1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 vfres->num_vsis = 1; 499 /* Tx and Rx queue are equal for VF */ 500 vfres->num_queue_pairs = vsi->num_txq; 501 vfres->max_vectors = vf->pf->vfs.num_msix_per; 502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 503 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 504 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 505 506 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 510 vf->hw_lan_addr); 511 512 /* match guest capabilities */ 513 vf->driver_caps = vfres->vf_cap_flags; 514 515 ice_vc_set_caps_allowlist(vf); 516 ice_vc_set_working_allowlist(vf); 517 518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 519 520 err: 521 /* send the response back to the VF */ 522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 523 (u8 *)vfres, len); 524 525 kfree(vfres); 526 return ret; 527 } 528 529 /** 530 * ice_vc_reset_vf_msg 531 * @vf: pointer to the VF info 532 * 533 * called from the VF to reset itself, 534 * unlike other virtchnl messages, PF driver 535 * doesn't send the response back to the VF 536 */ 537 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 538 { 539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 540 ice_reset_vf(vf, 0); 541 } 542 543 /** 544 * ice_vc_isvalid_vsi_id 545 * @vf: pointer to the VF info 546 * @vsi_id: VF relative VSI ID 547 * 548 * check for the valid VSI ID 549 */ 550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 551 { 552 struct ice_pf *pf = vf->pf; 553 struct ice_vsi *vsi; 554 555 vsi = ice_find_vsi(pf, vsi_id); 556 557 return (vsi && (vsi->vf == vf)); 558 } 559 560 /** 561 * ice_vc_isvalid_q_id 562 * @vf: pointer to the VF info 563 * @vsi_id: VSI ID 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 569 { 570 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 571 /* allocated Tx and Rx queues should be always equal for VF VSI */ 572 return (vsi && (qid < vsi->alloc_txq)); 573 } 574 575 /** 576 * ice_vc_isvalid_ring_len 577 * @ring_len: length of ring 578 * 579 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 580 * or zero 581 */ 582 static bool ice_vc_isvalid_ring_len(u16 ring_len) 583 { 584 return ring_len == 0 || 585 (ring_len >= ICE_MIN_NUM_DESC && 586 ring_len <= ICE_MAX_NUM_DESC && 587 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 588 } 589 590 /** 591 * ice_vc_validate_pattern 592 * @vf: pointer to the VF info 593 * @proto: virtchnl protocol headers 594 * 595 * validate the pattern is supported or not. 596 * 597 * Return: true on success, false on error. 598 */ 599 bool 600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 601 { 602 bool is_ipv4 = false; 603 bool is_ipv6 = false; 604 bool is_udp = false; 605 u16 ptype = -1; 606 int i = 0; 607 608 while (i < proto->count && 609 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 610 switch (proto->proto_hdr[i].type) { 611 case VIRTCHNL_PROTO_HDR_ETH: 612 ptype = ICE_PTYPE_MAC_PAY; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV4: 615 ptype = ICE_PTYPE_IPV4_PAY; 616 is_ipv4 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_IPV6: 619 ptype = ICE_PTYPE_IPV6_PAY; 620 is_ipv6 = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_UDP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_UDP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_UDP_PAY; 627 is_udp = true; 628 break; 629 case VIRTCHNL_PROTO_HDR_TCP: 630 if (is_ipv4) 631 ptype = ICE_PTYPE_IPV4_TCP_PAY; 632 else if (is_ipv6) 633 ptype = ICE_PTYPE_IPV6_TCP_PAY; 634 break; 635 case VIRTCHNL_PROTO_HDR_SCTP: 636 if (is_ipv4) 637 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 638 else if (is_ipv6) 639 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 640 break; 641 case VIRTCHNL_PROTO_HDR_GTPU_IP: 642 case VIRTCHNL_PROTO_HDR_GTPU_EH: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_GTPU; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_GTPU; 647 goto out; 648 case VIRTCHNL_PROTO_HDR_L2TPV3: 649 if (is_ipv4) 650 ptype = ICE_MAC_IPV4_L2TPV3; 651 else if (is_ipv6) 652 ptype = ICE_MAC_IPV6_L2TPV3; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_ESP: 655 if (is_ipv4) 656 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 657 ICE_MAC_IPV4_ESP; 658 else if (is_ipv6) 659 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 660 ICE_MAC_IPV6_ESP; 661 goto out; 662 case VIRTCHNL_PROTO_HDR_AH: 663 if (is_ipv4) 664 ptype = ICE_MAC_IPV4_AH; 665 else if (is_ipv6) 666 ptype = ICE_MAC_IPV6_AH; 667 goto out; 668 case VIRTCHNL_PROTO_HDR_PFCP: 669 if (is_ipv4) 670 ptype = ICE_MAC_IPV4_PFCP_SESSION; 671 else if (is_ipv6) 672 ptype = ICE_MAC_IPV6_PFCP_SESSION; 673 goto out; 674 default: 675 break; 676 } 677 i++; 678 } 679 680 out: 681 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 682 } 683 684 /** 685 * ice_vc_parse_rss_cfg - parses hash fields and headers from 686 * a specific virtchnl RSS cfg 687 * @hw: pointer to the hardware 688 * @rss_cfg: pointer to the virtchnl RSS cfg 689 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 690 * to configure 691 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 692 * 693 * Return true if all the protocol header and hash fields in the RSS cfg could 694 * be parsed, else return false 695 * 696 * This function parses the virtchnl RSS cfg to be the intended 697 * hash fields and the intended header for RSS configuration 698 */ 699 static bool 700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 701 u32 *addl_hdrs, u64 *hash_flds) 702 { 703 const struct ice_vc_hash_field_match_type *hf_list; 704 const struct ice_vc_hdr_match_type *hdr_list; 705 int i, hf_list_len, hdr_list_len; 706 707 hf_list = ice_vc_hash_field_list; 708 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 709 hdr_list = ice_vc_hdr_list; 710 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 711 712 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 713 struct virtchnl_proto_hdr *proto_hdr = 714 &rss_cfg->proto_hdrs.proto_hdr[i]; 715 bool hdr_found = false; 716 int j; 717 718 /* Find matched ice headers according to virtchnl headers. */ 719 for (j = 0; j < hdr_list_len; j++) { 720 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 721 722 if (proto_hdr->type == hdr_map.vc_hdr) { 723 *addl_hdrs |= hdr_map.ice_hdr; 724 hdr_found = true; 725 } 726 } 727 728 if (!hdr_found) 729 return false; 730 731 /* Find matched ice hash fields according to 732 * virtchnl hash fields. 733 */ 734 for (j = 0; j < hf_list_len; j++) { 735 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 736 737 if (proto_hdr->type == hf_map.vc_hdr && 738 proto_hdr->field_selector == hf_map.vc_hash_field) { 739 *hash_flds |= hf_map.ice_hash_field; 740 break; 741 } 742 } 743 } 744 745 return true; 746 } 747 748 /** 749 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 750 * RSS offloads 751 * @caps: VF driver negotiated capabilities 752 * 753 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 754 * else return false 755 */ 756 static bool ice_vf_adv_rss_offload_ena(u32 caps) 757 { 758 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 759 } 760 761 /** 762 * ice_vc_handle_rss_cfg 763 * @vf: pointer to the VF info 764 * @msg: pointer to the message buffer 765 * @add: add a RSS config if true, otherwise delete a RSS config 766 * 767 * This function adds/deletes a RSS config 768 */ 769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 770 { 771 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 772 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 773 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 774 struct device *dev = ice_pf_to_dev(vf->pf); 775 struct ice_hw *hw = &vf->pf->hw; 776 struct ice_vsi *vsi; 777 778 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 779 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 780 vf->vf_id); 781 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 782 goto error_param; 783 } 784 785 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 789 goto error_param; 790 } 791 792 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 793 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 794 goto error_param; 795 } 796 797 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 798 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 799 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 800 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 801 vf->vf_id); 802 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 803 goto error_param; 804 } 805 806 vsi = ice_get_vf_vsi(vf); 807 if (!vsi) { 808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 809 goto error_param; 810 } 811 812 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 814 goto error_param; 815 } 816 817 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 818 struct ice_vsi_ctx *ctx; 819 u8 lut_type, hash_type; 820 int status; 821 822 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 823 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 824 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 825 826 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 827 if (!ctx) { 828 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 829 goto error_param; 830 } 831 832 ctx->info.q_opt_rss = ((lut_type << 833 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 834 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 835 (hash_type & 836 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 837 838 /* Preserve existing queueing option setting */ 839 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 840 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 841 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 842 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 843 844 ctx->info.valid_sections = 845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 846 847 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 848 if (status) { 849 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 850 status, ice_aq_str(hw->adminq.sq_last_status)); 851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 852 } else { 853 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 854 } 855 856 kfree(ctx); 857 } else { 858 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 859 u64 hash_flds = ICE_HASH_INVALID; 860 861 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 862 &hash_flds)) { 863 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 864 goto error_param; 865 } 866 867 if (add) { 868 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 869 addl_hdrs)) { 870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 871 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 872 vsi->vsi_num, v_ret); 873 } 874 } else { 875 int status; 876 877 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 878 addl_hdrs); 879 /* We just ignore -ENOENT, because if two configurations 880 * share the same profile remove one of them actually 881 * removes both, since the profile is deleted. 882 */ 883 if (status && status != -ENOENT) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 886 vf->vf_id, status); 887 } 888 } 889 } 890 891 error_param: 892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 893 } 894 895 /** 896 * ice_vc_config_rss_key 897 * @vf: pointer to the VF info 898 * @msg: pointer to the msg buffer 899 * 900 * Configure the VF's RSS key 901 */ 902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 903 { 904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 905 struct virtchnl_rss_key *vrk = 906 (struct virtchnl_rss_key *)msg; 907 struct ice_vsi *vsi; 908 909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 910 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 911 goto error_param; 912 } 913 914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 vsi = ice_get_vf_vsi(vf); 930 if (!vsi) { 931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 932 goto error_param; 933 } 934 935 if (ice_set_rss_key(vsi, vrk->key)) 936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 937 error_param: 938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 939 NULL, 0); 940 } 941 942 /** 943 * ice_vc_config_rss_lut 944 * @vf: pointer to the VF info 945 * @msg: pointer to the msg buffer 946 * 947 * Configure the VF's RSS LUT 948 */ 949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 950 { 951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 953 struct ice_vsi *vsi; 954 955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 957 goto error_param; 958 } 959 960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 vsi = ice_get_vf_vsi(vf); 976 if (!vsi) { 977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 978 goto error_param; 979 } 980 981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 983 error_param: 984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 985 NULL, 0); 986 } 987 988 /** 989 * ice_vc_cfg_promiscuous_mode_msg 990 * @vf: pointer to the VF info 991 * @msg: pointer to the msg buffer 992 * 993 * called from the VF to configure VF VSIs promiscuous mode 994 */ 995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 996 { 997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 998 bool rm_promisc, alluni = false, allmulti = false; 999 struct virtchnl_promisc_info *info = 1000 (struct virtchnl_promisc_info *)msg; 1001 struct ice_vsi_vlan_ops *vlan_ops; 1002 int mcast_err = 0, ucast_err = 0; 1003 struct ice_pf *pf = vf->pf; 1004 struct ice_vsi *vsi; 1005 u8 mcast_m, ucast_m; 1006 struct