1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vf_res_msg
364  * @vf: pointer to the VF info
365  * @msg: pointer to the msg buffer
366  *
367  * called from the VF to request its resources
368  */
369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
370 {
371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
372 	struct virtchnl_vf_resource *vfres = NULL;
373 	struct ice_hw *hw = &vf->pf->hw;
374 	struct ice_vsi *vsi;
375 	int len = 0;
376 	int ret;
377 
378 	if (ice_check_vf_init(vf)) {
379 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
380 		goto err;
381 	}
382 
383 	len = sizeof(struct virtchnl_vf_resource);
384 
385 	vfres = kzalloc(len, GFP_KERNEL);
386 	if (!vfres) {
387 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
388 		len = 0;
389 		goto err;
390 	}
391 	if (VF_IS_V11(&vf->vf_ver))
392 		vf->driver_caps = *(u32 *)msg;
393 	else
394 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
395 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
396 				  VIRTCHNL_VF_OFFLOAD_VLAN;
397 
398 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
399 	vsi = ice_get_vf_vsi(vf);
400 	if (!vsi) {
401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
402 		goto err;
403 	}
404 
405 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
406 		/* VLAN offloads based on current device configuration */
407 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
408 	} else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
409 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
410 		 * these two conditions, which amounts to guest VLAN filtering
411 		 * and offloads being based on the inner VLAN or the
412 		 * inner/single VLAN respectively and don't allow VF to
413 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
414 		 */
415 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
416 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
417 		} else if (!ice_is_dvm_ena(hw) &&
418 			   !ice_vf_is_port_vlan_ena(vf)) {
419 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
420 			/* configure backward compatible support for VFs that
421 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
422 			 * configured in SVM, and no port VLAN is configured
423 			 */
424 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
425 		} else if (ice_is_dvm_ena(hw)) {
426 			/* configure software offloaded VLAN support when DVM
427 			 * is enabled, but no port VLAN is enabled
428 			 */
429 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
430 		}
431 	}
432 
433 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
435 	} else {
436 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
437 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
438 		else
439 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
440 	}
441 
442 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
443 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
444 
445 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
446 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
447 
448 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
449 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
450 
451 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
452 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
453 
454 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
455 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
456 
457 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
458 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
459 
460 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
461 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
462 
463 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
464 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
465 
466 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
467 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
468 
469 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
470 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
471 
472 	vfres->num_vsis = 1;
473 	/* Tx and Rx queue are equal for VF */
474 	vfres->num_queue_pairs = vsi->num_txq;
475 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
476 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
477 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
478 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
479 
480 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
481 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
482 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
483 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
484 			vf->hw_lan_addr.addr);
485 
486 	/* match guest capabilities */
487 	vf->driver_caps = vfres->vf_cap_flags;
488 
489 	ice_vc_set_caps_allowlist(vf);
490 	ice_vc_set_working_allowlist(vf);
491 
492 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
493 
494 err:
495 	/* send the response back to the VF */
496 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
497 				    (u8 *)vfres, len);
498 
499 	kfree(vfres);
500 	return ret;
501 }
502 
503 /**
504  * ice_vc_reset_vf_msg
505  * @vf: pointer to the VF info
506  *
507  * called from the VF to reset itself,
508  * unlike other virtchnl messages, PF driver
509  * doesn't send the response back to the VF
510  */
511 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
512 {
513 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
514 		ice_reset_vf(vf, 0);
515 }
516 
517 /**
518  * ice_vc_isvalid_vsi_id
519  * @vf: pointer to the VF info
520  * @vsi_id: VF relative VSI ID
521  *
522  * check for the valid VSI ID
523  */
524 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
525 {
526 	struct ice_pf *pf = vf->pf;
527 	struct ice_vsi *vsi;
528 
529 	vsi = ice_find_vsi(pf, vsi_id);
530 
531 	return (vsi && (vsi->vf == vf));
532 }
533 
534 /**
535  * ice_vc_isvalid_q_id
536  * @vf: pointer to the VF info
537  * @vsi_id: VSI ID
538  * @qid: VSI relative queue ID
539  *
540  * check for the valid queue ID
541  */
542 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
543 {
544 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
545 	/* allocated Tx and Rx queues should be always equal for VF VSI */
546 	return (vsi && (qid < vsi->alloc_txq));
547 }
548 
549 /**
550  * ice_vc_isvalid_ring_len
551  * @ring_len: length of ring
552  *
553  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
554  * or zero
555  */
556 static bool ice_vc_isvalid_ring_len(u16 ring_len)
557 {
558 	return ring_len == 0 ||
559 	       (ring_len >= ICE_MIN_NUM_DESC &&
560 		ring_len <= ICE_MAX_NUM_DESC &&
561 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
562 }
563 
564 /**
565  * ice_vc_validate_pattern
566  * @vf: pointer to the VF info
567  * @proto: virtchnl protocol headers
568  *
569  * validate the pattern is supported or not.
570  *
571  * Return: true on success, false on error.
572  */
573 bool
574 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
575 {
576 	bool is_ipv4 = false;
577 	bool is_ipv6 = false;
578 	bool is_udp = false;
579 	u16 ptype = -1;
580 	int i = 0;
581 
582 	while (i < proto->count &&
583 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
584 		switch (proto->proto_hdr[i].type) {
585 		case VIRTCHNL_PROTO_HDR_ETH:
586 			ptype = ICE_PTYPE_MAC_PAY;
587 			break;
588 		case VIRTCHNL_PROTO_HDR_IPV4:
589 			ptype = ICE_PTYPE_IPV4_PAY;
590 			is_ipv4 = true;
591 			break;
592 		case VIRTCHNL_PROTO_HDR_IPV6:
593 			ptype = ICE_PTYPE_IPV6_PAY;
594 			is_ipv6 = true;
595 			break;
596 		case VIRTCHNL_PROTO_HDR_UDP:
597 			if (is_ipv4)
598 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
599 			else if (is_ipv6)
600 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
601 			is_udp = true;
602 			break;
603 		case VIRTCHNL_PROTO_HDR_TCP:
604 			if (is_ipv4)
605 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
606 			else if (is_ipv6)
607 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
608 			break;
609 		case VIRTCHNL_PROTO_HDR_SCTP:
610 			if (is_ipv4)
611 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
612 			else if (is_ipv6)
613 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
614 			break;
615 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
616 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
617 			if (is_ipv4)
618 				ptype = ICE_MAC_IPV4_GTPU;
619 			else if (is_ipv6)
620 				ptype = ICE_MAC_IPV6_GTPU;
621 			goto out;
622 		case VIRTCHNL_PROTO_HDR_L2TPV3:
623 			if (is_ipv4)
624 				ptype = ICE_MAC_IPV4_L2TPV3;
625 			else if (is_ipv6)
626 				ptype = ICE_MAC_IPV6_L2TPV3;
627 			goto out;
628 		case VIRTCHNL_PROTO_HDR_ESP:
629 			if (is_ipv4)
630 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
631 						ICE_MAC_IPV4_ESP;
632 			else if (is_ipv6)
633 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
634 						ICE_MAC_IPV6_ESP;
635 			goto out;
636 		case VIRTCHNL_PROTO_HDR_AH:
637 			if (is_ipv4)
638 				ptype = ICE_MAC_IPV4_AH;
639 			else if (is_ipv6)
640 				ptype = ICE_MAC_IPV6_AH;
641 			goto out;
642 		case VIRTCHNL_PROTO_HDR_PFCP:
643 			if (is_ipv4)
644 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
645 			else if (is_ipv6)
646 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
647 			goto out;
648 		default:
649 			break;
650 		}
651 		i++;
652 	}
653 
654 out:
655 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
656 }
657 
658 /**
659  * ice_vc_parse_rss_cfg - parses hash fields and headers from
660  * a specific virtchnl RSS cfg
661  * @hw: pointer to the hardware
662  * @rss_cfg: pointer to the virtchnl RSS cfg
663  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
664  * to configure
665  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
666  *
667  * Return true if all the protocol header and hash fields in the RSS cfg could
668  * be parsed, else return false
669  *
670  * This function parses the virtchnl RSS cfg to be the intended
671  * hash fields and the intended header for RSS configuration
672  */
673 static bool
674 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
675 		     u32 *addl_hdrs, u64 *hash_flds)
676 {
677 	const struct ice_vc_hash_field_match_type *hf_list;
678 	const struct ice_vc_hdr_match_type *hdr_list;
679 	int i, hf_list_len, hdr_list_len;
680 
681 	hf_list = ice_vc_hash_field_list;
682 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
683 	hdr_list = ice_vc_hdr_list;
684 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
685 
686 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
687 		struct virtchnl_proto_hdr *proto_hdr =
688 					&rss_cfg->proto_hdrs.proto_hdr[i];
689 		bool hdr_found = false;
690 		int j;
691 
692 		/* Find matched ice headers according to virtchnl headers. */
693 		for (j = 0; j < hdr_list_len; j++) {
694 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
695 
696 			if (proto_hdr->type == hdr_map.vc_hdr) {
697 				*addl_hdrs |= hdr_map.ice_hdr;
698 				hdr_found = true;
699 			}
700 		}
701 
702 		if (!hdr_found)
703 			return false;
704 
705 		/* Find matched ice hash fields according to
706 		 * virtchnl hash fields.
