1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vlan_caps 364 * @hw: pointer to the hw 365 * @vf: pointer to the VF info 366 * @vsi: pointer to the VSI 367 * @driver_caps: current driver caps 368 * 369 * Return 0 if there is no VLAN caps supported, or VLAN caps value 370 */ 371 static u32 372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi, 373 u32 driver_caps) 374 { 375 if (ice_is_eswitch_mode_switchdev(vf->pf)) 376 /* In switchdev setting VLAN from VF isn't supported */ 377 return 0; 378 379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 380 /* VLAN offloads based on current device configuration */ 381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2; 382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 384 * these two conditions, which amounts to guest VLAN filtering 385 * and offloads being based on the inner VLAN or the 386 * inner/single VLAN respectively and don't allow VF to 387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 388 */ 389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 390 return VIRTCHNL_VF_OFFLOAD_VLAN; 391 } else if (!ice_is_dvm_ena(hw) && 392 !ice_vf_is_port_vlan_ena(vf)) { 393 /* configure backward compatible support for VFs that 394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 395 * configured in SVM, and no port VLAN is configured 396 */ 397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 398 return VIRTCHNL_VF_OFFLOAD_VLAN; 399 } else if (ice_is_dvm_ena(hw)) { 400 /* configure software offloaded VLAN support when DVM 401 * is enabled, but no port VLAN is enabled 402 */ 403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 404 } 405 } 406 407 return 0; 408 } 409 410 /** 411 * ice_vc_get_vf_res_msg 412 * @vf: pointer to the VF info 413 * @msg: pointer to the msg buffer 414 * 415 * called from the VF to request its resources 416 */ 417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 418 { 419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 420 struct virtchnl_vf_resource *vfres = NULL; 421 struct ice_hw *hw = &vf->pf->hw; 422 struct ice_vsi *vsi; 423 int len = 0; 424 int ret; 425 426 if (ice_check_vf_init(vf)) { 427 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 428 goto err; 429 } 430 431 len = virtchnl_struct_size(vfres, vsi_res, 0); 432 433 vfres = kzalloc(len, GFP_KERNEL); 434 if (!vfres) { 435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 436 len = 0; 437 goto err; 438 } 439 if (VF_IS_V11(&vf->vf_ver)) 440 vf->driver_caps = *(u32 *)msg; 441 else 442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 443 VIRTCHNL_VF_OFFLOAD_RSS_REG | 444 VIRTCHNL_VF_OFFLOAD_VLAN; 445 446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 447 vsi = ice_get_vf_vsi(vf); 448 if (!vsi) { 449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 450 goto err; 451 } 452 453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi, 454 vf->driver_caps); 455 456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 458 } else { 459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 461 else 462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 463 } 464 465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) 466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC; 467 468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 470 471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 473 474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 476 477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 479 480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 482 483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 485 486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 488 489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 491 492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 494 495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 497 498 vfres->num_vsis = 1; 499 /* Tx and Rx queue are equal for VF */ 500 vfres->num_queue_pairs = vsi->num_txq; 501 vfres->max_vectors = vf->pf->vfs.num_msix_per; 502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 503 vfres->rss_lut_size = ICE_LUT_VSI_SIZE; 504 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 505 506 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 510 vf->hw_lan_addr); 511 512 /* match guest capabilities */ 513 vf->driver_caps = vfres->vf_cap_flags; 514 515 ice_vc_set_caps_allowlist(vf); 516 ice_vc_set_working_allowlist(vf); 517 518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 519 520 err: 521 /* send the response back to the VF */ 522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 523 (u8 *)vfres, len); 524 525 kfree(vfres); 526 return ret; 527 } 528 529 /** 530 * ice_vc_reset_vf_msg 531 * @vf: pointer to the VF info 532 * 533 * called from the VF to reset itself, 534 * unlike other virtchnl messages, PF driver 535 * doesn't send the response back to the VF 536 */ 537 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 538 { 539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 540 ice_reset_vf(vf, 0); 541 } 542 543 /** 544 * ice_vc_isvalid_vsi_id 545 * @vf: pointer to the VF info 546 * @vsi_id: VF relative VSI ID 547 * 548 * check for the valid VSI ID 549 */ 550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 551 { 552 struct ice_pf *pf = vf->pf; 553 struct ice_vsi *vsi; 554 555 vsi = ice_find_vsi(pf, vsi_id); 556 557 return (vsi && (vsi->vf == vf)); 558 } 559 560 /** 561 * ice_vc_isvalid_q_id 562 * @vf: pointer to the VF info 563 * @vsi_id: VSI ID 564 * @qid: VSI relative queue ID 565 * 566 * check for the valid queue ID 567 */ 568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 569 { 570 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 571 /* allocated Tx and Rx queues should be always equal for VF VSI */ 572 return (vsi && (qid < vsi->alloc_txq)); 573 } 574 575 /** 576 * ice_vc_isvalid_ring_len 577 * @ring_len: length of ring 578 * 579 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 580 * or zero 581 */ 582 static bool ice_vc_isvalid_ring_len(u16 ring_len) 583 { 584 return ring_len == 0 || 585 (ring_len >= ICE_MIN_NUM_DESC && 586 ring_len <= ICE_MAX_NUM_DESC && 587 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 588 } 589 590 /** 591 * ice_vc_validate_pattern 592 * @vf: pointer to the VF info 593 * @proto: virtchnl protocol headers 594 * 595 * validate the pattern is supported or not. 596 * 597 * Return: true on success, false on error. 598 */ 599 bool 600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 601 { 602 bool is_ipv4 = false; 603 bool is_ipv6 = false; 604 bool is_udp = false; 605 u16 ptype = -1; 606 int i = 0; 607 608 while (i < proto->count && 609 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 610 switch (proto->proto_hdr[i].type) { 611 case VIRTCHNL_PROTO_HDR_ETH: 612 ptype = ICE_PTYPE_MAC_PAY; 613 break; 614 case VIRTCHNL_PROTO_HDR_IPV4: 615 ptype = ICE_PTYPE_IPV4_PAY; 616 is_ipv4 = true; 617 break; 618 case VIRTCHNL_PROTO_HDR_IPV6: 619 ptype = ICE_PTYPE_IPV6_PAY; 620 is_ipv6 = true; 621 break; 622 case VIRTCHNL_PROTO_HDR_UDP: 623 if (is_ipv4) 624 ptype = ICE_PTYPE_IPV4_UDP_PAY; 625 else if (is_ipv6) 626 ptype = ICE_PTYPE_IPV6_UDP_PAY; 627 is_udp = true; 628 break; 629 case VIRTCHNL_PROTO_HDR_TCP: 630 if (is_ipv4) 631 ptype = ICE_PTYPE_IPV4_TCP_PAY; 632 else if (is_ipv6) 633 ptype = ICE_PTYPE_IPV6_TCP_PAY; 634 break; 635 case VIRTCHNL_PROTO_HDR_SCTP: 636 if (is_ipv4) 637 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 638 else if (is_ipv6) 639 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 640 break; 641 case VIRTCHNL_PROTO_HDR_GTPU_IP: 642 case VIRTCHNL_PROTO_HDR_GTPU_EH: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_GTPU; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_GTPU; 647 goto out; 648 case VIRTCHNL_PROTO_HDR_L2TPV3: 649 if (is_ipv4) 650 ptype = ICE_MAC_IPV4_L2TPV3; 651 else if (is_ipv6) 652 ptype = ICE_MAC_IPV6_L2TPV3; 653 goto out; 654 case VIRTCHNL_PROTO_HDR_ESP: 655 if (is_ipv4) 656 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 657 ICE_MAC_IPV4_ESP; 658 else if (is_ipv6) 659 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 660 ICE_MAC_IPV6_ESP; 661 goto out; 662 case VIRTCHNL_PROTO_HDR_AH: 663 if (is_ipv4) 664 ptype = ICE_MAC_IPV4_AH; 665 else if (is_ipv6) 666 ptype = ICE_MAC_IPV6_AH; 667 goto out; 668 case VIRTCHNL_PROTO_HDR_PFCP: 669 if (is_ipv4) 670 ptype = ICE_MAC_IPV4_PFCP_SESSION; 671 else if (is_ipv6) 672 ptype = ICE_MAC_IPV6_PFCP_SESSION; 673 goto out; 674 default: 675 break; 676 } 677 i++; 678 } 679 680 out: 681 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 682 } 683 684 /** 685 * ice_vc_parse_rss_cfg - parses hash fields and headers from 686 * a specific virtchnl RSS cfg 687 * @hw: pointer to the hardware 688 * @rss_cfg: pointer to the virtchnl RSS cfg 689 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 690 * to configure 691 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 692 * 693 * Return true if all the protocol header and hash fields in the RSS cfg could 694 * be parsed, else return false 695 * 696 * This function parses the virtchnl RSS cfg to be the intended 697 * hash fields and the intended header for RSS configuration 698 */ 699 static bool 700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 701 u32 *addl_hdrs, u64 *hash_flds) 702 { 703 const struct ice_vc_hash_field_match_type *hf_list; 704 const struct ice_vc_hdr_match_type *hdr_list; 705 int i, hf_list_len, hdr_list_len; 706 707 hf_list = ice_vc_hash_field_list; 708 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 709 hdr_list = ice_vc_hdr_list; 710 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 711 712 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 713 struct virtchnl_proto_hdr *proto_hdr = 714 &rss_cfg->proto_hdrs.proto_hdr[i]; 715 bool hdr_found = false; 716 int j; 717 718 /* Find matched ice headers according to virtchnl headers. */ 719 for (j = 0; j < hdr_list_len; j++) { 720 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 721 722 if (proto_hdr->type == hdr_map.vc_hdr) { 723 *addl_hdrs |= hdr_map.ice_hdr; 724 hdr_found = true; 725 } 726 } 727 728 if (!hdr_found) 729 return false; 730 731 /* Find matched ice hash fields according to 732 * virtchnl hash fields. 733 */ 734 for (j = 0; j < hf_list_len; j++) { 735 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 736 737 if (proto_hdr->type == hf_map.vc_hdr && 738 proto_hdr->field_selector == hf_map.vc_hash_field) { 739 *hash_flds |= hf_map.ice_hash_field; 740 break; 741 } 742 } 743 } 744 745 return true; 746 } 747 748 /** 749 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 750 * RSS offloads 751 * @caps: VF driver negotiated capabilities 752 * 753 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 754 * else return false 755 */ 756 static bool ice_vf_adv_rss_offload_ena(u32 caps) 757 { 758 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 759 } 760 761 /** 762 * ice_vc_handle_rss_cfg 763 * @vf: pointer to the VF info 764 * @msg: pointer to the message buffer 765 * @add: add a RSS config if true, otherwise delete a RSS config 766 * 767 * This function adds/deletes a RSS config 768 */ 769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 770 { 771 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 772 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 773 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 774 struct device *dev = ice_pf_to_dev(vf->pf); 775 struct ice_hw *hw = &vf->pf->hw; 776 struct ice_vsi *vsi; 777 778 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 779 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 780 vf->vf_id); 781 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 782 goto error_param; 783 } 784 785 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 786 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 787 vf->vf_id); 788 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 789 goto error_param; 790 } 791 792 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 793 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 794 goto error_param; 795 } 796 797 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 798 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 799 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 800 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 801 vf->vf_id); 802 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 803 goto error_param; 804 } 805 806 vsi = ice_get_vf_vsi(vf); 807 if (!vsi) { 808 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 809 goto error_param; 810 } 811 812 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 813 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 814 goto error_param; 815 } 816 817 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 818 struct ice_vsi_ctx *ctx; 819 u8 lut_type, hash_type; 820 int status; 821 822 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 823 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 824 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 825 826 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 827 if (!ctx) { 828 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 829 goto error_param; 830 } 831 832 ctx->info.q_opt_rss = ((lut_type << 833 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 834 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 835 (hash_type & 836 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 837 838 /* Preserve existing queueing option setting */ 839 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 840 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 841 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 842 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 843 844 ctx->info.valid_sections = 845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 846 847 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 848 if (status) { 849 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 850 status, ice_aq_str(hw->adminq.sq_last_status)); 851 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 852 } else { 853 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 854 } 855 856 kfree(ctx); 857 } else { 858 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 859 u64 hash_flds = ICE_HASH_INVALID; 860 861 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 862 &hash_flds)) { 863 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 864 goto error_param; 865 } 866 867 if (add) { 868 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 869 addl_hdrs)) { 870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 871 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 872 vsi->vsi_num, v_ret); 873 } 874 } else { 875 int status; 876 877 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 878 addl_hdrs); 879 /* We just ignore -ENOENT, because if two configurations 880 * share the same profile remove one of them actually 881 * removes both, since the profile is deleted. 