device *dev; 1007 int ret = 0; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 vsi = ice_get_vf_vsi(vf); 1020 if (!vsi) { 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 dev = ice_pf_to_dev(pf); 1026 if (!ice_is_vf_trusted(vf)) { 1027 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1028 vf->vf_id); 1029 /* Leave v_ret alone, lie to the VF on purpose. */ 1030 goto error_param; 1031 } 1032 1033 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1034 alluni = true; 1035 1036 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1037 allmulti = true; 1038 1039 rm_promisc = !allmulti && !alluni; 1040 1041 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1042 if (rm_promisc) 1043 ret = vlan_ops->ena_rx_filtering(vsi); 1044 else 1045 ret = vlan_ops->dis_rx_filtering(vsi); 1046 if (ret) { 1047 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1049 goto error_param; 1050 } 1051 1052 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1053 1054 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1055 if (alluni) { 1056 /* in this case we're turning on promiscuous mode */ 1057 ret = ice_set_dflt_vsi(vsi); 1058 } else { 1059 /* in this case we're turning off promiscuous mode */ 1060 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1061 ret = ice_clear_dflt_vsi(vsi); 1062 } 1063 1064 /* in this case we're turning on/off only 1065 * allmulticast 1066 */ 1067 if (allmulti) 1068 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1069 else 1070 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1071 1072 if (ret) { 1073 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1074 vf->vf_id, ret); 1075 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1076 goto error_param; 1077 } 1078 } else { 1079 if (alluni) 1080 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1081 else 1082 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1083 1084 if (allmulti) 1085 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1086 else 1087 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1088 1089 if (ucast_err || mcast_err) 1090 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1091 } 1092 1093 if (!mcast_err) { 1094 if (allmulti && 1095 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1096 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1097 vf->vf_id); 1098 else if (!allmulti && 1099 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1100 vf->vf_states)) 1101 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1102 vf->vf_id); 1103 } else { 1104 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1105 vf->vf_id, mcast_err); 1106 } 1107 1108 if (!ucast_err) { 1109 if (alluni && 1110 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1111 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1112 vf->vf_id); 1113 else if (!alluni && 1114 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1115 vf->vf_states)) 1116 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1117 vf->vf_id); 1118 } else { 1119 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1120 vf->vf_id, ucast_err); 1121 } 1122 1123 error_param: 1124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1125 v_ret, NULL, 0); 1126 } 1127 1128 /** 1129 * ice_vc_get_stats_msg 1130 * @vf: pointer to the VF info 1131 * @msg: pointer to the msg buffer 1132 * 1133 * called from the VF to get VSI stats 1134 */ 1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1136 { 1137 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1138 struct virtchnl_queue_select *vqs = 1139 (struct virtchnl_queue_select *)msg; 1140 struct ice_eth_stats stats = { 0 }; 1141 struct ice_vsi *vsi; 1142 1143 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1144 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1145 goto error_param; 1146 } 1147 1148 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1150 goto error_param; 1151 } 1152 1153 vsi = ice_get_vf_vsi(vf); 1154 if (!vsi) { 1155 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1156 goto error_param; 1157 } 1158 1159 ice_update_eth_stats(vsi); 1160 1161 stats = vsi->eth_stats; 1162 1163 error_param: 1164 /* send the response to the VF */ 1165 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1166 (u8 *)&stats, sizeof(stats)); 1167 } 1168 1169 /** 1170 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1171 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1172 * 1173 * Return true on successful validation, else false 1174 */ 1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1176 { 1177 if ((!vqs->rx_queues && !vqs->tx_queues) || 1178 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1179 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /** 1186 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1187 * @vsi: VSI of the VF to configure 1188 * @q_idx: VF queue index used to determine the queue in the PF's space 1189 */ 1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1191 { 1192 struct ice_hw *hw = &vsi->back->hw; 1193 u32 pfq = vsi->txq_map[q_idx]; 1194 u32 reg; 1195 1196 reg = rd32(hw, QINT_TQCTL(pfq)); 1197 1198 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1199 * this is most likely a poll mode VF driver, so don't enable an 1200 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1201 */ 1202 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1203 return; 1204 1205 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1206 } 1207 1208 /** 1209 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1210 * @vsi: VSI of the VF to configure 1211 * @q_idx: VF queue index used to determine the queue in the PF's space 1212 */ 1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1214 { 1215 struct ice_hw *hw = &vsi->back->hw; 1216 u32 pfq = vsi->rxq_map[q_idx]; 1217 u32 reg; 1218 1219 reg = rd32(hw, QINT_RQCTL(pfq)); 1220 1221 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1222 * this is most likely a poll mode VF driver, so don't enable an 1223 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1224 */ 1225 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1226 return; 1227 1228 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1229 } 1230 1231 /** 1232 * ice_vc_ena_qs_msg 1233 * @vf: pointer to the VF info 1234 * @msg: pointer to the msg buffer 1235 * 1236 * called from the VF to enable all or specific queue(s) 1237 */ 1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1239 { 1240 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1241 struct virtchnl_queue_select *vqs = 1242 (struct virtchnl_queue_select *)msg; 1243 struct ice_vsi *vsi; 1244 unsigned long q_map; 1245 u16 vf_q_id; 1246 1247 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1254 goto error_param; 1255 } 1256 1257 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 vsi = ice_get_vf_vsi(vf); 1263 if (!vsi) { 1264 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1265 goto error_param; 1266 } 1267 1268 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1269 * Tx queue group list was configured and the context bits were 1270 * programmed using ice_vsi_cfg_txqs 1271 */ 1272 q_map = vqs->rx_queues; 1273 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1274 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1275 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1276 goto error_param; 1277 } 1278 1279 /* Skip queue if enabled */ 1280 if (test_bit(vf_q_id, vf->rxq_ena)) 1281 continue; 1282 1283 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1284 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1285 vf_q_id, vsi->vsi_num); 1286 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1287 goto error_param; 1288 } 1289 1290 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1291 set_bit(vf_q_id, vf->rxq_ena); 1292 } 1293 1294 q_map = vqs->tx_queues; 1295 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1296 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1298 goto error_param; 1299 } 1300 1301 /* Skip queue if enabled */ 1302 if (test_bit(vf_q_id, vf->txq_ena)) 1303 continue; 1304 1305 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1306 set_bit(vf_q_id, vf->txq_ena); 1307 } 1308 1309 /* Set flag to indicate that queues are enabled */ 1310 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1311 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1312 1313 error_param: 1314 /* send the response to the VF */ 1315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1316 NULL, 0); 1317 } 1318 1319 /** 1320 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1321 * @vf: VF to disable queue for 1322 * @vsi: VSI for the VF 1323 * @q_id: VF relative (0-based) queue ID 1324 * 1325 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1326 * disabled then clear q_id bit in the enabled queues bitmap and return 1327 * success. Otherwise return error. 1328 */ 1329 static int 1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1331 { 1332 struct ice_txq_meta txq_meta = { 0 }; 1333 struct ice_tx_ring *ring; 1334 int err; 1335 1336 if (!test_bit(q_id, vf->txq_ena)) 1337 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1338 q_id, vsi->vsi_num); 1339 1340 ring = vsi->tx_rings[q_id]; 1341 if (!ring) 1342 return -EINVAL; 1343 1344 ice_fill_txq_meta(vsi, ring, &txq_meta); 1345 1346 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1347 if (err) { 1348 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1349 q_id, vsi->vsi_num); 1350 return err; 1351 } 1352 1353 /* Clear enabled queues flag */ 1354 clear_bit(q_id, vf->txq_ena); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * ice_vc_dis_qs_msg 1361 * @vf: pointer to the VF info 1362 * @msg: pointer to the msg buffer 1363 * 1364 * called from the VF to disable all or specific queue(s) 1365 */ 1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1367 { 1368 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1369 struct virtchnl_queue_select *vqs = 1370 (struct virtchnl_queue_select *)msg; 1371 struct ice_vsi *vsi; 1372 unsigned long q_map; 1373 u16 vf_q_id; 1374 1375 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1376 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1383 goto error_param; 1384 } 1385 1386 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1388 goto error_param; 1389 } 1390 1391 vsi = ice_get_vf_vsi(vf); 1392 if (!vsi) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 if (vqs->tx_queues) { 1398 q_map = vqs->tx_queues; 1399 1400 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1401 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1403 goto error_param; 1404 } 1405 1406 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 } 1411 } 1412 1413 q_map = vqs->rx_queues; 1414 /* speed up Rx queue disable by batching them if possible */ 1415 if (q_map && 1416 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1417 if (ice_vsi_stop_all_rx_rings(vsi)) { 1418 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1419 vsi->vsi_num); 1420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1421 goto error_param; 1422 } 1423 1424 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1425 } else if (q_map) { 1426 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1427 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1429 goto error_param; 1430 } 1431 1432 /* Skip queue if not enabled */ 1433 if (!test_bit(vf_q_id, vf->rxq_ena)) 1434 continue; 1435 1436 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1437 true)) { 1438 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1439 vf_q_id, vsi->vsi_num); 1440 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1441 goto error_param; 1442 } 1443 1444 /* Clear enabled queues flag */ 1445 clear_bit(vf_q_id, vf->rxq_ena); 1446 } 1447 } 1448 1449 /* Clear enabled queues flag */ 1450 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1451 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1452 1453 error_param: 1454 /* send the response to the VF */ 1455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1456 NULL, 0); 1457 } 1458 1459 /** 1460 * ice_cfg_interrupt 1461 * @vf: pointer to the VF info 1462 * @vsi: the VSI being configured 1463 * @vector_id: vector ID 1464 * @map: vector map for mapping vectors to queues 1465 * @q_vector: structure for interrupt vector 1466 * configure the IRQ to queue map 1467 */ 1468 static int 1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1470 struct virtchnl_vector_map *map, 1471 struct ice_q_vector *q_vector) 1472 { 1473 u16 vsi_q_id, vsi_q_id_idx; 1474 unsigned long qmap; 1475 1476 q_vector->num_ring_rx = 0; 1477 q_vector->num_ring_tx = 0; 1478 1479 qmap = map->rxq_map; 1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1481 vsi_q_id = vsi_q_id_idx; 1482 1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1484 return VIRTCHNL_STATUS_ERR_PARAM; 1485 1486 q_vector->num_ring_rx++; 1487 q_vector->rx.itr_idx = map->rxitr_idx; 1488 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1489 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1490 q_vector->rx.itr_idx); 1491 } 1492 1493 qmap = map->txq_map; 1494 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1495 vsi_q_id = vsi_q_id_idx; 1496 1497 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1498 return VIRTCHNL_STATUS_ERR_PARAM; 1499 1500 q_vector->num_ring_tx++; 1501 q_vector->tx.itr_idx = map->txitr_idx; 1502 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1503 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1504 q_vector->tx.itr_idx); 1505 } 1506 1507 return VIRTCHNL_STATUS_SUCCESS; 1508 } 1509 1510 /** 1511 * ice_vc_cfg_irq_map_msg 1512 * @vf: pointer to the VF info 1513 * @msg: pointer to the msg buffer 1514 * 1515 * called from the VF to configure the IRQ to queue map 1516 */ 1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1518 { 1519 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1520 u16 num_q_vectors_mapped, vsi_id, vector_id; 1521 struct virtchnl_irq_map_info *irqmap_info; 1522 struct virtchnl_vector_map *map; 1523 struct ice_pf *pf = vf->pf; 1524 struct ice_vsi *vsi; 1525 int i; 1526 1527 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1528 num_q_vectors_mapped = irqmap_info->num_vectors; 1529 1530 /* Check to make sure number of VF vectors mapped is not greater than 1531 * number of VF vectors originally allocated, and check that 1532 * there is actually at least a single VF queue vector mapped 1533 */ 1534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1535 pf->vfs.num_msix_per < num_q_vectors_mapped || 1536 !num_q_vectors_mapped) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 vsi = ice_get_vf_vsi(vf); 1542 if (!vsi) { 1543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1544 goto error_param; 1545 } 1546 1547 for (i = 0; i < num_q_vectors_mapped; i++) { 1548 struct ice_q_vector *q_vector; 1549 1550 map = &irqmap_info->vecmap[i]; 1551 1552 vector_id = map->vector_id; 1553 vsi_id = map->vsi_id; 1554 /* vector_id is always 0-based for each VF, and can never be 1555 * larger than or equal to the max allowed interrupts per VF 1556 */ 1557 if (!