707 		 */
708 		for (j = 0; j < hf_list_len; j++) {
709 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
710 
711 			if (proto_hdr->type == hf_map.vc_hdr &&
712 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
713 				*hash_flds |= hf_map.ice_hash_field;
714 				break;
715 			}
716 		}
717 	}
718 
719 	return true;
720 }
721 
722 /**
723  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
724  * RSS offloads
725  * @caps: VF driver negotiated capabilities
726  *
727  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
728  * else return false
729  */
730 static bool ice_vf_adv_rss_offload_ena(u32 caps)
731 {
732 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
733 }
734 
735 /**
736  * ice_vc_handle_rss_cfg
737  * @vf: pointer to the VF info
738  * @msg: pointer to the message buffer
739  * @add: add a RSS config if true, otherwise delete a RSS config
740  *
741  * This function adds/deletes a RSS config
742  */
743 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
744 {
745 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
746 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
747 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
748 	struct device *dev = ice_pf_to_dev(vf->pf);
749 	struct ice_hw *hw = &vf->pf->hw;
750 	struct ice_vsi *vsi;
751 
752 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
753 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
754 			vf->vf_id);
755 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
756 		goto error_param;
757 	}
758 
759 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
760 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
761 			vf->vf_id);
762 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
763 		goto error_param;
764 	}
765 
766 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
767 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
768 		goto error_param;
769 	}
770 
771 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
772 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
773 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
774 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
775 			vf->vf_id);
776 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
777 		goto error_param;
778 	}
779 
780 	vsi = ice_get_vf_vsi(vf);
781 	if (!vsi) {
782 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
783 		goto error_param;
784 	}
785 
786 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
787 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
788 		goto error_param;
789 	}
790 
791 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
792 		struct ice_vsi_ctx *ctx;
793 		u8 lut_type, hash_type;
794 		int status;
795 
796 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
797 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
798 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
799 
800 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
801 		if (!ctx) {
802 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
803 			goto error_param;
804 		}
805 
806 		ctx->info.q_opt_rss = ((lut_type <<
807 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
808 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
809 				       (hash_type &
810 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
811 
812 		/* Preserve existing queueing option setting */
813 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
814 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
815 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
816 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
817 
818 		ctx->info.valid_sections =
819 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
820 
821 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
822 		if (status) {
823 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
824 				status, ice_aq_str(hw->adminq.sq_last_status));
825 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
826 		} else {
827 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
828 		}
829 
830 		kfree(ctx);
831 	} else {
832 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
833 		u64 hash_flds = ICE_HASH_INVALID;
834 
835 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
836 					  &hash_flds)) {
837 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
838 			goto error_param;
839 		}
840 
841 		if (add) {
842 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
843 					    addl_hdrs)) {
844 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
845 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
846 					vsi->vsi_num, v_ret);
847 			}
848 		} else {
849 			int status;
850 
851 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
852 						 addl_hdrs);
853 			/* We just ignore -ENOENT, because if two configurations
854 			 * share the same profile remove one of them actually
855 			 * removes both, since the profile is deleted.
856 			 */
857 			if (status && status != -ENOENT) {
858 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
859 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
860 					vf->vf_id, status);
861 			}
862 		}
863 	}
864 
865 error_param:
866 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
867 }
868 
869 /**
870  * ice_vc_config_rss_key
871  * @vf: pointer to the VF info
872  * @msg: pointer to the msg buffer
873  *
874  * Configure the VF's RSS key
875  */
876 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
877 {
878 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
879 	struct virtchnl_rss_key *vrk =
880 		(struct virtchnl_rss_key *)msg;
881 	struct ice_vsi *vsi;
882 
883 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
884 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 		goto error_param;
886 	}
887 
888 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
889 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
890 		goto error_param;
891 	}
892 
893 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
894 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
895 		goto error_param;
896 	}
897 
898 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
899 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
900 		goto error_param;
901 	}
902 
903 	vsi = ice_get_vf_vsi(vf);
904 	if (!vsi) {
905 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
906 		goto error_param;
907 	}
908 
909 	if (ice_set_rss_key(vsi, vrk->key))
910 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
911 error_param:
912 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
913 				     NULL, 0);
914 }
915 
916 /**
917  * ice_vc_config_rss_lut
918  * @vf: pointer to the VF info
919  * @msg: pointer to the msg buffer
920  *
921  * Configure the VF's RSS LUT
922  */
923 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
924 {
925 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
926 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
927 	struct ice_vsi *vsi;
928 
929 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
930 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
931 		goto error_param;
932 	}
933 
934 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
935 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 		goto error_param;
937 	}
938 
939 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
940 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
941 		goto error_param;
942 	}
943 
944 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
946 		goto error_param;
947 	}
948 
949 	vsi = ice_get_vf_vsi(vf);
950 	if (!vsi) {
951 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
952 		goto error_param;
953 	}
954 
955 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
956 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
957 error_param:
958 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
959 				     NULL, 0);
960 }
961 
962 /**
963  * ice_vc_cfg_promiscuous_mode_msg
964  * @vf: pointer to the VF info
965  * @msg: pointer to the msg buffer
966  *
967  * called from the VF to configure VF VSIs promiscuous mode
968  */
969 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
970 {
971 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
972 	bool rm_promisc, alluni = false, allmulti = false;
973 	struct virtchnl_promisc_info *info =
974 	    (struct virtchnl_promisc_info *)msg;
975 	struct ice_vsi_vlan_ops *vlan_ops;
976 	int mcast_err = 0, ucast_err = 0;
977 	struct ice_pf *pf = vf->pf;
978 	struct ice_vsi *vsi;
979 	struct device *dev;
980 	int ret = 0;
981 
982 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
983 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
984 		goto error_param;
985 	}
986 
987 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
988 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
989 		goto error_param;
990 	}
991 
992 	vsi = ice_get_vf_vsi(vf);
993 	if (!vsi) {
994 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
995 		goto error_param;
996 	}
997 
998 	dev = ice_pf_to_dev(pf);
999 	if (!ice_is_vf_trusted(vf)) {
1000 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1001 			vf->vf_id);
1002 		/* Leave v_ret alone, lie to the VF on purpose. */
1003 		goto error_param;
1004 	}
1005 
1006 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1007 		alluni = true;
1008 
1009 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1010 		allmulti = true;
1011 
1012 	rm_promisc = !allmulti && !alluni;
1013 
1014 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1015 	if (rm_promisc)
1016 		ret = vlan_ops->ena_rx_filtering(vsi);
1017 	else
1018 		ret = vlan_ops->dis_rx_filtering(vsi);
1019 	if (ret) {
1020 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1021 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022 		goto error_param;
1023 	}
1024 
1025 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1026 		bool set_dflt_vsi = alluni || allmulti;
1027 
1028 		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
1029 			/* only attempt to set the default forwarding VSI if
1030 			 * it's not currently set
1031 			 */
1032 			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
1033 		else if (!set_dflt_vsi &&
1034 			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
1035 			/* only attempt to free the default forwarding VSI if we
1036 			 * are the owner
1037 			 */
1038 			ret = ice_clear_dflt_vsi(pf->first_sw);
1039 
1040 		if (ret) {
1041 			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
1042 				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
1043 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1044 			goto error_param;
1045 		}
1046 	} else {
1047 		u8 mcast_m, ucast_m;
1048 
1049 		if (ice_vf_is_port_vlan_ena(vf) ||
1050 		    ice_vsi_has_non_zero_vlans(vsi)) {
1051 			mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
1052 			ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
1053 		} else {
1054 			mcast_m = ICE_MCAST_PROMISC_BITS;
1055 			ucast_m = ICE_UCAST_PROMISC_BITS;
1056 		}
1057 
1058 		if (alluni)
1059 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1060 		else
1061 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1062 
1063 		if (allmulti)
1064 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1065 		else
1066 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1067 
1068 		if (ucast_err || mcast_err)
1069 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1070 	}
1071 
1072 	if (!mcast_err) {
1073 		if (allmulti &&
1074 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1075 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1076 				 vf->vf_id);
1077 		else if (!allmulti &&
1078 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1079 					    vf->vf_states))
1080 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1081 				 vf->vf_id);
1082 	}
1083 
1084 	if (!ucast_err) {
1085 		if (alluni &&
1086 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1087 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1088 				 vf->vf_id);
1089 		else if (!alluni &&
1090 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1091 					    vf->vf_states))
1092 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1093 				 vf->vf_id);
1094 	}
1095 
1096 error_param:
1097 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1098 				     v_ret, NULL, 0);
1099 }
1100 
1101 /**
1102  * ice_vc_get_stats_msg
1103  * @vf: pointer to the VF info
1104  * @msg: pointer to the msg buffer
1105  *
1106  * called from the VF to get VSI stats
1107  */
1108 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1109 {
1110 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1111 	struct virtchnl_queue_select *vqs =
1112 		(struct virtchnl_queue_select *)msg;
1113 	struct ice_eth_stats stats = { 0 };
1114 	struct ice_vsi *vsi;
1115 
1116 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1117 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1118 		goto error_param;
1119 	}
1120 
1121 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1122 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1123 		goto error_param;
1124 	}
1125 
1126 	vsi = ice_get_vf_vsi(vf);
1127 	if (!vsi) {
1128 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1129 		goto error_param;
1130 	}
1131 
1132 	ice_update_eth_stats(vsi);
1133 
1134 	stats = vsi->eth_stats;
1135 
1136 error_param:
1137 	/* send the response to the VF */
1138 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1139 				     (u8 *)&stats, sizeof(stats));
1140 }
1141 
1142 /**
1143  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1144  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1145  *
1146  * Return true on successful validation, else false
1147  */
1148 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1149 {
1150 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1151 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1152 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1153 		return false;
1154 
1155 	return true;
1156 }
1157 
1158 /**
1159  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1160  * @vsi: VSI of the VF to configure
1161  * @q_idx: VF queue index used to determine the queue in the PF's space
1162  */
1163 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1164 {
1165 	struct ice_hw *hw = &vsi->back->hw;
1166 	u32 pfq = vsi->txq_map[q_idx];
1167 	u32 reg;
1168 
1169 	reg = rd32(hw, QINT_TQCTL(pfq));
1170 
1171 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1172 	 * this is most likely a poll mode VF driver, so don't enable an
1173 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1174 	 */
1175 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1176 		return;
1177 
1178 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1179 }
1180 
1181 /**
1182  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1183  * @vsi: VSI of the VF to configure
1184  * @q_idx: VF queue index used to determine the queue in the PF's space
1185  */
1186 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1187 {
1188 	struct ice_hw *hw = &vsi->back->hw;
1189 	u32 pfq = vsi->rxq_map[q_idx];
1190 	u32 reg;
1191 
1192 	reg = rd32(hw, QINT_RQCTL(pfq));
1193 
1194 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1195 	 * this is most likely a poll mode VF driver, so don't enable an
1196 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1197 	 */
1198 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1199 		return;
1200 
1201 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1202 }
1203 
1204 /**
1205  * ice_vc_ena_qs_msg
1206  * @vf: pointer to the VF info
1207  * @msg: pointer to the msg buffer
1208  *
1209  * called from the VF to enable all or specific queue(s)
1210  */
1211 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1212 {
1213 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1214 	struct virtchnl_queue_select *vqs =
1215 	    (struct virtchnl_queue_select *)msg;
1216 	struct ice_vsi *vsi;
1217 	unsigned long q_map;
1218 	u16 vf_q_id;
1219 
1220 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1221 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1222 		goto error_param;
1223 	}
1224 
1225 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1226 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1227 		goto error_param;
1228 	}
1229 
1230 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1231 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1232 		goto error_param;
1233 	}
1234 
1235 	vsi = ice_get_vf_vsi(vf);
1236 	if (!vsi) {
1237 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1238 		goto error_param;
1239 	}
1240 
1241 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1242 	 * Tx queue group list was configured and the context bits were
1243 	 * programmed using ice_vsi_cfg_txqs
1244 	 */
1245 	q_map = vqs->rx_queues;
1246 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1247 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1248 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249 			goto error_param;
1250 		}
1251 
1252 		/* Skip queue if enabled */
1253 		if (test_bit(vf_q_id, vf->rxq_ena))
1254 			continue;
1255 
1256 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1257 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1258 				vf_q_id, vsi->vsi_num);
1259 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1260 			goto error_param;
1261 		}
1262 
1263 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1264 		set_bit(vf_q_id, vf->rxq_ena);
1265 	}
1266 
1267 	q_map = vqs->tx_queues;
1268 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1269 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1270 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1271 			goto error_param;
1272 		}
1273 
1274 		/* Skip queue if enabled */
1275 		if (test_bit(vf_q_id, vf->txq_ena))
1276 			continue;
1277 
1278 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1279 		set_bit(vf_q_id, vf->txq_ena);
1280 	}
1281 
1282 	/* Set flag to indicate that queues are enabled */
1283 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1284 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1285 
1286 error_param:
1287 	/* send the response to the VF */
1288 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1289 				     NULL, 0);
1290 }
1291 
1292 /**
1293  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1294  * @vf: VF to disable queue for
1295  * @vsi: VSI for the VF
1296  * @q_id: VF relative (0-based) queue ID
1297  *
1298  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1299  * disabled then clear q_id bit in the enabled queues bitmap and return
1300  * success. Otherwise return error.
