1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vf_res_msg 364 * @vf: pointer to the VF info 365 * @msg: pointer to the msg buffer 366 * 367 * called from the VF to request its resources 368 */ 369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 370 { 371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 372 struct virtchnl_vf_resource *vfres = NULL; 373 struct ice_hw *hw = &vf->pf->hw; 374 struct ice_vsi *vsi; 375 int len = 0; 376 int ret; 377 378 if (ice_check_vf_init(vf)) { 379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 380 goto err; 381 } 382 383 len = sizeof(struct virtchnl_vf_resource); 384 385 vfres = kzalloc(len, GFP_KERNEL); 386 if (!vfres) { 387 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 388 len = 0; 389 goto err; 390 } 391 if (VF_IS_V11(&vf->vf_ver)) 392 vf->driver_caps = *(u32 *)msg; 393 else 394 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 395 VIRTCHNL_VF_OFFLOAD_RSS_REG | 396 VIRTCHNL_VF_OFFLOAD_VLAN; 397 398 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 399 vsi = ice_get_vf_vsi(vf); 400 if (!vsi) { 401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 402 goto err; 403 } 404 405 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 406 /* VLAN offloads based on current device configuration */ 407 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2; 408 } else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 409 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 410 * these two conditions, which amounts to guest VLAN filtering 411 * and offloads being based on the inner VLAN or the 412 * inner/single VLAN respectively and don't allow VF to 413 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 414 */ 415 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 416 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 417 } else if (!ice_is_dvm_ena(hw) && 418 !ice_vf_is_port_vlan_ena(vf)) { 419 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 420 /* configure backward compatible support for VFs that 421 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 422 * configured in SVM, and no port VLAN is configured 423 */ 424 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 425 } else if (ice_is_dvm_ena(hw)) { 426 /* configure software offloaded VLAN support when DVM 427 * is enabled, but no port VLAN is enabled 428 */ 429 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 430 } 431 } 432 433 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 434 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 435 } else { 436 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 437 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 438 else 439 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 440 } 441 442 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 443 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 444 445 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 446 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 447 448 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 449 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 450 451 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 452 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 453 454 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 455 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 456 457 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 458 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 459 460 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 461 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 462 463 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 464 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 465 466 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 467 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 468 469 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 470 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 471 472 vfres->num_vsis = 1; 473 /* Tx and Rx queue are equal for VF */ 474 vfres->num_queue_pairs = vsi->num_txq; 475 vfres->max_vectors = vf->pf->vfs.num_msix_per; 476 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 477 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 478 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 479 480 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 481 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 482 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 483 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 484 vf->hw_lan_addr.addr); 485 486 /* match guest capabilities */ 487 vf->driver_caps = vfres->vf_cap_flags; 488 489 ice_vc_set_caps_allowlist(vf); 490 ice_vc_set_working_allowlist(vf); 491 492 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 493 494 err: 495 /* send the response back to the VF */ 496 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 497 (u8 *)vfres, len); 498 499 kfree(vfres); 500 return ret; 501 } 502 503 /** 504 * ice_vc_reset_vf_msg 505 * @vf: pointer to the VF info 506 * 507 * called from the VF to reset itself, 508 * unlike other virtchnl messages, PF driver 509 * doesn't send the response back to the VF 510 */ 511 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 512 { 513 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 514 ice_reset_vf(vf, 0); 515 } 516 517 /** 518 * ice_vc_isvalid_vsi_id 519 * @vf: pointer to the VF info 520 * @vsi_id: VF relative VSI ID 521 * 522 * check for the valid VSI ID 523 */ 524 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 525 { 526 struct ice_pf *pf = vf->pf; 527 struct ice_vsi *vsi; 528 529 vsi = ice_find_vsi(pf, vsi_id); 530 531 return (vsi && (vsi->vf == vf)); 532 } 533 534 /** 535 * ice_vc_isvalid_q_id 536 * @vf: pointer to the VF info 537 * @vsi_id: VSI ID 538 * @qid: VSI relative queue ID 539 * 540 * check for the valid queue ID 541 */ 542 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 543 { 544 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 545 /* allocated Tx and Rx queues should be always equal for VF VSI */ 546 return (vsi && (qid < vsi->alloc_txq)); 547 } 548 549 /** 550 * ice_vc_isvalid_ring_len 551 * @ring_len: length of ring 552 * 553 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 554 * or zero 555 */ 556 static bool ice_vc_isvalid_ring_len(u16 ring_len) 557 { 558 return ring_len == 0 || 559 (ring_len >= ICE_MIN_NUM_DESC && 560 ring_len <= ICE_MAX_NUM_DESC && 561 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 562 } 563 564 /** 565 * ice_vc_validate_pattern 566 * @vf: pointer to the VF info 567 * @proto: virtchnl protocol headers 568 * 569 * validate the pattern is supported or not. 570 * 571 * Return: true on success, false on error. 572 */ 573 bool 574 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 575 { 576 bool is_ipv4 = false; 577 bool is_ipv6 = false; 578 bool is_udp = false; 579 u16 ptype = -1; 580 int i = 0; 581 582 while (i < proto->count && 583 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 584 switch (proto->proto_hdr[i].type) { 585 case VIRTCHNL_PROTO_HDR_ETH: 586 ptype = ICE_PTYPE_MAC_PAY; 587 break; 588 case VIRTCHNL_PROTO_HDR_IPV4: 589 ptype = ICE_PTYPE_IPV4_PAY; 590 is_ipv4 = true; 591 break; 592 case VIRTCHNL_PROTO_HDR_IPV6: 593 ptype = ICE_PTYPE_IPV6_PAY; 594 is_ipv6 = true; 595 break; 596 case VIRTCHNL_PROTO_HDR_UDP: 597 if (is_ipv4) 598 ptype = ICE_PTYPE_IPV4_UDP_PAY; 599 else if (is_ipv6) 600 ptype = ICE_PTYPE_IPV6_UDP_PAY; 601 is_udp = true; 602 break; 603 case VIRTCHNL_PROTO_HDR_TCP: 604 if (is_ipv4) 605 ptype = ICE_PTYPE_IPV4_TCP_PAY; 606 else if (is_ipv6) 607 ptype = ICE_PTYPE_IPV6_TCP_PAY; 608 break; 609 case VIRTCHNL_PROTO_HDR_SCTP: 610 if (is_ipv4) 611 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 612 else if (is_ipv6) 613 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 614 break; 615 case VIRTCHNL_PROTO_HDR_GTPU_IP: 616 case VIRTCHNL_PROTO_HDR_GTPU_EH: 617 if (is_ipv4) 618 ptype = ICE_MAC_IPV4_GTPU; 619 else if (is_ipv6) 620 ptype = ICE_MAC_IPV6_GTPU; 621 goto out; 622 case VIRTCHNL_PROTO_HDR_L2TPV3: 623 if (is_ipv4) 624 ptype = ICE_MAC_IPV4_L2TPV3; 625 else if (is_ipv6) 626 ptype = ICE_MAC_IPV6_L2TPV3; 627 goto out; 628 case VIRTCHNL_PROTO_HDR_ESP: 629 if (is_ipv4) 630 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 631 ICE_MAC_IPV4_ESP; 632 else if (is_ipv6) 633 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 634 ICE_MAC_IPV6_ESP; 635 goto out; 636 case VIRTCHNL_PROTO_HDR_AH: 637 if (is_ipv4) 638 ptype = ICE_MAC_IPV4_AH; 639 else if (is_ipv6) 640 ptype = ICE_MAC_IPV6_AH; 641 goto out; 642 case VIRTCHNL_PROTO_HDR_PFCP: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_PFCP_SESSION; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_PFCP_SESSION; 647 goto out; 648 default: 649 break; 650 } 651 i++; 652 } 653 654 out: 655 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 656 } 657 658 /** 659 * ice_vc_parse_rss_cfg - parses hash fields and headers from 660 * a specific virtchnl RSS cfg 661 * @hw: pointer to the hardware 662 * @rss_cfg: pointer to the virtchnl RSS cfg 663 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 664 * to configure 665 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 666 * 667 * Return true if all the protocol header and hash fields in the RSS cfg could 668 * be parsed, else return false 669 * 670 * This function parses the virtchnl RSS cfg to be the intended 671 * hash fields and the intended header for RSS configuration 672 */ 673 static bool 674 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 675 u32 *addl_hdrs, u64 *hash_flds) 676 { 677 const struct ice_vc_hash_field_match_type *hf_list; 678 const struct ice_vc_hdr_match_type *hdr_list; 679 int i, hf_list_len, hdr_list_len; 680 681 hf_list = ice_vc_hash_field_list; 682 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 683 hdr_list = ice_vc_hdr_list; 684 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 685 686 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 687 struct virtchnl_proto_hdr *proto_hdr = 688 &rss_cfg->proto_hdrs.proto_hdr[i]; 689 bool hdr_found = false; 690 int j; 691 692 /* Find matched ice headers according to virtchnl headers. */ 693 for (j = 0; j < hdr_list_len; j++) { 694 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 695 696 if (proto_hdr->type == hdr_map.vc_hdr) { 697 *addl_hdrs |= hdr_map.ice_hdr; 698 hdr_found = true; 699 } 700 } 701 702 if (!hdr_found) 703 return false; 704 705 /* Find matched ice hash fields according to 706 * virtchnl hash fields. 707 */ 708 for (j = 0; j < hf_list_len; j++) { 709 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 710 711 if (proto_hdr->type == hf_map.vc_hdr && 712 proto_hdr->field_selector == hf_map.vc_hash_field) { 713 *hash_flds |= hf_map.ice_hash_field; 714 break; 715 } 716 } 717 } 718 719 return true; 720 } 721 722 /** 723 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 724 * RSS offloads 725 * @caps: VF driver negotiated capabilities 726 * 727 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 728 * else return false 729 */ 730 static bool ice_vf_adv_rss_offload_ena(u32 caps) 731 { 732 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 733 } 734 735 /** 736 * ice_vc_handle_rss_cfg 737 * @vf: pointer to the VF info 738 * @msg: pointer to the message buffer 739 * @add: add a RSS config if true, otherwise delete a RSS config 740 * 741 * This function adds/deletes a RSS config 742 */ 743 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 744 { 745 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 746 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 747 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 748 struct device *dev = ice_pf_to_dev(vf->pf); 749 struct ice_hw *hw = &vf->pf->hw; 750 struct ice_vsi *vsi; 751 752 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 753 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 754 vf->vf_id); 755 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 756 goto error_param; 757 } 758 759 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 760 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 761 vf->vf_id); 762 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 763 goto error_param; 764 } 765 766 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 767 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 768 goto error_param; 769 } 770 771 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 772 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 773 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 774 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 775 vf->vf_id); 776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 777 goto error_param; 778 } 779 780 vsi = ice_get_vf_vsi(vf); 781 if (!vsi) { 782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 783 goto error_param; 784 } 785 786 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 787 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 788 goto error_param; 789 } 790 791 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 792 struct ice_vsi_ctx *ctx; 793 u8 lut_type, hash_type; 794 int status; 795 796 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 797 