882 */ 883 if (status && status != -ENOENT) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 886 vf->vf_id, status); 887 } 888 } 889 } 890 891 error_param: 892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 893 } 894 895 /** 896 * ice_vc_config_rss_key 897 * @vf: pointer to the VF info 898 * @msg: pointer to the msg buffer 899 * 900 * Configure the VF's RSS key 901 */ 902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 903 { 904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 905 struct virtchnl_rss_key *vrk = 906 (struct virtchnl_rss_key *)msg; 907 struct ice_vsi *vsi; 908 909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 910 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 911 goto error_param; 912 } 913 914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 915 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 916 goto error_param; 917 } 918 919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 920 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 921 goto error_param; 922 } 923 924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 925 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 926 goto error_param; 927 } 928 929 vsi = ice_get_vf_vsi(vf); 930 if (!vsi) { 931 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 932 goto error_param; 933 } 934 935 if (ice_set_rss_key(vsi, vrk->key)) 936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 937 error_param: 938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 939 NULL, 0); 940 } 941 942 /** 943 * ice_vc_config_rss_lut 944 * @vf: pointer to the VF info 945 * @msg: pointer to the msg buffer 946 * 947 * Configure the VF's RSS LUT 948 */ 949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 950 { 951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 953 struct ice_vsi *vsi; 954 955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 957 goto error_param; 958 } 959 960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 961 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 962 goto error_param; 963 } 964 965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) { 966 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 967 goto error_param; 968 } 969 970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 971 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 972 goto error_param; 973 } 974 975 vsi = ice_get_vf_vsi(vf); 976 if (!vsi) { 977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 978 goto error_param; 979 } 980 981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE)) 982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 983 error_param: 984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 985 NULL, 0); 986 } 987 988 /** 989 * ice_vc_cfg_promiscuous_mode_msg 990 * @vf: pointer to the VF info 991 * @msg: pointer to the msg buffer 992 * 993 * called from the VF to configure VF VSIs promiscuous mode 994 */ 995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 996 { 997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 998 bool rm_promisc, alluni = false, allmulti = false; 999 struct virtchnl_promisc_info *info = 1000 (struct virtchnl_promisc_info *)msg; 1001 struct ice_vsi_vlan_ops *vlan_ops; 1002 int mcast_err = 0, ucast_err = 0; 1003 struct ice_pf *pf = vf->pf; 1004 struct ice_vsi *vsi; 1005 u8 mcast_m, ucast_m; 1006 struct device *dev; 1007 int ret = 0; 1008 1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1011 goto error_param; 1012 } 1013 1014 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1016 goto error_param; 1017 } 1018 1019 vsi = ice_get_vf_vsi(vf); 1020 if (!vsi) { 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 dev = ice_pf_to_dev(pf); 1026 if (!ice_is_vf_trusted(vf)) { 1027 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1028 vf->vf_id); 1029 /* Leave v_ret alone, lie to the VF on purpose. */ 1030 goto error_param; 1031 } 1032 1033 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1034 alluni = true; 1035 1036 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1037 allmulti = true; 1038 1039 rm_promisc = !allmulti && !alluni; 1040 1041 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1042 if (rm_promisc) 1043 ret = vlan_ops->ena_rx_filtering(vsi); 1044 else 1045 ret = vlan_ops->dis_rx_filtering(vsi); 1046 if (ret) { 1047 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1048 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1049 goto error_param; 1050 } 1051 1052 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m); 1053 1054 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1055 if (alluni) { 1056 /* in this case we're turning on promiscuous mode */ 1057 ret = ice_set_dflt_vsi(vsi); 1058 } else { 1059 /* in this case we're turning off promiscuous mode */ 1060 if (ice_is_dflt_vsi_in_use(vsi->port_info)) 1061 ret = ice_clear_dflt_vsi(vsi); 1062 } 1063 1064 /* in this case we're turning on/off only 1065 * allmulticast 1066 */ 1067 if (allmulti) 1068 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1069 else 1070 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1071 1072 if (ret) { 1073 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n", 1074 vf->vf_id, ret); 1075 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1076 goto error_param; 1077 } 1078 } else { 1079 if (alluni) 1080 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1081 else 1082 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1083 1084 if (allmulti) 1085 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1086 else 1087 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1088 1089 if (ucast_err || mcast_err) 1090 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1091 } 1092 1093 if (!mcast_err) { 1094 if (allmulti && 1095 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1096 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1097 vf->vf_id); 1098 else if (!allmulti && 1099 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1100 vf->vf_states)) 1101 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1102 vf->vf_id); 1103 } else { 1104 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n", 1105 vf->vf_id, mcast_err); 1106 } 1107 1108 if (!ucast_err) { 1109 if (alluni && 1110 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1111 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1112 vf->vf_id); 1113 else if (!alluni && 1114 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1115 vf->vf_states)) 1116 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1117 vf->vf_id); 1118 } else { 1119 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n", 1120 vf->vf_id, ucast_err); 1121 } 1122 1123 error_param: 1124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1125 v_ret, NULL, 0); 1126 } 1127 1128 /** 1129 * ice_vc_get_stats_msg 1130 * @vf: pointer to the VF info 1131 * @msg: pointer to the msg buffer 1132 * 1133 * called from the VF to get VSI stats 1134 */ 1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1136 { 1137 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1138 struct virtchnl_queue_select *vqs = 1139 (struct virtchnl_queue_select *)msg; 1140 struct ice_eth_stats stats = { 0 }; 1141 struct ice_vsi *vsi; 1142 1143 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1144 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1145 goto error_param; 1146 } 1147 1148 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1150 goto error_param; 1151 } 1152 1153 vsi = ice_get_vf_vsi(vf); 1154 if (!vsi) { 1155 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1156 goto error_param; 1157 } 1158 1159 ice_update_eth_stats(vsi); 1160 1161 stats = vsi->eth_stats; 1162 1163 error_param: 1164 /* send the response to the VF */ 1165 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1166 (u8 *)&stats, sizeof(stats)); 1167 } 1168 1169 /** 1170 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1171 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1172 * 1173 * Return true on successful validation, else false 1174 */ 1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1176 { 1177 if ((!vqs->rx_queues && !vqs->tx_queues) || 1178 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1179 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /** 1186 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1187 * @vsi: VSI of the VF to configure 1188 * @q_idx: VF queue index used to determine the queue in the PF's space 1189 */ 1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1191 { 1192 struct ice_hw *hw = &vsi->back->hw; 1193 u32 pfq = vsi->txq_map[q_idx]; 1194 u32 reg; 1195 1196 reg = rd32(hw, QINT_TQCTL(pfq)); 1197 1198 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1199 * this is most likely a poll mode VF driver, so don't enable an 1200 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1201 */ 1202 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1203 return; 1204 1205 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1206 } 1207 1208 /** 1209 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1210 * @vsi: VSI of the VF to configure 1211 * @q_idx: VF queue index used to determine the queue in the PF's space 1212 */ 1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1214 { 1215 struct ice_hw *hw = &vsi->back->hw; 1216 u32 pfq = vsi->rxq_map[q_idx]; 1217 u32 reg; 1218 1219 reg = rd32(hw, QINT_RQCTL(pfq)); 1220 1221 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1222 * this is most likely a poll mode VF driver, so don't enable an 1223 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1224 */ 1225 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1226 return; 1227 1228 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1229 } 1230 1231 /** 1232 * ice_vc_ena_qs_msg 1233 * @vf: pointer to the VF info 1234 * @msg: pointer to the msg buffer 1235 * 1236 * called from the VF to enable all or specific queue(s) 1237 */ 1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1239 { 1240 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1241 struct virtchnl_queue_select *vqs = 1242 (struct virtchnl_queue_select *)msg; 1243 struct ice_vsi *vsi; 1244 unsigned long q_map; 1245 u16 vf_q_id; 1246 1247 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1253 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1254 goto error_param; 1255 } 1256 1257 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1259 goto error_param; 1260 } 1261 1262 vsi = ice_get_vf_vsi(vf); 1263 if (!vsi) { 1264 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1265 goto error_param; 1266 } 1267 1268 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1269 * Tx queue group list was configured and the context bits were 1270 * programmed using ice_vsi_cfg_txqs 1271 */ 1272 q_map = vqs->rx_queues; 1273 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1274 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1275 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1276 goto error_param; 1277 } 1278 1279 /* Skip queue if enabled */ 1280 if (test_bit(vf_q_id, vf->rxq_ena)) 1281 continue; 1282 1283 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1284 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1285 vf_q_id, vsi->vsi_num); 1286 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1287 goto error_param; 1288 } 1289 1290 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1291 set_bit(vf_q_id, vf->rxq_ena); 1292 } 1293 1294 q_map = vqs->tx_queues; 1295 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1296 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1298 goto error_param; 1299 } 1300 1301 /* Skip queue if enabled */ 1302 if (test_bit(vf_q_id, vf->txq_ena)) 1303 continue; 1304 1305 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1306 set_bit(vf_q_id, vf->txq_ena); 1307 } 1308 1309 /* Set flag to indicate that queues are enabled */ 1310 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1311 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1312 1313 error_param: 1314 /* send the response to the VF */ 1315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1316 NULL, 0); 1317 } 1318 1319 /** 1320 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1321 * @vf: VF to disable queue for 1322 * @vsi: VSI for the VF 1323 * @q_id: VF relative (0-based) queue ID 1324 * 1325 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1326 * disabled then clear q_id bit in the enabled queues bitmap and return 1327 * success. Otherwise return error. 