to update 1768 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1769 */ 1770 static void 1771 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1772 { 1773 u8 *mac_addr = vc_ether_addr->addr; 1774 1775 if (!is_valid_ether_addr(mac_addr)) 1776 return; 1777 1778 /* only allow legacy VF drivers to set the device and hardware MAC if it 1779 * is zero and allow new VF drivers to set the hardware MAC if the type 1780 * was correctly specified over VIRTCHNL 1781 */ 1782 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1783 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1784 ice_is_vc_addr_primary(vc_ether_addr)) { 1785 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1786 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1787 } 1788 1789 /* hardware and device MACs are already set, but its possible that the 1790 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1791 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1792 * away for the legacy VF driver case as it will be updated in the 1793 * delete flow for this case 1794 */ 1795 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1796 ether_addr_copy(vf->legacy_last_added_umac.addr, 1797 mac_addr); 1798 vf->legacy_last_added_umac.time_modified = jiffies; 1799 } 1800 } 1801 1802 /** 1803 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1804 * @vf: pointer to the VF info 1805 * @vsi: pointer to the VF's VSI 1806 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1807 */ 1808 static int 1809 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1810 struct virtchnl_ether_addr *vc_ether_addr) 1811 { 1812 struct device *dev = ice_pf_to_dev(vf->pf); 1813 u8 *mac_addr = vc_ether_addr->addr; 1814 int ret; 1815 1816 /* device MAC already added */ 1817 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1818 return 0; 1819 1820 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1821 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1822 return -EPERM; 1823 } 1824 1825 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1826 if (ret == -EEXIST) { 1827 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1828 vf->vf_id); 1829 /* don't return since we might need to update 1830 * the primary MAC in ice_vfhw_mac_add() below 1831 */ 1832 } else if (ret) { 1833 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1834 mac_addr, vf->vf_id, ret); 1835 return ret; 1836 } else { 1837 vf->num_mac++; 1838 } 1839 1840 ice_vfhw_mac_add(vf, vc_ether_addr); 1841 1842 return ret; 1843 } 1844 1845 /** 1846 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1847 * @last_added_umac: structure used to check expiration 1848 */ 1849 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1850 { 1851 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1852 return time_is_before_jiffies(last_added_umac->time_modified + 1853 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1854 } 1855 1856 /** 1857 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1858 * @vf: VF to update 1859 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1860 * 1861 * only update cached hardware MAC for legacy VF drivers on delete 1862 * because we cannot guarantee order/type of MAC from the VF driver 1863 */ 1864 static void 1865 ice_update_legacy_cached_mac(struct ice_vf *vf, 1866 struct virtchnl_ether_addr *vc_ether_addr) 1867 { 1868 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1869 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1870 return; 1871 1872 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1873 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1874 } 1875 1876 /** 1877 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1878 * @vf: VF to update 1879 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1880 */ 1881 static void 1882 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1883 { 1884 u8 *mac_addr = vc_ether_addr->addr; 1885 1886 if (!is_valid_ether_addr(mac_addr) || 1887 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1888 return; 1889 1890 /* allow the device MAC to be repopulated in the add flow and don't 1891 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1892 * to be persistent on VM reboot and across driver unload/load, which 1893 * won't work if we clear the hardware MAC here 1894 */ 1895 eth_zero_addr(vf->dev_lan_addr.addr); 1896 1897 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1898 } 1899 1900 /** 1901 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1902 * @vf: pointer to the VF info 1903 * @vsi: pointer to the VF's VSI 1904 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1905 */ 1906 static int 1907 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1908 struct virtchnl_ether_addr *vc_ether_addr) 1909 { 1910 struct device *dev = ice_pf_to_dev(vf->pf); 1911 u8 *mac_addr = vc_ether_addr->addr; 1912 int status; 1913 1914 if (!ice_can_vf_change_mac(vf) && 1915 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1916 return 0; 1917 1918 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1919 if (status == -ENOENT) { 1920 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1921 vf->vf_id); 1922 return -ENOENT; 1923 } else if (status) { 1924 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1925 mac_addr, vf->vf_id, status); 1926 return -EIO; 1927 } 1928 1929 ice_vfhw_mac_del(vf, vc_ether_addr); 1930 1931 vf->num_mac--; 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * ice_vc_handle_mac_addr_msg 1938 * @vf: pointer to the VF info 1939 * @msg: pointer to the msg buffer 1940 * @set: true if MAC filters are being set, false otherwise 1941 * 1942 * add guest MAC address filter 1943 */ 1944 static int 1945 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1946 { 1947 int (*ice_vc_cfg_mac) 1948 (struct ice_vf *vf, struct ice_vsi *vsi, 1949 struct virtchnl_ether_addr *virtchnl_ether_addr); 1950 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1951 struct virtchnl_ether_addr_list *al = 1952 (struct virtchnl_ether_addr_list *)msg; 1953 struct ice_pf *pf = vf->pf; 1954 enum virtchnl_ops vc_op; 1955 struct ice_vsi *vsi; 1956 int i; 1957 1958 if (set) { 1959 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1960 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1961 } else { 1962 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1963 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1964 } 1965 1966 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1967 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1968 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1969 goto handle_mac_exit; 1970 } 1971 1972 /* If this VF is not privileged, then we can't add more than a 1973 * limited number of addresses. Check to make sure that the 1974 * additions do not push us over the limit. 1975 */ 1976 if (set && !ice_is_vf_trusted(vf) && 1977 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 1978 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 1979 vf->vf_id); 1980 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1981 goto handle_mac_exit; 1982 } 1983 1984 vsi = ice_get_vf_vsi(vf); 1985 if (!vsi) { 1986 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1987 goto handle_mac_exit; 1988 } 1989 1990 for (i = 0; i < al->num_elements; i++) { 1991 u8 *mac_addr = al->list[i].addr; 1992 int result; 1993 1994 if (is_broadcast_ether_addr(mac_addr) || 1995 is_zero_ether_addr(mac_addr)) 1996 continue; 1997 1998 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 1999 if (result == -EEXIST || result == -ENOENT) { 2000 continue; 2001 } else if (result) { 2002 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2003 goto handle_mac_exit; 2004 } 2005 } 2006 2007 handle_mac_exit: 2008 /* send the response to the VF */ 2009 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2010 } 2011 2012 /** 2013 * ice_vc_add_mac_addr_msg 2014 * @vf: pointer to the VF info 2015 * @msg: pointer to the msg buffer 2016 * 2017 * add guest MAC address filter 2018 */ 2019 