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 798 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 799 800 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 801 if (!ctx) { 802 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 803 goto error_param; 804 } 805 806 ctx->info.q_opt_rss = ((lut_type << 807 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 808 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 809 (hash_type & 810 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 811 812 /* Preserve existing queueing option setting */ 813 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 814 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 815 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 816 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 817 818 ctx->info.valid_sections = 819 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 820 821 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 822 if (status) { 823 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 824 status, ice_aq_str(hw->adminq.sq_last_status)); 825 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 826 } else { 827 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 828 } 829 830 kfree(ctx); 831 } else { 832 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 833 u64 hash_flds = ICE_HASH_INVALID; 834 835 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 836 &hash_flds)) { 837 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 838 goto error_param; 839 } 840 841 if (add) { 842 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 843 addl_hdrs)) { 844 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 845 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 846 vsi->vsi_num, v_ret); 847 } 848 } else { 849 int status; 850 851 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 852 addl_hdrs); 853 /* We just ignore -ENOENT, because if two configurations 854 * share the same profile remove one of them actually 855 * removes both, since the profile is deleted. 856 */ 857 if (status && status != -ENOENT) { 858 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 859 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 860 vf->vf_id, status); 861 } 862 } 863 } 864 865 error_param: 866 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 867 } 868 869 /** 870 * ice_vc_config_rss_key 871 * @vf: pointer to the VF info 872 * @msg: pointer to the msg buffer 873 * 874 * Configure the VF's RSS key 875 */ 876 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 877 { 878 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 879 struct virtchnl_rss_key *vrk = 880 (struct virtchnl_rss_key *)msg; 881 struct ice_vsi *vsi; 882 883 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 goto error_param; 886 } 887 888 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 889 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 890 goto error_param; 891 } 892 893 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 goto error_param; 896 } 897 898 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 899 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 900 goto error_param; 901 } 902 903 vsi = ice_get_vf_vsi(vf); 904 if (!vsi) { 905 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 906 goto error_param; 907 } 908 909 if (ice_set_rss_key(vsi, vrk->key)) 910 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 911 error_param: 912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 913 NULL, 0); 914 } 915 916 /** 917 * ice_vc_config_rss_lut 918 * @vf: pointer to the VF info 919 * @msg: pointer to the msg buffer 920 * 921 * Configure the VF's RSS LUT 922 */ 923 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 924 { 925 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 926 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 927 struct ice_vsi *vsi; 928 929 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 941 goto error_param; 942 } 943 944 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 946 goto error_param; 947 } 948 949 vsi = ice_get_vf_vsi(vf); 950 if (!vsi) { 951 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 952 goto error_param; 953 } 954 955 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 956 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 957 error_param: 958 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 959 NULL, 0); 960 } 961 962 /** 963 * ice_vc_cfg_promiscuous_mode_msg 964 * @vf: pointer to the VF info 965 * @msg: pointer to the msg buffer 966 * 967 * called from the VF to configure VF VSIs promiscuous mode 968 */ 969 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 970 { 971 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 972 bool rm_promisc, alluni = false, allmulti = false; 973 struct virtchnl_promisc_info *info = 974 (struct virtchnl_promisc_info *)msg; 975 struct ice_vsi_vlan_ops *vlan_ops; 976 int mcast_err = 0, ucast_err = 0; 977 struct ice_pf *pf = vf->pf; 978 struct ice_vsi *vsi; 979 struct device *dev; 980 int ret = 0; 981 982 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 983 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 984 goto error_param; 985 } 986 987 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 988 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 989 goto error_param; 990 } 991 992 vsi = ice_get_vf_vsi(vf); 993 if (!vsi) { 994 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 995 goto error_param; 996 } 997 998 dev = ice_pf_to_dev(pf); 999 if (!ice_is_vf_trusted(vf)) { 1000 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1001 vf->vf_id); 1002 /* Leave v_ret alone, lie to the VF on purpose. */ 1003 goto error_param; 1004 } 1005 1006 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1007 alluni = true; 1008 1009 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1010 allmulti = true; 1011 1012 rm_promisc = !allmulti && !alluni; 1013 1014 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1015 if (rm_promisc) 1016 ret = vlan_ops->ena_rx_filtering(vsi); 1017 else 1018 ret = vlan_ops->dis_rx_filtering(vsi); 1019 if (ret) { 1020 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1026 bool set_dflt_vsi = alluni || allmulti; 1027 1028 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) 1029 /* only attempt to set the default forwarding VSI if 1030 * it's not currently set 1031 */ 1032 ret = ice_set_dflt_vsi(pf->first_sw, vsi); 1033 else if (!set_dflt_vsi && 1034 ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 1035 /* only attempt to free the default forwarding VSI if we 1036 * are the owner 1037 */ 1038 ret = ice_clear_dflt_vsi(pf->first_sw); 1039 1040 if (ret) { 1041 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", 1042 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); 1043 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1044 goto error_param; 1045 } 1046 } else { 1047 u8 mcast_m, ucast_m; 1048 1049 if (ice_vf_is_port_vlan_ena(vf) || 1050 ice_vsi_has_non_zero_vlans(vsi)) { 1051 mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; 1052 ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; 1053 } else { 1054 mcast_m = ICE_MCAST_PROMISC_BITS; 1055 ucast_m = ICE_UCAST_PROMISC_BITS; 1056 } 1057 1058 if (alluni) 1059 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1060 else 1061 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1062 1063 if (allmulti) 1064 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1065 else 1066 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1067 1068 if (ucast_err || mcast_err) 1069 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1070 } 1071 1072 if (!mcast_err) { 1073 if (allmulti && 1074 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1075 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1076 vf->vf_id); 1077 else if (!allmulti && 1078 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1079 vf->vf_states)) 1080 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1081 vf->vf_id); 1082 } 1083 1084 if (!ucast_err) { 1085 if (alluni && 1086 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1087 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1088 vf->vf_id); 1089 else if (!alluni && 1090 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1091 vf->vf_states)) 1092 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1093 vf->vf_id); 1094 } 1095 1096 error_param: 1097 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1098 v_ret, NULL, 0); 1099 } 1100 1101 /** 1102 * ice_vc_get_stats_msg 1103 * @vf: pointer to the VF info 1104 * @msg: pointer to the msg buffer 1105 * 1106 * called from the VF to get VSI stats 1107 */ 1108 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1109 { 1110 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1111 struct virtchnl_queue_select *vqs = 1112 (struct virtchnl_queue_select *)msg; 1113 struct ice_eth_stats stats = { 0 }; 1114 struct ice_vsi *vsi; 1115 1116 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1117 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1118 goto error_param; 1119 } 1120 1121 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1122 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1123 goto error_param; 1124 } 1125 1126 vsi = ice_get_vf_vsi(vf); 1127 if (!vsi) { 1128 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1129 goto error_param; 1130 } 1131 1132 ice_update_eth_stats(vsi); 1133 1134 stats = vsi->eth_stats; 1135 1136 error_param: 1137 /* send the response to the VF */ 1138 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1139 (u8 *)&stats, sizeof(stats)); 1140 } 1141 1142 /** 1143 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1144 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1145 * 1146 * Return true on successful validation, else false 1147 */ 1148 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1149 { 1150 if ((!vqs->rx_queues && !vqs->tx_queues) || 1151 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1152 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1153 return false; 1154 1155 return true; 1156 } 1157 1158 /** 1159 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1160 * @vsi: VSI of the VF to configure 1161 * @q_idx: VF queue index used to determine the queue in the PF's space 1162 */ 1163 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1164 { 1165 struct ice_hw *hw = &vsi->back->hw; 1166 u32 pfq = vsi->txq_map[q_idx]; 1167 u32 reg; 1168 1169 reg = rd32(hw, QINT_TQCTL(pfq)); 1170 1171 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1172 * this is most likely a poll mode VF driver, so don't enable an 1173 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1174 */ 1175 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1176 return; 1177 1178 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1179 } 1180 1181 /** 1182 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1183 * @vsi: VSI of the VF to configure 1184 * @q_idx: VF queue index used to determine the queue in the PF's space 1185 */ 1186 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1187 { 1188 struct ice_hw *hw = &vsi->back->hw; 1189 u32 pfq = vsi->rxq_map[q_idx]; 1190 u32 reg; 1191 1192 reg = rd32(hw, QINT_RQCTL(pfq)); 1193 1194 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1195 * this is most likely a poll mode VF driver, so don't enable an 1196 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1197 */ 1198 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1199 return; 1200 1201 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1202 } 1203 1204 /** 1205 * ice_vc_ena_qs_msg 1206 * @vf: pointer to the VF info 1207 * @msg: pointer to the msg buffer 1208 * 1209 * called from the VF to enable all or specific queue(s) 1210 */ 1211 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1212 { 1213 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1214 struct virtchnl_queue_select *vqs = 1215 (struct virtchnl_queue_select *)msg; 1216 struct ice_vsi *vsi; 1217 unsigned long q_map; 1218 u16 vf_q_id; 1219 1220 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1221 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1222 goto error_param; 1223 } 1224 1225 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1226 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1227 goto error_param; 1228 } 1229 1230 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1232 goto error_param; 1233 } 1234 1235 vsi = ice_get_vf_vsi(vf); 1236 if (!vsi) { 1237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1238 goto error_param; 1239 } 1240 1241 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1242 * Tx queue group list was configured and the context bits were 1243 * programmed using ice_vsi_cfg_txqs 1244 */ 1245 q_map = vqs->rx_queues; 1246 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1247 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 /* Skip queue if enabled */ 1253 if (test_bit(vf_q_id, vf->rxq_ena)) 1254 continue; 1255 1256 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1257 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1258 vf_q_id, vsi->vsi_num); 1259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1260 goto error_param; 1261 } 1262 1263 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1264 set_bit(vf_q_id, vf->rxq_ena); 1265 } 1266 1267 q_map = vqs->tx_queues; 1268 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1269 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1271 goto error_param; 1272 } 1273 1274 /* Skip queue if enabled */ 1275 if (test_bit(vf_q_id, vf->txq_ena)) 1276 continue; 1277 1278 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1279 set_bit(vf_q_id, vf->txq_ena); 1280 } 1281 1282 /* Set flag to indicate that queues are enabled */ 1283 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1284 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1285 1286 error_param: 1287 /* send the response to the VF */ 1288 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1289 NULL, 0); 1290 } 1291 1292 /** 1293 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1294 * @vf: VF to disable queue for 1295 * @vsi: VSI for the VF 1296 * @q_id: VF relative (0-based) queue ID 1297 * 1298 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1299 * disabled then clear q_id bit in the enabled queues bitmap and return 1300 * success. Otherwise return error. 