1328 */ 1329 static int 1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1331 { 1332 struct ice_txq_meta txq_meta = { 0 }; 1333 struct ice_tx_ring *ring; 1334 int err; 1335 1336 if (!test_bit(q_id, vf->txq_ena)) 1337 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1338 q_id, vsi->vsi_num); 1339 1340 ring = vsi->tx_rings[q_id]; 1341 if (!ring) 1342 return -EINVAL; 1343 1344 ice_fill_txq_meta(vsi, ring, &txq_meta); 1345 1346 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1347 if (err) { 1348 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1349 q_id, vsi->vsi_num); 1350 return err; 1351 } 1352 1353 /* Clear enabled queues flag */ 1354 clear_bit(q_id, vf->txq_ena); 1355 1356 return 0; 1357 } 1358 1359 /** 1360 * ice_vc_dis_qs_msg 1361 * @vf: pointer to the VF info 1362 * @msg: pointer to the msg buffer 1363 * 1364 * called from the VF to disable all or specific queue(s) 1365 */ 1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1367 { 1368 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1369 struct virtchnl_queue_select *vqs = 1370 (struct virtchnl_queue_select *)msg; 1371 struct ice_vsi *vsi; 1372 unsigned long q_map; 1373 u16 vf_q_id; 1374 1375 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1376 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1378 goto error_param; 1379 } 1380 1381 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1383 goto error_param; 1384 } 1385 1386 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1388 goto error_param; 1389 } 1390 1391 vsi = ice_get_vf_vsi(vf); 1392 if (!vsi) { 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 if (vqs->tx_queues) { 1398 q_map = vqs->tx_queues; 1399 1400 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1401 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1402 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1403 goto error_param; 1404 } 1405 1406 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1408 goto error_param; 1409 } 1410 } 1411 } 1412 1413 q_map = vqs->rx_queues; 1414 /* speed up Rx queue disable by batching them if possible */ 1415 if (q_map && 1416 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1417 if (ice_vsi_stop_all_rx_rings(vsi)) { 1418 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1419 vsi->vsi_num); 1420 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1421 goto error_param; 1422 } 1423 1424 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1425 } else if (q_map) { 1426 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1427 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1428 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1429 goto error_param; 1430 } 1431 1432 /* Skip queue if not enabled */ 1433 if (!test_bit(vf_q_id, vf->rxq_ena)) 1434 continue; 1435 1436 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1437 true)) { 1438 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1439 vf_q_id, vsi->vsi_num); 1440 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1441 goto error_param; 1442 } 1443 1444 /* Clear enabled queues flag */ 1445 clear_bit(vf_q_id, vf->rxq_ena); 1446 } 1447 } 1448 1449 /* Clear enabled queues flag */ 1450 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1451 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1452 1453 error_param: 1454 /* send the response to the VF */ 1455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1456 NULL, 0); 1457 } 1458 1459 /** 1460 * ice_cfg_interrupt 1461 * @vf: pointer to the VF info 1462 * @vsi: the VSI being configured 1463 * @vector_id: vector ID 1464 * @map: vector map for mapping vectors to queues 1465 * @q_vector: structure for interrupt vector 1466 * configure the IRQ to queue map 1467 */ 1468 static int 1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1470 struct virtchnl_vector_map *map, 1471 struct ice_q_vector *q_vector) 1472 { 1473 u16 vsi_q_id, vsi_q_id_idx; 1474 unsigned long qmap; 1475 1476 q_vector->num_ring_rx = 0; 1477 q_vector->num_ring_tx = 0; 1478 1479 qmap = map->rxq_map; 1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1481 vsi_q_id = vsi_q_id_idx; 1482 1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1484 return VIRTCHNL_STATUS_ERR_PARAM; 1485 1486 q_vector->num_ring_rx++; 1487 q_vector->rx.itr_idx = map->rxitr_idx; 1488 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1489 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1490 q_vector->rx.itr_idx); 1491 } 1492 1493 qmap = map->txq_map; 1494 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1495 vsi_q_id = vsi_q_id_idx; 1496 1497 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1498 return VIRTCHNL_STATUS_ERR_PARAM; 1499 1500 q_vector->num_ring_tx++; 1501 q_vector->tx.itr_idx = map->txitr_idx; 1502 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1503 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1504 q_vector->tx.itr_idx); 1505 } 1506 1507 return VIRTCHNL_STATUS_SUCCESS; 1508 } 1509 1510 /** 1511 * ice_vc_cfg_irq_map_msg 1512 * @vf: pointer to the VF info 1513 * @msg: pointer to the msg buffer 1514 * 1515 * called from the VF to configure the IRQ to queue map 1516 */ 1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1518 { 1519 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1520 u16 num_q_vectors_mapped, vsi_id, vector_id; 1521 struct virtchnl_irq_map_info *irqmap_info; 1522 struct virtchnl_vector_map *map; 1523 struct ice_pf *pf = vf->pf; 1524 struct ice_vsi *vsi; 1525 int i; 1526 1527 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1528 num_q_vectors_mapped = irqmap_info->num_vectors; 1529 1530 /* Check to make sure number of VF vectors mapped is not greater than 1531 * number of VF vectors originally allocated, and check that 1532 * there is actually at least a single VF queue vector mapped 1533 */ 1534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1535 pf->vfs.num_msix_per < num_q_vectors_mapped || 1536 !num_q_vectors_mapped) { 1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1538 goto error_param; 1539 } 1540 1541 vsi = ice_get_vf_vsi(vf); 1542 if (!vsi) { 1543 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1544 goto error_param; 1545 } 1546 1547 for (i = 0; i < num_q_vectors_mapped; i++) { 1548 struct ice_q_vector *q_vector; 1549 1550 map = &irqmap_info->vecmap[i]; 1551 1552 vector_id = map->vector_id; 1553 vsi_id = map->vsi_id; 1554 /* vector_id is always 0-based for each VF, and can never be 1555 * larger than or equal to the max allowed interrupts per VF 1556 */ 1557 if (!(vector_id < pf->vfs.num_msix_per) || 1558 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1559 (!vector_id && (map->rxq_map || map->txq_map))) { 1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1561 goto error_param; 1562 } 1563 1564 /* No need to map VF miscellaneous or rogue vector */ 1565 if (!vector_id) 1566 continue; 1567 1568 /* Subtract non queue vector from vector_id passed by VF 1569 * to get actual number of VSI queue vector array index 1570 */ 1571 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1572 if (!q_vector) { 1573 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1574 goto error_param; 1575 } 1576 1577 /* lookout for the invalid queue index */ 1578 v_ret = (enum virtchnl_status_code) 1579 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1580 if (v_ret) 1581 goto error_param; 1582 } 1583 1584 error_param: 1585 /* send the response to the VF */ 1586 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1587 NULL, 0); 1588 } 1589 1590 /** 1591 * ice_vc_cfg_qs_msg 1592 * @vf: pointer to the VF info 1593 * @msg: pointer to the msg buffer 1594 * 1595 * called from the VF to configure the Rx/Tx queues 1596 */ 1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1598 { 1599 struct virtchnl_vsi_queue_config_info *qci = 1600 (struct virtchnl_vsi_queue_config_info *)msg; 1601 struct virtchnl_queue_pair_info *qpi; 1602 struct ice_pf *pf = vf->pf; 1603 struct ice_lag *lag; 1604 struct ice_vsi *vsi; 1605 u8 act_prt, pri_prt; 1606 int i = -1, q_idx; 1607 1608 lag = pf->lag; 1609 mutex_lock(&pf->lag_mutex); 1610 act_prt = ICE_LAG_INVALID_PORT; 1611 pri_prt = pf->hw.port_info->lport; 1612 if (lag && lag->bonded && lag->primary) { 1613 act_prt = lag->active_port; 1614 if (act_prt != pri_prt && act_prt != ICE_LAG_INVALID_PORT && 1615 lag->upper_netdev) 1616 ice_lag_move_vf_nodes_cfg(lag, act_prt, pri_prt); 1617 else 1618 act_prt = ICE_LAG_INVALID_PORT; 1619 } 1620 1621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1622 goto error_param; 1623 1624 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1625 goto error_param; 1626 1627 vsi = ice_get_vf_vsi(vf); 1628 if (!vsi) 1629 goto error_param; 1630 1631 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1632 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1633 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1634 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1635 goto error_param; 1636 } 1637 1638 for (i = 0; i < qci->num_queue_pairs; i++) { 1639 qpi = &qci->qpair[i]; 1640 if (qpi->txq.vsi_id != qci->vsi_id || 1641 qpi->rxq.vsi_id != qci->vsi_id || 1642 qpi->rxq.queue_id != qpi->txq.queue_id || 1643 qpi->txq.headwb_enabled || 1644 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1645 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1646 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1647 goto error_param; 1648 } 1649 1650 q_idx = qpi->rxq.queue_id; 1651 1652 /* make sure selected "q_idx" is in valid range of queues 1653 * for selected "vsi" 1654 */ 1655 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1656 goto error_param; 1657 } 1658 1659 /* copy Tx queue info from VF into VSI */ 1660 if (qpi->txq.ring_len > 0) { 1661 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1662 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1663 1664 /* Disable any existing queue first */ 1665 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1666 goto error_param; 1667 1668 /* Configure a queue with the requested settings */ 1669 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1670 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1671 vf->vf_id, i); 1672 goto error_param; 1673 } 1674 } 1675 1676 /* copy Rx queue info from VF into VSI */ 1677 if (qpi->rxq.ring_len > 0) { 1678 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1679 u32 rxdid; 1680 1681 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1682 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1683 1684 if (qpi->rxq.databuffer_size != 0 && 1685 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1686 qpi->rxq.databuffer_size < 1024)) 1687 goto error_param; 1688 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1689 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1690 if (qpi->rxq.max_pkt_size > max_frame_size || 1691 qpi->rxq.max_pkt_size < 64) 1692 goto error_param; 1693 1694 vsi->max_frame = qpi->rxq.max_pkt_size; 1695 /* add space for the port VLAN since the VF driver is 1696 * not expected to account for it in the MTU 1697 * calculation 1698 */ 1699 if (ice_vf_is_port_vlan_ena(vf)) 1700 vsi->max_frame += VLAN_HLEN; 1701 1702 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1703 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1704 vf->vf_id, i); 1705 goto error_param; 1706 } 1707 1708 /* If Rx flex desc is supported, select RXDID for Rx 1709 * queues. Otherwise, use legacy 32byte descriptor 1710 * format. Legacy 16byte descriptor is not supported. 1711 * If this RXDID is selected, return error. 1712 */ 1713 if (vf->driver_caps & 1714 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) { 1715 rxdid = qpi->rxq.rxdid; 1716 if (!(BIT(rxdid) & pf->supported_rxdids)) 1717 goto error_param; 1718 } else { 1719 rxdid = ICE_RXDID_LEGACY_1; 1720 } 1721 1722 ice_write_qrxflxp_cntxt(&vsi->back->hw, 1723 vsi->rxq_map[q_idx], 1724 rxdid, 0x03, false); 1725 } 1726 } 1727 1728 if (lag && lag->bonded && lag->primary && 1729 act_prt != ICE_LAG_INVALID_PORT) 1730 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1731 mutex_unlock(&pf->lag_mutex); 1732 1733 /* send the response to the VF */ 1734 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1735 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1736 error_param: 1737 /* disable whatever we can */ 1738 for (; i >= 0; i--) { 1739 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1740 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1741 vf->vf_id, i); 1742 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1743 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1744 vf->vf_id, i); 1745 } 1746 1747 if (lag && lag->bonded && lag->primary && 1748 act_prt != ICE_LAG_INVALID_PORT) 1749 ice_lag_move_vf_nodes_cfg(lag, pri_prt, act_prt); 1750 mutex_unlock(&pf->lag_mutex); 1751 1752 ice_lag_move_new_vf_nodes(vf); 1753 1754 /* send the response to the VF */ 1755 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1756 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1757 } 1758 1759 /** 1760 * ice_can_vf_change_mac 1761 * @vf: pointer to the VF info 1762 * 1763 * Return true if the VF is allowed to change its MAC filters, false otherwise 1764 */ 1765 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1766 { 1767 /* If the VF MAC address has been set administratively (via the 1768 * ndo_set_vf_mac command), then deny permission to the VF to 1769 * add/delete unicast MAC addresses, unless the VF is trusted 1770 */ 1771 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1772 return false; 1773 1774 return true; 1775 } 1776 1777 /** 1778 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1779 * @vc_ether_addr: used to extract the type 1780 */ 1781 static u8 1782 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1783 { 1784 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1785 } 1786 1787 /** 1788 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1789 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1790 */ 1791 static bool 1792 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1793 { 1794 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1795 1796 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1797 } 1798 1799 /** 1800 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1801 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1802 * 1803 * This function should only be called when the MAC address in 1804 * virtchnl_ether_addr is a valid unicast MAC 1805 */ 1806 static bool 1807 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1808 { 1809 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1810 1811 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1812 } 1813 1814 /** 1815 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1816 * @vf: VF to update 1817 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1818 */ 1819 static void 1820 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1821 { 1822 u8 *mac_addr = vc_ether_addr->addr; 1823 1824 if (!is_valid_ether_addr(mac_addr)) 1825 return; 1826 1827 /* only allow legacy VF drivers to set the device and hardware MAC if it 1828 * is zero and allow new VF drivers to set the hardware MAC if the type 1829 * was correctly specified over VIRTCHNL 1830 */ 1831 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1832 is_zero_ether_addr(vf->hw_lan_addr)) || 1833 ice_is_vc_addr_primary(vc_ether_addr)) { 1834 ether_addr_copy(vf->dev_lan_addr, mac_addr); 