1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3 
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15 
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 		BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18 
19 struct ice_vc_hdr_match_type {
20 	u32 vc_hdr;	/* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 	u32 ice_hdr;	/* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23 
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 	{VIRTCHNL_PROTO_HDR_NONE,	ICE_FLOW_SEG_HDR_NONE},
26 	{VIRTCHNL_PROTO_HDR_ETH,	ICE_FLOW_SEG_HDR_ETH},
27 	{VIRTCHNL_PROTO_HDR_S_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
28 	{VIRTCHNL_PROTO_HDR_C_VLAN,	ICE_FLOW_SEG_HDR_VLAN},
29 	{VIRTCHNL_PROTO_HDR_IPV4,	ICE_FLOW_SEG_HDR_IPV4 |
30 					ICE_FLOW_SEG_HDR_IPV_OTHER},
31 	{VIRTCHNL_PROTO_HDR_IPV6,	ICE_FLOW_SEG_HDR_IPV6 |
32 					ICE_FLOW_SEG_HDR_IPV_OTHER},
33 	{VIRTCHNL_PROTO_HDR_TCP,	ICE_FLOW_SEG_HDR_TCP},
34 	{VIRTCHNL_PROTO_HDR_UDP,	ICE_FLOW_SEG_HDR_UDP},
35 	{VIRTCHNL_PROTO_HDR_SCTP,	ICE_FLOW_SEG_HDR_SCTP},
36 	{VIRTCHNL_PROTO_HDR_PPPOE,	ICE_FLOW_SEG_HDR_PPPOE},
37 	{VIRTCHNL_PROTO_HDR_GTPU_IP,	ICE_FLOW_SEG_HDR_GTPU_IP},
38 	{VIRTCHNL_PROTO_HDR_GTPU_EH,	ICE_FLOW_SEG_HDR_GTPU_EH},
39 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 					ICE_FLOW_SEG_HDR_GTPU_DWN},
41 	{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 					ICE_FLOW_SEG_HDR_GTPU_UP},
43 	{VIRTCHNL_PROTO_HDR_L2TPV3,	ICE_FLOW_SEG_HDR_L2TPV3},
44 	{VIRTCHNL_PROTO_HDR_ESP,	ICE_FLOW_SEG_HDR_ESP},
45 	{VIRTCHNL_PROTO_HDR_AH,		ICE_FLOW_SEG_HDR_AH},
46 	{VIRTCHNL_PROTO_HDR_PFCP,	ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48 
49 struct ice_vc_hash_field_match_type {
50 	u32 vc_hdr;		/* virtchnl headers
51 				 * (VIRTCHNL_PROTO_HDR_XXX)
52 				 */
53 	u32 vc_hash_field;	/* virtchnl hash fields selector
54 				 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 				 */
56 	u64 ice_hash_field;	/* ice hash fields
57 				 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 				 */
59 };
60 
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 	{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 		ICE_FLOW_HASH_ETH},
70 	{VIRTCHNL_PROTO_HDR_ETH,
71 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 		BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 	{VIRTCHNL_PROTO_HDR_S_VLAN,
74 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 		BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 	{VIRTCHNL_PROTO_HDR_C_VLAN,
77 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 		BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 		ICE_FLOW_HASH_IPV4},
86 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 		ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 	{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 		ICE_FLOW_HASH_IPV6},
107 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 		ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 	{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 		BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 	{VIRTCHNL_PROTO_HDR_TCP,
122 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 	{VIRTCHNL_PROTO_HDR_TCP,
125 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 		BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 	{VIRTCHNL_PROTO_HDR_TCP,
128 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 		ICE_FLOW_HASH_TCP_PORT},
131 	{VIRTCHNL_PROTO_HDR_UDP,
132 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 	{VIRTCHNL_PROTO_HDR_UDP,
135 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 		BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 	{VIRTCHNL_PROTO_HDR_UDP,
138 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 		ICE_FLOW_HASH_UDP_PORT},
141 	{VIRTCHNL_PROTO_HDR_SCTP,
142 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 	{VIRTCHNL_PROTO_HDR_SCTP,
145 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 		BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 	{VIRTCHNL_PROTO_HDR_SCTP,
148 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 		ICE_FLOW_HASH_SCTP_PORT},
151 	{VIRTCHNL_PROTO_HDR_PPPOE,
152 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 		BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 	{VIRTCHNL_PROTO_HDR_GTPU_IP,
155 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 		BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 	{VIRTCHNL_PROTO_HDR_L2TPV3,
158 		FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 		BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 	{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 		BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 	{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 		BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 	{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 		BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167 
168 /**
169  * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170  * @pf: pointer to the PF structure
171  * @v_opcode: operation code
172  * @v_retval: return value
173  * @msg: pointer to the msg buffer
174  * @msglen: msg length
175  */
176 static void
177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 		    enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 	struct ice_hw *hw = &pf->hw;
181 	struct ice_vf *vf;
182 	unsigned int bkt;
183 
184 	mutex_lock(&pf->vfs.table_lock);
185 	ice_for_each_vf(pf, bkt, vf) {
186 		/* Not all vfs are enabled so skip the ones that are not */
187 		if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 		    !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 			continue;
190 
191 		/* Ignore return value on purpose - a given VF may fail, but
192 		 * we need to keep going and send to all of them
193 		 */