1301 */ 1302 static int 1303 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1304 { 1305 struct ice_txq_meta txq_meta = { 0 }; 1306 struct ice_tx_ring *ring; 1307 int err; 1308 1309 if (!test_bit(q_id, vf->txq_ena)) 1310 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1311 q_id, vsi->vsi_num); 1312 1313 ring = vsi->tx_rings[q_id]; 1314 if (!ring) 1315 return -EINVAL; 1316 1317 ice_fill_txq_meta(vsi, ring, &txq_meta); 1318 1319 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1320 if (err) { 1321 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1322 q_id, vsi->vsi_num); 1323 return err; 1324 } 1325 1326 /* Clear enabled queues flag */ 1327 clear_bit(q_id, vf->txq_ena); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * ice_vc_dis_qs_msg 1334 * @vf: pointer to the VF info 1335 * @msg: pointer to the msg buffer 1336 * 1337 * called from the VF to disable all or specific queue(s) 1338 */ 1339 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1340 { 1341 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1342 struct virtchnl_queue_select *vqs = 1343 (struct virtchnl_queue_select *)msg; 1344 struct ice_vsi *vsi; 1345 unsigned long q_map; 1346 u16 vf_q_id; 1347 1348 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1349 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1350 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1351 goto error_param; 1352 } 1353 1354 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1355 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1356 goto error_param; 1357 } 1358 1359 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1360 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1361 goto error_param; 1362 } 1363 1364 vsi = ice_get_vf_vsi(vf); 1365 if (!vsi) { 1366 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1367 goto error_param; 1368 } 1369 1370 if (vqs->tx_queues) { 1371 q_map = vqs->tx_queues; 1372 1373 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1374 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1376 goto error_param; 1377 } 1378 1379 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1381 goto error_param; 1382 } 1383 } 1384 } 1385 1386 q_map = vqs->rx_queues; 1387 /* speed up Rx queue disable by batching them if possible */ 1388 if (q_map && 1389 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1390 if (ice_vsi_stop_all_rx_rings(vsi)) { 1391 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1392 vsi->vsi_num); 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1398 } else if (q_map) { 1399 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1400 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1402 goto error_param; 1403 } 1404 1405 /* Skip queue if not enabled */ 1406 if (!test_bit(vf_q_id, vf->rxq_ena)) 1407 continue; 1408 1409 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1410 true)) { 1411 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1412 vf_q_id, vsi->vsi_num); 1413 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1414 goto error_param; 1415 } 1416 1417 /* Clear enabled queues flag */ 1418 clear_bit(vf_q_id, vf->rxq_ena); 1419 } 1420 } 1421 1422 /* Clear enabled queues flag */ 1423 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1424 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1425 1426 error_param: 1427 /* send the response to the VF */ 1428 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1429 NULL, 0); 1430 } 1431 1432 /** 1433 * ice_cfg_interrupt 1434 * @vf: pointer to the VF info 1435 * @vsi: the VSI being configured 1436 * @vector_id: vector ID 1437 * @map: vector map for mapping vectors to queues 1438 * @q_vector: structure for interrupt vector 1439 * configure the IRQ to queue map 1440 */ 1441 static int 1442 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1443 struct virtchnl_vector_map *map, 1444 struct ice_q_vector *q_vector) 1445 { 1446 u16 vsi_q_id, vsi_q_id_idx; 1447 unsigned long qmap; 1448 1449 q_vector->num_ring_rx = 0; 1450 q_vector->num_ring_tx = 0; 1451 1452 qmap = map->rxq_map; 1453 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1454 vsi_q_id = vsi_q_id_idx; 1455 1456 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1457 return VIRTCHNL_STATUS_ERR_PARAM; 1458 1459 q_vector->num_ring_rx++; 1460 q_vector->rx.itr_idx = map->rxitr_idx; 1461 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1462 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1463 q_vector->rx.itr_idx); 1464 } 1465 1466 qmap = map->txq_map; 1467 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1468 vsi_q_id = vsi_q_id_idx; 1469 1470 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1471 return VIRTCHNL_STATUS_ERR_PARAM; 1472 1473 q_vector->num_ring_tx++; 1474 q_vector->tx.itr_idx = map->txitr_idx; 1475 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1476 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1477 q_vector->tx.itr_idx); 1478 } 1479 1480 return VIRTCHNL_STATUS_SUCCESS; 1481 } 1482 1483 /** 1484 * ice_vc_cfg_irq_map_msg 1485 * @vf: pointer to the VF info 1486 * @msg: pointer to the msg buffer 1487 * 1488 * called from the VF to configure the IRQ to queue map 1489 */ 1490 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1491 { 1492 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1493 u16 num_q_vectors_mapped, vsi_id, vector_id; 1494 struct virtchnl_irq_map_info *irqmap_info; 1495 struct virtchnl_vector_map *map; 1496 struct ice_pf *pf = vf->pf; 1497 struct ice_vsi *vsi; 1498 int i; 1499 1500 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1501 num_q_vectors_mapped = irqmap_info->num_vectors; 1502 1503 /* Check to make sure number of VF vectors mapped is not greater than 1504 * number of VF vectors originally allocated, and check that 1505 * there is actually at least a single VF queue vector mapped 1506 */ 1507 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1508 pf->vfs.num_msix_per < num_q_vectors_mapped || 1509 !num_q_vectors_mapped) { 1510 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1511 goto error_param; 1512 } 1513 1514 vsi = ice_get_vf_vsi(vf); 1515 if (!vsi) { 1516 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1517 goto error_param; 1518 } 1519 1520 for (i = 0; i < num_q_vectors_mapped; i++) { 1521 struct ice_q_vector *q_vector; 1522 1523 map = &irqmap_info->vecmap[i]; 1524 1525 vector_id = map->vector_id; 1526 vsi_id = map->vsi_id; 1527 /* vector_id is always 0-based for each VF, and can never be 1528 * larger than or equal to the max allowed interrupts per VF 1529 */ 1530 if (!(vector_id < pf->vfs.num_msix_per) || 1531 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1532 (!vector_id && (map->rxq_map || map->txq_map))) { 1533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1534 goto error_param; 1535 } 1536 1537 /* No need to map VF miscellaneous or rogue vector */ 1538 if (!vector_id) 1539 continue; 1540 1541 /* Subtract non queue vector from vector_id passed by VF 1542 * to get actual number of VSI queue vector array index 1543 */ 1544 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1545 if (!q_vector) { 1546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1547 goto error_param; 1548 } 1549 1550 /* lookout for the invalid queue index */ 1551 v_ret = (enum virtchnl_status_code) 1552 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1553 if (v_ret) 1554 goto error_param; 1555 } 1556 1557 error_param: 1558 /* send the response to the VF */ 1559 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1560 NULL, 0); 1561 } 1562 1563 /** 1564 * ice_vc_cfg_qs_msg 1565 * @vf: pointer to the VF info 1566 * @msg: pointer to the msg buffer 1567 * 1568 * called from the VF to configure the Rx/Tx queues 1569 */ 1570 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1571 { 1572 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1573 struct virtchnl_vsi_queue_config_info *qci = 1574 (struct virtchnl_vsi_queue_config_info *)msg; 1575 struct virtchnl_queue_pair_info *qpi; 1576 struct ice_pf *pf = vf->pf; 1577 struct ice_vsi *vsi; 1578 int i, q_idx; 1579 1580 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1581 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1582 goto error_param; 1583 } 1584 1585 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { 1586 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1587 goto error_param; 1588 } 1589 1590 vsi = ice_get_vf_vsi(vf); 1591 if (!vsi) { 1592 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1593 goto error_param; 1594 } 1595 1596 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1597 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1598 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1599 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1600 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1601 goto error_param; 1602 } 1603 1604 for (i = 0; i < qci->num_queue_pairs; i++) { 1605 qpi = &qci->qpair[i]; 1606 if (qpi->txq.vsi_id != qci->vsi_id || 1607 qpi->rxq.vsi_id != qci->vsi_id || 1608 qpi->rxq.queue_id != qpi->txq.queue_id || 1609 qpi->txq.headwb_enabled || 1610 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1611 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1612 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1613 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1614 goto error_param; 1615 } 1616 1617 q_idx = qpi->rxq.queue_id; 1618 1619 /* make sure selected "q_idx" is in valid range of queues 1620 * for selected "vsi" 1621 */ 1622 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1623 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1624 goto error_param; 1625 } 1626 1627 /* copy Tx queue info from VF into VSI */ 1628 if (qpi->txq.ring_len > 0) { 1629 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1630 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1631 1632 /* Disable any existing queue first */ 1633 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) { 1634 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1635 goto error_param; 1636 } 1637 1638 /* Configure a queue with the requested settings */ 1639 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1640 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1641 goto error_param; 1642 } 1643 } 1644 1645 /* copy Rx queue info from VF into VSI */ 1646 if (qpi->rxq.ring_len > 0) { 1647 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1648 1649 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1650 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1651 1652 if (qpi->rxq.databuffer_size != 0 && 1653 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1654 qpi->rxq.databuffer_size < 1024)) { 1655 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1656 goto error_param; 1657 } 1658 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1659 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1660 if (qpi->rxq.max_pkt_size > max_frame_size || 1661 qpi->rxq.max_pkt_size < 64) { 1662 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1663 goto error_param; 1664 } 1665 1666 vsi->max_frame = qpi->rxq.max_pkt_size; 1667 /* add space for the port VLAN since the VF driver is 1668 * not expected to account for it in the MTU 1669 * calculation 1670 */ 1671 if (ice_vf_is_port_vlan_ena(vf)) 1672 vsi->max_frame += VLAN_HLEN; 1673 1674 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1675 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1676 goto error_param; 1677 } 1678 } 1679 } 1680 1681 error_param: 1682 /* send the response to the VF */ 1683 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, 1684 NULL, 0); 1685 } 1686 1687 /** 1688 * ice_can_vf_change_mac 1689 * @vf: pointer to the VF info 1690 * 1691 * Return true if the VF is allowed to change its MAC filters, false otherwise 1692 */ 1693 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1694 { 1695 /* If the VF MAC address has been set administratively (via the 1696 * ndo_set_vf_mac command), then deny permission to the VF to 1697 * add/delete unicast MAC addresses, unless the VF is trusted 1698 */ 1699 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1700 