1835 ether_addr_copy(vf->hw_lan_addr, mac_addr); 1836 } 1837 1838 /* hardware and device MACs are already set, but its possible that the 1839 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1840 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1841 * away for the legacy VF driver case as it will be updated in the 1842 * delete flow for this case 1843 */ 1844 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1845 ether_addr_copy(vf->legacy_last_added_umac.addr, 1846 mac_addr); 1847 vf->legacy_last_added_umac.time_modified = jiffies; 1848 } 1849 } 1850 1851 /** 1852 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1853 * @vf: pointer to the VF info 1854 * @vsi: pointer to the VF's VSI 1855 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1856 */ 1857 static int 1858 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1859 struct virtchnl_ether_addr *vc_ether_addr) 1860 { 1861 struct device *dev = ice_pf_to_dev(vf->pf); 1862 u8 *mac_addr = vc_ether_addr->addr; 1863 int ret; 1864 1865 /* device MAC already added */ 1866 if (ether_addr_equal(mac_addr, vf->dev_lan_addr)) 1867 return 0; 1868 1869 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1870 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1871 return -EPERM; 1872 } 1873 1874 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1875 if (ret == -EEXIST) { 1876 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1877 vf->vf_id); 1878 /* don't return since we might need to update 1879 * the primary MAC in ice_vfhw_mac_add() below 1880 */ 1881 } else if (ret) { 1882 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1883 mac_addr, vf->vf_id, ret); 1884 return ret; 1885 } else { 1886 vf->num_mac++; 1887 } 1888 1889 ice_vfhw_mac_add(vf, vc_ether_addr); 1890 1891 return ret; 1892 } 1893 1894 /** 1895 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1896 * @last_added_umac: structure used to check expiration 1897 */ 1898 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1899 { 1900 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1901 return time_is_before_jiffies(last_added_umac->time_modified + 1902 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1903 } 1904 1905 /** 1906 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1907 * @vf: VF to update 1908 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1909 * 1910 * only update cached hardware MAC for legacy VF drivers on delete 1911 * because we cannot guarantee order/type of MAC from the VF driver 1912 */ 1913 static void 1914 ice_update_legacy_cached_mac(struct ice_vf *vf, 1915 struct virtchnl_ether_addr *vc_ether_addr) 1916 { 1917 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1918 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1919 return; 1920 1921 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr); 1922 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr); 1923 } 1924 1925 /** 1926 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1927 * @vf: VF to update 1928 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1929 */ 1930 static void 1931 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1932 { 1933 u8 *mac_addr = vc_ether_addr->addr; 1934 1935 if (!is_valid_ether_addr(mac_addr) || 1936 !ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1937 return; 1938 1939 /* allow the device MAC to be repopulated in the add flow and don't 1940 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant 1941 * to be persistent on VM reboot and across driver unload/load, which 1942 * won't work if we clear the hardware MAC here 1943 */ 1944 eth_zero_addr(vf->dev_lan_addr); 1945 1946 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1947 } 1948 1949 /** 1950 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1951 * @vf: pointer to the VF info 1952 * @vsi: pointer to the VF's VSI 1953 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1954 */ 1955 static int 1956 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1957 struct virtchnl_ether_addr *vc_ether_addr) 1958 { 1959 struct device *dev = ice_pf_to_dev(vf->pf); 1960 u8 *mac_addr = vc_ether_addr->addr; 1961 int status; 1962 1963 if (!ice_can_vf_change_mac(vf) && 1964 ether_addr_equal(vf->dev_lan_addr, mac_addr)) 1965 return 0; 1966 1967 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1968 if (status == -ENOENT) { 1969 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1970 vf->vf_id); 1971 return -ENOENT; 1972 } else if (status) { 1973 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1974 mac_addr, vf->vf_id, status); 1975 return -EIO; 1976 } 1977 1978 ice_vfhw_mac_del(vf, vc_ether_addr); 1979 1980 vf->num_mac--; 1981 1982 return 0; 1983 } 1984 1985 /** 1986 * ice_vc_handle_mac_addr_msg 1987 * @vf: pointer to the VF info 1988 * @msg: pointer to the msg buffer 1989 * @set: true if MAC filters are being set, false otherwise 1990 * 1991 * add guest MAC address filter 1992 */ 1993 static int 1994 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1995 { 1996 int (*ice_vc_cfg_mac) 1997 (struct ice_vf *vf, struct ice_vsi *vsi, 1998 struct virtchnl_ether_addr *virtchnl_ether_addr); 1999 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2000 struct virtchnl_ether_addr_list *al = 2001 (struct virtchnl_ether_addr_list *)msg; 2002 struct ice_pf *pf = vf->pf; 2003 enum virtchnl_ops vc_op; 2004 struct ice_vsi *vsi; 2005 int i; 2006 2007 if (set) { 2008 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 2009 ice_vc_cfg_mac = ice_vc_add_mac_addr; 2010 } else { 2011 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 2012 ice_vc_cfg_mac = ice_vc_del_mac_addr; 2013 } 2014 2015 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 2016 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 2017 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2018 goto handle_mac_exit; 2019 } 2020 2021 /* If this VF is not privileged, then we can't add more than a 2022 * limited number of addresses. Check to make sure that the 2023 * additions do not push us over the limit. 2024 */ 2025 if (set && !ice_is_vf_trusted(vf) && 2026 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 2027 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 2028 vf->vf_id); 2029 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2030 goto handle_mac_exit; 2031 } 2032 2033 vsi = ice_get_vf_vsi(vf); 2034 if (!vsi) { 2035 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2036 goto handle_mac_exit; 2037 } 2038 2039 for (i = 0; i < al->num_elements; i++) { 2040 u8 *mac_addr = al->list[i].addr; 2041 int result; 2042 2043 if (is_broadcast_ether_addr(mac_addr) || 2044 is_zero_ether_addr(mac_addr)) 2045 continue; 2046 2047 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 2048 if (result == -EEXIST || result == -ENOENT) { 2049 continue; 2050 } else if (result) { 2051 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 2052 goto handle_mac_exit; 2053 } 2054 } 2055 2056 handle_mac_exit: 2057 /* send the response to the VF */ 2058 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 2059 } 2060 2061 /** 2062 * ice_vc_add_mac_addr_msg 2063 * @vf: pointer to the VF info 2064 * @msg: pointer to the msg buffer 2065 * 2066 * add guest MAC address filter 2067 */ 2068 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2069 { 2070 return ice_vc_handle_mac_addr_msg(vf, msg, true); 2071 } 2072 2073 /** 2074 * ice_vc_del_mac_addr_msg 2075 * @vf: pointer to the VF info 2076 * @msg: pointer to the msg buffer 2077 * 2078 * remove guest MAC address filter 2079 */ 2080 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2081 { 2082 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2083 } 2084 2085 /** 2086 * ice_vc_request_qs_msg 2087 * @vf: pointer to the VF info 2088 * @msg: pointer to the msg buffer 2089 * 2090 * VFs get a default number of queues but can use this message to request a 2091 * different number. If the request is successful, PF will reset the VF and 2092 * return 0. If unsuccessful, PF will send message informing VF of number of 2093 * available queue pairs via virtchnl message response to VF. 2094 */ 2095 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2096 { 2097 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2098 struct virtchnl_vf_res_request *vfres = 2099 (struct virtchnl_vf_res_request *)msg; 2100 u16 req_queues = vfres->num_queue_pairs; 2101 struct ice_pf *pf = vf->pf; 2102 u16 max_allowed_vf_queues; 2103 u16 tx_rx_queue_left; 2104 struct device *dev; 2105 u16 cur_queues; 2106 2107 dev = ice_pf_to_dev(pf); 2108 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2109 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2110 goto error_param; 2111 } 2112 2113 cur_queues = vf->num_vf_qs; 2114 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2115 ice_get_avail_rxq_count(pf)); 2116 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2117 if (!req_queues) { 2118 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2119 vf->vf_id); 2120 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2121 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2122 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2123 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2124 } else if (req_queues > cur_queues && 2125 req_queues - cur_queues > tx_rx_queue_left) { 2126 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2127 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2128 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2129 ICE_MAX_RSS_QS_PER_VF); 2130 } else { 2131 /* request is successful, then reset VF */ 2132 vf->num_req_qs = req_queues; 2133 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2134 dev_info(dev, "VF %d granted request of %u queues.\n", 2135 vf->vf_id, req_queues); 2136 return 0; 2137 } 2138 2139 error_param: 2140 /* send the response to the VF */ 2141 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2142 v_ret, (u8 *)vfres, sizeof(*vfres)); 2143 } 2144 2145 /** 2146 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2147 * @caps: VF driver negotiated capabilities 2148 * 2149 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2150 */ 2151 static bool ice_vf_vlan_offload_ena(u32 caps) 2152 { 2153 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2154 } 2155 2156 /** 2157 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2158 * @vf: VF used to determine if VLAN promiscuous config is allowed 2159 */ 2160 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2161 { 2162 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2163 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2164 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2165 return true; 2166 2167 return false; 2168 } 2169 2170 /** 2171 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2172 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2173 * @vlan: VLAN used to enable VLAN promiscuous 2174 * 2175 * This function should only be called if VLAN promiscuous mode is allowed, 2176 * which can be determined via ice_is_vlan_promisc_allowed(). 2177 */ 2178 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2179 { 2180 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2181 int status; 2182 2183 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2184 vlan->vid); 2185 if (status && status != -EEXIST) 2186 return status; 2187 2188 return 0; 2189 } 2190 2191 /** 2192 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2193 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2194 * @vlan: VLAN used to disable VLAN promiscuous 2195 * 2196 * This function should only be called if VLAN promiscuous mode is allowed, 2197 * which can be determined via ice_is_vlan_promisc_allowed(). 2198 */ 2199 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2200 { 2201 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2202 int status; 2203 2204 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2205 vlan->vid); 2206 if (status && status != -ENOENT) 2207 return status; 2208 2209 return 0; 2210 } 2211 2212 /** 2213 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2214 * @vf: VF to check against 2215 * @vsi: VF's VSI 2216 * 2217 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2218 * wants to, so return false. 