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2020 { 2021 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2022 } 2023 2024 /** 2025 * ice_vc_del_mac_addr_msg 2026 * @vf: pointer to the VF info 2027 * @msg: pointer to the msg buffer 2028 * 2029 * remove guest MAC address filter 2030 */ 2031 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2032 { 2033 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2034 } 2035 2036 /** 2037 * ice_vc_request_qs_msg 2038 * @vf: pointer to the VF info 2039 * @msg: pointer to the msg buffer 2040 * 2041 * VFs get a default number of queues but can use this message to request a 2042 * different number. If the request is successful, PF will reset the VF and 2043 * return 0. If unsuccessful, PF will send message informing VF of number of 2044 * available queue pairs via virtchnl message response to VF. 2045 */ 2046 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2047 { 2048 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2049 struct virtchnl_vf_res_request *vfres = 2050 (struct virtchnl_vf_res_request *)msg; 2051 u16 req_queues = vfres->num_queue_pairs; 2052 struct ice_pf *pf = vf->pf; 2053 u16 max_allowed_vf_queues; 2054 u16 tx_rx_queue_left; 2055 struct device *dev; 2056 u16 cur_queues; 2057 2058 dev = ice_pf_to_dev(pf); 2059 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2060 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2061 goto error_param; 2062 } 2063 2064 cur_queues = vf->num_vf_qs; 2065 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2066 ice_get_avail_rxq_count(pf)); 2067 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2068 if (!req_queues) { 2069 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2070 vf->vf_id); 2071 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2072 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2073 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2074 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2075 } else if (req_queues > cur_queues && 2076 req_queues - cur_queues > tx_rx_queue_left) { 2077 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2078 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2079 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2080 ICE_MAX_RSS_QS_PER_VF); 2081 } else { 2082 /* request is successful, then reset VF */ 2083 vf->num_req_qs = req_queues; 2084 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2085 dev_info(dev, "VF %d granted request of %u queues.\n", 2086 vf->vf_id, req_queues); 2087 return 0; 2088 } 2089 2090 error_param: 2091 /* send the response to the VF */ 2092 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2093 v_ret, (u8 *)vfres, sizeof(*vfres)); 2094 } 2095 2096 /** 2097 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2098 * @caps: VF driver negotiated capabilities 2099 * 2100 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2101 */ 2102 static bool ice_vf_vlan_offload_ena(u32 caps) 2103 { 2104 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2105 } 2106 2107 /** 2108 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2109 * @vf: VF used to determine if VLAN promiscuous config is allowed 2110 */ 2111 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2112 { 2113 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2114 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2115 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2116 return true; 2117 2118 return false; 2119 } 2120 2121 /** 2122 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2123 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2124 * @vlan: VLAN used to enable VLAN promiscuous 2125 * 2126 * This function should only be called if VLAN promiscuous mode is allowed, 2127 * which can be determined via ice_is_vlan_promisc_allowed(). 2128 */ 2129 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2130 { 2131 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2132 int status; 2133 2134 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2135 vlan->vid); 2136 if (status && status != -EEXIST) 2137 return status; 2138 2139 return 0; 2140 } 2141 2142 /** 2143 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2144 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2145 * @vlan: VLAN used to disable VLAN promiscuous 2146 * 2147 * This function should only be called if VLAN promiscuous mode is allowed, 2148 * which can be determined via ice_is_vlan_promisc_allowed(). 2149 */ 2150 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2151 { 2152 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2153 int status; 2154 2155 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2156 vlan->vid); 2157 if (status && status != -ENOENT) 2158 return status; 2159 2160 return 0; 2161 } 2162 2163 /** 2164 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2165 * @vf: VF to check against 2166 * @vsi: VF's VSI 2167 * 2168 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2169 * wants to, so return false. 2170 * 2171 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2172 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2173 */ 2174 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2175 { 2176 if (ice_is_vf_trusted(vf)) 2177 return false; 2178 2179 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2180 return ((ice_vsi_num_non_zero_vlans(vsi) + 2181 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2182 } 2183 2184 /** 2185 * ice_vc_process_vlan_msg 2186 * @vf: pointer to the VF info 2187 * @msg: pointer to the msg buffer 2188 * @add_v: Add VLAN if true, otherwise delete VLAN 2189 * 2190 * Process virtchnl op to add or remove programmed guest VLAN ID 2191 */ 2192 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2193 { 2194 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2195 struct virtchnl_vlan_filter_list *vfl = 2196 (struct virtchnl_vlan_filter_list *)msg; 2197 struct ice_pf *pf = vf->pf; 2198 bool vlan_promisc = false; 2199 struct ice_vsi *vsi; 2200 struct device *dev; 2201 int status = 0; 2202 int i; 2203 2204 dev = ice_pf_to_dev(pf); 2205 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2206 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2207 goto error_param; 2208 } 2209 2210 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2211 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2212 goto error_param; 2213 } 2214 2215 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2216 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2217 goto error_param; 2218 } 2219 2220 for (i = 0; i < vfl->num_elements; i++) { 2221 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2222 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2223 dev_err(dev, "invalid VF VLAN id %d\n", 2224 vfl->vlan_id[i]); 2225 goto error_param; 2226 } 2227 } 2228 2229 vsi = ice_get_vf_vsi(vf); 2230 if (!vsi) { 2231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2232 goto error_param; 2233 } 2234 2235 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2236 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2237 vf->vf_id); 2238 /* There is no need to let VF know about being not trusted, 2239 * so we can just return success message here 2240 */ 2241 goto error_param; 2242 } 2243 2244 /* in DVM a VF can add/delete inner VLAN filters when 2245 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2246 */ 2247 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2249 goto error_param; 2250 } 2251 2252 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2253 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2254 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2255 */ 2256 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2257 !ice_is_dvm_ena(&pf->hw) && 2258 !ice_vf_is_port_vlan_ena(vf); 2259 2260 if (add_v) { 2261 for (i = 0; i < vfl->num_elements; i++) { 2262 u16 vid = vfl->vlan_id[i]; 2263 struct ice_vlan vlan; 2264 2265 if (ice_vf_has_max_vlans(vf, vsi)) { 2266 