1301  */
1302 static int
1303 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1304 {
1305 	struct ice_txq_meta txq_meta = { 0 };
1306 	struct ice_tx_ring *ring;
1307 	int err;
1308 
1309 	if (!test_bit(q_id, vf->txq_ena))
1310 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1311 			q_id, vsi->vsi_num);
1312 
1313 	ring = vsi->tx_rings[q_id];
1314 	if (!ring)
1315 		return -EINVAL;
1316 
1317 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1318 
1319 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1320 	if (err) {
1321 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1322 			q_id, vsi->vsi_num);
1323 		return err;
1324 	}
1325 
1326 	/* Clear enabled queues flag */
1327 	clear_bit(q_id, vf->txq_ena);
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * ice_vc_dis_qs_msg
1334  * @vf: pointer to the VF info
1335  * @msg: pointer to the msg buffer
1336  *
1337  * called from the VF to disable all or specific queue(s)
1338  */
1339 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1340 {
1341 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1342 	struct virtchnl_queue_select *vqs =
1343 	    (struct virtchnl_queue_select *)msg;
1344 	struct ice_vsi *vsi;
1345 	unsigned long q_map;
1346 	u16 vf_q_id;
1347 
1348 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1349 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1350 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1351 		goto error_param;
1352 	}
1353 
1354 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1355 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1356 		goto error_param;
1357 	}
1358 
1359 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1360 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1361 		goto error_param;
1362 	}
1363 
1364 	vsi = ice_get_vf_vsi(vf);
1365 	if (!vsi) {
1366 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1367 		goto error_param;
1368 	}
1369 
1370 	if (vqs->tx_queues) {
1371 		q_map = vqs->tx_queues;
1372 
1373 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1374 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1375 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1376 				goto error_param;
1377 			}
1378 
1379 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1380 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 				goto error_param;
1382 			}
1383 		}
1384 	}
1385 
1386 	q_map = vqs->rx_queues;
1387 	/* speed up Rx queue disable by batching them if possible */
1388 	if (q_map &&
1389 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1390 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1391 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1392 				vsi->vsi_num);
1393 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 			goto error_param;
1395 		}
1396 
1397 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1398 	} else if (q_map) {
1399 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1400 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1401 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1402 				goto error_param;
1403 			}
1404 
1405 			/* Skip queue if not enabled */
1406 			if (!test_bit(vf_q_id, vf->rxq_ena))
1407 				continue;
1408 
1409 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1410 						     true)) {
1411 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1412 					vf_q_id, vsi->vsi_num);
1413 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1414 				goto error_param;
1415 			}
1416 
1417 			/* Clear enabled queues flag */
1418 			clear_bit(vf_q_id, vf->rxq_ena);
1419 		}
1420 	}
1421 
1422 	/* Clear enabled queues flag */
1423 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1424 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1425 
1426 error_param:
1427 	/* send the response to the VF */
1428 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1429 				     NULL, 0);
1430 }
1431 
1432 /**
1433  * ice_cfg_interrupt
1434  * @vf: pointer to the VF info
1435  * @vsi: the VSI being configured
1436  * @vector_id: vector ID
1437  * @map: vector map for mapping vectors to queues
1438  * @q_vector: structure for interrupt vector
1439  * configure the IRQ to queue map
1440  */
1441 static int
1442 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1443 		  struct virtchnl_vector_map *map,
1444 		  struct ice_q_vector *q_vector)
1445 {
1446 	u16 vsi_q_id, vsi_q_id_idx;
1447 	unsigned long qmap;
1448 
1449 	q_vector->num_ring_rx = 0;
1450 	q_vector->num_ring_tx = 0;
1451 
1452 	qmap = map->rxq_map;
1453 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1454 		vsi_q_id = vsi_q_id_idx;
1455 
1456 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1457 			return VIRTCHNL_STATUS_ERR_PARAM;
1458 
1459 		q_vector->num_ring_rx++;
1460 		q_vector->rx.itr_idx = map->rxitr_idx;
1461 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1462 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1463 				      q_vector->rx.itr_idx);
1464 	}
1465 
1466 	qmap = map->txq_map;
1467 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1468 		vsi_q_id = vsi_q_id_idx;
1469 
1470 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1471 			return VIRTCHNL_STATUS_ERR_PARAM;
1472 
1473 		q_vector->num_ring_tx++;
1474 		q_vector->tx.itr_idx = map->txitr_idx;
1475 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1476 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1477 				      q_vector->tx.itr_idx);
1478 	}
1479 
1480 	return VIRTCHNL_STATUS_SUCCESS;
1481 }
1482 
1483 /**
1484  * ice_vc_cfg_irq_map_msg
1485  * @vf: pointer to the VF info
1486  * @msg: pointer to the msg buffer
1487  *
1488  * called from the VF to configure the IRQ to queue map
1489  */
1490 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1491 {
1492 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1493 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1494 	struct virtchnl_irq_map_info *irqmap_info;
1495 	struct virtchnl_vector_map *map;
1496 	struct ice_pf *pf = vf->pf;
1497 	struct ice_vsi *vsi;
1498 	int i;
1499 
1500 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1501 	num_q_vectors_mapped = irqmap_info->num_vectors;
1502 
1503 	/* Check to make sure number of VF vectors mapped is not greater than
1504 	 * number of VF vectors originally allocated, and check that
1505 	 * there is actually at least a single VF queue vector mapped
1506 	 */
1507 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1508 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1509 	    !num_q_vectors_mapped) {
1510 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1511 		goto error_param;
1512 	}
1513 
1514 	vsi = ice_get_vf_vsi(vf);
1515 	if (!vsi) {
1516 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1517 		goto error_param;
1518 	}
1519 
1520 	for (i = 0; i < num_q_vectors_mapped; i++) {
1521 		struct ice_q_vector *q_vector;
1522 
1523 		map = &irqmap_info->vecmap[i];
1524 
1525 		vector_id = map->vector_id;
1526 		vsi_id = map->vsi_id;
1527 		/* vector_id is always 0-based for each VF, and can never be
1528 		 * larger than or equal to the max allowed interrupts per VF
1529 		 */
1530 		if (!(vector_id < pf->vfs.num_msix_per) ||
1531 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1532 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1533 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1534 			goto error_param;
1535 		}
1536 
1537 		/* No need to map VF miscellaneous or rogue vector */
1538 		if (!vector_id)
1539 			continue;
1540 
1541 		/* Subtract non queue vector from vector_id passed by VF
1542 		 * to get actual number of VSI queue vector array index
1543 		 */
1544 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1545 		if (!q_vector) {
1546 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1547 			goto error_param;
1548 		}
1549 
1550 		/* lookout for the invalid queue index */
1551 		v_ret = (enum virtchnl_status_code)
1552 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1553 		if (v_ret)
1554 			goto error_param;
1555 	}
1556 
1557 error_param:
1558 	/* send the response to the VF */
1559 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1560 				     NULL, 0);
1561 }
1562 
1563 /**
1564  * ice_vc_cfg_qs_msg
1565  * @vf: pointer to the VF info
1566  * @msg: pointer to the msg buffer
1567  *
1568  * called from the VF to configure the Rx/Tx queues
1569  */
1570 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1571 {
1572 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1573 	struct virtchnl_vsi_queue_config_info *qci =
1574 	    (struct virtchnl_vsi_queue_config_info *)msg;
1575 	struct virtchnl_queue_pair_info *qpi;
1576 	struct ice_pf *pf = vf->pf;
1577 	struct ice_vsi *vsi;
1578 	int i, q_idx;
1579 
1580 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1581 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1582 		goto error_param;
1583 	}
1584 
1585 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
1586 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1587 		goto error_param;
1588 	}
1589 
1590 	vsi = ice_get_vf_vsi(vf);
1591 	if (!vsi) {
1592 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1593 		goto error_param;
1594 	}
1595 
1596 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1597 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1598 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1599 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1600 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1601 		goto error_param;
1602 	}
1603 
1604 	for (i = 0; i < qci->num_queue_pairs; i++) {
1605 		qpi = &qci->qpair[i];
1606 		if (qpi->txq.vsi_id != qci->vsi_id ||
1607 		    qpi->rxq.vsi_id != qci->vsi_id ||
1608 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1609 		    qpi->txq.headwb_enabled ||
1610 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1611 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1612 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1613 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1614 			goto error_param;
1615 		}
1616 
1617 		q_idx = qpi->rxq.queue_id;
1618 
1619 		/* make sure selected "q_idx" is in valid range of queues
1620 		 * for selected "vsi"
1621 		 */
1622 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1623 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1624 			goto error_param;
1625 		}
1626 
1627 		/* copy Tx queue info from VF into VSI */
1628 		if (qpi->txq.ring_len > 0) {
1629 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1630 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1631 
1632 			/* Disable any existing queue first */
1633 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) {
1634 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1635 				goto error_param;
1636 			}
1637 
1638 			/* Configure a queue with the requested settings */
1639 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1640 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1641 				goto error_param;
1642 			}
1643 		}
1644 
1645 		/* copy Rx queue info from VF into VSI */
1646 		if (qpi->rxq.ring_len > 0) {
1647 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1648 
1649 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1650 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1651 
1652 			if (qpi->rxq.databuffer_size != 0 &&
1653 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1654 			     qpi->rxq.databuffer_size < 1024)) {
1655 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1656 				goto error_param;
1657 			}
1658 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1659 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1660 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1661 			    qpi->rxq.max_pkt_size < 64) {
1662 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1663 				goto error_param;
1664 			}
1665 
1666 			vsi->max_frame = qpi->rxq.max_pkt_size;
1667 			/* add space for the port VLAN since the VF driver is
1668 			 * not expected to account for it in the MTU
1669 			 * calculation
1670 			 */
1671 			if (ice_vf_is_port_vlan_ena(vf))
1672 				vsi->max_frame += VLAN_HLEN;
1673 
1674 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1675 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1676 				goto error_param;
1677 			}
1678 		}
1679 	}
1680 
1681 error_param:
1682 	/* send the response to the VF */
1683 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
1684 				     NULL, 0);
1685 }
1686 
1687 /**
1688  * ice_can_vf_change_mac
1689  * @vf: pointer to the VF info
1690  *
1691  * Return true if the VF is allowed to change its MAC filters, false otherwise
1692  */
1693 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1694 {
1695 	/* If the VF MAC address has been set administratively (via the
1696 	 * ndo_set_vf_mac command), then deny permission to the VF to
1697 	 * add/delete unicast MAC addresses, unless the VF is trusted
1698 	 */
1699 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1700 		return false;
1701 
1702 	return true;
1703 }
1704 
1705 /**
1706  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1707  * @vc_ether_addr: used to extract the type