2219 * 2220 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2221 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2222 */ 2223 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2224 { 2225 if (ice_is_vf_trusted(vf)) 2226 return false; 2227 2228 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2229 return ((ice_vsi_num_non_zero_vlans(vsi) + 2230 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2231 } 2232 2233 /** 2234 * ice_vc_process_vlan_msg 2235 * @vf: pointer to the VF info 2236 * @msg: pointer to the msg buffer 2237 * @add_v: Add VLAN if true, otherwise delete VLAN 2238 * 2239 * Process virtchnl op to add or remove programmed guest VLAN ID 2240 */ 2241 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2242 { 2243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2244 struct virtchnl_vlan_filter_list *vfl = 2245 (struct virtchnl_vlan_filter_list *)msg; 2246 struct ice_pf *pf = vf->pf; 2247 bool vlan_promisc = false; 2248 struct ice_vsi *vsi; 2249 struct device *dev; 2250 int status = 0; 2251 int i; 2252 2253 dev = ice_pf_to_dev(pf); 2254 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2255 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2256 goto error_param; 2257 } 2258 2259 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2260 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2261 goto error_param; 2262 } 2263 2264 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2265 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2266 goto error_param; 2267 } 2268 2269 for (i = 0; i < vfl->num_elements; i++) { 2270 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2271 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2272 dev_err(dev, "invalid VF VLAN id %d\n", 2273 vfl->vlan_id[i]); 2274 goto error_param; 2275 } 2276 } 2277 2278 vsi = ice_get_vf_vsi(vf); 2279 if (!vsi) { 2280 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2281 goto error_param; 2282 } 2283 2284 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2285 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2286 vf->vf_id); 2287 /* There is no need to let VF know about being not trusted, 2288 * so we can just return success message here 2289 */ 2290 goto error_param; 2291 } 2292 2293 /* in DVM a VF can add/delete inner VLAN filters when 2294 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2295 */ 2296 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2297 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2298 goto error_param; 2299 } 2300 2301 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2302 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2303 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2304 */ 2305 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2306 !ice_is_dvm_ena(&pf->hw) && 2307 !ice_vf_is_port_vlan_ena(vf); 2308 2309 if (add_v) { 2310 for (i = 0; i < vfl->num_elements; i++) { 2311 u16 vid = vfl->vlan_id[i]; 2312 struct ice_vlan vlan; 2313 2314 if (ice_vf_has_max_vlans(vf, vsi)) { 2315 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2316 vf->vf_id); 2317 /* There is no need to let VF know about being 2318 * not trusted, so we can just return success 2319 * message here as well. 2320 */ 2321 goto error_param; 2322 } 2323 2324 /* we add VLAN 0 by default for each VF so we can enable 2325 * Tx VLAN anti-spoof without triggering MDD events so 2326 * we don't need to add it again here 2327 */ 2328 if (!vid) 2329 continue; 2330 2331 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2332 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2333 if (status) { 2334 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2335 goto error_param; 2336 } 2337 2338 /* Enable VLAN filtering on first non-zero VLAN */ 2339 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2340 if (vf->spoofchk) { 2341 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 2342 if (status) { 2343 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2344 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n", 2345 vid, status); 2346 goto error_param; 2347 } 2348 } 2349 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2350 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2351 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2352 vid, status); 2353 goto error_param; 2354 } 2355 } else if (vlan_promisc) { 2356 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2357 if (status) { 2358 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2359 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2360 vid, status); 2361 } 2362 } 2363 } 2364 } else { 2365 /* In case of non_trusted VF, number of VLAN elements passed 2366 * to PF for removal might be greater than number of VLANs 2367 * filter programmed for that VF - So, use actual number of 2368 * VLANS added earlier with add VLAN opcode. In order to avoid 2369 * removing VLAN that doesn't exist, which result to sending 2370 * erroneous failed message back to the VF 2371 */ 2372 int num_vf_vlan; 2373 2374 num_vf_vlan = vsi->num_vlan; 2375 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2376 u16 vid = vfl->vlan_id[i]; 2377 struct ice_vlan vlan; 2378 2379 /* we add VLAN 0 by default for each VF so we can enable 2380 * Tx VLAN anti-spoof without triggering MDD events so 2381 * we don't want a VIRTCHNL request to remove it 2382 */ 2383 if (!vid) 2384 continue; 2385 2386 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2387 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2388 if (status) { 2389 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2390 goto error_param; 2391 } 2392 2393 /* Disable VLAN filtering when only VLAN 0 is left */ 2394 if (!ice_vsi_has_non_zero_vlans(vsi)) { 2395 vsi->inner_vlan_ops.dis_tx_filtering(vsi); 2396 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2397 } 2398 2399 if (vlan_promisc) 2400 ice_vf_dis_vlan_promisc(vsi, &vlan); 2401 } 2402 } 2403 2404 error_param: 2405 /* send the response to the VF */ 2406 if (add_v) 2407 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2408 NULL, 0); 2409 else 2410 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2411 NULL, 0); 2412 } 2413 2414 /** 2415 * ice_vc_add_vlan_msg 2416 * @vf: pointer to the VF info 2417 * @msg: pointer to the msg buffer 2418 * 2419 * Add and program guest VLAN ID 2420 */ 2421 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2422 { 2423 return ice_vc_process_vlan_msg(vf, msg, true); 2424 } 2425 2426 /** 2427 * ice_vc_remove_vlan_msg 2428 * @vf: pointer to the VF info 2429 * @msg: pointer to the msg buffer 2430 * 2431 * remove programmed guest VLAN ID 2432 */ 2433 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2434 { 2435 return ice_vc_process_vlan_msg(vf, msg, false); 2436 } 2437 2438 /** 2439 * ice_vc_ena_vlan_stripping 2440 * @vf: pointer to the VF info 2441 * 2442 * Enable VLAN header stripping for a given VF 2443 */ 2444 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2445 { 2446 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2447 struct ice_vsi *vsi; 2448 2449 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2450 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2451 goto error_param; 2452 } 2453 2454 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2455 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2456 goto error_param; 2457 } 2458 2459 vsi = ice_get_vf_vsi(vf); 2460 if (!vsi) { 2461 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2462 goto error_param; 2463 } 2464 2465 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2466 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2467 2468 error_param: 2469 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2470 v_ret, NULL, 0); 2471 } 2472 2473 /** 2474 * ice_vc_dis_vlan_stripping 2475 * @vf: pointer to the VF info 2476 * 2477 * Disable VLAN header stripping for a given VF 2478 */ 2479 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2480 { 2481 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2482 struct ice_vsi *vsi; 2483 2484 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2485 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2486 goto error_param; 2487 } 2488 2489 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2490 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2491 goto error_param; 2492 } 2493 2494 vsi = ice_get_vf_vsi(vf); 2495 if (!vsi) { 2496 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2497 goto error_param; 2498 } 2499 2500 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2501 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2502 2503 error_param: 2504 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2505 v_ret, NULL, 0); 2506 } 2507 2508 /** 2509 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware 2510 * @vf: pointer to the VF info 2511 */ 2512 static int ice_vc_get_rss_hena(struct ice_vf *vf) 2513 { 2514 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2515 struct virtchnl_rss_hena *vrh = NULL; 2516 int len = 0, ret; 2517 2518 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2519 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2520 goto err; 2521 } 2522 2523 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 2524 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n"); 2525 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2526 goto err; 2527 } 2528 2529 len = sizeof(struct virtchnl_rss_hena); 2530 vrh = kzalloc(len, GFP_KERNEL); 2531 if (!vrh) { 2532 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2533 len = 0; 2534 goto err; 2535 } 2536 2537 vrh->hena = ICE_DEFAULT_RSS_HENA; 2538 err: 2539 /* send the response back to the VF */ 2540 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret, 2541 (u8 *)vrh, len); 2542 kfree(vrh); 2543 return ret; 2544 } 2545 2546 /** 2547 * ice_vc_set_rss_hena - set RSS HENA bits for the VF 2548 * @vf: pointer to the VF info 2549 * @msg: pointer to the msg buffer 2550 */ 2551 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg) 2552 { 2553 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg; 2554 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2555 struct ice_pf *pf = vf->pf; 2556 struct ice_vsi *vsi; 2557 struct device *dev; 2558 int status; 2559 2560 dev = ice_pf_to_dev(pf); 2561 2562 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2563 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2564 goto err; 2565 } 2566 2567 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2568 dev_err(dev, "RSS not supported by PF\n"); 2569 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2570 goto err; 2571 } 2572 2573 vsi = ice_get_vf_vsi(vf); 2574 if (!vsi) { 2575 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2576 goto err; 2577 } 2578 2579 /* clear all previously programmed RSS configuration to allow VF drivers 2580 * the ability to customize the RSS configuration and/or completely 2581 * disable RSS 2582 */ 2583 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 2584 if (status && !vrh->hena) { 2585 /* only report failure to clear the current RSS configuration if 2586 * that was clearly the VF's intention (i.e. vrh->hena = 0) 2587 */ 2588 v_ret = ice_err_to_virt_err(status); 2589 goto err; 2590 } else if (status) { 2591 /* allow the VF to update the RSS configuration even on failure 2592 * to clear the current RSS confguration in an attempt to keep 2593 * RSS in a working state 2594 */ 2595 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n", 2596 vf->vf_id); 2597 } 2598 2599 if (vrh->hena) { 2600 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena); 2601 v_ret = ice_err_to_virt_err(status); 2602 } 2603 2604 /* send the response to the VF */ 2605 err: 2606 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret, 2607 NULL, 0); 2608 } 2609 2610 /** 2611 * ice_vc_query_rxdid - query RXDID supported by DDP package 2612 * @vf: pointer to VF info 2613 * 2614 * Called from VF to query a bitmap of supported flexible 2615 * descriptor RXDIDs of a DDP package. 2616 */ 2617 static int ice_vc_query_rxdid(struct ice_vf *vf) 2618 { 2619 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2620 struct virtchnl_supported_rxdids *rxdid = NULL; 2621 struct ice_hw *hw = &vf->pf->hw; 2622 struct ice_pf *pf = vf->pf; 2623 int len = 0; 2624 int ret, i; 2625 u32 regval; 2626 2627 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2628 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2629 goto err; 2630 } 2631 2632 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) { 2633 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2634 goto err; 2635 } 2636 2637 len = sizeof(struct virtchnl_supported_rxdids); 2638 rxdid = kzalloc(len, GFP_KERNEL); 2639 if (!rxdid) { 2640 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2641 len = 0; 2642 goto err; 2643 } 2644 2645 /* RXDIDs supported by DDP package can be read from the register 2646 * to get the supported RXDID bitmap. But the legacy 32byte RXDID 2647 * is not listed in DDP package, add it in the bitmap manually. 2648 * Legacy 16byte descriptor is not supported. 2649 */ 2650 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1); 2651 2652 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 2653 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 2654 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 2655 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 2656 rxdid->supported_rxdids |= BIT(i); 2657 } 2658 2659 pf->supported_rxdids = rxdid->supported_rxdids; 2660 2661 err: 2662 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS, 2663 v_ret, (u8 *)rxdid, len); 2664 kfree(rxdid); 2665 return ret; 2666 } 2667 2668 /** 2669 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2670 * @vf: VF to enable/disable VLAN stripping for on initialization 2671 * 2672 * Set the default for VLAN stripping based on whether a port VLAN is configured 2673 * and the current VLAN mode of the device. 2674 */ 2675 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2676 { 2677 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2678 2679 if (!vsi) 2680 return -EINVAL; 2681 2682 /* don't modify stripping if port VLAN is configured in SVM since the 2683 * port VLAN is based on the inner/single VLAN in SVM 2684 */ 2685 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2686 return 0; 2687 2688 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2689 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2690 else 2691 return vsi->inner_vlan_ops.dis_stripping(vsi); 2692 } 2693 2694 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2695 { 2696 if (vf->trusted) 2697 return VLAN_N_VID; 2698 else 2699 return ICE_MAX_VLAN_PER_VF; 2700 } 2701 2702 /** 2703 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2704 * @vf: VF that being checked for 2705 * 2706 * When the device is in double VLAN mode, check whether or not the outer VLAN 2707 * is allowed. 2708 */ 2709 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2710 { 2711 if (ice_vf_is_port_vlan_ena(vf)) 2712 return true; 2713 2714 return false; 2715 } 2716 2717 /** 2718 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2719 * @vf: VF that capabilities are being set for 2720 * @caps: VLAN capabilities to populate 2721 * 2722 * Determine VLAN capabilities support based on whether a port VLAN is 2723 * configured. If a port VLAN is configured then the VF should use the inner 2724 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2725 * capabilies. 