(vector_id < pf->vfs.num_msix_per) || 1558 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1559 (!vector_id && (map->rxq_map || map->txq_map))) { 1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1561 goto error_param; 1562 } 1563 1564 /* No need to map VF miscellaneous or rogue vector */ 1565 if (!vector_id) 1566 continue; 1567 1568 /* Subtract non queue vector from vector_id passed by VF 1569 * to get actual number of VSI queue vector array index 1570 */ 1571 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1572 if (!q_vector) { 1573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1574 goto error_param; 1575 } 1576 1577 /* lookout for the invalid queue index */ 1578 v_ret = (enum virtchnl_status_code) 1579 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1580 if (v_ret) 1581 goto error_param; 1582 } 1583 1584 error_param: 1585 /* send the response to the VF */ 1586 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1587 NULL, 0); 1588 } 1589 1590 /** 1591 * ice_vc_cfg_qs_msg 1592 * @vf: pointer to the VF info 1593 * @msg: pointer to the msg buffer 1594 * 1595 * called from the VF to configure the Rx/Tx queues 1596 */ 1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1598 { 1599 struct virtchnl_vsi_queue_config_info *qci = 1600 (struct virtchnl_vsi_queue_config_info *)msg; 1601 struct virtchnl_queue_pair_info *qpi; 1602 struct ice_pf *pf = vf->pf; 1603 struct ice_vsi *vsi; 1604 int i = -1, q_idx; 1605 1606 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1607 goto error_param; 1608 1609 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1610 goto error_param; 1611 1612 vsi = ice_get_vf_vsi(vf); 1613 if (!vsi) 1614 goto error_param; 1615 1616 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1617 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1618 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1619 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1620 goto error_param; 1621 } 1622 1623 for (i = 0; i < qci->num_queue_pairs; i++) { 1624 qpi = &qci->qpair[i]; 1625 if (qpi->txq.vsi_id != qci->vsi_id || 1626 qpi->rxq.vsi_id != qci->vsi_id || 1627 qpi->rxq.queue_id != qpi->txq.queue_id || 1628 qpi->txq.headwb_enabled || 1629 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1630 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1631 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1632 goto error_param; 1633 } 1634 1635 q_idx = qpi->rxq.queue_id; 1636 1637 /* make sure selected "q_idx" is in valid range of queues 1638 * for selected "vsi" 1639 */ 1640 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1641 goto error_param; 1642 } 1643 1644 /* copy Tx queue info from VF into VSI */ 1645 if (qpi->txq.ring_len > 0) { 1646 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1647 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1648 1649 /* Disable any existing queue first */ 1650 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1651 goto error_param; 1652 1653 /* Configure a queue with the requested settings */ 1654 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1655 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1656 vf->vf_id, i); 1657 goto error_param; 1658 } 1659 } 1660 1661 /* copy Rx queue info from VF into VSI */ 1662 if (qpi->rxq.ring_len > 0) { 1663 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1664 u32 rxdid; 1665 1666 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1667 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1668 1669 if (qpi->rxq.databuffer_size != 0 && 1670 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1671 qpi->rxq.databuffer_size < 1024)) 1672 goto error_param; 1673 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1674 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1675 if (qpi->rxq.max_pkt_size > max_frame_size || 1676 qpi->rxq.max_pkt_size < 64) 1677 goto error_param; 1678 1679 vsi->max_frame = qpi->rxq.max_pkt_size; 1680 /* add space for the port VLAN since the VF driver is 1681 * not expected to account for it in the MTU 1682 * calculation 1683 */ 1684 if (ice_vf_is_port_vlan_ena(vf)) 1685 vsi->max_frame += VLAN_HLEN; 1686 1687 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1688 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1689 vf->vf_id, i); 1690 goto error_param; 1691 } 1692 1693 /* If Rx flex desc is supported, select RXDID for Rx 1694 * queues. Otherwise, use legacy 32byte descriptor 1695 * format. Legacy 16byte descriptor is not supported. 1696 * If this RXDID is selected, return error. 1697 */ 1698 if (vf->driver_caps & 1699 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1700 rxdid = qpi->rxq.rxdid; 1701 if (!(BIT(rxdid) & pf->supported_rxdids)) 1702 goto error_param; 1703 } else { 1704 rxdid = ICE_RXDID_LEGACY_1; 1705 } 1706 1707 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1708 vsi->rxq_map[q_idx], 1709 rxdid, 0x03, false); 1710 } 1711 } 1712 1713 /* send the response to the VF */ 1714 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1715 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1716 error_param: 1717 /* disable whatever we can */ 1718 for (; i >= 0; i--) { 1719 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1720 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1721 vf->vf_id, i); 1722 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1723 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1724 vf->vf_id, i); 1725 } 1726 1727 ice_lag_move_new_vf_nodes(vf); 1728 1729 /* send the response to the VF */ 1730 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1731 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1732 } 1733 1734 /** 1735 * ice_can_vf_change_mac 1736 * @vf: pointer to the VF info 1737 * 1738 * Return true if the VF is allowed to change its MAC filters, false otherwise 1739 */ 1740 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1741 { 1742 /* If the VF MAC address has been set administratively (via the 1743 * ndo_set_vf_mac command), then deny permission to the VF to 1744 * add/delete unicast MAC addresses, unless the VF is trusted 1745 */ 1746 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1747 return false; 1748 1749 return true; 1750 } 1751 1752 /** 1753 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1754 * @vc_ether_addr: used to extract the type 1755 */ 1756 static u8 1757 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1758 { 1759 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1760 } 1761 1762 /** 1763 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1764 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1765 */ 1766 static bool 1767 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1768 { 1769 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1770 1771 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1772 } 1773 1774 /** 1775 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1776 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1777 * 1778 * This function should only be called when the MAC address in 1779 * virtchnl_ether_addr is a valid unicast MAC 1780 */ 1781 static bool 1782 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1783 { 1784 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1785 1786 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1787 } 1788 1789 /** 1790 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1791 * @vf: VF to update 1792 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1793 */ 1794 static void 1795 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1796 { 1797 u8 *mac_addr = vc_ether_addr->addr; 1798 1799 if (!is_valid_ether_addr(mac_addr)) 1800 return; 1801 1802 /* only allow legacy VF drivers to set the device and hardware MAC if it 1803 * is zero and allow new VF drivers to set the hardware MAC if the type 1804 * was correctly specified over VIRTCHNL 1805 */ 1806 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1807 is_zero_ether_addr(vf->hw_lan_addr)) || 1808 ice_is_vc_addr_primary(vc_ether_addr)) { 1809 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1810 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1811 } 1812 1813 /* hardware and device MACs are already set, but its possible that the 1814 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1815 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1816 * away for the legacy VF driver case as it will be updated in the 1817 * delete flow for this case 1818 */ 1819 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1820 ether_addr_copy(vf->legacy_last_added_umac.addr, 1821 mac_addr); 1822 vf->legacy_last_added_umac.time_modified = jiffies; 1823 } 1824 } 1825 1826 /** 1827 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1828 * @vf: pointer to the VF info 1829 * @vsi: pointer to the VF's VSI 1830 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1831 */ 1832 static int 1833 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1834 struct virtchnl_ether_addr *vc_ether_addr) 1835 { 1836 struct device *dev = ice_pf_to_dev(vf->pf); 1837 u8 *mac_addr = vc_ether_addr->addr; 1838 int ret; 1839 1840 /* device MAC already added */ 1841 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1842 return 0; 1843 1844 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1845 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1846 return -EPERM; 1847 } 1848 1849 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1850 if (ret == -EEXIST) { 1851 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1852 vf->vf_id); 1853 /* don't return since we might need to update 1854 * the primary MAC in ice_vfhw_mac_add() below 1855 */ 1856 } else if (ret) { 1857 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1858 mac_addr, vf->vf_id, ret); 1859 return ret; 1860 } else { 1861 vf->num_mac++; 1862 } 1863 1864 ice_vfhw_mac_add(vf, vc_ether_addr); 1865 1866 return ret; 1867 } 1868 1869 /** 1870 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1871 * @last_added_umac: structure used to check expiration 1872 */ 1873 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1874 { 1875 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1876 return time_is_before_jiffies(last_added_umac->time_modified + 1877 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1878 } 1879 1880 /** 1881 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1882 * @vf: VF to update 1883 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1884 * 1885 * only update cached hardware MAC for legacy VF drivers on delete 1886 * because we cannot guarantee order/type of MAC from the VF driver 1887 */ 1888 static void 1889 ice_update_legacy_cached_mac(struct ice_vf *vf, 1890 struct virtchnl_ether_addr *vc_ether_addr) 1891 { 1892 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1893 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1894 return; 1895 1896 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1897 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1898 } 1899 1900 /** 1901 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1902 * @vf: VF to update 1903 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1904 */ 1905 static void 1906 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1907 { 1908 u8 *mac_addr = vc_ether_addr->addr; 1909 1910 if (!is_valid_ether_addr(mac_addr) || 1911 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1912 return; 1913 1914 /* allow the device MAC to be repopulated in the add flow and don't 1915 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1916 * to be persistent on VM reboot and across driver unload/load, which 1917 * won't work if we clear the hardware MAC here 1918 */ 1919 eth_zero_addr(vf->dev_lan_addr); 1920 1921 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1922 } 1923 1924 /** 1925 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1926 * @vf: pointer to the VF info 1927 * @vsi: pointer to the VF's VSI 1928 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1929 */ 1930 static int 1931 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1932 struct virtchnl_ether_addr *vc_ether_addr) 1933 { 1934 struct device *dev = ice_pf_to_dev(vf->pf); 1935 u8 *mac_addr = vc_ether_addr->addr; 1936 int status; 1937 1938 if (!ice_can_vf_change_mac(vf) && 1939 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1940 return 0; 1941 1942 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1943 if (status == -ENOENT) { 1944 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1945 vf->vf_id); 1946 return -ENOENT; 1947 } else if (status) { 1948 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1949 mac_addr, vf->vf_id, status); 1950 return -EIO; 1951 } 1952 1953 ice_vfhw_mac_del(vf, vc_ether_addr); 1954 1955 vf->num_mac--; 1956 1957 return 0; 1958 } 1959 1960 /** 1961 * ice_vc_handle_mac_addr_msg 1962 * @vf: pointer to the VF info 1963 * @msg: pointer to the msg buffer 1964 * @set: true if MAC filters are being set, false otherwise 1965 * 1966 * add guest MAC address filter 1967 */ 1968 static int 1969 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1970 { 1971 int (*ice_vc_cfg_mac) 1972 (struct ice_vf *vf, struct ice_vsi *vsi, 1973 struct virtchnl_ether_addr *virtchnl_ether_addr); 1974 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1975 struct virtchnl_ether_addr_list *al = 1976 (struct virtchnl_ether_addr_list *)msg; 1977 struct ice_pf *pf = vf->pf; 1978 enum virtchnl_ops vc_op; 1979 struct ice_vsi *vsi; 1980 int i; 1981 1982 if (set) { 1983 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1984 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1985 } else { 1986 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1987 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1988 } 1989 1990 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1991 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1992 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1993 goto handle_mac_exit; 1994 } 1995 1996 /* If this VF is not privileged, then we can't add more than a 1997 * limited number of addresses. Check to make sure that the 1998 * additions do not push us over the limit. 1999 */ 2000 if (set && !ice_is_vf_trusted(vf) && 2001 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2002 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2003 vf->vf_id); 2004 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2005 goto handle_mac_exit; 2006 } 2007 2008 vsi = ice_get_vf_vsi(vf); 2009 if (!vsi) { 2010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2011 goto handle_mac_exit; 2012 } 2013 2014 for (i = 0; i < al->num_elements; i++) { 2015 u8 *mac_addr = al->list[i].addr; 2016 int result; 2017 2018 if (is_broadcast_ether_addr(mac_addr) || 2019 is_zero_ether_addr(mac_addr)) 2020 continue; 2021 2022 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2023 if (result == -EEXIST || result == -ENOENT) { 2024 continue; 2025 } else if (result) { 2026 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2027 goto handle_mac_exit; 2028 } 2029 } 2030 2031 handle_mac_exit: 2032 /* send the response to the VF */ 2033 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2034 } 2035 2036 /** 2037 * ice_vc_add_mac_addr_msg 2038 * @vf: pointer to the VF info 2039 * @msg: pointer to the msg buffer 2040 * 2041 * add guest MAC address filter 2042 */ 2043 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2044 { 2045 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2046 } 2047 2048 /** 2049 * ice_vc_del_mac_addr_msg 2050 * @vf: pointer to the VF info 2051 * @msg: pointer to the msg buffer 2052 * 2053 * remove guest MAC address filter 2054 */ 2055 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2056 { 2057 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2058 } 2059 2060 /** 2061 * ice_vc_request_qs_msg 2062 * @vf: pointer to the VF info 2063 * @msg: pointer to the msg buffer 2064 * 2065 * VFs get a default number of queues but can use this message to request a 2066 * different number. If the request is successful, PF will reset the VF and 2067 * return 0. If unsuccessful, PF will send message informing VF of number of 2068 * available queue pairs via virtchnl message response to VF. 2069 */ 2070 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2071 { 2072 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2073 struct virtchnl_vf_res_request *vfres = 2074 (struct virtchnl_vf_res_request *)msg; 2075 u16 req_queues = vfres->num_queue_pairs; 2076 struct ice_pf *pf = vf->pf; 2077 u16 max_allowed_vf_queues; 2078 u16 tx_rx_queue_left; 2079 struct device *dev; 2080 u16 cur_queues; 2081 2082 dev = ice_pf_to_dev(pf); 2083 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2084 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2085 goto error_param; 2086 } 2087 2088 cur_queues = vf->num_vf_qs; 2089 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2090 ice_get_avail_rxq_count(pf)); 2091 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2092 if (!req_queues) { 2093 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2094 vf->vf_id); 2095 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2096 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2097 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2098 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2099 } else if (req_queues > cur_queues && 2100 req_queues - cur_queues > tx_rx_queue_left) { 2101 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2102 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2103 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2104 ICE_MAX_RSS_QS_PER_VF); 2105 } else { 2106 /* request is successful, then reset VF */ 2107 vf->num_req_qs = req_queues; 2108 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2109 dev_info(dev, "VF %d granted request of %u queues.\n", 2110 vf->vf_id, req_queues); 2111 return 0; 2112 } 2113 2114 error_param: 2115 /* send the response to the VF */ 2116 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2117 v_ret, (u8 *)vfres, sizeof(*vfres)); 2118 } 2119 2120 /** 2121 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2122 * @caps: VF driver negotiated capabilities 2123 * 2124 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2125 */ 2126 static bool ice_vf_vlan_offload_ena(u32 caps) 2127 { 2128 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2129 } 2130 2131 /** 2132 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2133 * @vf: VF used to determine if VLAN promiscuous config is allowed 2134 */ 2135 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2136 { 2137 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2138 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2139 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2140 return true; 2141 2142 return false; 2143 } 2144 2145 /** 2146 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2147 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2148 * @vlan: VLAN used to enable VLAN promiscuous 2149 * 2150 * This function should only be called if VLAN promiscuous mode is allowed, 2151 * which can be determined via ice_is_vlan_promisc_allowed(). 2152 */ 2153 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2154 { 2155 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2156 int status; 2157 2158 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2159 vlan->vid); 2160 if (status && status != -EEXIST) 2161 return status; 2162 2163 return 0; 2164 } 2165 2166 /** 2167 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2168 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2169 * @vlan: VLAN used to disable VLAN promiscuous 2170 * 2171 * This function should only be called if VLAN promiscuous mode is allowed, 2172 * which can be determined via ice_is_vlan_promisc_allowed(). 2173 */ 2174 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2175 { 2176 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2177 int status; 2178 2179 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2180 vlan->vid); 2181 if (status && status != -ENOENT) 2182 return status; 2183 2184 return 0; 2185 } 2186 2187 /** 2188 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2189 * @vf: VF to check against 2190 * @vsi: VF's VSI 2191 * 2192 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2193 * wants to, so return false. 2194 * 2195 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2196 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2197 */ 2198 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2199 { 2200 if (ice_is_vf_trusted(vf)) 2201 return false; 2202 2203 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2204 return ((ice_vsi_num_non_zero_vlans(vsi) + 2205 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2206 } 2207 2208 /** 2209 * ice_vc_process_vlan_msg 2210 * @vf: pointer to the VF info 2211 * @msg: pointer to the msg buffer 2212 * @add_v: Add VLAN if true, otherwise delete VLAN 2213 * 2214 * Process virtchnl op to add or remove programmed guest VLAN ID 2215 */ 2216 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2217 { 2218 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2219 struct virtchnl_vlan_filter_list *vfl = 2220 (struct virtchnl_vlan_filter_list *)msg; 2221 struct ice_pf *pf = vf->pf; 2222 bool vlan_promisc = false; 2223 struct ice_vsi *vsi; 2224 struct device *dev; 2225 int status = 0; 2226 int i; 2227 2228 dev = ice_pf_to_dev(pf); 2229 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2230 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2231 goto error_param; 2232 } 2233 2234 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2235 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2236 goto error_param; 2237 } 2238 2239 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2240 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2241 goto error_param; 2242 } 2243 2244 for (i = 0; i < vfl->num_elements; i++) { 2245 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2246 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2247 dev_err(dev, "invalid VF VLAN id %d\n", 2248 vfl->vlan_id[i]); 2249 goto error_param; 2250 } 2251 } 2252 2253 vsi = ice_get_vf_vsi(vf); 2254 if (!vsi) { 2255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2256 goto error_param; 2257 } 2258 2259 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2260 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2261 vf->vf_id); 2262 /* There is no need to let VF know about being not trusted, 2263 * so we can just return success message here 2264 */ 2265 goto error_param; 2266 } 2267 2268 /* in DVM a VF can add/delete inner VLAN filters when 2269 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2270 */ 2271 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2272 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2273 goto error_param; 2274 } 2275 2276 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2277 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2278 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2279 */ 2280 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2281 !ice_is_dvm_ena(&pf->hw) && 2282 !ice_vf_is_port_vlan_ena(vf); 2283 2284 if (add_v) { 2285 for (i = 0; i < vfl->num_elements; i++) { 2286 u16 vid = vfl->vlan_id[i]; 2287 struct ice_vlan vlan; 2288 2289 if (ice_vf_has_max_vlans(vf, vsi)) { 2290 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2291 vf->vf_id); 2292 /* There is no need to let VF know about being 2293 * not trusted, so we can just return success 2294 * message here as well. 2295 */ 2296 goto error_param; 2297 } 2298 2299 /* we add VLAN 0 by default for each VF so we can enable 2300 * Tx VLAN anti-spoof without triggering MDD events so 2301 * we don't need to add it again here 2302 */ 2303 if (!vid) 2304 continue; 2305 2306 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2307 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2308 if (status) { 2309 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2310 goto error_param; 2311 } 2312 2313 /* Enable VLAN filtering on first non-zero VLAN */ 2314 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2315 if (vf->spoofchk) { 2316 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2317 if (status) { 2318 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2319 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2320 vid, status); 2321 goto error_param; 2322 } 2323 } 2324 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2326 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2327 vid, status); 2328 goto error_param; 2329 } 2330 } else if (vlan_promisc) { 2331 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2332 if (status) { 2333 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2334 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2335 vid, status); 2336 } 2337 } 2338 } 2339 } else { 2340 /* In case of non_trusted VF, number of VLAN elements passed 2341 * to PF for removal might be greater than number of VLANs 2342 * filter programmed for that VF - So, use actual number of 2343 * VLANS added earlier with add VLAN opcode. In order to avoid 2344 * removing VLAN that doesn't exist, which result to sending 2345 * erroneous failed message back to the VF 2346 */ 2347 int num_vf_vlan; 2348 2349 num_vf_vlan = vsi->num_vlan; 2350 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2351 u16 vid = vfl->vlan_id[i]; 2352 struct ice_vlan vlan; 2353 2354 /* we add VLAN 0 by default for each VF so we can enable 2355 * Tx VLAN anti-spoof without triggering MDD events so 2356 * we don't want a VIRTCHNL request to remove it 2357 */ 2358 if (!vid) 2359 continue; 2360 2361 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2362 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2363 if (status) { 2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2365 goto error_param; 2366 } 2367 2368 /* Disable VLAN filtering when only VLAN 0 is left */ 2369 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2370 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2371 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2372 } 2373 2374 if (vlan_promisc) 2375 ice_vf_dis_vlan_promisc(vsi, &vlan); 2376 } 2377 } 2378 2379 error_param: 2380 /* send the response to the VF */ 2381 if (add_v) 2382 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2383 NULL, 0); 2384 else 2385 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2386 NULL, 0); 2387 } 2388 2389 /** 2390 * ice_vc_add_vlan_msg 2391 * @vf: pointer to the VF info 2392 * @msg: pointer to the msg buffer 2393 * 2394 * Add and program guest VLAN ID 2395 */ 2396 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2397 { 2398 return ice_vc_process_vlan_msg(vf, msg, true); 2399 } 2400 2401 /** 2402 * ice_vc_remove_vlan_msg 2403 * @vf: pointer to the VF info 2404 * @msg: pointer to the msg buffer 2405 * 2406 * remove programmed guest VLAN ID 2407 */ 2408 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2409 { 2410 return ice_vc_process_vlan_msg(vf, msg, false); 2411 } 2412 2413 /** 2414 * ice_vc_ena_vlan_stripping 2415 * @vf: pointer to the VF info 2416 * 2417 * Enable VLAN header stripping for a given VF 2418 */ 2419 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2420 { 2421 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2422 struct ice_vsi *vsi; 2423 2424 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2426 goto error_param; 2427 } 2428 2429 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2430 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2431 goto error_param; 2432 } 2433 2434 vsi = ice_get_vf_vsi(vf); 2435 if (!vsi) { 2436 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2437 goto error_param; 2438 } 2439 2440 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2441 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2442 2443 error_param: 2444 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2445 v_ret, NULL, 0); 2446 } 2447 2448 /** 2449 * ice_vc_dis_vlan_stripping 2450 * @vf: pointer to the VF info 2451 * 2452 * Disable VLAN header stripping for a given VF 2453 */ 2454 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2455 { 2456 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2457 struct ice_vsi *vsi; 2458 2459 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2460 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2461 goto error_param; 2462 } 2463 2464 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2465 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2466 goto error_param; 2467 } 2468 2469 vsi = ice_get_vf_vsi(vf); 2470 if (!vsi) { 2471 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2472 goto error_param; 2473 } 2474 2475 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2477 2478 error_param: 2479 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2480 v_ret, NULL, 0); 2481 } 2482 2483 /** 2484 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2485 * @vf: pointer to the VF info 2486 */ 2487 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2488 { 2489 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2490 struct virtchnl_rss_hena *vrh = NULL; 2491 int len = 0, ret; 2492 2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2495 goto err; 2496 } 2497 2498 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2499 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2500 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2501 goto err; 2502 } 2503 2504 len = sizeof(struct virtchnl_rss_hena); 2505 vrh = kzalloc(len, GFP_KERNEL); 2506 if (!vrh) { 2507 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2508 len = 0; 2509 goto err; 2510 } 2511 2512 vrh->hena = ICE_DEFAULT_RSS_HENA; 2513 err: 2514 /* send the response back to the VF */ 2515 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2516 (u8 *)vrh, len); 2517 kfree(vrh); 2518 return ret; 2519 } 2520 2521 /** 2522 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2523 * @vf: pointer to the VF info 2524 * @msg: pointer to the msg buffer 2525 */ 2526 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2527 { 2528 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2529 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2530 struct ice_pf *pf = vf->pf; 2531 struct ice_vsi *vsi; 2532 struct device *dev; 2533 int status; 2534 2535 dev = ice_pf_to_dev(pf); 2536 2537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2538 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2539 goto err; 2540 } 2541 2542 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2543 dev_err(dev, "RSS not supported by PF\n"); 2544 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2545 goto err; 2546 } 2547 2548 vsi = ice_get_vf_vsi(vf); 2549 if (!vsi) { 2550 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2551 goto err; 2552 } 2553 2554 /* clear all previously programmed RSS configuration to allow VF drivers 2555 * the ability to customize the RSS configuration and/or completely 2556 * disable RSS 2557 */ 2558 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2559 if (status && !vrh->hena) { 2560 /* only report failure to clear the current RSS configuration if 2561 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2562 */ 2563 v_ret = ice_err_to_virt_err(status); 2564 goto err; 2565 } else if (status) { 2566 /* allow the VF to update the RSS configuration even on failure 2567 * to clear the current RSS confguration in an attempt to keep 2568 * RSS in a working state 2569 */ 2570 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2571 vf->vf_id); 2572 } 2573 2574 if (vrh->hena) { 2575 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2576 v_ret = ice_err_to_virt_err(status); 2577 } 2578 2579 /* send the response to the VF */ 2580 err: 2581 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2582 NULL, 0); 2583 } 2584 2585 /** 2586 * ice_vc_query_rxdid - query RXDID supported by DDP package 2587 * @vf: pointer to VF info 2588 * 2589 * Called from VF to query a bitmap of supported flexible 2590 * descriptor RXDIDs of a DDP package. 2591 */ 2592 static int ice_vc_query_rxdid(struct ice_vf *vf) 2593 { 2594 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2595 struct virtchnl_supported_rxdids *rxdid = NULL; 2596 struct ice_hw *hw = &vf->pf->hw; 2597 struct ice_pf *pf = vf->pf; 2598 int len = 0; 2599 int ret, i; 2600 u32 regval; 2601 2602 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2603 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2604 goto err; 2605 } 2606 2607 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2608 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2609 goto err; 2610 } 2611 2612 len = sizeof(struct virtchnl_supported_rxdids); 2613 rxdid = kzalloc(len, GFP_KERNEL); 2614 if (!rxdid) { 2615 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2616 len = 0; 2617 goto err; 2618 } 2619 2620 /* RXDIDs supported by DDP package can be read from the register 2621 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2622 * is not listed in DDP package, add it in the bitmap manually. 2623 * Legacy 16byte descriptor is not supported. 2624 */ 2625 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2626 2627 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2628 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2629 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2630 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2631 rxdid->supported_rxdids |= BIT(i); 2632 } 2633 2634 pf->supported_rxdids = rxdid->supported_rxdids; 2635 2636 err: 2637 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2638 v_ret, (u8 *)rxdid, len); 2639 kfree(rxdid); 2640 return ret; 2641 } 2642 2643 /** 2644 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2645 * @vf: VF to enable/disable VLAN stripping for on initialization 2646 * 2647 * Set the default for VLAN stripping based on whether a port VLAN is configured 2648 * and the current VLAN mode of the device. 2649 */ 2650 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2651 { 2652 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2653 2654 if (!vsi) 2655 return -EINVAL; 2656 2657 /* don't modify stripping if port VLAN is configured in SVM since the 2658 * port VLAN is based on the inner/single VLAN in SVM 2659 */ 2660 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2661 return 0; 2662 2663 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2664 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2665 else 2666 return vsi->inner_vlan_ops.dis_stripping(vsi); 2667 } 2668 2669 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2670 { 2671 if (vf->trusted) 2672 return VLAN_N_VID; 2673 else 2674 return ICE_MAX_VLAN_PER_VF; 2675 } 2676 2677 /** 2678 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2679 * @vf: VF that being checked for 2680 * 2681 * When the device is in double VLAN mode, check whether or not the outer VLAN 2682 * is allowed. 2683 */ 2684 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2685 { 2686 if (ice_vf_is_port_vlan_ena(vf)) 2687 return true; 2688 2689 return false; 2690 } 2691 2692 /** 2693 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2694 * @vf: VF that capabilities are being set for 2695 * @caps: VLAN capabilities to populate 2696 * 2697 * Determine VLAN capabilities support based on whether a port VLAN is 2698 * configured. If a port VLAN is configured then the VF should use the inner 2699 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2700 * capabilies. 2701 */ 2702 static void 2703 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2704 { 2705 struct virtchnl_vlan_supported_caps *supported_caps; 2706 2707 if (ice_vf_outer_vlan_not_allowed(vf)) { 2708 /* until support for inner VLAN filtering is added when a port 2709 * VLAN is configured, only support software offloaded inner 2710 * VLANs when a port VLAN is confgured in DVM 2711 */ 2712 supported_caps = &caps->filtering.filtering_support; 2713 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2714 2715 supported_caps = &caps->offloads.stripping_support; 2716 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2717 VIRTCHNL_VLAN_TOGGLE | 2718 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2719 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2720 2721 supported_caps = &caps->offloads.insertion_support; 2722 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2723 VIRTCHNL_VLAN_TOGGLE | 2724 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2725 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2726 2727 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2728 caps->offloads.ethertype_match = 2729 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2730 } else { 2731 supported_caps = &caps->filtering.filtering_support; 2732 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2733 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2734 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2735 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2736 VIRTCHNL_VLAN_ETHERTYPE_AND; 2737 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2738 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2739 VIRTCHNL_VLAN_ETHERTYPE_9100; 2740 2741 supported_caps = &caps->offloads.stripping_support; 2742 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2743 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2744 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2745 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2746 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2747 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2748 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2749 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2750 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2751 2752 supported_caps = &caps->offloads.insertion_support; 2753 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2754 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2755 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2756 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2757 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2758 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2759 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2760 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2761 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2762 2763 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2764 2765 caps->offloads.ethertype_match = 2766 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2767 } 2768 2769 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2770 } 2771 2772 /** 2773 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2774 * @vf: VF that capabilities are being set for 2775 * @caps: VLAN capabilities to populate 2776 * 2777 * Determine VLAN capabilities support based on whether a port VLAN is 2778 * configured. If a port VLAN is configured then the VF does not have any VLAN 2779 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2780 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2781 * VLAN fitlering and offload capabilities. 