return false; 1701 1702 return true; 1703 } 1704 1705 /** 1706 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1707 * @vc_ether_addr: used to extract the type 1708 */ 1709 static u8 1710 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1711 { 1712 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1713 } 1714 1715 /** 1716 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1717 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1718 */ 1719 static bool 1720 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1721 { 1722 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1723 1724 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1725 } 1726 1727 /** 1728 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1729 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1730 * 1731 * This function should only be called when the MAC address in 1732 * virtchnl_ether_addr is a valid unicast MAC 1733 */ 1734 static bool 1735 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1736 { 1737 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1738 1739 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1740 } 1741 1742 /** 1743 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1744 * @vf: VF to update 1745 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1746 */ 1747 static void 1748 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1749 { 1750 u8 *mac_addr = vc_ether_addr->addr; 1751 1752 if (!is_valid_ether_addr(mac_addr)) 1753 return; 1754 1755 /* only allow legacy VF drivers to set the device and hardware MAC if it 1756 * is zero and allow new VF drivers to set the hardware MAC if the type 1757 * was correctly specified over VIRTCHNL 1758 */ 1759 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1760 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1761 ice_is_vc_addr_primary(vc_ether_addr)) { 1762 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1763 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1764 } 1765 1766 /* hardware and device MACs are already set, but its possible that the 1767 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1768 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1769 * away for the legacy VF driver case as it will be updated in the 1770 * delete flow for this case 1771 */ 1772 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1773 ether_addr_copy(vf->legacy_last_added_umac.addr, 1774 mac_addr); 1775 vf->legacy_last_added_umac.time_modified = jiffies; 1776 } 1777 } 1778 1779 /** 1780 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1781 * @vf: pointer to the VF info 1782 * @vsi: pointer to the VF's VSI 1783 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1784 */ 1785 static int 1786 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1787 struct virtchnl_ether_addr *vc_ether_addr) 1788 { 1789 struct device *dev = ice_pf_to_dev(vf->pf); 1790 u8 *mac_addr = vc_ether_addr->addr; 1791 int ret; 1792 1793 /* device MAC already added */ 1794 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1795 return 0; 1796 1797 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1798 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1799 return -EPERM; 1800 } 1801 1802 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1803 if (ret == -EEXIST) { 1804 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1805 vf->vf_id); 1806 /* don't return since we might need to update 1807 * the primary MAC in ice_vfhw_mac_add() below 1808 */ 1809 } else if (ret) { 1810 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1811 mac_addr, vf->vf_id, ret); 1812 return ret; 1813 } else { 1814 vf->num_mac++; 1815 } 1816 1817 ice_vfhw_mac_add(vf, vc_ether_addr); 1818 1819 return ret; 1820 } 1821 1822 /** 1823 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1824 * @last_added_umac: structure used to check expiration 1825 */ 1826 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1827 { 1828 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1829 return time_is_before_jiffies(last_added_umac->time_modified + 1830 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1831 } 1832 1833 /** 1834 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1835 * @vf: VF to update 1836 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1837 * 1838 * only update cached hardware MAC for legacy VF drivers on delete 1839 * because we cannot guarantee order/type of MAC from the VF driver 1840 */ 1841 static void 1842 ice_update_legacy_cached_mac(struct ice_vf *vf, 1843 struct virtchnl_ether_addr *vc_ether_addr) 1844 { 1845 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1846 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1847 return; 1848 1849 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1850 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1851 } 1852 1853 /** 1854 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1855 * @vf: VF to update 1856 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1857 */ 1858 static void 1859 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1860 { 1861 u8 *mac_addr = vc_ether_addr->addr; 1862 1863 if (!is_valid_ether_addr(mac_addr) || 1864 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1865 return; 1866 1867 /* allow the device MAC to be repopulated in the add flow and don't 1868 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1869 * to be persistent on VM reboot and across driver unload/load, which 1870 * won't work if we clear the hardware MAC here 1871 */ 1872 eth_zero_addr(vf->dev_lan_addr.addr); 1873 1874 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1875 } 1876 1877 /** 1878 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1879 * @vf: pointer to the VF info 1880 * @vsi: pointer to the VF's VSI 1881 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1882 */ 1883 static int 1884 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1885 struct virtchnl_ether_addr *vc_ether_addr) 1886 { 1887 struct device *dev = ice_pf_to_dev(vf->pf); 1888 u8 *mac_addr = vc_ether_addr->addr; 1889 int status; 1890 1891 if (!ice_can_vf_change_mac(vf) && 1892 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1893 return 0; 1894 1895 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1896 if (status == -ENOENT) { 1897 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1898 vf->vf_id); 1899 return -ENOENT; 1900 } else if (status) { 1901 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1902 mac_addr, vf->vf_id, status); 1903 return -EIO; 1904 } 1905 1906 ice_vfhw_mac_del(vf, vc_ether_addr); 1907 1908 vf->num_mac--; 1909 1910 return 0; 1911 } 1912 1913 /** 1914 * ice_vc_handle_mac_addr_msg 1915 * @vf: pointer to the VF info 1916 * @msg: pointer to the msg buffer 1917 * @set: true if MAC filters are being set, false otherwise 1918 * 1919 * add guest MAC address filter 1920 */ 1921 static int 1922 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1923 { 1924 int (*ice_vc_cfg_mac) 1925 (struct ice_vf *vf, struct ice_vsi *vsi, 1926 struct virtchnl_ether_addr *virtchnl_ether_addr); 1927 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1928 struct virtchnl_ether_addr_list *al = 1929 (struct virtchnl_ether_addr_list *)msg; 1930 struct ice_pf *pf = vf->pf; 1931 enum virtchnl_ops vc_op; 1932 struct ice_vsi *vsi; 1933 int i; 1934 1935 if (set) { 1936 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1937 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1938 } else { 1939 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1940 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1941 } 1942 1943 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1944 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1946 goto handle_mac_exit; 1947 } 1948 1949 /* If this VF is not privileged, then we can't add more than a 1950 * limited number of addresses. Check to make sure that the 1951 * additions do not push us over the limit. 1952 */ 1953 if (set && !ice_is_vf_trusted(vf) && 1954 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 1955 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 1956 vf->vf_id); 1957 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1958 goto handle_mac_exit; 1959 } 1960 1961 vsi = ice_get_vf_vsi(vf); 1962 if (!vsi) { 1963 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1964 goto handle_mac_exit; 1965 } 1966 1967 for (i = 0; i < al->num_elements; i++) { 1968 u8 *mac_addr = al->list[i].addr; 1969 int result; 1970 1971 if (is_broadcast_ether_addr(mac_addr) || 1972 is_zero_ether_addr(mac_addr)) 1973 continue; 1974 1975 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 1976 if (result == -EEXIST || result == -ENOENT) { 1977 continue; 1978 } else if (result) { 1979 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1980 goto handle_mac_exit; 1981 } 1982 } 1983 1984 handle_mac_exit: 1985 /* send the response to the VF */ 1986 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 1987 } 1988 1989 /** 1990 * ice_vc_add_mac_addr_msg 1991 * @vf: pointer to the VF info 1992 * @msg: pointer to the msg buffer 1993 * 1994 * add guest MAC address filter 1995 */ 1996 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1997 { 1998 return ice_vc_handle_mac_addr_msg(vf, msg, true); 1999 } 2000 2001 /** 2002 * ice_vc_del_mac_addr_msg 2003 * @vf: pointer to the VF info 2004 * @msg: pointer to the msg buffer 2005 * 2006 * remove guest MAC address filter 2007 */ 2008 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2009 { 2010 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2011 } 2012 2013 /** 2014 * ice_vc_request_qs_msg 2015 * @vf: pointer to the VF info 2016 * @msg: pointer to the msg buffer 2017 * 2018 * VFs get a default number of queues but can use this message to request a 2019 * different number. If the request is successful, PF will reset the VF and 2020 * return 0. If unsuccessful, PF will send message informing VF of number of 2021 * available queue pairs via virtchnl message response to VF. 2022 */ 2023 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2024 { 2025 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2026 struct virtchnl_vf_res_request *vfres = 2027 (struct virtchnl_vf_res_request *)msg; 2028 u16 req_queues = vfres->num_queue_pairs; 2029 struct ice_pf *pf = vf->pf; 2030 u16 max_allowed_vf_queues; 2031 u16 tx_rx_queue_left; 2032 struct device *dev; 2033 u16 cur_queues; 2034 2035 dev = ice_pf_to_dev(pf); 2036 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2037 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2038 goto error_param; 2039 } 2040 2041 cur_queues = vf->num_vf_qs; 2042 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2043 ice_get_avail_rxq_count(pf)); 2044 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2045 if (!req_queues) { 2046 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2047 vf->vf_id); 2048 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2049 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2050 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2051 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2052 } else if (req_queues > cur_queues && 2053 req_queues - cur_queues > tx_rx_queue_left) { 2054 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2055 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2056 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2057 ICE_MAX_RSS_QS_PER_VF); 2058 } else { 2059 /* request is successful, then reset VF */ 2060 vf->num_req_qs = req_queues; 2061 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2062 dev_info(dev, "VF %d granted request of %u queues.\n", 2063 vf->vf_id, req_queues); 2064 return 0; 2065 } 2066 2067 error_param: 2068 /* send the response to the VF */ 2069 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2070 v_ret, (u8 *)vfres, sizeof(*vfres)); 2071 } 2072 2073 /** 2074 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2075 * @caps: VF driver negotiated capabilities 2076 * 2077 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2078 */ 2079 static bool ice_vf_vlan_offload_ena(u32 caps) 2080 { 2081 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2082 } 2083 2084 /** 2085 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2086 * @vf: VF used to determine if VLAN promiscuous config is allowed 2087 */ 2088 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2089 { 2090 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2091 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2092 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2093 return true; 2094 2095 return false; 2096 } 2097 2098 /** 2099 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2100 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2101 * @vlan: VLAN used to enable VLAN promiscuous 2102 * 2103 * This function should only be called if VLAN promiscuous mode is allowed, 2104 * which can be determined via ice_is_vlan_promisc_allowed(). 2105 */ 2106 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2107 { 2108 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2109 int status; 2110 2111 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2112 vlan->vid); 2113 if (status && status != -EEXIST) 2114 return status; 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2121 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2122 * @vlan: VLAN used to disable VLAN promiscuous 2123 * 2124 * This function should only be called if VLAN promiscuous mode is allowed, 2125 * which can be determined via ice_is_vlan_promisc_allowed(). 