2726 */ 2727 static void 2728 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2729 { 2730 struct virtchnl_vlan_supported_caps *supported_caps; 2731 2732 if (ice_vf_outer_vlan_not_allowed(vf)) { 2733 /* until support for inner VLAN filtering is added when a port 2734 * VLAN is configured, only support software offloaded inner 2735 * VLANs when a port VLAN is confgured in DVM 2736 */ 2737 supported_caps = &caps->filtering.filtering_support; 2738 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2739 2740 supported_caps = &caps->offloads.stripping_support; 2741 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2742 VIRTCHNL_VLAN_TOGGLE | 2743 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2744 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2745 2746 supported_caps = &caps->offloads.insertion_support; 2747 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2748 VIRTCHNL_VLAN_TOGGLE | 2749 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2750 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2751 2752 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2753 caps->offloads.ethertype_match = 2754 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2755 } else { 2756 supported_caps = &caps->filtering.filtering_support; 2757 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2758 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2759 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2760 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2761 VIRTCHNL_VLAN_ETHERTYPE_AND; 2762 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2763 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2764 VIRTCHNL_VLAN_ETHERTYPE_9100; 2765 2766 supported_caps = &caps->offloads.stripping_support; 2767 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2768 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2769 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2770 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2771 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2772 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2773 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2774 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2775 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2776 2777 supported_caps = &caps->offloads.insertion_support; 2778 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2779 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2780 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2781 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2782 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2783 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2784 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2785 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2786 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2787 2788 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2789 2790 caps->offloads.ethertype_match = 2791 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2792 } 2793 2794 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2795 } 2796 2797 /** 2798 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2799 * @vf: VF that capabilities are being set for 2800 * @caps: VLAN capabilities to populate 2801 * 2802 * Determine VLAN capabilities support based on whether a port VLAN is 2803 * configured. If a port VLAN is configured then the VF does not have any VLAN 2804 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2805 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2806 * VLAN fitlering and offload capabilities. 2807 */ 2808 static void 2809 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2810 { 2811 struct virtchnl_vlan_supported_caps *supported_caps; 2812 2813 if (ice_vf_is_port_vlan_ena(vf)) { 2814 supported_caps = &caps->filtering.filtering_support; 2815 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2816 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2817 2818 supported_caps = &caps->offloads.stripping_support; 2819 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2820 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2821 2822 supported_caps = &caps->offloads.insertion_support; 2823 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2824 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2825 2826 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2827 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2828 caps->filtering.max_filters = 0; 2829 } else { 2830 supported_caps = &caps->filtering.filtering_support; 2831 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2832 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2833 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2834 2835 supported_caps = &caps->offloads.stripping_support; 2836 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2837 VIRTCHNL_VLAN_TOGGLE | 2838 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2839 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2840 2841 supported_caps = &caps->offloads.insertion_support; 2842 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2843 VIRTCHNL_VLAN_TOGGLE | 2844 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2845 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2846 2847 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2848 caps->offloads.ethertype_match = 2849 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2850 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2851 } 2852 } 2853 2854 /** 2855 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2856 * @vf: VF to determine VLAN capabilities for 2857 * 2858 * This will only be called if the VF and PF successfully negotiated 2859 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2860 * 2861 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2862 * is configured or not. 2863 */ 2864 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2865 { 2866 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2867 struct virtchnl_vlan_caps *caps = NULL; 2868 int err, len = 0; 2869 2870 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2871 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2872 goto out; 2873 } 2874 2875 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2876 if (!caps) { 2877 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2878 goto out; 2879 } 2880 len = sizeof(*caps); 2881 2882 if (ice_is_dvm_ena(&vf->pf->hw)) 2883 ice_vc_set_dvm_caps(vf, caps); 2884 else 2885 ice_vc_set_svm_caps(vf, caps); 2886 2887 /* store negotiated caps to prevent invalid VF messages */ 2888 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2889 2890 out: 2891 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2892 v_ret, (u8 *)caps, len); 2893 kfree(caps); 2894 return err; 2895 } 2896 2897 /** 2898 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2899 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2900 * @tpid: VLAN TPID used for validation 2901 * 2902 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2903 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2904 */ 2905 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2906 { 2907 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2908 2909 switch (tpid) { 2910 case ETH_P_8021Q: 2911 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2912 break; 2913 case ETH_P_8021AD: 2914 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2915 break; 2916 case ETH_P_QINQ1: 2917 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2918 break; 2919 } 2920 2921 if (!(filtering_caps & vlan_ethertype)) 2922 return false; 2923 2924 return true; 2925 } 2926 2927 /** 2928 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2929 * @vc_vlan: virtchnl_vlan to validate 2930 * 2931 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2932 * false. Otherwise return true. 2933 */ 2934 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2935 { 2936 if (!vc_vlan->tci || !vc_vlan->tpid) 2937 return false; 2938 2939 return true; 2940 } 2941 2942 /** 2943 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2944 * @vfc: negotiated/supported VLAN filtering capabilities 2945 * @vfl: VLAN filter list from VF to validate 2946 * 2947 * Validate all of the filters in the VLAN filter list from the VF. If any of 2948 * the checks fail then return false. Otherwise return true. 2949 */ 2950 static bool 2951 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2952 struct virtchnl_vlan_filter_list_v2 *vfl) 2953 { 2954 u16 i; 2955 2956 if (!vfl->num_elements) 2957 return false; 2958 2959 for (i = 0; i < vfl->num_elements; i++) { 2960 struct virtchnl_vlan_supported_caps *filtering_support = 2961 &vfc->filtering_support; 2962 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2963 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2964 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2965 2966 if ((ice_vc_is_valid_vlan(outer) && 2967 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2968 (ice_vc_is_valid_vlan(inner) && 2969 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2970 return false; 2971 2972 if ((outer->tci_mask && 2973 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2974 (inner->tci_mask && 2975 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2976 return false; 2977 2978 if (((outer->tci & VLAN_PRIO_MASK) && 2979 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2980 ((inner->tci & VLAN_PRIO_MASK) && 2981 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2982 return false; 2983 2984 if ((ice_vc_is_valid_vlan(outer) && 2985 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2986 outer->tpid)) || 2987 (ice_vc_is_valid_vlan(inner) && 2988 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2989 inner->tpid))) 2990 return false; 2991 } 2992 2993 return true; 2994 } 2995 2996 /** 2997 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2998 * @vc_vlan: struct virtchnl_vlan to transform 2999 */ 3000 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 3001 { 3002 struct ice_vlan vlan = { 0 }; 3003 3004 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3005 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 3006 vlan.tpid = vc_vlan->tpid; 3007 3008 return vlan; 3009 } 3010 3011 /** 3012 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 3013 * @vsi: VF's VSI used to perform the action 3014 * @vlan_action: function to perform the action with (i.e. add/del) 3015 * @vlan: VLAN filter to perform the action with 3016 */ 3017 static int 3018 ice_vc_vlan_action(struct ice_vsi *vsi, 3019 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 3020 struct ice_vlan *vlan) 3021 { 3022 int err; 3023 3024 err = vlan_action(vsi, vlan); 3025 if (err) 3026 return err; 3027 3028 return 0; 3029 } 3030 3031 /** 3032 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 3033 * @vf: VF used to delete the VLAN(s) 3034 * @vsi: VF's VSI used to delete the VLAN(s) 3035 * @vfl: virthchnl filter list used to delete the filters 3036 */ 3037 static int 3038 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3039 struct virtchnl_vlan_filter_list_v2 *vfl) 3040 { 3041 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3042 int err; 3043 u16 i; 3044 3045 for (i = 0; i < vfl->num_elements; i++) { 3046 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3047 struct virtchnl_vlan *vc_vlan; 3048 3049 vc_vlan = &vlan_fltr->outer; 3050 if (ice_vc_is_valid_vlan(vc_vlan)) { 3051 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3052 3053 err = ice_vc_vlan_action(vsi, 3054 vsi->outer_vlan_ops.del_vlan, 3055 &vlan); 3056 if (err) 3057 return err; 3058 3059 if (vlan_promisc) 3060 ice_vf_dis_vlan_promisc(vsi, &vlan); 3061 3062 /* Disable VLAN filtering when only VLAN 0 is left */ 3063 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) { 3064 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi); 3065 if (err) 3066 return err; 3067 } 3068 } 3069 3070 vc_vlan = &vlan_fltr->inner; 3071 if (ice_vc_is_valid_vlan(vc_vlan)) { 3072 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3073 3074 err = ice_vc_vlan_action(vsi, 3075 vsi->inner_vlan_ops.del_vlan, 3076 &vlan); 3077 if (err) 3078 return err; 3079 3080 /* no support for VLAN promiscuous on inner VLAN unless 3081 * we are in Single VLAN Mode (SVM) 3082 */ 3083 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3084 if (vlan_promisc) 3085 ice_vf_dis_vlan_promisc(vsi, &vlan); 3086 3087 /* Disable VLAN filtering when only VLAN 0 is left */ 3088 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3089 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi); 3090 if (err) 3091 return err; 3092 } 3093 } 3094 } 3095 } 3096 3097 return 0; 3098 } 3099 3100 /** 3101 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 3102 * @vf: VF the message was received from 3103 * @msg: message received from the VF 3104 */ 3105 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3106 { 3107 struct virtchnl_vlan_filter_list_v2 *vfl = 3108 (struct virtchnl_vlan_filter_list_v2 *)msg; 3109 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3110 struct ice_vsi *vsi; 3111 3112 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 3113 vfl)) { 3114 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3115 goto out; 3116 } 3117 3118 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3119 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3120 goto out; 3121 } 3122 3123 vsi = ice_get_vf_vsi(vf); 3124 if (!vsi) { 3125 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3126 goto out; 3127 } 3128 3129 if (ice_vc_del_vlans(vf, vsi, vfl)) 3130 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3131 3132 out: 3133 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 3134 0); 3135 } 3136 3137 /** 3138 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 3139 * @vf: VF used to add the VLAN(s) 3140 * @vsi: VF's VSI used to add the VLAN(s) 3141 * @vfl: virthchnl filter list used to add the filters 3142 */ 3143 static int 3144 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 3145 struct virtchnl_vlan_filter_list_v2 *vfl) 3146 { 3147 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 3148 int err; 3149 u16 i; 3150 3151 for (i = 0; i < vfl->num_elements; i++) { 3152 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 3153 struct virtchnl_vlan *vc_vlan; 3154 3155 vc_vlan = &vlan_fltr->outer; 3156 if (ice_vc_is_valid_vlan(vc_vlan)) { 3157 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3158 3159 err = ice_vc_vlan_action(vsi, 3160 vsi->outer_vlan_ops.add_vlan, 3161 &vlan); 3162 if (err) 3163 return err; 3164 3165 if (vlan_promisc) { 3166 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3167 if (err) 3168 return err; 3169 } 3170 3171 /* Enable VLAN filtering on first non-zero VLAN */ 3172 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) { 3173 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi); 3174 if (err) 3175 return err; 3176 } 3177 } 3178 3179 vc_vlan = &vlan_fltr->inner; 3180 if (ice_vc_is_valid_vlan(vc_vlan)) { 3181 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 3182 3183 err = ice_vc_vlan_action(vsi, 3184 vsi->inner_vlan_ops.add_vlan, 