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2267 vf->vf_id); 2268 /* There is no need to let VF know about being 2269 * not trusted, so we can just return success 2270 * message here as well. 2271 */ 2272 goto error_param; 2273 } 2274 2275 /* we add VLAN 0 by default for each VF so we can enable 2276 * Tx VLAN anti-spoof without triggering MDD events so 2277 * we don't need to add it again here 2278 */ 2279 if (!vid) 2280 continue; 2281 2282 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2283 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2284 if (status) { 2285 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2286 goto error_param; 2287 } 2288 2289 /* Enable VLAN filtering on first non-zero VLAN */ 2290 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2291 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2292 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2293 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2294 vid, status); 2295 goto error_param; 2296 } 2297 } else if (vlan_promisc) { 2298 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2299 if (status) { 2300 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2301 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2302 vid, status); 2303 } 2304 } 2305 } 2306 } else { 2307 /* In case of non_trusted VF, number of VLAN elements passed 2308 * to PF for removal might be greater than number of VLANs 2309 * filter programmed for that VF - So, use actual number of 2310 * VLANS added earlier with add VLAN opcode. In order to avoid 2311 * removing VLAN that doesn't exist, which result to sending 2312 * erroneous failed message back to the VF 2313 */ 2314 int num_vf_vlan; 2315 2316 num_vf_vlan = vsi->num_vlan; 2317 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2318 u16 vid = vfl->vlan_id[i]; 2319 struct ice_vlan vlan; 2320 2321 /* we add VLAN 0 by default for each VF so we can enable 2322 * Tx VLAN anti-spoof without triggering MDD events so 2323 * we don't want a VIRTCHNL request to remove it 2324 */ 2325 if (!vid) 2326 continue; 2327 2328 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2329 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2330 if (status) { 2331 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2332 goto error_param; 2333 } 2334 2335 /* Disable VLAN filtering when only VLAN 0 is left */ 2336 if (!ice_vsi_has_non_zero_vlans(vsi)) 2337 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2338 2339 if (vlan_promisc) 2340 ice_vf_dis_vlan_promisc(vsi, &vlan); 2341 } 2342 } 2343 2344 error_param: 2345 /* send the response to the VF */ 2346 if (add_v) 2347 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2348 NULL, 0); 2349 else 2350 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2351 NULL, 0); 2352 } 2353 2354 /** 2355 * ice_vc_add_vlan_msg 2356 * @vf: pointer to the VF info 2357 * @msg: pointer to the msg buffer 2358 * 2359 * Add and program guest VLAN ID 2360 */ 2361 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2362 { 2363 return ice_vc_process_vlan_msg(vf, msg, true); 2364 } 2365 2366 /** 2367 * ice_vc_remove_vlan_msg 2368 * @vf: pointer to the VF info 2369 * @msg: pointer to the msg buffer 2370 * 2371 * remove programmed guest VLAN ID 2372 */ 2373 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2374 { 2375 return ice_vc_process_vlan_msg(vf, msg, false); 2376 } 2377 2378 /** 2379 * ice_vc_ena_vlan_stripping 2380 * @vf: pointer to the VF info 2381 * 2382 * Enable VLAN header stripping for a given VF 2383 */ 2384 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2385 { 2386 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2387 struct ice_vsi *vsi; 2388 2389 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2390 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2391 goto error_param; 2392 } 2393 2394 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2396 goto error_param; 2397 } 2398 2399 vsi = ice_get_vf_vsi(vf); 2400 if (!vsi) { 2401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2402 goto error_param; 2403 } 2404 2405 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2406 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2407 2408 error_param: 2409 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2410 v_ret, NULL, 0); 2411 } 2412 2413 /** 2414 * ice_vc_dis_vlan_stripping 2415 * @vf: pointer to the VF info 2416 * 2417 * Disable VLAN header stripping for a given VF 2418 */ 2419 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2420 { 2421 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2422 struct ice_vsi *vsi; 2423 2424 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2426 goto error_param; 2427 } 2428 2429 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2430 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2431 goto error_param; 2432 } 2433 2434 vsi = ice_get_vf_vsi(vf); 2435 if (!vsi) { 2436 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2437 goto error_param; 2438 } 2439 2440 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2442 2443 error_param: 2444 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2445 v_ret, NULL, 0); 2446 } 2447 2448 /** 2449 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2450 * @vf: VF to enable/disable VLAN stripping for on initialization 2451 * 2452 * Set the default for VLAN stripping based on whether a port VLAN is configured 2453 * and the current VLAN mode of the device. 2454 */ 2455 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2456 { 2457 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2458 2459 if (!vsi) 2460 return -EINVAL; 2461 2462 /* don't modify stripping if port VLAN is configured in SVM since the 2463 * port VLAN is based on the inner/single VLAN in SVM 2464 */ 2465 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2466 return 0; 2467 2468 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2469 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2470 else 2471 return vsi->inner_vlan_ops.dis_stripping(vsi); 2472 } 2473 2474 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2475 { 2476 if (vf->trusted) 2477 return VLAN_N_VID; 2478 else 2479 return ICE_MAX_VLAN_PER_VF; 2480 } 2481 2482 /** 2483 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2484 * @vf: VF that being checked for 2485 * 2486 * When the device is in double VLAN mode, check whether or not the outer VLAN 2487 * is allowed. 2488 */ 2489 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2490 { 2491 if (ice_vf_is_port_vlan_ena(vf)) 2492 return true; 2493 2494 return false; 2495 } 2496 2497 /** 2498 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2499 * @vf: VF that capabilities are being set for 2500 * @caps: VLAN capabilities to populate 2501 * 2502 * Determine VLAN capabilities support based on whether a port VLAN is 2503 * configured. If a port VLAN is configured then the VF should use the inner 2504 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2505 * capabilies. 