1708  */
1709 static u8
1710 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1711 {
1712 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1713 }
1714 
1715 /**
1716  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1717  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1718  */
1719 static bool
1720 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1721 {
1722 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1723 
1724 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1725 }
1726 
1727 /**
1728  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1729  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1730  *
1731  * This function should only be called when the MAC address in
1732  * virtchnl_ether_addr is a valid unicast MAC
1733  */
1734 static bool
1735 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1736 {
1737 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1738 
1739 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1740 }
1741 
1742 /**
1743  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1744  * @vf: VF to update
1745  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1746  */
1747 static void
1748 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1749 {
1750 	u8 *mac_addr = vc_ether_addr->addr;
1751 
1752 	if (!is_valid_ether_addr(mac_addr))
1753 		return;
1754 
1755 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1756 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1757 	 * was correctly specified over VIRTCHNL
1758 	 */
1759 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1760 	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1761 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1762 		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1763 		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1764 	}
1765 
1766 	/* hardware and device MACs are already set, but its possible that the
1767 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1768 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1769 	 * away for the legacy VF driver case as it will be updated in the
1770 	 * delete flow for this case
1771 	 */
1772 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1773 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1774 				mac_addr);
1775 		vf->legacy_last_added_umac.time_modified = jiffies;
1776 	}
1777 }
1778 
1779 /**
1780  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1781  * @vf: pointer to the VF info
1782  * @vsi: pointer to the VF's VSI
1783  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1784  */
1785 static int
1786 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1787 		    struct virtchnl_ether_addr *vc_ether_addr)
1788 {
1789 	struct device *dev = ice_pf_to_dev(vf->pf);
1790 	u8 *mac_addr = vc_ether_addr->addr;
1791 	int ret;
1792 
1793 	/* device MAC already added */
1794 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1795 		return 0;
1796 
1797 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1798 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1799 		return -EPERM;
1800 	}
1801 
1802 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1803 	if (ret == -EEXIST) {
1804 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1805 			vf->vf_id);
1806 		/* don't return since we might need to update
1807 		 * the primary MAC in ice_vfhw_mac_add() below
1808 		 */
1809 	} else if (ret) {
1810 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1811 			mac_addr, vf->vf_id, ret);
1812 		return ret;
1813 	} else {
1814 		vf->num_mac++;
1815 	}
1816 
1817 	ice_vfhw_mac_add(vf, vc_ether_addr);
1818 
1819 	return ret;
1820 }
1821 
1822 /**
1823  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1824  * @last_added_umac: structure used to check expiration
1825  */
1826 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1827 {
1828 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1829 	return time_is_before_jiffies(last_added_umac->time_modified +
1830 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1831 }
1832 
1833 /**
1834  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1835  * @vf: VF to update
1836  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1837  *
1838  * only update cached hardware MAC for legacy VF drivers on delete
1839  * because we cannot guarantee order/type of MAC from the VF driver
1840  */
1841 static void
1842 ice_update_legacy_cached_mac(struct ice_vf *vf,
1843 			     struct virtchnl_ether_addr *vc_ether_addr)
1844 {
1845 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1846 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1847 		return;
1848 
1849 	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1850 	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1851 }
1852 
1853 /**
1854  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1855  * @vf: VF to update
1856  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1857  */
1858 static void
1859 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1860 {
1861 	u8 *mac_addr = vc_ether_addr->addr;
1862 
1863 	if (!is_valid_ether_addr(mac_addr) ||
1864 	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1865 		return;
1866 
1867 	/* allow the device MAC to be repopulated in the add flow and don't
1868 	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1869 	 * to be persistent on VM reboot and across driver unload/load, which
1870 	 * won't work if we clear the hardware MAC here
1871 	 */
1872 	eth_zero_addr(vf->dev_lan_addr.addr);
1873 
1874 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1875 }
1876 
1877 /**
1878  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1879  * @vf: pointer to the VF info
1880  * @vsi: pointer to the VF's VSI
1881  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1882  */
1883 static int
1884 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1885 		    struct virtchnl_ether_addr *vc_ether_addr)
1886 {
1887 	struct device *dev = ice_pf_to_dev(vf->pf);
1888 	u8 *mac_addr = vc_ether_addr->addr;
1889 	int status;
1890 
1891 	if (!ice_can_vf_change_mac(vf) &&
1892 	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1893 		return 0;
1894 
1895 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1896 	if (status == -ENOENT) {
1897 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1898 			vf->vf_id);
1899 		return -ENOENT;
1900 	} else if (status) {
1901 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1902 			mac_addr, vf->vf_id, status);
1903 		return -EIO;
1904 	}
1905 
1906 	ice_vfhw_mac_del(vf, vc_ether_addr);
1907 
1908 	vf->num_mac--;
1909 
1910 	return 0;
1911 }
1912 
1913 /**
1914  * ice_vc_handle_mac_addr_msg
1915  * @vf: pointer to the VF info
1916  * @msg: pointer to the msg buffer
1917  * @set: true if MAC filters are being set, false otherwise
1918  *
1919  * add guest MAC address filter
1920  */
1921 static int
1922 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1923 {
1924 	int (*ice_vc_cfg_mac)
1925 		(struct ice_vf *vf, struct ice_vsi *vsi,
1926 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1927 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1928 	struct virtchnl_ether_addr_list *al =
1929 	    (struct virtchnl_ether_addr_list *)msg;
1930 	struct ice_pf *pf = vf->pf;
1931 	enum virtchnl_ops vc_op;
1932 	struct ice_vsi *vsi;
1933 	int i;
1934 
1935 	if (set) {
1936 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1937 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
1938 	} else {
1939 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1940 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
1941 	}
1942 
1943 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1944 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1946 		goto handle_mac_exit;
1947 	}
1948 
1949 	/* If this VF is not privileged, then we can't add more than a
1950 	 * limited number of addresses. Check to make sure that the
1951 	 * additions do not push us over the limit.
1952 	 */
1953 	if (set && !ice_is_vf_trusted(vf) &&
1954 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
1955 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
1956 			vf->vf_id);
1957 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1958 		goto handle_mac_exit;
1959 	}
1960 
1961 	vsi = ice_get_vf_vsi(vf);
1962 	if (!vsi) {
1963 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1964 		goto handle_mac_exit;
1965 	}
1966 
1967 	for (i = 0; i < al->num_elements; i++) {
1968 		u8 *mac_addr = al->list[i].addr;
1969 		int result;
1970 
1971 		if (is_broadcast_ether_addr(mac_addr) ||
1972 		    is_zero_ether_addr(mac_addr))
1973 			continue;
1974 
1975 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
1976 		if (result == -EEXIST || result == -ENOENT) {
1977 			continue;
1978 		} else if (result) {
1979 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1980 			goto handle_mac_exit;
1981 		}
1982 	}
1983 
1984 handle_mac_exit:
1985 	/* send the response to the VF */
1986 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
1987 }
1988 
1989 /**
1990  * ice_vc_add_mac_addr_msg
1991  * @vf: pointer to the VF info
1992  * @msg: pointer to the msg buffer
1993  *
1994  * add guest MAC address filter
1995  */
1996 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1997 {
1998 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
1999 }
2000 
2001 /**
2002  * ice_vc_del_mac_addr_msg
2003  * @vf: pointer to the VF info
2004  * @msg: pointer to the msg buffer
2005  *
2006  * remove guest MAC address filter
2007  */
2008 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2009 {
2010 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2011 }
2012 
2013 /**
2014  * ice_vc_request_qs_msg
2015  * @vf: pointer to the VF info
2016  * @msg: pointer to the msg buffer
2017  *
2018  * VFs get a default number of queues but can use this message to request a
2019  * different number. If the request is successful, PF will reset the VF and
2020  * return 0. If unsuccessful, PF will send message informing VF of number of
2021  * available queue pairs via virtchnl message response to VF.
2022  */
2023 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2024 {
2025 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2026 	struct virtchnl_vf_res_request *vfres =
2027 		(struct virtchnl_vf_res_request *)msg;
2028 	u16 req_queues = vfres->num_queue_pairs;
2029 	struct ice_pf *pf = vf->pf;
2030 	u16 max_allowed_vf_queues;
2031 	u16 tx_rx_queue_left;
2032 	struct device *dev;
2033 	u16 cur_queues;
2034 
2035 	dev = ice_pf_to_dev(pf);
2036 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2037 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2038 		goto error_param;
2039 	}
2040 
2041 	cur_queues = vf->num_vf_qs;
2042 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2043 				 ice_get_avail_rxq_count(pf));
2044 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2045 	if (!req_queues) {
2046 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2047 			vf->vf_id);
2048 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2049 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2050 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2051 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2052 	} else if (req_queues > cur_queues &&
2053 		   req_queues - cur_queues > tx_rx_queue_left) {
2054 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2055 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2056 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2057 					       ICE_MAX_RSS_QS_PER_VF);
2058 	} else {
2059 		/* request is successful, then reset VF */
2060 		vf->num_req_qs = req_queues;
2061 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2062 		dev_info(dev, "VF %d granted request of %u queues.\n",
2063 			 vf->vf_id, req_queues);
2064 		return 0;
2065 	}
2066 
2067 error_param:
2068 	/* send the response to the VF */
2069 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2070 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2071 }
2072 
2073 /**
2074  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2075  * @caps: VF driver negotiated capabilities
2076  *
2077  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2078  */
2079 static bool ice_vf_vlan_offload_ena(u32 caps)
2080 {
2081 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2082 }
2083 
2084 /**
2085  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2086  * @vf: VF used to determine if VLAN promiscuous config is allowed
2087  */
2088 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2089 {
2090 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2091 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2092 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2093 		return true;
2094 
2095 	return false;
2096 }
2097 
2098 /**
2099  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2100  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2101  * @vlan: VLAN used to enable VLAN promiscuous
2102  *
2103  * This function should only be called if VLAN promiscuous mode is allowed,
2104  * which can be determined via ice_is_vlan_promisc_allowed().