3185 &vlan); 3186 if (err) 3187 return err; 3188 3189 /* no support for VLAN promiscuous on inner VLAN unless 3190 * we are in Single VLAN Mode (SVM) 3191 */ 3192 if (!ice_is_dvm_ena(&vsi->back->hw)) { 3193 if (vlan_promisc) { 3194 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 3195 if (err) 3196 return err; 3197 } 3198 3199 /* Enable VLAN filtering on first non-zero VLAN */ 3200 if (vf->spoofchk && vlan.vid) { 3201 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi); 3202 if (err) 3203 return err; 3204 } 3205 } 3206 } 3207 } 3208 3209 return 0; 3210 } 3211 3212 /** 3213 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 3214 * @vsi: VF VSI used to get number of existing VLAN filters 3215 * @vfc: negotiated/supported VLAN filtering capabilities 3216 * @vfl: VLAN filter list from VF to validate 3217 * 3218 * Validate all of the filters in the VLAN filter list from the VF during the 3219 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 3220 * Otherwise return true. 3221 */ 3222 static bool 3223 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 3224 struct virtchnl_vlan_filtering_caps *vfc, 3225 struct virtchnl_vlan_filter_list_v2 *vfl) 3226 { 3227 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) + 3228 vfl->num_elements; 3229 3230 if (num_requested_filters > vfc->max_filters) 3231 return false; 3232 3233 return ice_vc_validate_vlan_filter_list(vfc, vfl); 3234 } 3235 3236 /** 3237 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 3238 * @vf: VF the message was received from 3239 * @msg: message received from the VF 3240 */ 3241 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 3242 { 3243 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3244 struct virtchnl_vlan_filter_list_v2 *vfl = 3245 (struct virtchnl_vlan_filter_list_v2 *)msg; 3246 struct ice_vsi *vsi; 3247 3248 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3249 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3250 goto out; 3251 } 3252 3253 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 3254 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3255 goto out; 3256 } 3257 3258 vsi = ice_get_vf_vsi(vf); 3259 if (!vsi) { 3260 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3261 goto out; 3262 } 3263 3264 if (!ice_vc_validate_add_vlan_filter_list(vsi, 3265 &vf->vlan_v2_caps.filtering, 3266 vfl)) { 3267 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3268 goto out; 3269 } 3270 3271 if (ice_vc_add_vlans(vf, vsi, vfl)) 3272 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3273 3274 out: 3275 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 3276 0); 3277 } 3278 3279 /** 3280 * ice_vc_valid_vlan_setting - validate VLAN setting 3281 * @negotiated_settings: negotiated VLAN settings during VF init 3282 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3283 */ 3284 static bool 3285 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3286 { 3287 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3288 return false; 3289 3290 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3291 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3292 */ 3293 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3294 hweight32(ethertype_setting) > 1) 3295 return false; 3296 3297 /* ability to modify the VLAN setting was not negotiated */ 3298 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3299 return false; 3300 3301 return true; 3302 } 3303 3304 /** 3305 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3306 * @caps: negotiated VLAN settings during VF init 3307 * @msg: message to validate 3308 * 3309 * Used to validate any VLAN virtchnl message sent as a 3310 * virtchnl_vlan_setting structure. Validates the message against the 3311 * negotiated/supported caps during VF driver init. 3312 */ 3313 static bool 3314 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3315 struct virtchnl_vlan_setting *msg) 3316 { 3317 if ((!msg->outer_ethertype_setting && 3318 !msg->inner_ethertype_setting) || 3319 (!caps->outer && !caps->inner)) 3320 return false; 3321 3322 if (msg->outer_ethertype_setting && 3323 !ice_vc_valid_vlan_setting(caps->outer, 3324 msg->outer_ethertype_setting)) 3325 return false; 3326 3327 if (msg->inner_ethertype_setting && 3328 !ice_vc_valid_vlan_setting(caps->inner, 3329 msg->inner_ethertype_setting)) 3330 return false; 3331 3332 return true; 3333 } 3334 3335 /** 3336 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3337 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3338 * @tpid: VLAN TPID to populate 3339 */ 3340 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3341 { 3342 switch (ethertype_setting) { 3343 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3344 *tpid = ETH_P_8021Q; 3345 break; 3346 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3347 *tpid = ETH_P_8021AD; 3348 break; 3349 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3350 *tpid = ETH_P_QINQ1; 3351 break; 3352 default: 3353 *tpid = 0; 3354 return -EINVAL; 3355 } 3356 3357 return 0; 3358 } 3359 3360 /** 3361 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3362 * @vsi: VF's VSI used to enable the VLAN offload 3363 * @ena_offload: function used to enable the VLAN offload 3364 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3365 */ 3366 static int 3367 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3368 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3369 u32 ethertype_setting) 3370 { 3371 u16 tpid; 3372 int err; 3373 3374 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3375 if (err) 3376 return err; 3377 3378 err = ena_offload(vsi, tpid); 3379 if (err) 3380 return err; 3381 3382 return 0; 3383 } 3384 3385 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3386 #define ICE_L2TSEL_BIT_OFFSET 23 3387 enum ice_l2tsel { 3388 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3389 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3390 }; 3391 3392 /** 3393 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3394 * @vsi: VSI used to update l2tsel on 3395 * @l2tsel: l2tsel setting requested 3396 * 3397 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3398 * This will modify which descriptor field the first offloaded VLAN will be 3399 * stripped into. 3400 */ 3401 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3402 { 3403 struct ice_hw *hw = &vsi->back->hw; 3404 u32 l2tsel_bit; 3405 int i; 3406 3407 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3408 l2tsel_bit = 0; 3409 else 3410 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3411 3412 for (i = 0; i < vsi->alloc_rxq; i++) { 3413 u16 pfq = vsi->rxq_map[i]; 3414 u32 qrx_context_offset; 3415 u32 regval; 3416 3417 qrx_context_offset = 3418 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3419 3420 regval = rd32(hw, qrx_context_offset); 3421 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3422 regval |= l2tsel_bit; 3423 wr32(hw, qrx_context_offset, regval); 3424 } 3425 } 3426 3427 /** 3428 * ice_vc_ena_vlan_stripping_v2_msg 3429 * @vf: VF the message was received from 3430 * @msg: message received from the VF 3431 * 3432 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3433 */ 3434 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3435 { 3436 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3437 struct virtchnl_vlan_supported_caps *stripping_support; 3438 struct virtchnl_vlan_setting *strip_msg = 3439 (struct virtchnl_vlan_setting *)msg; 3440 u32 ethertype_setting; 3441 struct ice_vsi *vsi; 3442 3443 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3444 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3445 goto out; 3446 } 3447 3448 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3449 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3450 goto out; 3451 } 3452 3453 vsi = ice_get_vf_vsi(vf); 3454 if (!vsi) { 3455 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3456 goto out; 3457 } 3458 3459 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3460 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3461 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3462 goto out; 3463 } 3464 3465 ethertype_setting = strip_msg->outer_ethertype_setting; 3466 if (ethertype_setting) { 3467 if (ice_vc_ena_vlan_offload(vsi, 3468 vsi->outer_vlan_ops.ena_stripping, 3469 ethertype_setting)) { 3470 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3471 goto out; 3472 } else { 3473 enum ice_l2tsel l2tsel = 3474 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3475 3476 /* PF tells the VF that the outer VLAN tag is always 3477 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3478 * inner is always extracted to 3479 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3480 * support outer stripping so the first tag always ends 3481 * up in L2TAG2_2ND and the second/inner tag, if 3482 * enabled, is extracted in L2TAG1. 3483 */ 3484 ice_vsi_update_l2tsel(vsi, l2tsel); 3485 } 3486 } 3487 3488 ethertype_setting = strip_msg->inner_ethertype_setting; 3489 if (ethertype_setting && 3490 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3491 ethertype_setting)) { 3492 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3493 goto out; 3494 } 3495 3496 out: 3497 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3498 v_ret, NULL, 0); 3499 } 3500 3501 /** 3502 * ice_vc_dis_vlan_stripping_v2_msg 3503 * @vf: VF the message was received from 3504 * @msg: message received from the VF 3505 * 3506 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3507 */ 3508 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3509 { 3510 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3511 struct virtchnl_vlan_supported_caps *stripping_support; 3512 struct virtchnl_vlan_setting *strip_msg = 3513 (struct virtchnl_vlan_setting *)msg; 3514 u32 ethertype_setting; 3515 struct ice_vsi *vsi; 3516 3517 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3518 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3519 goto out; 3520 } 3521 3522 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3523 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3524 goto out; 3525 } 3526 3527 vsi = ice_get_vf_vsi(vf); 3528 if (!vsi) { 3529 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3530 goto out; 3531 } 3532 3533 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3534 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3535 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3536 goto out; 3537 } 3538 3539 ethertype_setting = strip_msg->outer_ethertype_setting; 3540 if (ethertype_setting) { 3541 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3542 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3543 goto out; 3544 } else { 3545 enum ice_l2tsel l2tsel = 3546 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3547 3548 /* PF tells the VF that the outer VLAN tag is always 3549 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3550 * inner is always extracted to 3551 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3552 * support inner stripping while outer stripping is 3553 * disabled so that the first and only tag is extracted 3554 * in L2TAG1. 3555 */ 3556 ice_vsi_update_l2tsel(vsi, l2tsel); 3557 } 3558 } 3559 3560 ethertype_setting = strip_msg->inner_ethertype_setting; 3561 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3562 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3563 goto out; 3564 } 3565 3566 out: 3567 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3568 v_ret, NULL, 0); 3569 } 3570 3571 /** 3572 * ice_vc_ena_vlan_insertion_v2_msg 3573 * @vf: VF the message was received from 3574 * @msg: message received from the VF 3575 * 3576 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3577 */ 3578 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3579 { 3580 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3581 struct virtchnl_vlan_supported_caps *insertion_support; 3582 struct virtchnl_vlan_setting *insertion_msg = 3583 (struct virtchnl_vlan_setting *)msg; 3584 u32 ethertype_setting; 3585 struct ice_vsi *vsi; 3586 3587 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3588 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3589 goto out; 3590 } 3591 3592 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3593 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3594 goto out; 3595 } 3596 3597 vsi = ice_get_vf_vsi(vf); 3598 if (!vsi) { 3599 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3600 goto out; 3601 } 3602 3603 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3604 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3605 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3606 goto out; 3607 } 3608 3609 ethertype_setting = insertion_msg->outer_ethertype_setting; 3610 if (ethertype_setting && 3611 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3612 ethertype_setting)) { 3613 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3614 goto out; 3615 } 3616 3617 ethertype_setting = insertion_msg->inner_ethertype_setting; 3618 if (ethertype_setting && 3619 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3620 ethertype_setting)) { 3621 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3622 goto out; 3623 } 3624 3625 out: 3626 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3627 v_ret, NULL, 0); 3628 } 3629 3630 /** 3631 * ice_vc_dis_vlan_insertion_v2_msg 3632 * @vf: VF the message was received from 3633 * @msg: message received from the VF 3634 * 3635 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3636 */ 3637 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3638 { 3639 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3640 struct virtchnl_vlan_supported_caps *insertion_support; 3641 struct virtchnl_vlan_setting *insertion_msg = 3642 (struct virtchnl_vlan_setting *)msg; 3643 u32 ethertype_setting; 3644 struct ice_vsi *vsi; 3645 3646 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3647 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3648 goto out; 3649 } 3650 3651 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3652 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3653 goto out; 3654 } 3655 3656 vsi = ice_get_vf_vsi(vf); 3657 if (!vsi) { 3658 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3659 