2782 */ 2783 static void 2784 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2785 { 2786 struct virtchnl_vlan_supported_caps *supported_caps; 2787 2788 if (ice_vf_is_port_vlan_ena(vf)) { 2789 supported_caps = &caps->filtering.filtering_support; 2790 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2791 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2792 2793 supported_caps = &caps->offloads.stripping_support; 2794 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2795 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2796 2797 supported_caps = &caps->offloads.insertion_support; 2798 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2799 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2800 2801 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2802 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2803 caps->filtering.max_filters = 0; 2804 } else { 2805 supported_caps = &caps->filtering.filtering_support; 2806 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2807 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2808 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2809 2810 supported_caps = &caps->offloads.stripping_support; 2811 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2812 VIRTCHNL_VLAN_TOGGLE | 2813 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2814 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2815 2816 supported_caps = &caps->offloads.insertion_support; 2817 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2818 VIRTCHNL_VLAN_TOGGLE | 2819 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2820 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2821 2822 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2823 caps->offloads.ethertype_match = 2824 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2825 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2826 } 2827 } 2828 2829 /** 2830 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2831 * @vf: VF to determine VLAN capabilities for 2832 * 2833 * This will only be called if the VF and PF successfully negotiated 2834 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2835 * 2836 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2837 * is configured or not. 2838 */ 2839 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2840 { 2841 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2842 struct virtchnl_vlan_caps *caps = NULL; 2843 int err, len = 0; 2844 2845 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2846 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2847 goto out; 2848 } 2849 2850 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2851 if (!caps) { 2852 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2853 goto out; 2854 } 2855 len = sizeof(*caps); 2856 2857 if (ice_is_dvm_ena(&vf->pf->hw)) 2858 ice_vc_set_dvm_caps(vf, caps); 2859 else 2860 ice_vc_set_svm_caps(vf, caps); 2861 2862 /* store negotiated caps to prevent invalid VF messages */ 2863 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2864 2865 out: 2866 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2867 v_ret, (u8 *)caps, len); 2868 kfree(caps); 2869 return err; 2870 } 2871 2872 /** 2873 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2874 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2875 * @tpid: VLAN TPID used for validation 2876 * 2877 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2878 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2879 */ 2880 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2881 { 2882 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2883 2884 switch (tpid) { 2885 case ETH_P_8021Q: 2886 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2887 break; 2888 case ETH_P_8021AD: 2889 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2890 break; 2891 case ETH_P_QINQ1: 2892 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2893 break; 2894 } 2895 2896 if (!(filtering_caps & vlan_ethertype)) 2897 return false; 2898 2899 return true; 2900 } 2901 2902 /** 2903 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2904 * @vc_vlan: virtchnl_vlan to validate 2905 * 2906 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2907 * false. Otherwise return true. 2908 */ 2909 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2910 { 2911 if (!vc_vlan->tci || !vc_vlan->tpid) 2912 return false; 2913 2914 return true; 2915 } 2916 2917 /** 2918 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2919 * @vfc: negotiated/supported VLAN filtering capabilities 2920 * @vfl: VLAN filter list from VF to validate 2921 * 2922 * Validate all of the filters in the VLAN filter list from the VF. If any of 2923 * the checks fail then return false. Otherwise return true. 2924 */ 2925 static bool 2926 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2927 struct virtchnl_vlan_filter_list_v2 *vfl) 2928 { 2929 u16 i; 2930 2931 if (!vfl->num_elements) 2932 return false; 2933 2934 for (i = 0; i < vfl->num_elements; i++) { 2935 struct virtchnl_vlan_supported_caps *filtering_support = 2936 &vfc->filtering_support; 2937 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2938 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2939 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2940 2941 if ((ice_vc_is_valid_vlan(outer) && 2942 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2943 (ice_vc_is_valid_vlan(inner) && 2944 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2945 return false; 2946 2947 if ((outer->tci_mask && 2948 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2949 (inner->tci_mask && 2950 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2951 return false; 2952 2953 if (((outer->tci & VLAN_PRIO_MASK) && 2954 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2955 ((inner->tci & VLAN_PRIO_MASK) && 2956 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2957 return false; 2958 2959 if ((ice_vc_is_valid_vlan(outer) && 2960 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2961 outer->tpid)) || 2962 (ice_vc_is_valid_vlan(inner) && 2963 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2964 inner->tpid))) 2965 return false; 2966 } 2967 2968 return true; 2969 } 2970 2971 /** 2972 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2973 * @vc_vlan: struct virtchnl_vlan to transform 2974 */ 2975 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2976 { 2977 struct ice_vlan vlan = { 0 }; 2978 2979 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2980 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2981 vlan.tpid = vc_vlan->tpid; 2982 2983 return vlan; 2984 } 2985 2986 /** 2987 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2988 * @vsi: VF's VSI used to perform the action 2989 * @vlan_action: function to perform the action with (i.e. add/del) 2990 * @vlan: VLAN filter to perform the action with 2991 */ 2992 static int 2993 ice_vc_vlan_action(struct ice_vsi *vsi, 2994 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2995 struct ice_vlan *vlan) 2996 { 2997 int err; 2998 2999 err = vlan_action(vsi, vlan); 3000 if (err) 3001 return err; 3002 3003 return 0; 3004 } 3005 3006 /** 3007 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3008 * @vf: VF used to delete the VLAN(s) 3009 * @vsi: VF's VSI used to delete the VLAN(s) 3010 * @vfl: virthchnl filter list used to delete the filters 3011 */ 3012 static int 3013 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3014 struct virtchnl_vlan_filter_list_v2 *vfl) 3015 { 3016 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3017 int err; 3018 u16 i; 3019 3020 for (i = 0; i < vfl->num_elements; i++) { 3021 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3022 struct virtchnl_vlan *vc_vlan; 3023 3024 vc_vlan = &vlan_fltr->outer; 3025 if (ice_vc_is_valid_vlan(vc_vlan)) { 3026 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3027 3028 err = ice_vc_vlan_action(vsi, 3029 vsi->outer_vlan_ops.del_vlan, 3030 &vlan); 3031 if (err) 3032 return err; 3033 3034 if (vlan_promisc) 3035 ice_vf_dis_vlan_promisc(vsi, &vlan); 3036 3037 /* Disable VLAN filtering when only VLAN 0 is left */ 3038 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3039 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3040 if (err) 3041 return err; 3042 } 3043 } 3044 3045 vc_vlan = &vlan_fltr->inner; 3046 if (ice_vc_is_valid_vlan(vc_vlan)) { 3047 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3048 3049 err = ice_vc_vlan_action(vsi, 3050 vsi->inner_vlan_ops.del_vlan, 3051 &vlan); 3052 if (err) 3053 return err; 3054 3055 /* no support for VLAN promiscuous on inner VLAN unless 3056 * we are in Single VLAN Mode (SVM) 3057 */ 3058 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3059 if (vlan_promisc) 3060 ice_vf_dis_vlan_promisc(vsi, &vlan); 3061 3062 /* Disable VLAN filtering when only VLAN 0 is left */ 3063 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3064 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3065 if (err) 3066 return err; 3067 } 3068 } 3069 } 3070 } 3071 3072 return 0; 3073 } 3074 3075 /** 3076 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3077 * @vf: VF the message was received from 3078 * @msg: message received from the VF 3079 */ 3080 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3081 { 3082 struct virtchnl_vlan_filter_list_v2 *vfl = 3083 (struct virtchnl_vlan_filter_list_v2 *)msg; 3084 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3085 struct ice_vsi *vsi; 3086 3087 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3088 vfl)) { 3089 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3090 goto out; 3091 } 3092 3093 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3094 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3095 goto out; 3096 } 3097 3098 vsi = ice_get_vf_vsi(vf); 3099 if (!vsi) { 3100 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3101 goto out; 3102 } 3103 3104 if (ice_vc_del_vlans(vf, vsi, vfl)) 3105 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3106 3107 out: 3108 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3109 0); 3110 } 3111 3112 /** 3113 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3114 * @vf: VF used to add the VLAN(s) 3115 * @vsi: VF's VSI used to add the VLAN(s) 3116 * @vfl: virthchnl filter list used to add the filters 3117 */ 3118 static int 3119 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3120 struct virtchnl_vlan_filter_list_v2 *vfl) 3121 { 3122 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3123 int err; 3124 u16 i; 3125 3126 for (i = 0; i < vfl->num_elements; i++) { 3127 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3128 struct virtchnl_vlan *vc_vlan; 3129 3130 vc_vlan = &vlan_fltr->outer; 3131 if (ice_vc_is_valid_vlan(vc_vlan)) { 3132 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3133 3134 err = ice_vc_vlan_action(vsi, 3135 vsi->outer_vlan_ops.add_vlan, 3136 &vlan); 3137 if (err) 3138 return err; 3139 3140 if (vlan_promisc) { 3141 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3142 if (err) 3143 return err; 3144 } 3145 3146 /* Enable VLAN filtering on first non-zero VLAN */ 3147 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3148 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3149 if (err) 3150 return err; 3151 } 3152 } 3153 3154 vc_vlan = &vlan_fltr->inner; 3155 if (ice_vc_is_valid_vlan(vc_vlan)) { 3156 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3157 3158 err = ice_vc_vlan_action(vsi, 3159 vsi->inner_vlan_ops.add_vlan, 3160 &vlan); 3161 if (err) 3162 return err; 3163 3164 /* no support for VLAN promiscuous on inner VLAN unless 3165 * we are in Single VLAN Mode (SVM) 3166 */ 3167 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3168 if (vlan_promisc) { 3169 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3170 if (err) 3171 return err; 3172 } 3173 3174 /* Enable VLAN filtering on first non-zero VLAN */ 3175 if (vf->spoofchk && vlan.vid) { 3176 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3177 if (err) 3178 return err; 3179 } 3180 } 3181 } 3182 } 3183 3184 return 0; 3185 } 3186 3187 /** 3188 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3189 * @vsi: VF VSI used to get number of existing VLAN filters 3190 * @vfc: negotiated/supported VLAN filtering capabilities 3191 * @vfl: VLAN filter list from VF to validate 3192 * 3193 * Validate all of the filters in the VLAN filter list from the VF during the 3194 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3195 * Otherwise return true. 3196 */ 3197 static bool 3198 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3199 struct virtchnl_vlan_filtering_caps *vfc, 3200 struct virtchnl_vlan_filter_list_v2 *vfl) 3201 { 3202 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3203 vfl->num_elements; 3204 3205 if (num_requested_filters > vfc->max_filters) 3206 return false; 3207 3208 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3209 } 3210 3211 /** 3212 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3213 * @vf: VF the message was received from 3214 * @msg: message received