2105  */
2106 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2107 {
2108 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2109 	int status;
2110 
2111 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2112 					  vlan->vid);
2113 	if (status && status != -EEXIST)
2114 		return status;
2115 
2116 	return 0;
2117 }
2118 
2119 /**
2120  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2121  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2122  * @vlan: VLAN used to disable VLAN promiscuous
2123  *
2124  * This function should only be called if VLAN promiscuous mode is allowed,
2125  * which can be determined via ice_is_vlan_promisc_allowed().
2126  */
2127 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2128 {
2129 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2130 	int status;
2131 
2132 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2133 					    vlan->vid);
2134 	if (status && status != -ENOENT)
2135 		return status;
2136 
2137 	return 0;
2138 }
2139 
2140 /**
2141  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2142  * @vf: VF to check against
2143  * @vsi: VF's VSI
2144  *
2145  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2146  * wants to, so return false.
2147  *
2148  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2149  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2150  */
2151 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2152 {
2153 	if (ice_is_vf_trusted(vf))
2154 		return false;
2155 
2156 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2157 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2158 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2159 }
2160 
2161 /**
2162  * ice_vc_process_vlan_msg
2163  * @vf: pointer to the VF info
2164  * @msg: pointer to the msg buffer
2165  * @add_v: Add VLAN if true, otherwise delete VLAN
2166  *
2167  * Process virtchnl op to add or remove programmed guest VLAN ID
2168  */
2169 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2170 {
2171 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2172 	struct virtchnl_vlan_filter_list *vfl =
2173 	    (struct virtchnl_vlan_filter_list *)msg;
2174 	struct ice_pf *pf = vf->pf;
2175 	bool vlan_promisc = false;
2176 	struct ice_vsi *vsi;
2177 	struct device *dev;
2178 	int status = 0;
2179 	int i;
2180 
2181 	dev = ice_pf_to_dev(pf);
2182 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2183 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2184 		goto error_param;
2185 	}
2186 
2187 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2188 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2189 		goto error_param;
2190 	}
2191 
2192 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2193 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2194 		goto error_param;
2195 	}
2196 
2197 	for (i = 0; i < vfl->num_elements; i++) {
2198 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2199 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2200 			dev_err(dev, "invalid VF VLAN id %d\n",
2201 				vfl->vlan_id[i]);
2202 			goto error_param;
2203 		}
2204 	}
2205 
2206 	vsi = ice_get_vf_vsi(vf);
2207 	if (!vsi) {
2208 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2209 		goto error_param;
2210 	}
2211 
2212 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2213 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2214 			 vf->vf_id);
2215 		/* There is no need to let VF know about being not trusted,
2216 		 * so we can just return success message here
2217 		 */
2218 		goto error_param;
2219 	}
2220 
2221 	/* in DVM a VF can add/delete inner VLAN filters when
2222 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2223 	 */
2224 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2225 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2226 		goto error_param;
2227 	}
2228 
2229 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2230 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2231 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2232 	 */
2233 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2234 		!ice_is_dvm_ena(&pf->hw) &&
2235 		!ice_vf_is_port_vlan_ena(vf);
2236 
2237 	if (add_v) {
2238 		for (i = 0; i < vfl->num_elements; i++) {
2239 			u16 vid = vfl->vlan_id[i];
2240 			struct ice_vlan vlan;
2241 
2242 			if (ice_vf_has_max_vlans(vf, vsi)) {
2243 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2244 					 vf->vf_id);
2245 				/* There is no need to let VF know about being
2246 				 * not trusted, so we can just return success
2247 				 * message here as well.
2248 				 */
2249 				goto error_param;
2250 			}
2251 
2252 			/* we add VLAN 0 by default for each VF so we can enable
2253 			 * Tx VLAN anti-spoof without triggering MDD events so
2254 			 * we don't need to add it again here
2255 			 */
2256 			if (!vid)
2257 				continue;
2258 
2259 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2260 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2261 			if (status) {
2262 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2263 				goto error_param;
2264 			}
2265 
2266 			/* Enable VLAN filtering on first non-zero VLAN */
2267 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2268 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2269 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2270 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2271 						vid, status);
2272 					goto error_param;
2273 				}
2274 			} else if (vlan_promisc) {
2275 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2276 				if (status) {
2277 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2278 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2279 						vid, status);
2280 				}
2281 			}
2282 		}
2283 	} else {
2284 		/* In case of non_trusted VF, number of VLAN elements passed
2285 		 * to PF for removal might be greater than number of VLANs
2286 		 * filter programmed for that VF - So, use actual number of
2287 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2288 		 * removing VLAN that doesn't exist, which result to sending
2289 		 * erroneous failed message back to the VF
2290 		 */
2291 		int num_vf_vlan;
2292 
2293 		num_vf_vlan = vsi->num_vlan;
2294 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2295 			u16 vid = vfl->vlan_id[i];
2296 			struct ice_vlan vlan;
2297 
2298 			/* we add VLAN 0 by default for each VF so we can enable
2299 			 * Tx VLAN anti-spoof without triggering MDD events so
2300 			 * we don't want a VIRTCHNL request to remove it
2301 			 */
2302 			if (!vid)
2303 				continue;
2304 
2305 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2306 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2307 			if (status) {
2308 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2309 				goto error_param;
2310 			}
2311 
2312 			/* Disable VLAN filtering when only VLAN 0 is left */
2313 			if (!ice_vsi_has_non_zero_vlans(vsi))
2314 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2315 
2316 			if (vlan_promisc)
2317 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2318 		}
2319 	}
2320 
2321 error_param:
2322 	/* send the response to the VF */
2323 	if (add_v)
2324 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2325 					     NULL, 0);
2326 	else
2327 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2328 					     NULL, 0);
2329 }
2330 
2331 /**
2332  * ice_vc_add_vlan_msg
2333  * @vf: pointer to the VF info
2334  * @msg: pointer to the msg buffer
2335  *
2336  * Add and program guest VLAN ID
2337  */
2338 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2339 {
2340 	return ice_vc_process_vlan_msg(vf, msg, true);
2341 }
2342 
2343 /**
2344  * ice_vc_remove_vlan_msg
2345  * @vf: pointer to the VF info
2346  * @msg: pointer to the msg buffer
2347  *
2348  * remove programmed guest VLAN ID
2349  */
2350 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2351 {
2352 	return ice_vc_process_vlan_msg(vf, msg, false);
2353 }
2354 
2355 /**
2356  * ice_vc_ena_vlan_stripping
2357  * @vf: pointer to the VF info
2358  *
2359  * Enable VLAN header stripping for a given VF
2360  */
2361 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2362 {
2363 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2364 	struct ice_vsi *vsi;
2365 
2366 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2367 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2368 		goto error_param;
2369 	}
2370 
2371 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2372 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2373 		goto error_param;
2374 	}
2375 
2376 	vsi = ice_get_vf_vsi(vf);
2377 	if (!vsi) {
2378 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2379 		goto error_param;
2380 	}
2381 
2382 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2383 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2384 
2385 error_param:
2386 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2387 				     v_ret, NULL, 0);
2388 }
2389 
2390 /**
2391  * ice_vc_dis_vlan_stripping
2392  * @vf: pointer to the VF info
2393  *
2394  * Disable VLAN header stripping for a given VF
2395  */
2396 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2397 {
2398 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2399 	struct ice_vsi *vsi;
2400 
2401 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2402 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2403 		goto error_param;
2404 	}
2405 
2406 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2407 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2408 		goto error_param;
2409 	}
2410 
2411 	vsi = ice_get_vf_vsi(vf);
2412 	if (!vsi) {
2413 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2414 		goto error_param;
2415 	}
2416 
2417 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2418 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2419 
2420 error_param:
2421 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2422 				     v_ret, NULL, 0);
2423 }
2424 
2425 /**
2426  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2427  * @vf: VF to enable/disable VLAN stripping for on initialization
2428  *
2429  * Set the default for VLAN stripping based on whether a port VLAN is configured
2430  * and the current VLAN mode of the device.
2431  */
2432 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2433 {
2434 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2435 
2436 	if (!vsi)
2437 		return -EINVAL;
2438 
2439 	/* don't modify stripping if port VLAN is configured in SVM since the
2440 	 * port VLAN is based on the inner/single VLAN in SVM
2441 	 */
2442 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2443 		return 0;
2444 
2445 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2446 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2447 	else
2448 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2449 }
2450 
2451 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2452 {
2453 	if (vf->trusted)
2454 		return VLAN_N_VID;
2455 	else
2456 		return ICE_MAX_VLAN_PER_VF;
2457 }
2458 
2459 /**
2460  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2461  * @vf: VF that being checked for
2462  *
2463  * When the device is in double VLAN mode, check whether or not the outer VLAN
2464  * is allowed.
2465  */
2466 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2467 {
2468 	if (ice_vf_is_port_vlan_ena(vf))
2469 		return true;
2470 
2471 	return false;
2472 }
2473 
2474 /**
2475  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2476  * @vf: VF that capabilities are being set for
2477  * @caps: VLAN capabilities to populate
2478  *
2479  * Determine VLAN capabilities support based on whether a port VLAN is
2480  * configured. If a port VLAN is configured then the VF should use the inner
2481  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2482  * capabilies.
2483  */
2484 static void
2485 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2486 {
2487 	struct virtchnl_vlan_supported_caps *supported_caps;
2488 
2489 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2490 		/* until support for inner VLAN filtering is added when a port
2491 		 * VLAN is configured, only support software offloaded inner
2492 		 * VLANs when a port VLAN is confgured in DVM
2493 		 */
2494 		supported_caps = &caps->filtering.filtering_support;
2495 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2496 
2497 		supported_caps = &caps->offloads.stripping_support;
2498 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2499 					VIRTCHNL_VLAN_TOGGLE |
2500 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2501 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2502 
2503 		supported_caps = &caps->offloads.insertion_support;
2504 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2505 					VIRTCHNL_VLAN_TOGGLE |
2506 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2507 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2508 
2509 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2510 		caps->offloads.ethertype_match =
2511 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2512 	} else {
2513 		supported_caps = &caps->filtering.filtering_support;
2514 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2515 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2516 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2517 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2518 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2519 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2520 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2521 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2522 
2523 		supported_caps = &caps->offloads.stripping_support;
2524 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2525 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2526 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2527 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2528 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2529 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2530 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2531 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2532 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2533 
2534 		supported_caps = &caps->offloads.insertion_support;
2535 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2536 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2537 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2538 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2539 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2540 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2541 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2542 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2543 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2544 
2545 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2546 
2547 		caps->offloads.ethertype_match =
2548 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2549 	}
2550 
2551 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2552 }
2553 
2554 /**
2555  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2556  * @vf: VF that capabilities are being set for
2557  * @caps: VLAN capabilities to populate
2558  *
2559  * Determine VLAN capabilities support based on whether a port VLAN is
2560  * configured. If a port VLAN is configured then the VF does not have any VLAN
2561  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2562  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2563  * VLAN fitlering and offload capabilities.