goto out; 3660 } 3661 3662 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3663 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3664 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3665 goto out; 3666 } 3667 3668 ethertype_setting = insertion_msg->outer_ethertype_setting; 3669 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3670 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3671 goto out; 3672 } 3673 3674 ethertype_setting = insertion_msg->inner_ethertype_setting; 3675 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3676 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3677 goto out; 3678 } 3679 3680 out: 3681 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3682 v_ret, NULL, 0); 3683 } 3684 3685 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3686 .get_ver_msg = ice_vc_get_ver_msg, 3687 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3688 .reset_vf = ice_vc_reset_vf_msg, 3689 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3690 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3691 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3692 .ena_qs_msg = ice_vc_ena_qs_msg, 3693 .dis_qs_msg = ice_vc_dis_qs_msg, 3694 .request_qs_msg = ice_vc_request_qs_msg, 3695 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3696 .config_rss_key = ice_vc_config_rss_key, 3697 .config_rss_lut = ice_vc_config_rss_lut, 3698 .get_stats_msg = ice_vc_get_stats_msg, 3699 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3700 .add_vlan_msg = ice_vc_add_vlan_msg, 3701 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3702 .query_rxdid = ice_vc_query_rxdid, 3703 .get_rss_hena = ice_vc_get_rss_hena, 3704 .set_rss_hena_msg = ice_vc_set_rss_hena, 3705 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3706 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3707 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3708 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3709 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3710 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3711 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3712 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3713 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3714 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3715 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3716 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3717 }; 3718 3719 /** 3720 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3721 * @vf: the VF to switch ops 3722 */ 3723 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3724 { 3725 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3726 } 3727 3728 /** 3729 * ice_vc_repr_add_mac 3730 * @vf: pointer to VF 3731 * @msg: virtchannel message 3732 * 3733 * When port representors are created, we do not add MAC rule 3734 * to firmware, we store it so that PF could report same 3735 * MAC as VF. 3736 */ 3737 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3738 { 3739 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3740 struct virtchnl_ether_addr_list *al = 3741 (struct virtchnl_ether_addr_list *)msg; 3742 struct ice_vsi *vsi; 3743 struct ice_pf *pf; 3744 int i; 3745 3746 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3747 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3748 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3749 goto handle_mac_exit; 3750 } 3751 3752 pf = vf->pf; 3753 3754 vsi = ice_get_vf_vsi(vf); 3755 if (!vsi) { 3756 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3757 goto handle_mac_exit; 3758 } 3759 3760 for (i = 0; i < al->num_elements; i++) { 3761 u8 *mac_addr = al->list[i].addr; 3762 3763 if (!is_unicast_ether_addr(mac_addr) || 3764 ether_addr_equal(mac_addr, vf->hw_lan_addr)) 3765 continue; 3766 3767 if (vf->pf_set_mac) { 3768 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3769 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3770 goto handle_mac_exit; 3771 } 3772 3773 ice_vfhw_mac_add(vf, &al->list[i]); 3774 vf->num_mac++; 3775 break; 3776 } 3777 3778 handle_mac_exit: 3779 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3780 v_ret, NULL, 0); 3781 } 3782 3783 /** 3784 * ice_vc_repr_del_mac - response with success for deleting MAC 3785 * @vf: pointer to VF 3786 * @msg: virtchannel message 3787 * 3788 * Respond with success to not break normal VF flow. 3789 * For legacy VF driver try to update cached MAC address. 3790 */ 3791 static int 3792 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3793 { 3794 struct virtchnl_ether_addr_list *al = 3795 (struct virtchnl_ether_addr_list *)msg; 3796 3797 ice_update_legacy_cached_mac(vf, &al->list[0]); 3798 3799 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3800 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3801 } 3802 3803 static int 3804 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3805 { 3806 dev_dbg(ice_pf_to_dev(vf->pf), 3807 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3808 vf->vf_id); 3809 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3810 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3811 NULL, 0); 3812 } 3813 3814 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3815 .get_ver_msg = ice_vc_get_ver_msg, 3816 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3817 .reset_vf = ice_vc_reset_vf_msg, 3818 .add_mac_addr_msg = ice_vc_repr_add_mac, 3819 .del_mac_addr_msg = ice_vc_repr_del_mac, 3820 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3821 .ena_qs_msg = ice_vc_ena_qs_msg, 3822 .dis_qs_msg = ice_vc_dis_qs_msg, 3823 .request_qs_msg = ice_vc_request_qs_msg, 3824 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3825 .config_rss_key = ice_vc_config_rss_key, 3826 .config_rss_lut = ice_vc_config_rss_lut, 3827 .get_stats_msg = ice_vc_get_stats_msg, 3828 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3829 .add_vlan_msg = ice_vc_add_vlan_msg, 3830 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3831 .query_rxdid = ice_vc_query_rxdid, 3832 .get_rss_hena = ice_vc_get_rss_hena, 3833 .set_rss_hena_msg = ice_vc_set_rss_hena, 3834 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3835 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3836 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3837 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3838 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3839 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3840 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3841 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3842 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3843 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3844 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3845 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3846 }; 3847 3848 /** 3849 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3850 * @vf: the VF to switch ops 3851 */ 3852 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3853 { 3854 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3855 } 3856 3857 /** 3858 * ice_is_malicious_vf - check if this vf might be overflowing mailbox 3859 * @vf: the VF to check 3860 * @mbxdata: data about the state of the mailbox 3861 * 3862 * Detect if a given VF might be malicious and attempting to overflow the PF 3863 * mailbox. If so, log a warning message and ignore this event. 3864 */ 3865 static bool 3866 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata) 3867 { 3868 bool report_malvf = false; 3869 struct device *dev; 3870 struct ice_pf *pf; 3871 int status; 3872 3873 pf = vf->pf; 3874 dev = ice_pf_to_dev(pf); 3875 3876 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) 3877 return vf->mbx_info.malicious; 3878 3879 /* check to see if we have a newly malicious VF */ 3880 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info, 3881 &report_malvf); 3882 if (status) 3883 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n", 3884 vf->vf_id, vf->dev_lan_addr, status); 3885 3886 if (report_malvf) { 3887 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3888 u8 zero_addr[ETH_ALEN] = {}; 3889 3890 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", 3891 vf->dev_lan_addr, 3892 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr); 3893 } 3894 3895 return vf->mbx_info.malicious; 3896 } 3897 3898 /** 3899 * ice_vc_process_vf_msg - Process request from VF 3900 * @pf: pointer to the PF structure 3901 * @event: pointer to the AQ event 3902 * @mbxdata: information used to detect VF attempting mailbox overflow 3903 * 3904 * called from the common asq/arq handler to 3905 * process request from VF 3906 */ 3907 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event, 3908 struct ice_mbx_data *mbxdata) 3909 { 3910 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3911 s16 vf_id = le16_to_cpu(event->desc.retval); 3912 const struct ice_virtchnl_ops *ops; 3913 u16 msglen = event->msg_len; 3914 u8 *msg = event->msg_buf; 3915 struct ice_vf *vf = NULL; 3916 struct device *dev; 3917 int err = 0; 3918 3919 dev = ice_pf_to_dev(pf); 3920 3921 vf = ice_get_vf_by_id(pf, vf_id); 3922 if (!vf) { 3923 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3924 vf_id, v_opcode, msglen); 3925 return; 3926 } 3927 3928 mutex_lock(&vf->cfg_lock); 3929 3930 /* Check if the VF is trying to overflow the mailbox */ 3931 if (ice_is_malicious_vf(vf, mbxdata)) 3932 goto finish; 3933 3934 /* Check if VF is disabled. */ 3935 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3936 err = -EPERM; 3937 goto error_handler; 3938 } 3939 3940 ops = vf->virtchnl_ops; 3941 3942 /* Perform basic checks on the msg */ 3943 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3944 if (err) { 3945 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3946 err = -EPERM; 3947 else 3948 err = -EINVAL; 3949 } 3950 3951 error_handler: 3952 if (err) { 3953 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3954 NULL, 0); 3955 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3956 vf_id, v_opcode, msglen, err); 3957 goto finish; 3958 } 3959 3960 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3961 ice_vc_send_msg_to_vf(vf, v_opcode, 3962 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3963 0); 3964 goto finish; 3965 } 3966 3967 switch (v_opcode) { 3968 case VIRTCHNL_OP_VERSION: 3969 err = ops->get_ver_msg(vf, msg); 3970 break; 3971 case VIRTCHNL_OP_GET_VF_RESOURCES: 3972 err = ops->get_vf_res_msg(vf, msg); 3973 if (ice_vf_init_vlan_stripping(vf)) 3974 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3975 vf->vf_id); 3976 ice_vc_notify_vf_link_state(vf); 3977 break; 3978 case VIRTCHNL_OP_RESET_VF: 3979 ops->reset_vf(vf); 3980 break; 3981 case VIRTCHNL_OP_ADD_ETH_ADDR: 3982 err = ops->add_mac_addr_msg(vf, msg); 3983 break; 3984 case VIRTCHNL_OP_DEL_ETH_ADDR: 3985 err = ops->del_mac_addr_msg(vf, msg); 3986 break; 3987 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3988 err = ops->cfg_qs_msg(vf, msg); 3989 break; 3990 case VIRTCHNL_OP_ENABLE_QUEUES: 3991 err = ops->ena_qs_msg(vf, msg); 3992 ice_vc_notify_vf_link_state(vf); 3993 break; 3994 case VIRTCHNL_OP_DISABLE_QUEUES: 3995 err = ops->dis_qs_msg(vf, msg); 3996 break; 3997 case VIRTCHNL_OP_REQUEST_QUEUES: 3998 err = ops->request_qs_msg(vf, msg); 3999 break; 4000 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 4001 err = ops->cfg_irq_map_msg(vf, msg); 4002 break; 4003 case VIRTCHNL_OP_CONFIG_RSS_KEY: 4004 err = ops->config_rss_key(vf, msg); 4005 break; 4006 case VIRTCHNL_OP_CONFIG_RSS_LUT: 4007 err = ops->config_rss_lut(vf, msg); 4008 break; 4009 case VIRTCHNL_OP_GET_STATS: 4010 err = ops->get_stats_msg(vf, msg); 4011 break; 4012 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 4013 err = ops->cfg_promiscuous_mode_msg(vf, msg); 4014 break; 4015 case VIRTCHNL_OP_ADD_VLAN: 4016 err = ops->add_vlan_msg(vf, msg); 4017 break; 4018 case VIRTCHNL_OP_DEL_VLAN: 4019 err = ops->remove_vlan_msg(vf, msg); 4020 break; 4021 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 4022 err = ops->query_rxdid(vf); 4023 break; 4024 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 4025 err = ops->get_rss_hena(vf); 4026 break; 4027 case VIRTCHNL_OP_SET_RSS_HENA: 4028 err = ops->set_rss_hena_msg(vf, msg); 4029 break; 4030 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 4031 err = ops->ena_vlan_stripping(vf); 4032 break; 4033 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 4034 err = ops->dis_vlan_stripping(vf); 4035 break; 4036 case VIRTCHNL_OP_ADD_FDIR_FILTER: 4037 err = ops->add_fdir_fltr_msg(vf, msg); 4038 break; 4039 case VIRTCHNL_OP_DEL_FDIR_FILTER: 4040 err = ops->del_fdir_fltr_msg(vf, msg); 4041 break; 4042 case VIRTCHNL_OP_ADD_RSS_CFG: 4043 err = ops->handle_rss_cfg_msg(vf, msg, true); 4044 break; 4045 case VIRTCHNL_OP_DEL_RSS_CFG: 4046 err = ops->handle_rss_cfg_msg(vf, msg, false); 4047 break; 4048 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 4049 err = ops->get_offload_vlan_v2_caps(vf); 4050 break; 4051 case VIRTCHNL_OP_ADD_VLAN_V2: 4052 err = ops->add_vlan_v2_msg(vf, msg); 4053 break; 4054 case VIRTCHNL_OP_DEL_VLAN_V2: 4055 err = ops->remove_vlan_v2_msg(vf, msg); 4056 break; 4057 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 4058 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 4059 break; 4060 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 4061 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 4062 break; 4063 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 4064 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 4065 break; 4066 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 4067 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 4068 break; 4069 case VIRTCHNL_OP_UNKNOWN: 4070 default: 4071 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 4072 vf_id); 4073 err = ice_vc_send_msg_to_vf(vf, v_opcode, 4074 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 4075 NULL, 0); 4076 break; 4077 } 4078 if (err) { 4079 /* Helper function cares less about error return values here 4080 * as it is busy with pending work. 4081 */ 4082 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 4083 vf_id, v_opcode, err); 4084 } 4085 4086 finish: 4087 mutex_unlock(&vf->cfg_lock); 4088 ice_put_vf(vf); 4089 } 4090