2126 */ 2127 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2128 { 2129 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2130 int status; 2131 2132 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2133 vlan->vid); 2134 if (status && status != -ENOENT) 2135 return status; 2136 2137 return 0; 2138 } 2139 2140 /** 2141 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2142 * @vf: VF to check against 2143 * @vsi: VF's VSI 2144 * 2145 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2146 * wants to, so return false. 2147 * 2148 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2149 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2150 */ 2151 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2152 { 2153 if (ice_is_vf_trusted(vf)) 2154 return false; 2155 2156 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2157 return ((ice_vsi_num_non_zero_vlans(vsi) + 2158 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2159 } 2160 2161 /** 2162 * ice_vc_process_vlan_msg 2163 * @vf: pointer to the VF info 2164 * @msg: pointer to the msg buffer 2165 * @add_v: Add VLAN if true, otherwise delete VLAN 2166 * 2167 * Process virtchnl op to add or remove programmed guest VLAN ID 2168 */ 2169 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2170 { 2171 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2172 struct virtchnl_vlan_filter_list *vfl = 2173 (struct virtchnl_vlan_filter_list *)msg; 2174 struct ice_pf *pf = vf->pf; 2175 bool vlan_promisc = false; 2176 struct ice_vsi *vsi; 2177 struct device *dev; 2178 int status = 0; 2179 int i; 2180 2181 dev = ice_pf_to_dev(pf); 2182 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2183 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2184 goto error_param; 2185 } 2186 2187 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2188 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2189 goto error_param; 2190 } 2191 2192 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2193 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2194 goto error_param; 2195 } 2196 2197 for (i = 0; i < vfl->num_elements; i++) { 2198 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2199 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2200 dev_err(dev, "invalid VF VLAN id %d\n", 2201 vfl->vlan_id[i]); 2202 goto error_param; 2203 } 2204 } 2205 2206 vsi = ice_get_vf_vsi(vf); 2207 if (!vsi) { 2208 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2209 goto error_param; 2210 } 2211 2212 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2213 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2214 vf->vf_id); 2215 /* There is no need to let VF know about being not trusted, 2216 * so we can just return success message here 2217 */ 2218 goto error_param; 2219 } 2220 2221 /* in DVM a VF can add/delete inner VLAN filters when 2222 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2223 */ 2224 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2225 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2226 goto error_param; 2227 } 2228 2229 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2230 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2231 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2232 */ 2233 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2234 !ice_is_dvm_ena(&pf->hw) && 2235 !ice_vf_is_port_vlan_ena(vf); 2236 2237 if (add_v) { 2238 for (i = 0; i < vfl->num_elements; i++) { 2239 u16 vid = vfl->vlan_id[i]; 2240 struct ice_vlan vlan; 2241 2242 if (ice_vf_has_max_vlans(vf, vsi)) { 2243 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2244 vf->vf_id); 2245 /* There is no need to let VF know about being 2246 * not trusted, so we can just return success 2247 * message here as well. 2248 */ 2249 goto error_param; 2250 } 2251 2252 /* we add VLAN 0 by default for each VF so we can enable 2253 * Tx VLAN anti-spoof without triggering MDD events so 2254 * we don't need to add it again here 2255 */ 2256 if (!vid) 2257 continue; 2258 2259 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2260 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2261 if (status) { 2262 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2263 goto error_param; 2264 } 2265 2266 /* Enable VLAN filtering on first non-zero VLAN */ 2267 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2268 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2269 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2270 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2271 vid, status); 2272 goto error_param; 2273 } 2274 } else if (vlan_promisc) { 2275 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2276 if (status) { 2277 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2278 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2279 vid, status); 2280 } 2281 } 2282 } 2283 } else { 2284 /* In case of non_trusted VF, number of VLAN elements passed 2285 * to PF for removal might be greater than number of VLANs 2286 * filter programmed for that VF - So, use actual number of 2287 * VLANS added earlier with add VLAN opcode. In order to avoid 2288 * removing VLAN that doesn't exist, which result to sending 2289 * erroneous failed message back to the VF 2290 */ 2291 int num_vf_vlan; 2292 2293 num_vf_vlan = vsi->num_vlan; 2294 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2295 u16 vid = vfl->vlan_id[i]; 2296 struct ice_vlan vlan; 2297 2298 /* we add VLAN 0 by default for each VF so we can enable 2299 * Tx VLAN anti-spoof without triggering MDD events so 2300 * we don't want a VIRTCHNL request to remove it 2301 */ 2302 if (!vid) 2303 continue; 2304 2305 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2306 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2307 if (status) { 2308 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2309 goto error_param; 2310 } 2311 2312 /* Disable VLAN filtering when only VLAN 0 is left */ 2313 if (!ice_vsi_has_non_zero_vlans(vsi)) 2314 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2315 2316 if (vlan_promisc) 2317 ice_vf_dis_vlan_promisc(vsi, &vlan); 2318 } 2319 } 2320 2321 error_param: 2322 /* send the response to the VF */ 2323 if (add_v) 2324 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2325 NULL, 0); 2326 else 2327 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2328 NULL, 0); 2329 } 2330 2331 /** 2332 * ice_vc_add_vlan_msg 2333 * @vf: pointer to the VF info 2334 * @msg: pointer to the msg buffer 2335 * 2336 * Add and program guest VLAN ID 2337 */ 2338 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2339 { 2340 return ice_vc_process_vlan_msg(vf, msg, true); 2341 } 2342 2343 /** 2344 * ice_vc_remove_vlan_msg 2345 * @vf: pointer to the VF info 2346 * @msg: pointer to the msg buffer 2347 * 2348 * remove programmed guest VLAN ID 2349 */ 2350 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2351 { 2352 return ice_vc_process_vlan_msg(vf, msg, false); 2353 } 2354 2355 /** 2356 * ice_vc_ena_vlan_stripping 2357 * @vf: pointer to the VF info 2358 * 2359 * Enable VLAN header stripping for a given VF 2360 */ 2361 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2362 { 2363 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2364 struct ice_vsi *vsi; 2365 2366 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2367 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2368 goto error_param; 2369 } 2370 2371 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2372 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2373 goto error_param; 2374 } 2375 2376 vsi = ice_get_vf_vsi(vf); 2377 if (!vsi) { 2378 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2379 goto error_param; 2380 } 2381 2382 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2383 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2384 2385 error_param: 2386 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2387 v_ret, NULL, 0); 2388 } 2389 2390 /** 2391 * ice_vc_dis_vlan_stripping 2392 * @vf: pointer to the VF info 2393 * 2394 * Disable VLAN header stripping for a given VF 2395 */ 2396 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2397 { 2398 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2399 struct ice_vsi *vsi; 2400 2401 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2403 goto error_param; 2404 } 2405 2406 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2408 goto error_param; 2409 } 2410 2411 vsi = ice_get_vf_vsi(vf); 2412 if (!vsi) { 2413 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2414 goto error_param; 2415 } 2416 2417 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2418 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2419 2420 error_param: 2421 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2422 v_ret, NULL, 0); 2423 } 2424 2425 /** 2426 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2427 * @vf: VF to enable/disable VLAN stripping for on initialization 2428 * 2429 * Set the default for VLAN stripping based on whether a port VLAN is configured 2430 * and the current VLAN mode of the device. 2431 */ 2432 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2433 { 2434 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2435 2436 if (!vsi) 2437 return -EINVAL; 2438 2439 /* don't modify stripping if port VLAN is configured in SVM since the 2440 * port VLAN is based on the inner/single VLAN in SVM 2441 */ 2442 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2443 return 0; 2444 2445 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2446 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2447 else 2448 return vsi->inner_vlan_ops.dis_stripping(vsi); 2449 } 2450 2451 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2452 { 2453 if (vf->trusted) 2454 return VLAN_N_VID; 2455 else 2456 return ICE_MAX_VLAN_PER_VF; 2457 } 2458 2459 /** 2460 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2461 * @vf: VF that being checked for 2462 * 2463 * When the device is in double VLAN mode, check whether or not the outer VLAN 2464 * is allowed. 2465 */ 2466 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2467 { 2468 if (ice_vf_is_port_vlan_ena(vf)) 2469 return true; 2470 2471 return false; 2472 } 2473 2474 /** 2475 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2476 * @vf: VF that capabilities are being set for 2477 * @caps: VLAN capabilities to populate 2478 * 2479 * Determine VLAN capabilities support based on whether a port VLAN is 2480 * configured. If a port VLAN is configured then the VF should use the inner 2481 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2482 * capabilies. 2483 */ 2484 static void 2485 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2486 { 2487 struct virtchnl_vlan_supported_caps *supported_caps; 2488 2489 if (ice_vf_outer_vlan_not_allowed(vf)) { 2490 /* until support for inner VLAN filtering is added when a port 2491 * VLAN is configured, only support software offloaded inner 2492 * VLANs when a port VLAN is confgured in DVM 2493 */ 2494 supported_caps = &caps->filtering.filtering_support; 2495 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2496 2497 supported_caps = &caps->offloads.stripping_support; 2498 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2499 VIRTCHNL_VLAN_TOGGLE | 2500 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2501 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2502 2503 supported_caps = &caps->offloads.insertion_support; 2504 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2505 VIRTCHNL_VLAN_TOGGLE | 2506 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2507 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2508 2509 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2510 caps->offloads.ethertype_match = 2511 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2512 } else { 2513 supported_caps = &caps->filtering.filtering_support; 2514 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2515 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2516 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2517 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2518 VIRTCHNL_VLAN_ETHERTYPE_AND; 2519 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2520 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2521 VIRTCHNL_VLAN_ETHERTYPE_9100; 2522 2523 supported_caps = &caps->offloads.stripping_support; 2524 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2525 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2526 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2527 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2528 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2529 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2530 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2531 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2532 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2533 2534 supported_caps = &caps->offloads.insertion_support; 2535 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2536 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2537 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2538 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2539 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2540 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2541 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2542 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2543 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2544 2545 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2546 2547 caps->offloads.ethertype_match = 2548 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2549 } 2550 2551 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2552 } 2553 2554 /** 2555 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2556 * @vf: VF that capabilities are being set for 2557 * @caps: VLAN capabilities to populate 2558 * 2559 * Determine VLAN capabilities support based on whether a port VLAN is 2560 * configured. If a port VLAN is configured then the VF does not have any VLAN 2561 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2562 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2563 * VLAN fitlering and offload capabilities. 