2564  */
2565 static void
2566 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2567 {
2568 	struct virtchnl_vlan_supported_caps *supported_caps;
2569 
2570 	if (ice_vf_is_port_vlan_ena(vf)) {
2571 		supported_caps = &caps->filtering.filtering_support;
2572 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2573 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2574 
2575 		supported_caps = &caps->offloads.stripping_support;
2576 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2577 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2578 
2579 		supported_caps = &caps->offloads.insertion_support;
2580 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2581 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2582 
2583 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2584 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2585 		caps->filtering.max_filters = 0;
2586 	} else {
2587 		supported_caps = &caps->filtering.filtering_support;
2588 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2589 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2590 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2591 
2592 		supported_caps = &caps->offloads.stripping_support;
2593 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2594 					VIRTCHNL_VLAN_TOGGLE |
2595 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2596 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2597 
2598 		supported_caps = &caps->offloads.insertion_support;
2599 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2600 					VIRTCHNL_VLAN_TOGGLE |
2601 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2602 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2603 
2604 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2605 		caps->offloads.ethertype_match =
2606 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2607 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2608 	}
2609 }
2610 
2611 /**
2612  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2613  * @vf: VF to determine VLAN capabilities for
2614  *
2615  * This will only be called if the VF and PF successfully negotiated
2616  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2617  *
2618  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2619  * is configured or not.
2620  */
2621 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2622 {
2623 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2624 	struct virtchnl_vlan_caps *caps = NULL;
2625 	int err, len = 0;
2626 
2627 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2628 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2629 		goto out;
2630 	}
2631 
2632 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2633 	if (!caps) {
2634 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2635 		goto out;
2636 	}
2637 	len = sizeof(*caps);
2638 
2639 	if (ice_is_dvm_ena(&vf->pf->hw))
2640 		ice_vc_set_dvm_caps(vf, caps);
2641 	else
2642 		ice_vc_set_svm_caps(vf, caps);
2643 
2644 	/* store negotiated caps to prevent invalid VF messages */
2645 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2646 
2647 out:
2648 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2649 				    v_ret, (u8 *)caps, len);
2650 	kfree(caps);
2651 	return err;
2652 }
2653 
2654 /**
2655  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2656  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2657  * @tpid: VLAN TPID used for validation
2658  *
2659  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2660  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2661  */
2662 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2663 {
2664 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2665 
2666 	switch (tpid) {
2667 	case ETH_P_8021Q:
2668 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2669 		break;
2670 	case ETH_P_8021AD:
2671 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2672 		break;
2673 	case ETH_P_QINQ1:
2674 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2675 		break;
2676 	}
2677 
2678 	if (!(filtering_caps & vlan_ethertype))
2679 		return false;
2680 
2681 	return true;
2682 }
2683 
2684 /**
2685  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2686  * @vc_vlan: virtchnl_vlan to validate
2687  *
2688  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2689  * false. Otherwise return true.
2690  */
2691 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2692 {
2693 	if (!vc_vlan->tci || !vc_vlan->tpid)
2694 		return false;
2695 
2696 	return true;
2697 }
2698 
2699 /**
2700  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2701  * @vfc: negotiated/supported VLAN filtering capabilities
2702  * @vfl: VLAN filter list from VF to validate
2703  *
2704  * Validate all of the filters in the VLAN filter list from the VF. If any of
2705  * the checks fail then return false. Otherwise return true.
2706  */
2707 static bool
2708 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2709 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2710 {
2711 	u16 i;
2712 
2713 	if (!vfl->num_elements)
2714 		return false;
2715 
2716 	for (i = 0; i < vfl->num_elements; i++) {
2717 		struct virtchnl_vlan_supported_caps *filtering_support =
2718 			&vfc->filtering_support;
2719 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2720 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2721 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2722 
2723 		if ((ice_vc_is_valid_vlan(outer) &&
2724 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2725 		    (ice_vc_is_valid_vlan(inner) &&
2726 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2727 			return false;
2728 
2729 		if ((outer->tci_mask &&
2730 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2731 		    (inner->tci_mask &&
2732 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2733 			return false;
2734 
2735 		if (((outer->tci & VLAN_PRIO_MASK) &&
2736 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2737 		    ((inner->tci & VLAN_PRIO_MASK) &&
2738 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2739 			return false;
2740 
2741 		if ((ice_vc_is_valid_vlan(outer) &&
2742 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2743 						outer->tpid)) ||
2744 		    (ice_vc_is_valid_vlan(inner) &&
2745 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2746 						inner->tpid)))
2747 			return false;
2748 	}
2749 
2750 	return true;
2751 }
2752 
2753 /**
2754  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2755  * @vc_vlan: struct virtchnl_vlan to transform
2756  */
2757 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2758 {
2759 	struct ice_vlan vlan = { 0 };
2760 
2761 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2762 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2763 	vlan.tpid = vc_vlan->tpid;
2764 
2765 	return vlan;
2766 }
2767 
2768 /**
2769  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2770  * @vsi: VF's VSI used to perform the action
2771  * @vlan_action: function to perform the action with (i.e. add/del)
2772  * @vlan: VLAN filter to perform the action with
2773  */
2774 static int
2775 ice_vc_vlan_action(struct ice_vsi *vsi,
2776 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2777 		   struct ice_vlan *vlan)
2778 {
2779 	int err;
2780 
2781 	err = vlan_action(vsi, vlan);
2782 	if (err)
2783 		return err;
2784 
2785 	return 0;
2786 }
2787 
2788 /**
2789  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
2790  * @vf: VF used to delete the VLAN(s)
2791  * @vsi: VF's VSI used to delete the VLAN(s)
2792  * @vfl: virthchnl filter list used to delete the filters
2793  */
2794 static int
2795 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2796 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2797 {
2798 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2799 	int err;
2800 	u16 i;
2801 
2802 	for (i = 0; i < vfl->num_elements; i++) {
2803 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2804 		struct virtchnl_vlan *vc_vlan;
2805 
2806 		vc_vlan = &vlan_fltr->outer;
2807 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2808 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2809 
2810 			err = ice_vc_vlan_action(vsi,
2811 						 vsi->outer_vlan_ops.del_vlan,
2812 						 &vlan);
2813 			if (err)
2814 				return err;
2815 
2816 			if (vlan_promisc)
2817 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2818 		}
2819 
2820 		vc_vlan = &vlan_fltr->inner;
2821 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2822 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2823 
2824 			err = ice_vc_vlan_action(vsi,
2825 						 vsi->inner_vlan_ops.del_vlan,
2826 						 &vlan);
2827 			if (err)
2828 				return err;
2829 
2830 			/* no support for VLAN promiscuous on inner VLAN unless
2831 			 * we are in Single VLAN Mode (SVM)
2832 			 */
2833 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
2834 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2835 		}
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 /**
2842  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
2843  * @vf: VF the message was received from
2844  * @msg: message received from the VF
2845  */
2846 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2847 {
2848 	struct virtchnl_vlan_filter_list_v2 *vfl =
2849 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2850 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2851 	struct ice_vsi *vsi;
2852 
2853 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
2854 					      vfl)) {
2855 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2856 		goto out;
2857 	}
2858 
2859 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2860 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2861 		goto out;
2862 	}
2863 
2864 	vsi = ice_get_vf_vsi(vf);
2865 	if (!vsi) {
2866 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2867 		goto out;
2868 	}
2869 
2870 	if (ice_vc_del_vlans(vf, vsi, vfl))
2871 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2872 
2873 out:
2874 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
2875 				     0);
2876 }
2877 
2878 /**
2879  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
2880  * @vf: VF used to add the VLAN(s)
2881  * @vsi: VF's VSI used to add the VLAN(s)
2882  * @vfl: virthchnl filter list used to add the filters
2883  */
2884 static int
2885 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2886 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2887 {
2888 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2889 	int err;
2890 	u16 i;
2891 
2892 	for (i = 0; i < vfl->num_elements; i++) {
2893 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2894 		struct virtchnl_vlan *vc_vlan;
2895 
2896 		vc_vlan = &vlan_fltr->outer;
2897 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2898 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2899 
2900 			err = ice_vc_vlan_action(vsi,
2901 						 vsi->outer_vlan_ops.add_vlan,
2902 						 &vlan);
2903 			if (err)
2904 				return err;
2905 
2906 			if (vlan_promisc) {
2907 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2908 				if (err)
2909 					return err;
2910 			}
2911 		}
2912 
2913 		vc_vlan = &vlan_fltr->inner;
2914 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2915 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2916 
2917 			err = ice_vc_vlan_action(vsi,
2918 						 vsi->inner_vlan_ops.add_vlan,
2919 						 &vlan);
2920 			if (err)
2921 				return err;
2922 
2923 			/* no support for VLAN promiscuous on inner VLAN unless
2924 			 * we are in Single VLAN Mode (SVM)
2925 			 */
2926 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
2927 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2928 				if (err)
2929 					return err;
2930 			}
2931 		}
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 /**
2938  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
2939  * @vsi: VF VSI used to get number of existing VLAN filters
2940  * @vfc: negotiated/supported VLAN filtering capabilities
2941  * @vfl: VLAN filter list from VF to validate
2942  *
2943  * Validate all of the filters in the VLAN filter list from the VF during the
2944  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
2945  * Otherwise return true.