2506 */ 2507 static void 2508 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2509 { 2510 struct virtchnl_vlan_supported_caps *supported_caps; 2511 2512 if (ice_vf_outer_vlan_not_allowed(vf)) { 2513 /* until support for inner VLAN filtering is added when a port 2514 * VLAN is configured, only support software offloaded inner 2515 * VLANs when a port VLAN is confgured in DVM 2516 */ 2517 supported_caps = &caps->filtering.filtering_support; 2518 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2519 2520 supported_caps = &caps->offloads.stripping_support; 2521 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2522 VIRTCHNL_VLAN_TOGGLE | 2523 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2524 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2525 2526 supported_caps = &caps->offloads.insertion_support; 2527 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2528 VIRTCHNL_VLAN_TOGGLE | 2529 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2530 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2531 2532 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2533 caps->offloads.ethertype_match = 2534 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2535 } else { 2536 supported_caps = &caps->filtering.filtering_support; 2537 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2538 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2539 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2540 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2541 VIRTCHNL_VLAN_ETHERTYPE_AND; 2542 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2543 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2544 VIRTCHNL_VLAN_ETHERTYPE_9100; 2545 2546 supported_caps = &caps->offloads.stripping_support; 2547 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2548 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2550 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2551 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2552 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2553 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2554 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2555 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2556 2557 supported_caps = &caps->offloads.insertion_support; 2558 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2559 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2560 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2561 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2562 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2563 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2564 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2565 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2566 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2567 2568 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2569 2570 caps->offloads.ethertype_match = 2571 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2572 } 2573 2574 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2575 } 2576 2577 /** 2578 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2579 * @vf: VF that capabilities are being set for 2580 * @caps: VLAN capabilities to populate 2581 * 2582 * Determine VLAN capabilities support based on whether a port VLAN is 2583 * configured. If a port VLAN is configured then the VF does not have any VLAN 2584 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2585 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2586 * VLAN fitlering and offload capabilities. 2587 */ 2588 static void 2589 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2590 { 2591 struct virtchnl_vlan_supported_caps *supported_caps; 2592 2593 if (ice_vf_is_port_vlan_ena(vf)) { 2594 supported_caps = &caps->filtering.filtering_support; 2595 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2596 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2597 2598 supported_caps = &caps->offloads.stripping_support; 2599 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2600 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2601 2602 supported_caps = &caps->offloads.insertion_support; 2603 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2604 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2605 2606 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2607 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2608 caps->filtering.max_filters = 0; 2609 } else { 2610 supported_caps = &caps->filtering.filtering_support; 2611 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2612 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2613 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2614 2615 supported_caps = &caps->offloads.stripping_support; 2616 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2617 VIRTCHNL_VLAN_TOGGLE | 2618 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2619 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2620 2621 supported_caps = &caps->offloads.insertion_support; 2622 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2623 VIRTCHNL_VLAN_TOGGLE | 2624 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2625 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2626 2627 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2628 caps->offloads.ethertype_match = 2629 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2630 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2631 } 2632 } 2633 2634 /** 2635 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2636 * @vf: VF to determine VLAN capabilities for 2637 * 2638 * This will only be called if the VF and PF successfully negotiated 2639 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2640 * 2641 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2642 * is configured or not. 2643 */ 2644 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2645 { 2646 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2647 struct virtchnl_vlan_caps *caps = NULL; 2648 int err, len = 0; 2649 2650 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2651 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2652 goto out; 2653 } 2654 2655 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2656 if (!caps) { 2657 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2658 goto out; 2659 } 2660 len = sizeof(*caps); 2661 2662 if (ice_is_dvm_ena(&vf->pf->hw)) 2663 ice_vc_set_dvm_caps(vf, caps); 2664 else 2665 ice_vc_set_svm_caps(vf, caps); 2666 2667 /* store negotiated caps to prevent invalid VF messages */ 2668 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2669 2670 out: 2671 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2672 v_ret, (u8 *)caps, len); 2673 kfree(caps); 2674 return err; 2675 } 2676 2677 /** 2678 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2679 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2680 * @tpid: VLAN TPID used for validation 2681 * 2682 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2683 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2684 */ 2685 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2686 { 2687 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2688 2689 switch (tpid) { 2690 case ETH_P_8021Q: 2691 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2692 break; 2693 case ETH_P_8021AD: 2694 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2695 break; 2696 case ETH_P_QINQ1: 2697 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2698 break; 2699 } 2700 2701 if (!(filtering_caps & vlan_ethertype)) 2702 return false; 2703 2704 return true; 2705 } 2706 2707 /** 2708 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2709 * @vc_vlan: virtchnl_vlan to validate 2710 * 2711 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2712 * false. Otherwise return true. 2713 */ 2714 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2715 { 2716 if (!vc_vlan->tci || !vc_vlan->tpid) 2717 return false; 2718 2719 return true; 2720 } 2721 2722 /** 2723 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2724 * @vfc: negotiated/supported VLAN filtering capabilities 2725 * @vfl: VLAN filter list from VF to validate 2726 * 2727 * Validate all of the filters in the VLAN filter list from the VF. If any of 2728 * the checks fail then return false. Otherwise return true. 2729 */ 2730 static bool 2731 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2732 struct virtchnl_vlan_filter_list_v2 *vfl) 2733 { 2734 u16 i; 2735 2736 if (!vfl->num_elements) 2737 return false; 2738 2739 for (i = 0; i < vfl->num_elements; i++) { 2740 struct virtchnl_vlan_supported_caps *filtering_support = 2741 &vfc->filtering_support; 2742 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2743 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2744 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2745 2746 if ((ice_vc_is_valid_vlan(outer) && 2747 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2748 (ice_vc_is_valid_vlan(inner) && 2749 