2564 */ 2565 static void 2566 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2567 { 2568 struct virtchnl_vlan_supported_caps *supported_caps; 2569 2570 if (ice_vf_is_port_vlan_ena(vf)) { 2571 supported_caps = &caps->filtering.filtering_support; 2572 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2573 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2574 2575 supported_caps = &caps->offloads.stripping_support; 2576 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2577 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2578 2579 supported_caps = &caps->offloads.insertion_support; 2580 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2581 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2582 2583 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2584 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2585 caps->filtering.max_filters = 0; 2586 } else { 2587 supported_caps = &caps->filtering.filtering_support; 2588 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2589 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2590 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2591 2592 supported_caps = &caps->offloads.stripping_support; 2593 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2594 VIRTCHNL_VLAN_TOGGLE | 2595 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2596 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2597 2598 supported_caps = &caps->offloads.insertion_support; 2599 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2600 VIRTCHNL_VLAN_TOGGLE | 2601 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2602 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2603 2604 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2605 caps->offloads.ethertype_match = 2606 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2607 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2608 } 2609 } 2610 2611 /** 2612 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2613 * @vf: VF to determine VLAN capabilities for 2614 * 2615 * This will only be called if the VF and PF successfully negotiated 2616 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2617 * 2618 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2619 * is configured or not. 2620 */ 2621 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2622 { 2623 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2624 struct virtchnl_vlan_caps *caps = NULL; 2625 int err, len = 0; 2626 2627 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2628 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2629 goto out; 2630 } 2631 2632 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2633 if (!caps) { 2634 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2635 goto out; 2636 } 2637 len = sizeof(*caps); 2638 2639 if (ice_is_dvm_ena(&vf->pf->hw)) 2640 ice_vc_set_dvm_caps(vf, caps); 2641 else 2642 ice_vc_set_svm_caps(vf, caps); 2643 2644 /* store negotiated caps to prevent invalid VF messages */ 2645 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2646 2647 out: 2648 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2649 v_ret, (u8 *)caps, len); 2650 kfree(caps); 2651 return err; 2652 } 2653 2654 /** 2655 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2656 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2657 * @tpid: VLAN TPID used for validation 2658 * 2659 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2660 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2661 */ 2662 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2663 { 2664 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2665 2666 switch (tpid) { 2667 case ETH_P_8021Q: 2668 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2669 break; 2670 case ETH_P_8021AD: 2671 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2672 break; 2673 case ETH_P_QINQ1: 2674 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2675 break; 2676 } 2677 2678 if (!(filtering_caps & vlan_ethertype)) 2679 return false; 2680 2681 return true; 2682 } 2683 2684 /** 2685 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2686 * @vc_vlan: virtchnl_vlan to validate 2687 * 2688 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2689 * false. Otherwise return true. 2690 */ 2691 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2692 { 2693 if (!vc_vlan->tci || !vc_vlan->tpid) 2694 return false; 2695 2696 return true; 2697 } 2698 2699 /** 2700 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2701 * @vfc: negotiated/supported VLAN filtering capabilities 2702 * @vfl: VLAN filter list from VF to validate 2703 * 2704 * Validate all of the filters in the VLAN filter list from the VF. If any of 2705 * the checks fail then return false. Otherwise return true. 2706 */ 2707 static bool 2708 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2709 struct virtchnl_vlan_filter_list_v2 *vfl) 2710 { 2711 u16 i; 2712 2713 if (!vfl->num_elements) 2714 return false; 2715 2716 for (i = 0; i < vfl->num_elements; i++) { 2717 struct virtchnl_vlan_supported_caps *filtering_support = 2718 &vfc->filtering_support; 2719 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2720 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2721 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2722 2723 if ((ice_vc_is_valid_vlan(outer) && 2724 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2725 (ice_vc_is_valid_vlan(inner) && 2726 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2727 return false; 2728 2729 if ((outer->tci_mask && 2730 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2731 (inner->tci_mask && 2732 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2733 return false; 2734 2735 if (((outer->tci & VLAN_PRIO_MASK) && 2736 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2737 ((inner->tci & VLAN_PRIO_MASK) && 2738 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2739 return false; 2740 2741 if ((ice_vc_is_valid_vlan(outer) && 2742 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2743 outer->tpid)) || 2744 (ice_vc_is_valid_vlan(inner) && 2745 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2746 inner->tpid))) 2747 return false; 2748 } 2749 2750 return true; 2751 } 2752 2753 /** 2754 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2755 * @vc_vlan: struct virtchnl_vlan to transform 2756 */ 2757 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2758 { 2759 struct ice_vlan vlan = { 0 }; 2760 2761 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2762 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2763 vlan.tpid = vc_vlan->tpid; 2764 2765 return vlan; 2766 } 2767 2768 /** 2769 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2770 * @vsi: VF's VSI used to perform the action 2771 * @vlan_action: function to perform the action with (i.e. add/del) 2772 * @vlan: VLAN filter to perform the action with 2773 */ 2774 static int 2775 ice_vc_vlan_action(struct ice_vsi *vsi, 2776 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2777 struct ice_vlan *vlan) 2778 { 2779 int err; 2780 2781 err = vlan_action(vsi, vlan); 2782 if (err) 2783 return err; 2784 2785 return 0; 2786 } 2787 2788 /** 2789 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2790 * @vf: VF used to delete the VLAN(s) 2791 * @vsi: VF's VSI used to delete the VLAN(s) 2792 * @vfl: virthchnl filter list used to delete the filters 2793 */ 2794 static int 2795 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2796 struct virtchnl_vlan_filter_list_v2 *vfl) 2797 { 2798 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2799 int err; 2800 u16 i; 2801 2802 for (i = 0; i < vfl->num_elements; i++) { 2803 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2804 struct virtchnl_vlan *vc_vlan; 2805 2806 vc_vlan = &vlan_fltr->outer; 2807 if (ice_vc_is_valid_vlan(vc_vlan)) { 2808 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2809 2810 err = ice_vc_vlan_action(vsi, 2811 vsi->outer_vlan_ops.del_vlan, 2812 &vlan); 2813 if (err) 2814 return err; 2815 2816 if (vlan_promisc) 2817 ice_vf_dis_vlan_promisc(vsi, &vlan); 2818 } 2819 2820 vc_vlan = &vlan_fltr->inner; 2821 if (ice_vc_is_valid_vlan(vc_vlan)) { 2822 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2823 2824 err = ice_vc_vlan_action(vsi, 2825 vsi->inner_vlan_ops.del_vlan, 2826 &vlan); 2827 if (err) 2828 return err; 2829 2830 /* no support for VLAN promiscuous on inner VLAN unless 2831 * we are in Single VLAN Mode (SVM) 2832 */ 2833 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) 2834 ice_vf_dis_vlan_promisc(vsi, &vlan); 2835 } 2836 } 2837 2838 return 0; 2839 } 2840 2841 /** 2842 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2843 * @vf: VF the message was received from 2844 * @msg: message received from the VF 2845 */ 2846 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2847 { 2848 struct virtchnl_vlan_filter_list_v2 *vfl = 2849 (struct virtchnl_vlan_filter_list_v2 *)msg; 2850 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2851 struct ice_vsi *vsi; 2852 2853 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2854 vfl)) { 2855 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2856 goto out; 2857 } 2858 2859 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2860 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2861 goto out; 2862 } 2863 2864 vsi = ice_get_vf_vsi(vf); 2865 if (!vsi) { 2866 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2867 goto out; 2868 } 2869 2870 if (ice_vc_del_vlans(vf, vsi, vfl)) 2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2872 2873 out: 2874 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 2875 0); 2876 } 2877 2878 /** 2879 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 2880 * @vf: VF used to add the VLAN(s) 2881 * @vsi: VF's VSI used to add the VLAN(s) 2882 * @vfl: virthchnl filter list used to add the filters 2883 */ 2884 static int 2885 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2886 struct virtchnl_vlan_filter_list_v2 *vfl) 2887 { 2888 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2889 int err; 2890 u16 i; 2891 2892 for (i = 0; i < vfl->num_elements; i++) { 2893 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2894 struct virtchnl_vlan *vc_vlan; 2895 2896 vc_vlan = &vlan_fltr->outer; 2897 if (ice_vc_is_valid_vlan(vc_vlan)) { 2898 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2899 2900 err = ice_vc_vlan_action(vsi, 2901 vsi->outer_vlan_ops.add_vlan, 2902 &vlan); 2903 if (err) 2904 return err; 2905 2906 if (vlan_promisc) { 2907 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2908 if (err) 2909 return err; 2910 } 2911 } 2912 2913 vc_vlan = &vlan_fltr->inner; 2914 if (ice_vc_is_valid_vlan(vc_vlan)) { 2915 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2916 2917 err = ice_vc_vlan_action(vsi, 2918 vsi->inner_vlan_ops.add_vlan, 2919 &vlan); 2920 if (err) 2921 return err; 2922 2923 /* no support for VLAN promiscuous on inner VLAN unless 2924 * we are in Single VLAN Mode (SVM) 2925 */ 2926 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) { 2927 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2928 if (err) 2929 return err; 2930 } 2931 } 2932 } 2933 2934 return 0; 2935 } 2936 2937 /** 2938 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 2939 * @vsi: VF VSI used to get number of existing VLAN filters 2940 * @vfc: negotiated/supported VLAN filtering capabilities 2941 * @vfl: VLAN filter list from VF to validate 2942 * 2943 * Validate all of the filters in the VLAN filter list from the VF during the 2944 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 2945 * Otherwise return true. 2946 */ 2947 static bool 2948 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 2949 struct virtchnl_vlan_filtering_caps *vfc, 2950 struct virtchnl_vlan_filter_list_v2 *vfl) 2951 { 2952 u16 num_requested_filters = vsi->num_vlan + vfl->num_elements; 2953 2954 if (num_requested_filters > vfc->max_filters) 2955 return false; 2956 2957 return ice_vc_validate_vlan_filter_list(vfc, vfl); 