from the VF 3215 */ 3216 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3217 { 3218 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3219 struct virtchnl_vlan_filter_list_v2 *vfl = 3220 (struct virtchnl_vlan_filter_list_v2 *)msg; 3221 struct ice_vsi *vsi; 3222 3223 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3224 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3225 goto out; 3226 } 3227 3228 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3229 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3230 goto out; 3231 } 3232 3233 vsi = ice_get_vf_vsi(vf); 3234 if (!vsi) { 3235 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3236 goto out; 3237 } 3238 3239 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3240 &vf->vlan_v2_caps.filtering, 3241 vfl)) { 3242 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3243 goto out; 3244 } 3245 3246 if (ice_vc_add_vlans(vf, vsi, vfl)) 3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3248 3249 out: 3250 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3251 0); 3252 } 3253 3254 /** 3255 * ice_vc_valid_vlan_setting - validate VLAN setting 3256 * @negotiated_settings: negotiated VLAN settings during VF init 3257 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3258 */ 3259 static bool 3260 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3261 { 3262 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3263 return false; 3264 3265 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3266 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3267 */ 3268 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3269 hweight32(ethertype_setting) > 1) 3270 return false; 3271 3272 /* ability to modify the VLAN setting was not negotiated */ 3273 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3274 return false; 3275 3276 return true; 3277 } 3278 3279 /** 3280 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3281 * @caps: negotiated VLAN settings during VF init 3282 * @msg: message to validate 3283 * 3284 * Used to validate any VLAN virtchnl message sent as a 3285 * virtchnl_vlan_setting structure. Validates the message against the 3286 * negotiated/supported caps during VF driver init. 3287 */ 3288 static bool 3289 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3290 struct virtchnl_vlan_setting *msg) 3291 { 3292 if ((!msg->outer_ethertype_setting && 3293 !msg->inner_ethertype_setting) || 3294 (!caps->outer && !caps->inner)) 3295 return false; 3296 3297 if (msg->outer_ethertype_setting && 3298 !ice_vc_valid_vlan_setting(caps->outer, 3299 msg->outer_ethertype_setting)) 3300 return false; 3301 3302 if (msg->inner_ethertype_setting && 3303 !ice_vc_valid_vlan_setting(caps->inner, 3304 msg->inner_ethertype_setting)) 3305 return false; 3306 3307 return true; 3308 } 3309 3310 /** 3311 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3312 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3313 * @tpid: VLAN TPID to populate 3314 */ 3315 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3316 { 3317 switch (ethertype_setting) { 3318 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3319 *tpid = ETH_P_8021Q; 3320 break; 3321 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3322 *tpid = ETH_P_8021AD; 3323 break; 3324 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3325 *tpid = ETH_P_QINQ1; 3326 break; 3327 default: 3328 *tpid = 0; 3329 return -EINVAL; 3330 } 3331 3332 return 0; 3333 } 3334 3335 /** 3336 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3337 * @vsi: VF's VSI used to enable the VLAN offload 3338 * @ena_offload: function used to enable the VLAN offload 3339 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3340 */ 3341 static int 3342 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3343 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3344 u32 ethertype_setting) 3345 { 3346 u16 tpid; 3347 int err; 3348 3349 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3350 if (err) 3351 return err; 3352 3353 err = ena_offload(vsi, tpid); 3354 if (err) 3355 return err; 3356 3357 return 0; 3358 } 3359 3360 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3361 #define ICE_L2TSEL_BIT_OFFSET 23 3362 enum ice_l2tsel { 3363 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3364 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3365 }; 3366 3367 /** 3368 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3369 * @vsi: VSI used to update l2tsel on 3370 * @l2tsel: l2tsel setting requested 3371 * 3372 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3373 * This will modify which descriptor field the first offloaded VLAN will be 3374 * stripped into. 3375 */ 3376 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3377 { 3378 struct ice_hw *hw = &vsi->back->hw; 3379 u32 l2tsel_bit; 3380 int i; 3381 3382 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3383 l2tsel_bit = 0; 3384 else 3385 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3386 3387 for (i = 0; i < vsi->alloc_rxq; i++) { 3388 u16 pfq = vsi->rxq_map[i]; 3389 u32 qrx_context_offset; 3390 u32 regval; 3391 3392 qrx_context_offset = 3393 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3394 3395 regval = rd32(hw, qrx_context_offset); 3396 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3397 regval |= l2tsel_bit; 3398 wr32(hw, qrx_context_offset, regval); 3399 } 3400 } 3401 3402 /** 3403 * ice_vc_ena_vlan_stripping_v2_msg 3404 * @vf: VF the message was received from 3405 * @msg: message received from the VF 3406 * 3407 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3408 */ 3409 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3410 { 3411 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3412 struct virtchnl_vlan_supported_caps *stripping_support; 3413 struct virtchnl_vlan_setting *strip_msg = 3414 (struct virtchnl_vlan_setting *)msg; 3415 u32 ethertype_setting; 3416 struct ice_vsi *vsi; 3417 3418 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3419 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3420 goto out; 3421 } 3422 3423 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3424 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3425 goto out; 3426 } 3427 3428 vsi = ice_get_vf_vsi(vf); 3429 if (!vsi) { 3430 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3431 goto out; 3432 } 3433 3434 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3435 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3436 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3437 goto out; 3438 } 3439 3440 ethertype_setting = strip_msg->outer_ethertype_setting; 3441 if (ethertype_setting) { 3442 if (ice_vc_ena_vlan_offload(vsi, 3443 vsi->outer_vlan_ops.ena_stripping, 3444 ethertype_setting)) { 3445 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3446 goto out; 3447 } else { 3448 enum ice_l2tsel l2tsel = 3449 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3450 3451 /* PF tells the VF that the outer VLAN tag is always 3452 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3453 * inner is always extracted to 3454 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3455 * support outer stripping so the first tag always ends 3456 * up in L2TAG2_2ND and the second/inner tag, if 3457 * enabled, is extracted in L2TAG1. 3458 */ 3459 ice_vsi_update_l2tsel(vsi, l2tsel); 3460 } 3461 } 3462 3463 ethertype_setting = strip_msg->inner_ethertype_setting; 3464 if (ethertype_setting && 3465 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3466 ethertype_setting)) { 3467 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3468 goto out; 3469 } 3470 3471 out: 3472 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3473 v_ret, NULL, 0); 3474 } 3475 3476 /** 3477 * ice_vc_dis_vlan_stripping_v2_msg 3478 * @vf: VF the message was received from 3479 * @msg: message received from the VF 3480 * 3481 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3482 */ 3483 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3484 { 3485 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3486 struct virtchnl_vlan_supported_caps *stripping_support; 3487 struct virtchnl_vlan_setting *strip_msg = 3488 (struct virtchnl_vlan_setting *)msg; 3489 u32 ethertype_setting; 3490 struct ice_vsi *vsi; 3491 3492 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3493 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3494 goto out; 3495 } 3496 3497 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3498 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3499 goto out; 3500 } 3501 3502 vsi = ice_get_vf_vsi(vf); 3503 if (!vsi) { 3504 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3505 goto out; 3506 } 3507 3508 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3509 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3510 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3511 goto out; 3512 } 3513 3514 ethertype_setting = strip_msg->outer_ethertype_setting; 3515 if (ethertype_setting) { 3516 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3517 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3518 goto out; 3519 } else { 3520 enum ice_l2tsel l2tsel = 3521 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3522 3523 /* PF tells the VF that the outer VLAN tag is always 3524 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3525 * inner is always extracted to 3526 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3527 * support inner stripping while outer stripping is 3528 * disabled so that the first and only tag is extracted 3529 * in L2TAG1. 3530 */ 3531 ice_vsi_update_l2tsel(vsi, l2tsel); 3532 } 3533 } 3534 3535 ethertype_setting = strip_msg->inner_ethertype_setting; 3536 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3538 goto out; 3539 } 3540 3541 out: 3542 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3543 v_ret, NULL, 0); 3544 } 3545 3546 /** 3547 * ice_vc_ena_vlan_insertion_v2_msg 3548 * @vf: VF the message was received from 3549 * @msg: message received from the VF 3550 * 3551 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3552 */ 3553 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3554 { 3555 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3556 struct virtchnl_vlan_supported_caps *insertion_support; 3557 struct virtchnl_vlan_setting *insertion_msg = 3558 (struct virtchnl_vlan_setting *)msg; 3559 u32 ethertype_setting; 3560 struct ice_vsi *vsi; 3561 3562 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3563 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3564 goto out; 3565 } 3566 3567 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3568 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3569 goto out; 3570 } 3571 3572 vsi = ice_get_vf_vsi(vf); 3573 if (!vsi) { 3574 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3575 goto out; 3576 } 3577 3578 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3579 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3580 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3581 goto out; 3582 } 3583 3584 ethertype_setting = insertion_msg->outer_ethertype_setting; 3585 if (ethertype_setting && 3586 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3587 ethertype_setting)) { 3588 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3589 goto out; 3590 } 3591 3592 ethertype_setting = insertion_msg->inner_ethertype_setting; 3593 if (ethertype_setting && 3594 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3595 ethertype_setting)) { 3596 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3597 goto out; 3598 } 3599 3600 out: 3601 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3602 v_ret, NULL, 0); 3603 } 3604 3605 /** 3606 * ice_vc_dis_vlan_insertion_v2_msg 3607 * @vf: VF the message was received from 3608 * @msg: message received from the VF 3609 * 3610 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3611 */ 3612 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3613 { 3614 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3615 struct virtchnl_vlan_supported_caps *insertion_support; 3616 struct virtchnl_vlan_setting *insertion_msg = 3617 (struct virtchnl_vlan_setting *)msg; 3618 u32 ethertype_setting; 3619 struct ice_vsi *vsi; 3620 3621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3622 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3623 goto out; 3624 } 3625 3626 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3627 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3628 goto out; 3629 } 3630 3631 vsi = ice_get_vf_vsi(vf); 3632 if (!vsi) { 3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3634 goto out; 3635 } 3636 3637 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3638 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3640 goto out; 3641 } 3642 3643 ethertype_setting = insertion_msg->outer_ethertype_setting; 3644 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3645 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3646 goto out; 3647 } 3648 3649 ethertype_setting = insertion_msg->inner_ethertype_setting; 3650 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3651 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3652 goto out; 3653 } 3654 3655 out: 3656 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3657 v_ret, NULL, 0); 3658 } 3659 3660 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3661 .get_ver_msg = ice_vc_get_ver_msg, 3662 