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2750 return false; 2751 2752 if ((outer->tci_mask && 2753 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2754 (inner->tci_mask && 2755 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2756 return false; 2757 2758 if (((outer->tci & VLAN_PRIO_MASK) && 2759 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2760 ((inner->tci & VLAN_PRIO_MASK) && 2761 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2762 return false; 2763 2764 if ((ice_vc_is_valid_vlan(outer) && 2765 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2766 outer->tpid)) || 2767 (ice_vc_is_valid_vlan(inner) && 2768 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2769 inner->tpid))) 2770 return false; 2771 } 2772 2773 return true; 2774 } 2775 2776 /** 2777 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2778 * @vc_vlan: struct virtchnl_vlan to transform 2779 */ 2780 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2781 { 2782 struct ice_vlan vlan = { 0 }; 2783 2784 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2785 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2786 vlan.tpid = vc_vlan->tpid; 2787 2788 return vlan; 2789 } 2790 2791 /** 2792 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2793 * @vsi: VF's VSI used to perform the action 2794 * @vlan_action: function to perform the action with (i.e. add/del) 2795 * @vlan: VLAN filter to perform the action with 2796 */ 2797 static int 2798 ice_vc_vlan_action(struct ice_vsi *vsi, 2799 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2800 struct ice_vlan *vlan) 2801 { 2802 int err; 2803 2804 err = vlan_action(vsi, vlan); 2805 if (err) 2806 return err; 2807 2808 return 0; 2809 } 2810 2811 /** 2812 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2813 * @vf: VF used to delete the VLAN(s) 2814 * @vsi: VF's VSI used to delete the VLAN(s) 2815 * @vfl: virthchnl filter list used to delete the filters 2816 */ 2817 static int 2818 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2819 struct virtchnl_vlan_filter_list_v2 *vfl) 2820 { 2821 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2822 int err; 2823 u16 i; 2824 2825 for (i = 0; i < vfl->num_elements; i++) { 2826 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2827 struct virtchnl_vlan *vc_vlan; 2828 2829 vc_vlan = &vlan_fltr->outer; 2830 if (ice_vc_is_valid_vlan(vc_vlan)) { 2831 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2832 2833 err = ice_vc_vlan_action(vsi, 2834 vsi->outer_vlan_ops.del_vlan, 2835 &vlan); 2836 if (err) 2837 return err; 2838 2839 if (vlan_promisc) 2840 ice_vf_dis_vlan_promisc(vsi, &vlan); 2841 } 2842 2843 vc_vlan = &vlan_fltr->inner; 2844 if (ice_vc_is_valid_vlan(vc_vlan)) { 2845 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2846 2847 err = ice_vc_vlan_action(vsi, 2848 vsi->inner_vlan_ops.del_vlan, 2849 &vlan); 2850 if (err) 2851 return err; 2852 2853 /* no support for VLAN promiscuous on inner VLAN unless 2854 * we are in Single VLAN Mode (SVM) 2855 */ 2856 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) 2857 ice_vf_dis_vlan_promisc(vsi, &vlan); 2858 } 2859 } 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2866 * @vf: VF the message was received from 2867 * @msg: message received from the VF 2868 */ 2869 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2870 { 2871 struct virtchnl_vlan_filter_list_v2 *vfl = 2872 (struct virtchnl_vlan_filter_list_v2 *)msg; 2873 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2874 struct ice_vsi *vsi; 2875 2876 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2877 vfl)) { 2878 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2879 goto out; 2880 } 2881 2882 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2883 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2884 goto out; 2885 } 2886 2887 vsi = ice_get_vf_vsi(vf); 2888 if (!vsi) { 2889 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2890 goto out; 2891 } 2892 2893 if (ice_vc_del_vlans(vf, vsi, vfl)) 2894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2895 2896 out: 2897 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 2898 0); 2899 } 2900 2901 /** 2902 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 2903 * @vf: VF used to add the VLAN(s) 2904 * @vsi: VF's VSI used to add the VLAN(s) 2905 * @vfl: virthchnl filter list used to add the filters 2906 */ 2907 static int 2908 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2909 struct virtchnl_vlan_filter_list_v2 *vfl) 2910 { 2911 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2912 int err; 2913 u16 i; 2914 2915 for (i = 0; i < vfl->num_elements; i++) { 2916 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2917 struct virtchnl_vlan *vc_vlan; 2918 2919 vc_vlan = &vlan_fltr->outer; 2920 if (ice_vc_is_valid_vlan(vc_vlan)) { 2921 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2922 2923 err = ice_vc_vlan_action(vsi, 2924 vsi->outer_vlan_ops.add_vlan, 2925 &vlan); 2926 if (err) 2927 return err; 2928 2929 if (vlan_promisc) { 2930 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2931 if (err) 2932 return err; 2933 } 2934 } 2935 2936 vc_vlan = &vlan_fltr->inner; 2937 if (ice_vc_is_valid_vlan(vc_vlan)) { 2938 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2939 2940 err = ice_vc_vlan_action(vsi, 2941 vsi->inner_vlan_ops.add_vlan, 2942 &vlan); 2943 if (err) 2944 return err; 2945 2946 /* no support for VLAN promiscuous on inner VLAN unless 2947 * we are in Single VLAN Mode (SVM) 2948 */ 2949 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) { 2950 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2951 if (err) 2952 return err; 2953 } 2954 } 2955 } 2956 2957 return 0; 2958 } 2959 2960 /** 2961 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 2962 * @vsi: VF VSI used to get number of existing VLAN filters 2963 * @vfc: negotiated/supported VLAN filtering capabilities 2964 * @vfl: VLAN filter list from VF to validate 2965 * 2966 * Validate all of the filters in the VLAN filter list from the VF during the 2967 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 2968 * Otherwise return true. 2969 */ 2970 static bool 2971 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 2972 struct virtchnl_vlan_filtering_caps *vfc, 2973 struct virtchnl_vlan_filter_list_v2 *vfl) 2974 { 2975 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 2976 vfl->num_elements; 2977 2978 if (num_requested_filters > vfc->max_filters) 2979 return false; 2980 2981 return ice_vc_validate_vlan_filter_list(vfc, vfl); 2982 } 2983 2984 /** 2985 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 2986 * @vf: VF the message was received from 2987 * @msg: message received from the VF 2988 */ 2989 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2990 { 2991 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2992 struct virtchnl_vlan_filter_list_v2 *vfl = 2993 (struct virtchnl_vlan_filter_list_v2 *)msg; 2994 struct ice_vsi *vsi; 2995 2996 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2997 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2998 goto out; 2999 } 3000 3001 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3002 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3003 goto out; 3004 } 3005 3006 vsi = ice_get_vf_vsi(vf); 3007 if (!vsi) { 3008 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3009 goto out; 3010 } 3011 3012 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3013 &vf->vlan_v2_caps.filtering, 3014 vfl)) { 3015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3016 goto out; 3017 } 3018 3019 if (ice_vc_add_vlans(vf, vsi, vfl)) 3020 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3021 3022 out: 3023 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3024 0); 3025 } 3026 3027 /** 3028 * ice_vc_valid_vlan_setting - validate VLAN setting 3029 * @negotiated_settings: negotiated VLAN settings during VF init 3030 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3031 */ 3032 static bool 3033 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3034 { 3035 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3036 return false; 3037 3038 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3039 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3040 */ 3041 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3042 hweight32(ethertype_setting) > 1) 3043 return false; 3044 3045 /* ability to modify the VLAN setting was not negotiated */ 3046 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3047 return false; 3048 3049 return true; 3050 } 3051 3052 /** 3053 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3054 * @caps: negotiated VLAN settings during VF init 3055 * @msg: message to validate 3056 * 3057 * Used to validate any VLAN virtchnl message sent as a 3058 * virtchnl_vlan_setting structure. Validates the message against the 3059 * negotiated/supported caps during VF driver init. 3060 */ 3061 static bool 3062 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3063 struct virtchnl_vlan_setting *msg) 3064 { 3065 if ((!msg->outer_ethertype_setting && 3066 !msg->inner_ethertype_setting) || 3067 (!caps->outer && !caps->inner)) 3068 return false; 3069 3070 if (msg->outer_ethertype_setting && 3071 !ice_vc_valid_vlan_setting(caps->outer, 3072 msg->outer_ethertype_setting)) 3073 return false; 3074 3075 if (msg->inner_ethertype_setting && 3076 !ice_vc_valid_vlan_setting(caps->inner, 3077 msg->inner_ethertype_setting)) 3078 return false; 3079 3080 return true; 3081 } 3082 3083 /** 3084 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3085 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3086 * @tpid: VLAN TPID to populate 3087 */ 3088 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3089 { 3090 switch (ethertype_setting) { 3091 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3092 *tpid = ETH_P_8021Q; 3093 break; 3094 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3095 *tpid = ETH_P_8021AD; 3096 break; 3097 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3098 *tpid = ETH_P_QINQ1; 3099 break; 3100 default: 3101 *tpid = 0; 3102 return -EINVAL; 3103 } 3104 3105 return 0; 3106 } 3107 3108 /** 3109 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3110 * @vsi: VF's VSI used to enable the VLAN offload 3111 * @ena_offload: function used to enable the VLAN offload 3112 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3113 */ 3114 static int 3115 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3116 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3117 u32 ethertype_setting) 3118 { 3119 u16 tpid; 3120 int err; 3121 3122 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3123 if (err) 3124 return err; 3125 3126 err = ena_offload(vsi, tpid); 3127 if (err) 3128 return err; 3129 3130 return 0; 3131 } 3132 3133 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3134 #define ICE_L2TSEL_BIT_OFFSET 23 3135 enum ice_l2tsel { 3136 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3137 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3138 }; 3139 3140 /** 3141 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3142 * @vsi: VSI used to update l2tsel on 3143 * @l2tsel: l2tsel setting requested 3144 * 3145 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3146 * This will modify which descriptor field the first offloaded VLAN will be 3147 * stripped into. 3148 */ 3149 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3150 { 3151 struct ice_hw *hw = &vsi->back->hw; 3152 u32 l2tsel_bit; 3153 int i; 3154 3155 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3156 l2tsel_bit = 0; 3157 else 3158 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3159 3160 for (i = 0; i < vsi->alloc_rxq; i++) { 3161 u16 pfq = vsi->rxq_map[i]; 3162 u32 qrx_context_offset; 3163 u32 regval; 3164 3165 qrx_context_offset = 3166 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3167 3168 regval = rd32(hw, qrx_context_offset); 3169 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3170 regval |= l2tsel_bit; 3171 wr32(hw, qrx_context_offset, regval); 3172 } 3173 } 3174 3175 /** 3176 * ice_vc_ena_vlan_stripping_v2_msg 3177 * @vf: VF the message was received from 3178 * @msg: message received from the VF 3179 * 3180 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3181 */ 3182 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3183 { 3184 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3185 struct virtchnl_vlan_supported_caps *stripping_support; 3186 struct virtchnl_vlan_setting *strip_msg = 3187 (struct virtchnl_vlan_setting *)msg; 3188 u32 ethertype_setting; 3189 struct ice_vsi *vsi; 3190 3191 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3192 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3193 goto out; 3194 } 3195 3196 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3197 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3198 goto out; 3199 } 3200 3201 vsi = ice_get_vf_vsi(vf); 3202 if (!vsi) { 3203 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3204 goto out; 3205 } 3206 3207 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3208 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3209 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3210 goto out; 3211 } 3212 3213 ethertype_setting = strip_msg->outer_ethertype_setting; 3214 if (ethertype_setting) { 3215 if (ice_vc_ena_vlan_offload(vsi, 3216 vsi->outer_vlan_ops.ena_stripping, 3217 ethertype_setting)) { 3218 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3219 goto out; 3220 } else { 3221 enum ice_l2tsel l2tsel = 3222 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3223 3224 /* PF tells the VF that the outer VLAN tag is always 3225 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3226 * inner is always extracted to 3227 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3228 * support outer stripping so the first tag always ends 3229 * up in L2TAG2_2ND and the second/inner tag, if 3230 * enabled, is extracted in L2TAG1. 3231 */ 3232 ice_vsi_update_l2tsel(vsi, l2tsel); 3233 } 3234 } 3235 3236 ethertype_setting = strip_msg->inner_ethertype_setting; 3237 if (ethertype_setting && 3238 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3239 ethertype_setting)) { 3240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3241 goto out; 3242 } 3243 3244 out: 3245 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3246 v_ret, NULL, 0); 3247 } 3248 3249 /** 3250 * ice_vc_dis_vlan_stripping_v2_msg 3251 * @vf: VF the message was received from 3252 * @msg: message received from the VF 3253 * 3254 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3255 */ 3256 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3257 { 3258 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3259 struct virtchnl_vlan_supported_caps *stripping_support; 3260 struct virtchnl_vlan_setting *strip_msg = 3261 (struct virtchnl_vlan_setting *)msg; 3262 u32 ethertype_setting; 3263 struct ice_vsi *vsi; 3264 3265 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3266 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3267 goto out; 3268 } 3269 3270 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3271 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3272 goto out; 3273 } 3274 3275 vsi = ice_get_vf_vsi(vf); 3276 if (!vsi) { 3277 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3278 goto out; 3279 } 3280 3281 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3282 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3283 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3284 goto out; 3285 } 3286 3287 ethertype_setting = strip_msg->outer_ethertype_setting; 3288 if (ethertype_setting) { 3289 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3290 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3291 goto out; 3292 } else { 3293 enum ice_l2tsel l2tsel = 3294 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3295 3296 /* PF tells the VF that the outer VLAN tag is always 3297 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3298 * inner is always extracted to 3299 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3300 * support inner stripping while outer stripping is 3301 * disabled so that the first and only tag is extracted 3302 * in L2TAG1. 