2958 } 2959 2960 /** 2961 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 2962 * @vf: VF the message was received from 2963 * @msg: message received from the VF 2964 */ 2965 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2966 { 2967 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2968 struct virtchnl_vlan_filter_list_v2 *vfl = 2969 (struct virtchnl_vlan_filter_list_v2 *)msg; 2970 struct ice_vsi *vsi; 2971 2972 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2973 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2974 goto out; 2975 } 2976 2977 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2978 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2979 goto out; 2980 } 2981 2982 vsi = ice_get_vf_vsi(vf); 2983 if (!vsi) { 2984 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2985 goto out; 2986 } 2987 2988 if (!ice_vc_validate_add_vlan_filter_list(vsi, 2989 &vf->vlan_v2_caps.filtering, 2990 vfl)) { 2991 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2992 goto out; 2993 } 2994 2995 if (ice_vc_add_vlans(vf, vsi, vfl)) 2996 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2997 2998 out: 2999 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3000 0); 3001 } 3002 3003 /** 3004 * ice_vc_valid_vlan_setting - validate VLAN setting 3005 * @negotiated_settings: negotiated VLAN settings during VF init 3006 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3007 */ 3008 static bool 3009 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3010 { 3011 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3012 return false; 3013 3014 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3015 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3016 */ 3017 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3018 hweight32(ethertype_setting) > 1) 3019 return false; 3020 3021 /* ability to modify the VLAN setting was not negotiated */ 3022 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3023 return false; 3024 3025 return true; 3026 } 3027 3028 /** 3029 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3030 * @caps: negotiated VLAN settings during VF init 3031 * @msg: message to validate 3032 * 3033 * Used to validate any VLAN virtchnl message sent as a 3034 * virtchnl_vlan_setting structure. Validates the message against the 3035 * negotiated/supported caps during VF driver init. 3036 */ 3037 static bool 3038 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3039 struct virtchnl_vlan_setting *msg) 3040 { 3041 if ((!msg->outer_ethertype_setting && 3042 !msg->inner_ethertype_setting) || 3043 (!caps->outer && !caps->inner)) 3044 return false; 3045 3046 if (msg->outer_ethertype_setting && 3047 !ice_vc_valid_vlan_setting(caps->outer, 3048 msg->outer_ethertype_setting)) 3049 return false; 3050 3051 if (msg->inner_ethertype_setting && 3052 !ice_vc_valid_vlan_setting(caps->inner, 3053 msg->inner_ethertype_setting)) 3054 return false; 3055 3056 return true; 3057 } 3058 3059 /** 3060 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3061 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3062 * @tpid: VLAN TPID to populate 3063 */ 3064 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3065 { 3066 switch (ethertype_setting) { 3067 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3068 *tpid = ETH_P_8021Q; 3069 break; 3070 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3071 *tpid = ETH_P_8021AD; 3072 break; 3073 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3074 *tpid = ETH_P_QINQ1; 3075 break; 3076 default: 3077 *tpid = 0; 3078 return -EINVAL; 3079 } 3080 3081 return 0; 3082 } 3083 3084 /** 3085 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3086 * @vsi: VF's VSI used to enable the VLAN offload 3087 * @ena_offload: function used to enable the VLAN offload 3088 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3089 */ 3090 static int 3091 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3092 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3093 u32 ethertype_setting) 3094 { 3095 u16 tpid; 3096 int err; 3097 3098 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3099 if (err) 3100 return err; 3101 3102 err = ena_offload(vsi, tpid); 3103 if (err) 3104 return err; 3105 3106 return 0; 3107 } 3108 3109 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3110 #define ICE_L2TSEL_BIT_OFFSET 23 3111 enum ice_l2tsel { 3112 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3113 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3114 }; 3115 3116 /** 3117 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3118 * @vsi: VSI used to update l2tsel on 3119 * @l2tsel: l2tsel setting requested 3120 * 3121 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3122 * This will modify which descriptor field the first offloaded VLAN will be 3123 * stripped into. 3124 */ 3125 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3126 { 3127 struct ice_hw *hw = &vsi->back->hw; 3128 u32 l2tsel_bit; 3129 int i; 3130 3131 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3132 l2tsel_bit = 0; 3133 else 3134 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3135 3136 for (i = 0; i < vsi->alloc_rxq; i++) { 3137 u16 pfq = vsi->rxq_map[i]; 3138 u32 qrx_context_offset; 3139 u32 regval; 3140 3141 qrx_context_offset = 3142 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3143 3144 regval = rd32(hw, qrx_context_offset); 3145 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3146 regval |= l2tsel_bit; 3147 wr32(hw, qrx_context_offset, regval); 3148 } 3149 } 3150 3151 /** 3152 * ice_vc_ena_vlan_stripping_v2_msg 3153 * @vf: VF the message was received from 3154 * @msg: message received from the VF 3155 * 3156 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3157 */ 3158 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3159 { 3160 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3161 struct virtchnl_vlan_supported_caps *stripping_support; 3162 struct virtchnl_vlan_setting *strip_msg = 3163 (struct virtchnl_vlan_setting *)msg; 3164 u32 ethertype_setting; 3165 struct ice_vsi *vsi; 3166 3167 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3168 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3169 goto out; 3170 } 3171 3172 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3173 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3174 goto out; 3175 } 3176 3177 vsi = ice_get_vf_vsi(vf); 3178 if (!vsi) { 3179 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3180 goto out; 3181 } 3182 3183 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3184 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3185 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3186 goto out; 3187 } 3188 3189 ethertype_setting = strip_msg->outer_ethertype_setting; 3190 if (ethertype_setting) { 3191 if (ice_vc_ena_vlan_offload(vsi, 3192 vsi->outer_vlan_ops.ena_stripping, 3193 ethertype_setting)) { 3194 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3195 goto out; 3196 } else { 3197 enum ice_l2tsel l2tsel = 3198 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3199 3200 /* PF tells the VF that the outer VLAN tag is always 3201 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3202 * inner is always extracted to 3203 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3204 * support outer stripping so the first tag always ends 3205 * up in L2TAG2_2ND and the second/inner tag, if 3206 * enabled, is extracted in L2TAG1. 3207 */ 3208 ice_vsi_update_l2tsel(vsi, l2tsel); 3209 } 3210 } 3211 3212 ethertype_setting = strip_msg->inner_ethertype_setting; 3213 if (ethertype_setting && 3214 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3215 ethertype_setting)) { 3216 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3217 goto out; 3218 } 3219 3220 out: 3221 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3222 v_ret, NULL, 0); 3223 } 3224 3225 /** 3226 * ice_vc_dis_vlan_stripping_v2_msg 3227 * @vf: VF the message was received from 3228 * @msg: message received from the VF 3229 * 3230 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3231 */ 3232 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3233 { 3234 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3235 struct virtchnl_vlan_supported_caps *stripping_support; 3236 struct virtchnl_vlan_setting *strip_msg = 3237 (struct virtchnl_vlan_setting *)msg; 3238 u32 ethertype_setting; 3239 struct ice_vsi *vsi; 3240 3241 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3242 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3243 goto out; 3244 } 3245 3246 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3248 goto out; 3249 } 3250 3251 vsi = ice_get_vf_vsi(vf); 3252 if (!vsi) { 3253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3254 goto out; 3255 } 3256 3257 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3258 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3260 goto out; 3261 } 3262 3263 ethertype_setting = strip_msg->outer_ethertype_setting; 3264 if (ethertype_setting) { 3265 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3266 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3267 goto out; 3268 } else { 3269 enum ice_l2tsel l2tsel = 3270 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3271 3272 /* PF tells the VF that the outer VLAN tag is always 3273 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3274 * inner is always extracted to 3275 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3276 * support inner stripping while outer stripping is 3277 * disabled so that the first and only tag is extracted 3278 * in L2TAG1. 3279 */ 3280 ice_vsi_update_l2tsel(vsi, l2tsel); 3281 } 3282 } 3283 3284 ethertype_setting = strip_msg->inner_ethertype_setting; 3285 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3286 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3287 goto out; 3288 } 3289 3290 out: 3291 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3292 v_ret, NULL, 0); 3293 } 3294 3295 /** 3296 * ice_vc_ena_vlan_insertion_v2_msg 3297 * @vf: VF the message was received from 3298 * @msg: message received from the VF 3299 * 3300 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3301 */ 3302 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3303 { 3304 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3305 struct virtchnl_vlan_supported_caps *insertion_support; 3306 struct virtchnl_vlan_setting *insertion_msg = 3307 (struct virtchnl_vlan_setting *)msg; 3308 u32 ethertype_setting; 3309 struct ice_vsi *vsi; 3310 3311 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3312 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3313 goto out; 3314 } 3315 3316 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3317 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3318 goto out; 3319 } 3320 3321 vsi = ice_get_vf_vsi(vf); 3322 if (!vsi) { 3323 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3324 goto out; 3325 } 3326 3327 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3328 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3329 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3330 goto out; 3331 } 3332 3333 ethertype_setting = insertion_msg->outer_ethertype_setting; 3334 if (ethertype_setting && 3335 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3336 ethertype_setting)) { 3337 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3338 goto out; 3339 } 3340 3341 ethertype_setting = insertion_msg->inner_ethertype_setting; 3342 if (ethertype_setting && 3343 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3344 ethertype_setting)) { 3345 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3346 goto out; 3347 } 3348 3349 out: 3350 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3351 v_ret, NULL, 0); 3352 } 3353 3354 /** 3355 * ice_vc_dis_vlan_insertion_v2_msg 3356 * @vf: VF the message was received from 3357 * @msg: message received from the VF 3358 * 3359 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3360 */ 3361 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3362 { 3363 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3364 struct virtchnl_vlan_supported_caps *insertion_support; 3365 struct virtchnl_vlan_setting *insertion_msg = 3366 (struct virtchnl_vlan_setting *)msg; 3367 u32 ethertype_setting; 3368 struct ice_vsi *vsi; 3369 3370 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3371 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3372 goto out; 3373 } 3374 3375 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3376 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3377 goto out; 3378 } 3379 3380 vsi = ice_get_vf_vsi(vf); 3381 if (!vsi) { 3382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3383 goto out; 3384 } 3385 3386 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3387 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3388 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3389 goto out; 3390 } 3391 3392 ethertype_setting = insertion_msg->outer_ethertype_setting; 3393 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3394 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3395 goto out; 3396 } 3397 3398 ethertype_setting = insertion_msg->inner_ethertype_setting; 3399 