2946  */
2947 static bool
2948 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
2949 				     struct virtchnl_vlan_filtering_caps *vfc,
2950 				     struct virtchnl_vlan_filter_list_v2 *vfl)
2951 {
2952 	u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
2953 
2954 	if (num_requested_filters > vfc->max_filters)
2955 		return false;
2956 
2957 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
2958 }
2959 
2960 /**
2961  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
2962  * @vf: VF the message was received from
2963  * @msg: message received from the VF
2964  */
2965 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2966 {
2967 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2968 	struct virtchnl_vlan_filter_list_v2 *vfl =
2969 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2970 	struct ice_vsi *vsi;
2971 
2972 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2973 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2974 		goto out;
2975 	}
2976 
2977 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2978 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2979 		goto out;
2980 	}
2981 
2982 	vsi = ice_get_vf_vsi(vf);
2983 	if (!vsi) {
2984 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2985 		goto out;
2986 	}
2987 
2988 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
2989 						  &vf->vlan_v2_caps.filtering,
2990 						  vfl)) {
2991 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2992 		goto out;
2993 	}
2994 
2995 	if (ice_vc_add_vlans(vf, vsi, vfl))
2996 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2997 
2998 out:
2999 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3000 				     0);
3001 }
3002 
3003 /**
3004  * ice_vc_valid_vlan_setting - validate VLAN setting
3005  * @negotiated_settings: negotiated VLAN settings during VF init
3006  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3007  */
3008 static bool
3009 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3010 {
3011 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3012 		return false;
3013 
3014 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3015 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3016 	 */
3017 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3018 	    hweight32(ethertype_setting) > 1)
3019 		return false;
3020 
3021 	/* ability to modify the VLAN setting was not negotiated */
3022 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3023 		return false;
3024 
3025 	return true;
3026 }
3027 
3028 /**
3029  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3030  * @caps: negotiated VLAN settings during VF init
3031  * @msg: message to validate
3032  *
3033  * Used to validate any VLAN virtchnl message sent as a
3034  * virtchnl_vlan_setting structure. Validates the message against the
3035  * negotiated/supported caps during VF driver init.
3036  */
3037 static bool
3038 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3039 			      struct virtchnl_vlan_setting *msg)
3040 {
3041 	if ((!msg->outer_ethertype_setting &&
3042 	     !msg->inner_ethertype_setting) ||
3043 	    (!caps->outer && !caps->inner))
3044 		return false;
3045 
3046 	if (msg->outer_ethertype_setting &&
3047 	    !ice_vc_valid_vlan_setting(caps->outer,
3048 				       msg->outer_ethertype_setting))
3049 		return false;
3050 
3051 	if (msg->inner_ethertype_setting &&
3052 	    !ice_vc_valid_vlan_setting(caps->inner,
3053 				       msg->inner_ethertype_setting))
3054 		return false;
3055 
3056 	return true;
3057 }
3058 
3059 /**
3060  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3061  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3062  * @tpid: VLAN TPID to populate
3063  */
3064 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3065 {
3066 	switch (ethertype_setting) {
3067 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3068 		*tpid = ETH_P_8021Q;
3069 		break;
3070 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3071 		*tpid = ETH_P_8021AD;
3072 		break;
3073 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3074 		*tpid = ETH_P_QINQ1;
3075 		break;
3076 	default:
3077 		*tpid = 0;
3078 		return -EINVAL;
3079 	}
3080 
3081 	return 0;
3082 }
3083 
3084 /**
3085  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3086  * @vsi: VF's VSI used to enable the VLAN offload
3087  * @ena_offload: function used to enable the VLAN offload
3088  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3089  */
3090 static int
3091 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3092 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3093 			u32 ethertype_setting)
3094 {
3095 	u16 tpid;
3096 	int err;
3097 
3098 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3099 	if (err)
3100 		return err;
3101 
3102 	err = ena_offload(vsi, tpid);
3103 	if (err)
3104 		return err;
3105 
3106 	return 0;
3107 }
3108 
3109 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3110 #define ICE_L2TSEL_BIT_OFFSET		23
3111 enum ice_l2tsel {
3112 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3113 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3114 };
3115 
3116 /**
3117  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3118  * @vsi: VSI used to update l2tsel on
3119  * @l2tsel: l2tsel setting requested
3120  *
3121  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3122  * This will modify which descriptor field the first offloaded VLAN will be
3123  * stripped into.
3124  */
3125 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3126 {
3127 	struct ice_hw *hw = &vsi->back->hw;
3128 	u32 l2tsel_bit;
3129 	int i;
3130 
3131 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3132 		l2tsel_bit = 0;
3133 	else
3134 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3135 
3136 	for (i = 0; i < vsi->alloc_rxq; i++) {
3137 		u16 pfq = vsi->rxq_map[i];
3138 		u32 qrx_context_offset;
3139 		u32 regval;
3140 
3141 		qrx_context_offset =
3142 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3143 
3144 		regval = rd32(hw, qrx_context_offset);
3145 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3146 		regval |= l2tsel_bit;
3147 		wr32(hw, qrx_context_offset, regval);
3148 	}
3149 }
3150 
3151 /**
3152  * ice_vc_ena_vlan_stripping_v2_msg
3153  * @vf: VF the message was received from
3154  * @msg: message received from the VF
3155  *
3156  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3157  */
3158 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3159 {
3160 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3161 	struct virtchnl_vlan_supported_caps *stripping_support;
3162 	struct virtchnl_vlan_setting *strip_msg =
3163 		(struct virtchnl_vlan_setting *)msg;
3164 	u32 ethertype_setting;
3165 	struct ice_vsi *vsi;
3166 
3167 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3168 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3169 		goto out;
3170 	}
3171 
3172 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3173 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3174 		goto out;
3175 	}
3176 
3177 	vsi = ice_get_vf_vsi(vf);
3178 	if (!vsi) {
3179 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3180 		goto out;
3181 	}
3182 
3183 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3184 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3185 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3186 		goto out;
3187 	}
3188 
3189 	ethertype_setting = strip_msg->outer_ethertype_setting;
3190 	if (ethertype_setting) {
3191 		if (ice_vc_ena_vlan_offload(vsi,
3192 					    vsi->outer_vlan_ops.ena_stripping,
3193 					    ethertype_setting)) {
3194 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3195 			goto out;
3196 		} else {
3197 			enum ice_l2tsel l2tsel =
3198 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3199 
3200 			/* PF tells the VF that the outer VLAN tag is always
3201 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3202 			 * inner is always extracted to
3203 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3204 			 * support outer stripping so the first tag always ends
3205 			 * up in L2TAG2_2ND and the second/inner tag, if
3206 			 * enabled, is extracted in L2TAG1.
3207 			 */
3208 			ice_vsi_update_l2tsel(vsi, l2tsel);
3209 		}
3210 	}
3211 
3212 	ethertype_setting = strip_msg->inner_ethertype_setting;
3213 	if (ethertype_setting &&
3214 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3215 				    ethertype_setting)) {
3216 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3217 		goto out;
3218 	}
3219 
3220 out:
3221 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3222 				     v_ret, NULL, 0);
3223 }
3224 
3225 /**
3226  * ice_vc_dis_vlan_stripping_v2_msg
3227  * @vf: VF the message was received from
3228  * @msg: message received from the VF
3229  *
3230  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3231  */
3232 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3233 {
3234 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3235 	struct virtchnl_vlan_supported_caps *stripping_support;
3236 	struct virtchnl_vlan_setting *strip_msg =
3237 		(struct virtchnl_vlan_setting *)msg;
3238 	u32 ethertype_setting;
3239 	struct ice_vsi *vsi;
3240 
3241 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3242 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3243 		goto out;
3244 	}
3245 
3246 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3247 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3248 		goto out;
3249 	}
3250 
3251 	vsi = ice_get_vf_vsi(vf);
3252 	if (!vsi) {
3253 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3254 		goto out;
3255 	}
3256 
3257 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3258 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3259 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3260 		goto out;
3261 	}
3262 
3263 	ethertype_setting = strip_msg->outer_ethertype_setting;
3264 	if (ethertype_setting) {
3265 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3266 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3267 			goto out;
3268 		} else {
3269 			enum ice_l2tsel l2tsel =
3270 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3271 
3272 			/* PF tells the VF that the outer VLAN tag is always
3273 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3274 			 * inner is always extracted to
3275 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3276 			 * support inner stripping while outer stripping is
3277 			 * disabled so that the first and only tag is extracted
3278 			 * in L2TAG1.
3279 			 */
3280 			ice_vsi_update_l2tsel(vsi, l2tsel);
3281 		}
3282 	}
3283 
3284 	ethertype_setting = strip_msg->inner_ethertype_setting;
3285 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3286 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3287 		goto out;
3288 	}
3289 
3290 out:
3291 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3292 				     v_ret, NULL, 0);
3293 }
3294 
3295 /**
3296  * ice_vc_ena_vlan_insertion_v2_msg
3297  * @vf: VF the message was received from
3298  * @msg: message received from the VF
3299  *
3300  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3301  */
3302 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3303 {
3304 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3305 	struct virtchnl_vlan_supported_caps *insertion_support;
3306 	struct virtchnl_vlan_setting *insertion_msg =
3307 		(struct virtchnl_vlan_setting *)msg;
3308 	u32 ethertype_setting;
3309 	struct ice_vsi *vsi;
3310 
3311 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3312 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3313 		goto out;
3314 	}
3315 
3316 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3317 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3318 		goto out;
3319 	}
3320 
3321 	vsi = ice_get_vf_vsi(vf);
3322 	if (!vsi) {
3323 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3324 		goto out;
3325 	}
3326 
3327 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3328 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3329 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3330 		goto out;
3331 	}
3332 
3333 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3334 	if (ethertype_setting &&
3335 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3336 				    ethertype_setting)) {
3337 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3338 		goto out;
3339 	}
3340 
3341 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3342 	if (ethertype_setting &&
3343 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3344 				    ethertype_setting)) {
3345 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3346 		goto out;
3347 	}
3348 
3349 out:
3350 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3351 				     v_ret, NULL, 0);
3352 }
3353 
3354 /**
3355  * ice_vc_dis_vlan_insertion_v2_msg
3356  * @vf: VF the message was received from
3357  * @msg: message received from the VF
3358  *
3359  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3360  */
3361 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3362 {
3363 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3364 	struct virtchnl_vlan_supported_caps *insertion_support;
3365 	struct virtchnl_vlan_setting *insertion_msg =
3366 		(struct virtchnl_vlan_setting *)msg;
3367 	u32 ethertype_setting;
3368 	struct ice_vsi *vsi;
3369 
3370 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3371 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3372 		goto out;
3373 	}
3374 
3375 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3376 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3377 		goto out;
3378 	}
3379 
3380 	vsi = ice_get_vf_vsi(vf);
3381 	if (!vsi) {
3382 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3383 		goto out;
3384 	}
3385 
3386 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3387 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3388 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3389 		goto out;
3390 	}
3391 
3392 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3393 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3394 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3395 		goto out;
3396 	}
3397 
3398 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3399 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3400 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3401 		goto out;
3402 	}
3403 
3404 out:
3405 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3406 				     v_ret, NULL, 0);
3407 }
3408 
3409 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3410 	.get_ver_msg = ice_vc_get_ver_msg,
3411 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3412 	.reset_vf = ice_vc_reset_vf_msg,
3413 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3414 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3415 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3416 	.ena_qs_msg = ice_vc_ena_qs_msg,
3417 	.dis_qs_msg = ice_vc_dis_qs_msg,
3418 	.request_qs_msg = ice_vc_request_qs_msg,
3419 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3420 	.config_rss_key = ice_vc_config_rss_key,
3421 	.config_rss_lut = ice_vc_config_rss_lut,
3422 	.get_stats_msg = ice_vc_get_stats_msg,
3423 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3424 	.add_vlan_msg = ice_vc_add_vlan_msg,
3425 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3426 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3427 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3428 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3429 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3430 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3431 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3432 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3433 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3434 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3435 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3436 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3437 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3438 };
3439 
3440 /**
3441  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3442  * @vf: the VF to switch ops
3443  */
3444 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3445 {
3446 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3447 }
3448 
3449 /**
3450  * ice_vc_repr_add_mac
3451  * @vf: pointer to VF
3452  * @msg: virtchannel message
3453  *
3454  * When port representors are created, we do not add MAC rule
3455  * to firmware, we store it so that PF could report same
3456  * MAC as VF.