3303 */ 3304 ice_vsi_update_l2tsel(vsi, l2tsel); 3305 } 3306 } 3307 3308 ethertype_setting = strip_msg->inner_ethertype_setting; 3309 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3310 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3311 goto out; 3312 } 3313 3314 out: 3315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3316 v_ret, NULL, 0); 3317 } 3318 3319 /** 3320 * ice_vc_ena_vlan_insertion_v2_msg 3321 * @vf: VF the message was received from 3322 * @msg: message received from the VF 3323 * 3324 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3325 */ 3326 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3327 { 3328 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3329 struct virtchnl_vlan_supported_caps *insertion_support; 3330 struct virtchnl_vlan_setting *insertion_msg = 3331 (struct virtchnl_vlan_setting *)msg; 3332 u32 ethertype_setting; 3333 struct ice_vsi *vsi; 3334 3335 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3336 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3337 goto out; 3338 } 3339 3340 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3341 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3342 goto out; 3343 } 3344 3345 vsi = ice_get_vf_vsi(vf); 3346 if (!vsi) { 3347 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3348 goto out; 3349 } 3350 3351 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3352 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3353 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3354 goto out; 3355 } 3356 3357 ethertype_setting = insertion_msg->outer_ethertype_setting; 3358 if (ethertype_setting && 3359 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3360 ethertype_setting)) { 3361 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3362 goto out; 3363 } 3364 3365 ethertype_setting = insertion_msg->inner_ethertype_setting; 3366 if (ethertype_setting && 3367 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3368 ethertype_setting)) { 3369 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3370 goto out; 3371 } 3372 3373 out: 3374 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3375 v_ret, NULL, 0); 3376 } 3377 3378 /** 3379 * ice_vc_dis_vlan_insertion_v2_msg 3380 * @vf: VF the message was received from 3381 * @msg: message received from the VF 3382 * 3383 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3384 */ 3385 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3386 { 3387 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3388 struct virtchnl_vlan_supported_caps *insertion_support; 3389 struct virtchnl_vlan_setting *insertion_msg = 3390 (struct virtchnl_vlan_setting *)msg; 3391 u32 ethertype_setting; 3392 struct ice_vsi *vsi; 3393 3394 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3395 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3396 goto out; 3397 } 3398 3399 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3400 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3401 goto out; 3402 } 3403 3404 vsi = ice_get_vf_vsi(vf); 3405 if (!vsi) { 3406 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3407 goto out; 3408 } 3409 3410 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3411 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3412 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3413 goto out; 3414 } 3415 3416 ethertype_setting = insertion_msg->outer_ethertype_setting; 3417 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3418 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3419 goto out; 3420 } 3421 3422 ethertype_setting = insertion_msg->inner_ethertype_setting; 3423 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3424 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3425 goto out; 3426 } 3427 3428 out: 3429 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3430 v_ret, NULL, 0); 3431 } 3432 3433 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3434 .get_ver_msg = ice_vc_get_ver_msg, 3435 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3436 .reset_vf = ice_vc_reset_vf_msg, 3437 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3438 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3439 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3440 .ena_qs_msg = ice_vc_ena_qs_msg, 3441 .dis_qs_msg = ice_vc_dis_qs_msg, 3442 .request_qs_msg = ice_vc_request_qs_msg, 3443 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3444 .config_rss_key = ice_vc_config_rss_key, 3445 .config_rss_lut = ice_vc_config_rss_lut, 3446 .get_stats_msg = ice_vc_get_stats_msg, 3447 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3448 .add_vlan_msg = ice_vc_add_vlan_msg, 3449 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3450 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3451 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3452 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3453 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3454 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3455 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3456 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3457 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3458 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3459 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3460 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3461 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3462 }; 3463 3464 /** 3465 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3466 * @vf: the VF to switch ops 3467 */ 3468 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3469 { 3470 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3471 } 3472 3473 /** 3474 * ice_vc_repr_add_mac 3475 * @vf: pointer to VF 3476 * @msg: virtchannel message 3477 * 3478 * When port representors are created, we do not add MAC rule 3479 * to firmware, we store it so that PF could report same 3480 * MAC as VF. 3481 */ 3482 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3483 { 3484 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3485 struct virtchnl_ether_addr_list *al = 3486 (struct virtchnl_ether_addr_list *)msg; 3487 struct ice_vsi *vsi; 3488 struct ice_pf *pf; 3489 int i; 3490 3491 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3492 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3494 goto handle_mac_exit; 3495 } 3496 3497 pf = vf->pf; 3498 3499 vsi = ice_get_vf_vsi(vf); 3500 if (!vsi) { 3501 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3502 goto handle_mac_exit; 3503 } 3504 3505 for (i = 0; i < al->num_elements; i++) { 3506 u8 *mac_addr = al->list[i].addr; 3507 int result; 3508 3509 if (!is_unicast_ether_addr(mac_addr) || 3510 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3511 continue; 3512 3513 if (vf->pf_set_mac) { 3514 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3515 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3516 goto handle_mac_exit; 3517 } 3518 3519 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3520 if (result) { 3521 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3522 mac_addr, vf->vf_id, result); 3523 goto handle_mac_exit; 3524 } 3525 3526 ice_vfhw_mac_add(vf, &al->list[i]); 3527 vf->num_mac++; 3528 break; 3529 } 3530 3531 handle_mac_exit: 3532 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3533 v_ret, NULL, 0); 3534 } 3535 3536 /** 3537 * ice_vc_repr_del_mac - response with success for deleting MAC 3538 * @vf: pointer to VF 3539 * @msg: virtchannel message 3540 * 3541 * Respond with success to not break normal VF flow. 3542 * For legacy VF driver try to update cached MAC address. 