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3400 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3401 goto out; 3402 } 3403 3404 out: 3405 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3406 v_ret, NULL, 0); 3407 } 3408 3409 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3410 .get_ver_msg = ice_vc_get_ver_msg, 3411 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3412 .reset_vf = ice_vc_reset_vf_msg, 3413 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3414 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3415 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3416 .ena_qs_msg = ice_vc_ena_qs_msg, 3417 .dis_qs_msg = ice_vc_dis_qs_msg, 3418 .request_qs_msg = ice_vc_request_qs_msg, 3419 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3420 .config_rss_key = ice_vc_config_rss_key, 3421 .config_rss_lut = ice_vc_config_rss_lut, 3422 .get_stats_msg = ice_vc_get_stats_msg, 3423 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3424 .add_vlan_msg = ice_vc_add_vlan_msg, 3425 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3426 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3427 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3428 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3429 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3430 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3431 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3432 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3433 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3434 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3435 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3436 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3437 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3438 }; 3439 3440 /** 3441 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3442 * @vf: the VF to switch ops 3443 */ 3444 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3445 { 3446 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3447 } 3448 3449 /** 3450 * ice_vc_repr_add_mac 3451 * @vf: pointer to VF 3452 * @msg: virtchannel message 3453 * 3454 * When port representors are created, we do not add MAC rule 3455 * to firmware, we store it so that PF could report same 3456 * MAC as VF. 3457 */ 3458 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3459 { 3460 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3461 struct virtchnl_ether_addr_list *al = 3462 (struct virtchnl_ether_addr_list *)msg; 3463 struct ice_vsi *vsi; 3464 struct ice_pf *pf; 3465 int i; 3466 3467 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3468 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3469 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3470 goto handle_mac_exit; 3471 } 3472 3473 pf = vf->pf; 3474 3475 vsi = ice_get_vf_vsi(vf); 3476 if (!vsi) { 3477 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3478 goto handle_mac_exit; 3479 } 3480 3481 for (i = 0; i < al->num_elements; i++) { 3482 u8 *mac_addr = al->list[i].addr; 3483 int result; 3484 3485 if (!is_unicast_ether_addr(mac_addr) || 3486 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3487 continue; 3488 3489 if (vf->pf_set_mac) { 3490 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3491 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3492 goto handle_mac_exit; 3493 } 3494 3495 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3496 if (result) { 3497 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3498 mac_addr, vf->vf_id, result); 3499 goto handle_mac_exit; 3500 } 3501 3502 ice_vfhw_mac_add(vf, &al->list[i]); 3503 vf->num_mac++; 3504 break; 3505 } 3506 3507 handle_mac_exit: 3508 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3509 v_ret, NULL, 0); 3510 } 3511 3512 /** 3513 * ice_vc_repr_del_mac - response with success for deleting MAC 3514 * @vf: pointer to VF 3515 * @msg: virtchannel message 3516 * 3517 * Respond with success to not break normal VF flow. 3518 * For legacy VF driver try to update cached MAC address. 3519 */ 3520 static int 3521 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3522 { 3523 struct virtchnl_ether_addr_list *al = 3524 (struct virtchnl_ether_addr_list *)msg; 3525 3526 ice_update_legacy_cached_mac(vf, &al->list[0]); 3527 3528 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3529 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3530 } 3531 3532 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3533 { 3534 dev_dbg(ice_pf_to_dev(vf->pf), 3535 "Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id); 3536 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, 3537 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3538 } 3539 3540 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3541 { 3542 dev_dbg(ice_pf_to_dev(vf->pf), 3543 "Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id); 3544 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, 3545 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3546 } 3547 3548 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf) 3549 { 3550 dev_dbg(ice_pf_to_dev(vf->pf), 3551 "Can't enable VLAN stripping in switchdev mode for VF %d\n", 3552 vf->vf_id); 3553 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 3554 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3555 NULL, 0); 3556 } 3557 3558 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf) 3559 { 3560 dev_dbg(ice_pf_to_dev(vf->pf), 3561 "Can't disable VLAN stripping in switchdev mode for VF %d\n", 3562 vf->vf_id); 3563 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 3564 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3565 NULL, 0); 3566 } 3567 3568 static int 3569 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3570 { 3571 dev_dbg(ice_pf_to_dev(vf->pf), 3572 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3573 vf->vf_id); 3574 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3575 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3576 NULL, 0); 3577 } 3578 3579 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3580 .get_ver_msg = ice_vc_get_ver_msg, 3581 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3582 .reset_vf = ice_vc_reset_vf_msg, 3583 .add_mac_addr_msg = ice_vc_repr_add_mac, 3584 .del_mac_addr_msg = ice_vc_repr_del_mac, 3585 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3586 .ena_qs_msg = ice_vc_ena_qs_msg, 3587 .dis_qs_msg = ice_vc_dis_qs_msg, 3588 .request_qs_msg = ice_vc_request_qs_msg, 3589 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3590 .config_rss_key = ice_vc_config_rss_key, 3591 .config_rss_lut = ice_vc_config_rss_lut, 3592 .get_stats_msg = ice_vc_get_stats_msg, 3593 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3594 .add_vlan_msg = ice_vc_repr_add_vlan, 3595 .remove_vlan_msg = ice_vc_repr_del_vlan, 3596 .ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping, 3597 .dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping, 3598 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3599 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3600 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3601 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3602 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3603 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3604 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3605 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3606 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3607 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3608 }; 3609 3610 /** 3611 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3612 * @vf: the VF to switch ops 3613 */ 3614 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3615 { 3616 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3617 } 3618 3619 /** 3620 * ice_vc_process_vf_msg - Process request from VF 3621 * @pf: pointer to the PF structure 3622 * @event: pointer to the AQ event 3623 * 3624 * called from the common asq/arq handler to 3625 * process request from VF 3626 */ 3627 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3628 { 3629 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3630 s16 vf_id = le16_to_cpu(event->desc.retval); 3631 const struct ice_virtchnl_ops *ops; 3632 u16 msglen = event->msg_len; 3633 u8 *msg = event->msg_buf; 3634 struct ice_vf *vf = NULL; 3635 struct device *dev; 3636 int err = 0; 3637 3638 dev = ice_pf_to_dev(pf); 3639 3640 vf = ice_get_vf_by_id(pf, vf_id); 3641 if (!vf) { 3642 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3643 vf_id, v_opcode, msglen); 3644 return; 3645 } 3646 3647 mutex_lock(&vf->cfg_lock); 3648 3649 /* Check if VF is disabled. */ 3650 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3651 err = -EPERM; 3652 goto error_handler; 3653 } 3654 3655 ops = vf->virtchnl_ops; 3656 3657 /* Perform basic checks on the msg */ 3658 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3659 if (err) { 3660 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3661 err = -EPERM; 3662 else 3663 err = -EINVAL; 3664 } 3665 3666 error_handler: 3667 if (err) { 3668 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3669 NULL, 0); 3670 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3671 vf_id, v_opcode, msglen, err); 3672 goto finish; 3673 } 3674 3675 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3676 ice_vc_send_msg_to_vf(vf, v_opcode, 3677 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3678 0); 3679 goto finish; 3680 } 3681 3682 switch (v_opcode) { 3683 case VIRTCHNL_OP_VERSION: 3684 err = ops->get_ver_msg(vf, msg); 3685 break; 3686 case VIRTCHNL_OP_GET_VF_RESOURCES: 3687 err = ops->get_vf_res_msg(vf, msg); 3688 if (ice_vf_init_vlan_stripping(vf)) 3689 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3690 vf->vf_id); 3691 ice_vc_notify_vf_link_state(vf); 3692 break; 3693 case VIRTCHNL_OP_RESET_VF: 3694 ops->reset_vf(vf); 3695 break; 3696 case VIRTCHNL_OP_ADD_ETH_ADDR: 3697 err = ops->add_mac_addr_msg(vf, msg); 3698 break; 3699 case VIRTCHNL_OP_DEL_ETH_ADDR: 3700 err = ops->del_mac_addr_msg(vf, msg); 3701 break; 3702 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3703 err = ops->cfg_qs_msg(vf, msg); 3704 break; 3705 case VIRTCHNL_OP_ENABLE_QUEUES: 3706 err = ops->ena_qs_msg(vf, msg); 3707 ice_vc_notify_vf_link_state(vf); 3708 break; 3709 case VIRTCHNL_OP_DISABLE_QUEUES: 3710 err = ops->dis_qs_msg(vf, msg); 3711 break; 3712 case VIRTCHNL_OP_REQUEST_QUEUES: 3713 err = ops->request_qs_msg(vf, msg); 3714 break; 3715 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3716 err = ops->cfg_irq_map_msg(vf, msg); 3717 break; 3718 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3719 err = ops->config_rss_key(vf, msg); 3720 break; 3721 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3722 err = ops->config_rss_lut(vf, msg); 3723 break; 3724 case VIRTCHNL_OP_GET_STATS: 3725 err = ops->get_stats_msg(vf, msg); 3726 break; 3727 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3728 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3729 break; 3730 case VIRTCHNL_OP_ADD_VLAN: 3731 err = ops->add_vlan_msg(vf, msg); 3732 break; 3733 case VIRTCHNL_OP_DEL_VLAN: 3734 err = ops->remove_vlan_msg(vf, msg); 3735 break; 3736 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3737 err = ops->ena_vlan_stripping(vf); 3738 break; 3739 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3740 err = ops->dis_vlan_stripping(vf); 3741 break; 3742 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3743 err = ops->add_fdir_fltr_msg(vf, msg); 3744 break; 3745 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3746 err = ops->del_fdir_fltr_msg(vf, msg); 3747 break; 3748 case VIRTCHNL_OP_ADD_RSS_CFG: 3749 err = ops->handle_rss_cfg_msg(vf, msg, true); 3750 break; 3751 case VIRTCHNL_OP_DEL_RSS_CFG: 3752 err = ops->handle_rss_cfg_msg(vf, msg, false); 3753 break; 3754 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3755 err = ops->get_offload_vlan_v2_caps(vf); 3756 break; 3757 case VIRTCHNL_OP_ADD_VLAN_V2: 3758 err = ops->add_vlan_v2_msg(vf, msg); 3759 break; 3760 case VIRTCHNL_OP_DEL_VLAN_V2: 3761 err = ops->remove_vlan_v2_msg(vf, msg); 3762 break; 3763 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3764 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3765 break; 3766 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3767 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3768 break; 3769 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3770 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3771 break; 3772 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3773 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3774 break; 3775 case VIRTCHNL_OP_UNKNOWN: 3776 default: 3777 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3778 vf_id); 3779 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3780 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3781 NULL, 0); 3782 break; 3783 } 3784 if (err) { 3785 /* Helper function cares less about error return values here 3786 * as it is busy with pending work. 3787 */ 3788 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3789 vf_id, v_opcode, err); 3790 } 3791 3792 finish: 3793 mutex_unlock(&vf->cfg_lock); 3794 ice_put_vf(vf); 3795 } 3796