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3663 .reset_vf = ice_vc_reset_vf_msg, 3664 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3665 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3666 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3667 .ena_qs_msg = ice_vc_ena_qs_msg, 3668 .dis_qs_msg = ice_vc_dis_qs_msg, 3669 .request_qs_msg = ice_vc_request_qs_msg, 3670 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3671 .config_rss_key = ice_vc_config_rss_key, 3672 .config_rss_lut = ice_vc_config_rss_lut, 3673 .get_stats_msg = ice_vc_get_stats_msg, 3674 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3675 .add_vlan_msg = ice_vc_add_vlan_msg, 3676 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3677 .query_rxdid = ice_vc_query_rxdid, 3678 .get_rss_hena = ice_vc_get_rss_hena, 3679 .set_rss_hena_msg = ice_vc_set_rss_hena, 3680 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3681 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3682 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3683 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3684 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3685 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3686 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3687 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3688 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3689 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3690 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3691 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3692 }; 3693 3694 /** 3695 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3696 * @vf: the VF to switch ops 3697 */ 3698 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3699 { 3700 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3701 } 3702 3703 /** 3704 * ice_vc_repr_add_mac 3705 * @vf: pointer to VF 3706 * @msg: virtchannel message 3707 * 3708 * When port representors are created, we do not add MAC rule 3709 * to firmware, we store it so that PF could report same 3710 * MAC as VF. 3711 */ 3712 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3713 { 3714 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3715 struct virtchnl_ether_addr_list *al = 3716 (struct virtchnl_ether_addr_list *)msg; 3717 struct ice_vsi *vsi; 3718 struct ice_pf *pf; 3719 int i; 3720 3721 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3722 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3723 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3724 goto handle_mac_exit; 3725 } 3726 3727 pf = vf->pf; 3728 3729 vsi = ice_get_vf_vsi(vf); 3730 if (!vsi) { 3731 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3732 goto handle_mac_exit; 3733 } 3734 3735 for (i = 0; i < al->num_elements; i++) { 3736 u8 *mac_addr = al->list[i].addr; 3737 3738 if (!is_unicast_ether_addr(mac_addr) || 3739 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3740 continue; 3741 3742 if (vf->pf_set_mac) { 3743 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3744 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3745 goto handle_mac_exit; 3746 } 3747 3748 ice_vfhw_mac_add(vf, &al->list[i]); 3749 vf->num_mac++; 3750 break; 3751 } 3752 3753 handle_mac_exit: 3754 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3755 v_ret, NULL, 0); 3756 } 3757 3758 /** 3759 * ice_vc_repr_del_mac - response with success for deleting MAC 3760 * @vf: pointer to VF 3761 * @msg: virtchannel message 3762 * 3763 * Respond with success to not break normal VF flow. 3764 * For legacy VF driver try to update cached MAC address. 3765 */ 3766 static int 3767 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3768 { 3769 struct virtchnl_ether_addr_list *al = 3770 (struct virtchnl_ether_addr_list *)msg; 3771 3772 ice_update_legacy_cached_mac(vf, &al->list[0]); 3773 3774 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3775 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3776 } 3777 3778 static int 3779 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3780 { 3781 dev_dbg(ice_pf_to_dev(vf->pf), 3782 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3783 vf->vf_id); 3784 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3785 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3786 NULL, 0); 3787 } 3788 3789 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3790 .get_ver_msg = ice_vc_get_ver_msg, 3791 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3792 .reset_vf = ice_vc_reset_vf_msg, 3793 .add_mac_addr_msg = ice_vc_repr_add_mac, 3794 .del_mac_addr_msg = ice_vc_repr_del_mac, 3795 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3796 .ena_qs_msg = ice_vc_ena_qs_msg, 3797 .dis_qs_msg = ice_vc_dis_qs_msg, 3798 .request_qs_msg = ice_vc_request_qs_msg, 3799 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3800 .config_rss_key = ice_vc_config_rss_key, 3801 .config_rss_lut = ice_vc_config_rss_lut, 3802 .get_stats_msg = ice_vc_get_stats_msg, 3803 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3804 .add_vlan_msg = ice_vc_add_vlan_msg, 3805 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3806 .query_rxdid = ice_vc_query_rxdid, 3807 .get_rss_hena = ice_vc_get_rss_hena, 3808 .set_rss_hena_msg = ice_vc_set_rss_hena, 3809 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3810 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3811 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3812 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3813 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3814 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3815 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3816 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3817 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3818 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3819 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3820 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3821 }; 3822 3823 /** 3824 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3825 * @vf: the VF to switch ops 3826 */ 3827 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3828 { 3829 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3830 } 3831 3832 /** 3833 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3834 * @vf: the VF to check 3835 * @mbxdata: data about the state of the mailbox 3836 * 3837 * Detect if a given VF might be malicious and attempting to overflow the PF 3838 * mailbox. If so, log a warning message and ignore this event. 3839 */ 3840 static bool 3841 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3842 { 3843 bool report_malvf = false; 3844 struct device *dev; 3845 struct ice_pf *pf; 3846 int status; 3847 3848 pf = vf->pf; 3849 dev = ice_pf_to_dev(pf); 3850 3851 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3852 return vf->mbx_info.malicious; 3853 3854 /* check to see if we have a newly malicious VF */ 3855 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3856 &report_malvf); 3857 if (status) 3858 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3859 vf->vf_id, vf->dev_lan_addr, status); 3860 3861 if (report_malvf) { 3862 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3863 u8 zero_addr[ETH_ALEN] = {}; 3864 3865 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3866 vf->dev_lan_addr, 3867 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3868 } 3869 3870 return vf->mbx_info.malicious; 3871 } 3872 3873 /** 3874 * ice_vc_process_vf_msg - Process request from VF 3875 * @pf: pointer to the PF structure 3876 * @event: pointer to the AQ event 3877 * @mbxdata: information used to detect VF attempting mailbox overflow 3878 * 3879 * called from the common asq/arq handler to 3880 * process request from VF 3881 */ 3882 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3883 struct ice_mbx_data *mbxdata) 3884 { 3885 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3886 s16 vf_id = le16_to_cpu(event->desc.retval); 3887 const struct ice_virtchnl_ops *ops; 3888 u16 msglen = event->msg_len; 3889 u8 *msg = event->msg_buf; 3890 struct ice_vf *vf = NULL; 3891 struct device *dev; 3892 int err = 0; 3893 3894 dev = ice_pf_to_dev(pf); 3895 3896 vf = ice_get_vf_by_id(pf, vf_id); 3897 if (!vf) { 3898 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3899 vf_id, v_opcode, msglen); 3900 return; 3901 } 3902 3903 mutex_lock(&vf->cfg_lock); 3904 3905 /* Check if the VF is trying to overflow the mailbox */ 3906 if (ice_is_malicious_vf(vf, mbxdata)) 3907 goto finish; 3908 3909 /* Check if VF is disabled. */ 3910 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3911 err = -EPERM; 3912 goto error_handler; 3913 } 3914 3915 ops = vf->virtchnl_ops; 3916 3917 /* Perform basic checks on the msg */ 3918 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3919 if (err) { 3920 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3921 err = -EPERM; 3922 else 3923 err = -EINVAL; 3924 } 3925 3926 error_handler: 3927 if (err) { 3928 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3929 NULL, 0); 3930 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3931 vf_id, v_opcode, msglen, err); 3932 goto finish; 3933 } 3934 3935 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3936 ice_vc_send_msg_to_vf(vf, v_opcode, 3937 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3938 0); 3939 goto finish; 3940 } 3941 3942 switch (v_opcode) { 3943 case VIRTCHNL_OP_VERSION: 3944 err = ops->get_ver_msg(vf, msg); 3945 break; 3946 case VIRTCHNL_OP_GET_VF_RESOURCES: 3947 err = ops->get_vf_res_msg(vf, msg); 3948 if (ice_vf_init_vlan_stripping(vf)) 3949 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3950 vf->vf_id); 3951 ice_vc_notify_vf_link_state(vf); 3952 break; 3953 case VIRTCHNL_OP_RESET_VF: 3954 ops->reset_vf(vf); 3955 break; 3956 case VIRTCHNL_OP_ADD_ETH_ADDR: 3957 err = ops->add_mac_addr_msg(vf, msg); 3958 break; 3959 case VIRTCHNL_OP_DEL_ETH_ADDR: 3960 err = ops->del_mac_addr_msg(vf, msg); 3961 break; 3962 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3963 err = ops->cfg_qs_msg(vf, msg); 3964 break; 3965 case VIRTCHNL_OP_ENABLE_QUEUES: 3966 err = ops->ena_qs_msg(vf, msg); 3967 ice_vc_notify_vf_link_state(vf); 3968 break; 3969 case VIRTCHNL_OP_DISABLE_QUEUES: 3970 err = ops->dis_qs_msg(vf, msg); 3971 break; 3972 case VIRTCHNL_OP_REQUEST_QUEUES: 3973 err = ops->request_qs_msg(vf, msg); 3974 break; 3975 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3976 err = ops->cfg_irq_map_msg(vf, msg); 3977 break; 3978 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3979 err = ops->config_rss_key(vf, msg); 3980 break; 3981 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3982 err = ops->config_rss_lut(vf, msg); 3983 break; 3984 case VIRTCHNL_OP_GET_STATS: 3985 err = ops->get_stats_msg(vf, msg); 3986 break; 3987 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3988 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3989 break; 3990 case VIRTCHNL_OP_ADD_VLAN: 3991 err = ops->add_vlan_msg(vf, msg); 3992 break; 3993 case VIRTCHNL_OP_DEL_VLAN: 3994 err = ops->remove_vlan_msg(vf, msg); 3995 break; 3996 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 3997 err = ops->query_rxdid(vf); 3998 break; 3999 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4000 err = ops->get_rss_hena(vf); 4001 break; 4002 case VIRTCHNL_OP_SET_RSS_HENA: 4003 err = ops->set_rss_hena_msg(vf, msg); 4004 break; 4005 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4006 err = ops->ena_vlan_stripping(vf); 4007 break; 4008 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4009 err = ops->dis_vlan_stripping(vf); 4010 break; 4011 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4012 err = ops->add_fdir_fltr_msg(vf, msg); 4013 break; 4014 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4015 err = ops->del_fdir_fltr_msg(vf, msg); 4016 break; 4017 case VIRTCHNL_OP_ADD_RSS_CFG: 4018 err = ops->handle_rss_cfg_msg(vf, msg, true); 4019 break; 4020 case VIRTCHNL_OP_DEL_RSS_CFG: 4021 err = ops->handle_rss_cfg_msg(vf, msg, false); 4022 break; 4023 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4024 err = ops->get_offload_vlan_v2_caps(vf); 4025 break; 4026 case VIRTCHNL_OP_ADD_VLAN_V2: 4027 err = ops->add_vlan_v2_msg(vf, msg); 4028 break; 4029 case VIRTCHNL_OP_DEL_VLAN_V2: 4030 err = ops->remove_vlan_v2_msg(vf, msg); 4031 break; 4032 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4033 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4034 break; 4035 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4036 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4037 break; 4038 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4039 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4040 break; 4041 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4042 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4043 break; 4044 case VIRTCHNL_OP_UNKNOWN: 4045 default: 4046 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4047 vf_id); 4048 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4049 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4050 NULL, 0); 4051 break; 4052 } 4053 if (err) { 4054 /* Helper function cares less about error return values here 4055 * as it is busy with pending work. 4056 */ 4057 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4058 vf_id, v_opcode, err); 4059 } 4060 4061 finish: 4062 mutex_unlock(&vf->cfg_lock); 4063 ice_put_vf(vf); 4064 } 4065