3543 */ 3544 static int 3545 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3546 { 3547 struct virtchnl_ether_addr_list *al = 3548 (struct virtchnl_ether_addr_list *)msg; 3549 3550 ice_update_legacy_cached_mac(vf, &al->list[0]); 3551 3552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3553 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3554 } 3555 3556 static int 3557 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3558 { 3559 dev_dbg(ice_pf_to_dev(vf->pf), 3560 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3561 vf->vf_id); 3562 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3563 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3564 NULL, 0); 3565 } 3566 3567 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3568 .get_ver_msg = ice_vc_get_ver_msg, 3569 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3570 .reset_vf = ice_vc_reset_vf_msg, 3571 .add_mac_addr_msg = ice_vc_repr_add_mac, 3572 .del_mac_addr_msg = ice_vc_repr_del_mac, 3573 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3574 .ena_qs_msg = ice_vc_ena_qs_msg, 3575 .dis_qs_msg = ice_vc_dis_qs_msg, 3576 .request_qs_msg = ice_vc_request_qs_msg, 3577 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3578 .config_rss_key = ice_vc_config_rss_key, 3579 .config_rss_lut = ice_vc_config_rss_lut, 3580 .get_stats_msg = ice_vc_get_stats_msg, 3581 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3582 .add_vlan_msg = ice_vc_add_vlan_msg, 3583 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3584 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3585 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3586 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3587 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3588 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3589 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3590 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3591 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3592 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3593 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3594 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3595 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3596 }; 3597 3598 /** 3599 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3600 * @vf: the VF to switch ops 3601 */ 3602 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3603 { 3604 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3605 } 3606 3607 /** 3608 * ice_vc_process_vf_msg - Process request from VF 3609 * @pf: pointer to the PF structure 3610 * @event: pointer to the AQ event 3611 * 3612 * called from the common asq/arq handler to 3613 * process request from VF 3614 */ 3615 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3616 { 3617 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3618 s16 vf_id = le16_to_cpu(event->desc.retval); 3619 const struct ice_virtchnl_ops *ops; 3620 u16 msglen = event->msg_len; 3621 u8 *msg = event->msg_buf; 3622 struct ice_vf *vf = NULL; 3623 struct device *dev; 3624 int err = 0; 3625 3626 dev = ice_pf_to_dev(pf); 3627 3628 vf = ice_get_vf_by_id(pf, vf_id); 3629 if (!vf) { 3630 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3631 vf_id, v_opcode, msglen); 3632 return; 3633 } 3634 3635 mutex_lock(&vf->cfg_lock); 3636 3637 /* Check if VF is disabled. */ 3638 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3639 err = -EPERM; 3640 goto error_handler; 3641 } 3642 3643 ops = vf->virtchnl_ops; 3644 3645 /* Perform basic checks on the msg */ 3646 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3647 if (err) { 3648 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3649 err = -EPERM; 3650 else 3651 err = -EINVAL; 3652 } 3653 3654 error_handler: 3655 if (err) { 3656 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3657 NULL, 0); 3658 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3659 vf_id, v_opcode, msglen, err); 3660 goto finish; 3661 } 3662 3663 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3664 ice_vc_send_msg_to_vf(vf, v_opcode, 3665 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3666 0); 3667 goto finish; 3668 } 3669 3670 switch (v_opcode) { 3671 case VIRTCHNL_OP_VERSION: 3672 err = ops->get_ver_msg(vf, msg); 3673 break; 3674 case VIRTCHNL_OP_GET_VF_RESOURCES: 3675 err = ops->get_vf_res_msg(vf, msg); 3676 if (ice_vf_init_vlan_stripping(vf)) 3677 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3678 vf->vf_id); 3679 ice_vc_notify_vf_link_state(vf); 3680 break; 3681 case VIRTCHNL_OP_RESET_VF: 3682 ops->reset_vf(vf); 3683 break; 3684 case VIRTCHNL_OP_ADD_ETH_ADDR: 3685 err = ops->add_mac_addr_msg(vf, msg); 3686 break; 3687 case VIRTCHNL_OP_DEL_ETH_ADDR: 3688 err = ops->del_mac_addr_msg(vf, msg); 3689 break; 3690 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3691 err = ops->cfg_qs_msg(vf, msg); 3692 break; 3693 case VIRTCHNL_OP_ENABLE_QUEUES: 3694 err = ops->ena_qs_msg(vf, msg); 3695 ice_vc_notify_vf_link_state(vf); 3696 break; 3697 case VIRTCHNL_OP_DISABLE_QUEUES: 3698 err = ops->dis_qs_msg(vf, msg); 3699 break; 3700 case VIRTCHNL_OP_REQUEST_QUEUES: 3701 err = ops->request_qs_msg(vf, msg); 3702 break; 3703 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3704 err = ops->cfg_irq_map_msg(vf, msg); 3705 break; 3706 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3707 err = ops->config_rss_key(vf, msg); 3708 break; 3709 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3710 err = ops->config_rss_lut(vf, msg); 3711 break; 3712 case VIRTCHNL_OP_GET_STATS: 3713 err = ops->get_stats_msg(vf, msg); 3714 break; 3715 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3716 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3717 break; 3718 case VIRTCHNL_OP_ADD_VLAN: 3719 err = ops->add_vlan_msg(vf, msg); 3720 break; 3721 case VIRTCHNL_OP_DEL_VLAN: 3722 err = ops->remove_vlan_msg(vf, msg); 3723 break; 3724 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3725 err = ops->ena_vlan_stripping(vf); 3726 break; 3727 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3728 err = ops->dis_vlan_stripping(vf); 3729 break; 3730 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3731 err = ops->add_fdir_fltr_msg(vf, msg); 3732 break; 3733 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3734 err = ops->del_fdir_fltr_msg(vf, msg); 3735 break; 3736 case VIRTCHNL_OP_ADD_RSS_CFG: 3737 err = ops->handle_rss_cfg_msg(vf, msg, true); 3738 break; 3739 case VIRTCHNL_OP_DEL_RSS_CFG: 3740 err = ops->handle_rss_cfg_msg(vf, msg, false); 3741 break; 3742 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3743 err = ops->get_offload_vlan_v2_caps(vf); 3744 break; 3745 case VIRTCHNL_OP_ADD_VLAN_V2: 3746 err = ops->add_vlan_v2_msg(vf, msg); 3747 break; 3748 case VIRTCHNL_OP_DEL_VLAN_V2: 3749 err = ops->remove_vlan_v2_msg(vf, msg); 3750 break; 3751 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3752 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3753 break; 3754 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3755 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3756 break; 3757 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3758 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3759 break; 3760 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3761 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3762 break; 3763 case VIRTCHNL_OP_UNKNOWN: 3764 default: 3765 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3766 vf_id); 3767 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3768 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3769 NULL, 0); 3770 break; 3771 } 3772 if (err) { 3773 /* Helper function cares less about error return values here 3774 * as it is busy with pending work. 3775 */ 3776 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3777 vf_id, v_opcode, err); 3778 } 3779 3780 finish: 3781 mutex_unlock(&vf->cfg_lock); 3782 ice_put_vf(vf); 3783 } 3784