3457  */
3458 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3459 {
3460 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3461 	struct virtchnl_ether_addr_list *al =
3462 	    (struct virtchnl_ether_addr_list *)msg;
3463 	struct ice_vsi *vsi;
3464 	struct ice_pf *pf;
3465 	int i;
3466 
3467 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3468 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3469 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3470 		goto handle_mac_exit;
3471 	}
3472 
3473 	pf = vf->pf;
3474 
3475 	vsi = ice_get_vf_vsi(vf);
3476 	if (!vsi) {
3477 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3478 		goto handle_mac_exit;
3479 	}
3480 
3481 	for (i = 0; i < al->num_elements; i++) {
3482 		u8 *mac_addr = al->list[i].addr;
3483 		int result;
3484 
3485 		if (!is_unicast_ether_addr(mac_addr) ||
3486 		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3487 			continue;
3488 
3489 		if (vf->pf_set_mac) {
3490 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3491 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3492 			goto handle_mac_exit;
3493 		}
3494 
3495 		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3496 		if (result) {
3497 			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3498 				mac_addr, vf->vf_id, result);
3499 			goto handle_mac_exit;
3500 		}
3501 
3502 		ice_vfhw_mac_add(vf, &al->list[i]);
3503 		vf->num_mac++;
3504 		break;
3505 	}
3506 
3507 handle_mac_exit:
3508 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3509 				     v_ret, NULL, 0);
3510 }
3511 
3512 /**
3513  * ice_vc_repr_del_mac - response with success for deleting MAC
3514  * @vf: pointer to VF
3515  * @msg: virtchannel message
3516  *
3517  * Respond with success to not break normal VF flow.
3518  * For legacy VF driver try to update cached MAC address.
3519  */
3520 static int
3521 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3522 {
3523 	struct virtchnl_ether_addr_list *al =
3524 		(struct virtchnl_ether_addr_list *)msg;
3525 
3526 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3527 
3528 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3529 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3530 }
3531 
3532 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3533 {
3534 	dev_dbg(ice_pf_to_dev(vf->pf),
3535 		"Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
3536 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
3537 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3538 }
3539 
3540 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3541 {
3542 	dev_dbg(ice_pf_to_dev(vf->pf),
3543 		"Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
3544 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
3545 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3546 }
3547 
3548 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
3549 {
3550 	dev_dbg(ice_pf_to_dev(vf->pf),
3551 		"Can't enable VLAN stripping in switchdev mode for VF %d\n",
3552 		vf->vf_id);
3553 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3554 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3555 				     NULL, 0);
3556 }
3557 
3558 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
3559 {
3560 	dev_dbg(ice_pf_to_dev(vf->pf),
3561 		"Can't disable VLAN stripping in switchdev mode for VF %d\n",
3562 		vf->vf_id);
3563 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3564 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3565 				     NULL, 0);
3566 }
3567 
3568 static int
3569 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3570 {
3571 	dev_dbg(ice_pf_to_dev(vf->pf),
3572 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3573 		vf->vf_id);
3574 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3575 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3576 				     NULL, 0);
3577 }
3578 
3579 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3580 	.get_ver_msg = ice_vc_get_ver_msg,
3581 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3582 	.reset_vf = ice_vc_reset_vf_msg,
3583 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3584 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3585 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3586 	.ena_qs_msg = ice_vc_ena_qs_msg,
3587 	.dis_qs_msg = ice_vc_dis_qs_msg,
3588 	.request_qs_msg = ice_vc_request_qs_msg,
3589 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3590 	.config_rss_key = ice_vc_config_rss_key,
3591 	.config_rss_lut = ice_vc_config_rss_lut,
3592 	.get_stats_msg = ice_vc_get_stats_msg,
3593 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3594 	.add_vlan_msg = ice_vc_repr_add_vlan,
3595 	.remove_vlan_msg = ice_vc_repr_del_vlan,
3596 	.ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
3597 	.dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
3598 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3599 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3600 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3601 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3602 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3603 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3604 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3605 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3606 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3607 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3608 };
3609 
3610 /**
3611  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3612  * @vf: the VF to switch ops
3613  */
3614 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3615 {
3616 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3617 }
3618 
3619 /**
3620  * ice_vc_process_vf_msg - Process request from VF
3621  * @pf: pointer to the PF structure
3622  * @event: pointer to the AQ event
3623  *
3624  * called from the common asq/arq handler to
3625  * process request from VF
3626  */
3627 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3628 {
3629 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3630 	s16 vf_id = le16_to_cpu(event->desc.retval);
3631 	const struct ice_virtchnl_ops *ops;
3632 	u16 msglen = event->msg_len;
3633 	u8 *msg = event->msg_buf;
3634 	struct ice_vf *vf = NULL;
3635 	struct device *dev;
3636 	int err = 0;
3637 
3638 	dev = ice_pf_to_dev(pf);
3639 
3640 	vf = ice_get_vf_by_id(pf, vf_id);
3641 	if (!vf) {
3642 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3643 			vf_id, v_opcode, msglen);
3644 		return;
3645 	}
3646 
3647 	mutex_lock(&vf->cfg_lock);
3648 
3649 	/* Check if VF is disabled. */
3650 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3651 		err = -EPERM;
3652 		goto error_handler;
3653 	}
3654 
3655 	ops = vf->virtchnl_ops;
3656 
3657 	/* Perform basic checks on the msg */
3658 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3659 	if (err) {
3660 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3661 			err = -EPERM;
3662 		else
3663 			err = -EINVAL;
3664 	}
3665 
3666 error_handler:
3667 	if (err) {
3668 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3669 				      NULL, 0);
3670 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3671 			vf_id, v_opcode, msglen, err);
3672 		goto finish;
3673 	}
3674 
3675 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3676 		ice_vc_send_msg_to_vf(vf, v_opcode,
3677 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3678 				      0);
3679 		goto finish;
3680 	}
3681 
3682 	switch (v_opcode) {
3683 	case VIRTCHNL_OP_VERSION:
3684 		err = ops->get_ver_msg(vf, msg);
3685 		break;
3686 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3687 		err = ops->get_vf_res_msg(vf, msg);
3688 		if (ice_vf_init_vlan_stripping(vf))
3689 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3690 				vf->vf_id);
3691 		ice_vc_notify_vf_link_state(vf);
3692 		break;
3693 	case VIRTCHNL_OP_RESET_VF:
3694 		ops->reset_vf(vf);
3695 		break;
3696 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3697 		err = ops->add_mac_addr_msg(vf, msg);
3698 		break;
3699 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3700 		err = ops->del_mac_addr_msg(vf, msg);
3701 		break;
3702 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3703 		err = ops->cfg_qs_msg(vf, msg);
3704 		break;
3705 	case VIRTCHNL_OP_ENABLE_QUEUES:
3706 		err = ops->ena_qs_msg(vf, msg);
3707 		ice_vc_notify_vf_link_state(vf);
3708 		break;
3709 	case VIRTCHNL_OP_DISABLE_QUEUES:
3710 		err = ops->dis_qs_msg(vf, msg);
3711 		break;
3712 	case VIRTCHNL_OP_REQUEST_QUEUES:
3713 		err = ops->request_qs_msg(vf, msg);
3714 		break;
3715 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3716 		err = ops->cfg_irq_map_msg(vf, msg);
3717 		break;
3718 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3719 		err = ops->config_rss_key(vf, msg);
3720 		break;
3721 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3722 		err = ops->config_rss_lut(vf, msg);
3723 		break;
3724 	case VIRTCHNL_OP_GET_STATS:
3725 		err = ops->get_stats_msg(vf, msg);
3726 		break;
3727 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3728 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
3729 		break;
3730 	case VIRTCHNL_OP_ADD_VLAN:
3731 		err = ops->add_vlan_msg(vf, msg);
3732 		break;
3733 	case VIRTCHNL_OP_DEL_VLAN:
3734 		err = ops->remove_vlan_msg(vf, msg);
3735 		break;
3736 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3737 		err = ops->ena_vlan_stripping(vf);
3738 		break;
3739 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3740 		err = ops->dis_vlan_stripping(vf);
3741 		break;
3742 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
3743 		err = ops->add_fdir_fltr_msg(vf, msg);
3744 		break;
3745 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
3746 		err = ops->del_fdir_fltr_msg(vf, msg);
3747 		break;
3748 	case VIRTCHNL_OP_ADD_RSS_CFG:
3749 		err = ops->handle_rss_cfg_msg(vf, msg, true);
3750 		break;
3751 	case VIRTCHNL_OP_DEL_RSS_CFG:
3752 		err = ops->handle_rss_cfg_msg(vf, msg, false);
3753 		break;
3754 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3755 		err = ops->get_offload_vlan_v2_caps(vf);
3756 		break;
3757 	case VIRTCHNL_OP_ADD_VLAN_V2:
3758 		err = ops->add_vlan_v2_msg(vf, msg);
3759 		break;
3760 	case VIRTCHNL_OP_DEL_VLAN_V2:
3761 		err = ops->remove_vlan_v2_msg(vf, msg);
3762 		break;
3763 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3764 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3765 		break;
3766 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3767 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3768 		break;
3769 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3770 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
3771 		break;
3772 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
3773 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
3774 		break;
3775 	case VIRTCHNL_OP_UNKNOWN:
3776 	default:
3777 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3778 			vf_id);
3779 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
3780 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3781 					    NULL, 0);
3782 		break;
3783 	}
3784 	if (err) {
3785 		/* Helper function cares less about error return values here
3786 		 * as it is busy with pending work.
3787 		 */
3788 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3789 			 vf_id, v_opcode, err);
3790 	}
3791 
3792 finish:
3793 	mutex_unlock(&vf->cfg_lock);
3794 	ice_put_vf(vf);
3795 }
3796