194 		ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 				      msglen, NULL);
196 	}
197 	mutex_unlock(&pf->vfs.table_lock);
198 }
199 
200 /**
201  * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202  * @vf: pointer to the VF structure
203  * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204  * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205  * @link_up: whether or not to set the link up/down
206  */
207 static void
208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 		 int ice_link_speed, bool link_up)
210 {
211 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 		pfe->event_data.link_event_adv.link_status = link_up;
213 		/* Speed in Mbps */
214 		pfe->event_data.link_event_adv.link_speed =
215 			ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 	} else {
217 		pfe->event_data.link_event.link_status = link_up;
218 		/* Legacy method for virtchnl link speeds */
219 		pfe->event_data.link_event.link_speed =
220 			(enum virtchnl_link_speed)
221 			ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 	}
223 }
224 
225 /**
226  * ice_vc_notify_vf_link_state - Inform a VF of link status
227  * @vf: pointer to the VF structure
228  *
229  * send a link status message to a single VF
230  */
231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 	struct virtchnl_pf_event pfe = { 0 };
234 	struct ice_hw *hw = &vf->pf->hw;
235 
236 	pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 	pfe.severity = PF_EVENT_SEVERITY_INFO;
238 
239 	if (ice_is_vf_link_up(vf))
240 		ice_set_pfe_link(vf, &pfe,
241 				 hw->port_info->phy.link_info.link_speed, true);
242 	else
243 		ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244 
245 	ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 			      VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 			      sizeof(pfe), NULL);
248 }
249 
250 /**
251  * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252  * @pf: pointer to the PF structure
253  */
254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 	struct ice_vf *vf;
257 	unsigned int bkt;
258 
259 	mutex_lock(&pf->vfs.table_lock);
260 	ice_for_each_vf(pf, bkt, vf)
261 		ice_vc_notify_vf_link_state(vf);
262 	mutex_unlock(&pf->vfs.table_lock);
263 }
264 
265 /**
266  * ice_vc_notify_reset - Send pending reset message to all VFs
267  * @pf: pointer to the PF structure
268  *
269  * indicate a pending reset to all VFs on a given PF
270  */
271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 	struct virtchnl_pf_event pfe;
274 
275 	if (!ice_has_vfs(pf))
276 		return;
277 
278 	pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 	pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 	ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 			    (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283 
284 /**
285  * ice_vc_send_msg_to_vf - Send message to VF
286  * @vf: pointer to the VF info
287  * @v_opcode: virtual channel opcode
288  * @v_retval: virtual channel return value
289  * @msg: pointer to the msg buffer
290  * @msglen: msg length
291  *
292  * send msg to VF
293  */
294 int
295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 		      enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 	struct device *dev;
299 	struct ice_pf *pf;
300 	int aq_ret;
301 
302 	pf = vf->pf;
303 	dev = ice_pf_to_dev(pf);
304 
305 	aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 				       msg, msglen, NULL);
307 	if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 		dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 			 vf->vf_id, aq_ret,
310 			 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 		return -EIO;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  * ice_vc_get_ver_msg
319  * @vf: pointer to the VF info
320  * @msg: pointer to the msg buffer
321  *
322  * called from the VF to request the API version used by the PF
323  */
324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 	struct virtchnl_version_info info = {
327 		VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 	};
329 
330 	vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 	/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 	if (VF_IS_V10(&vf->vf_ver))
333 		info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334 
335 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 				     VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 				     sizeof(struct virtchnl_version_info));
338 }
339 
340 /**
341  * ice_vc_get_max_frame_size - get max frame size allowed for VF
342  * @vf: VF used to determine max frame size
343  *
344  * Max frame size is determined based on the current port's max frame size and
345  * whether a port VLAN is configured on this VF. The VF is not aware whether
346  * it's in a port VLAN so the PF needs to account for this in max frame size
347  * checks and sending the max frame size to the VF.
348  */
349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 	struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 	u16 max_frame_size;
353 
354 	max_frame_size = pi->phy.link_info.max_frame_size;
355 
356 	if (ice_vf_is_port_vlan_ena(vf))
357 		max_frame_size -= VLAN_HLEN;
358 
359 	return max_frame_size;
360 }
361 
362 /**
363  * ice_vc_get_vf_res_msg
364  * @vf: pointer to the VF info
365  * @msg: pointer to the msg buffer
366  *
367  * called from the VF to request its resources
368  */
369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
370 {
371 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
372 	struct virtchnl_vf_resource *vfres = NULL;
373 	struct ice_hw *hw = &vf->pf->hw;
374 	struct ice_vsi *vsi;
375 	int len = 0;
376 	int ret;
377 
378 	if (ice_check_vf_init(vf)) {
379 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
380 		goto err;
381 	}
382 
383 	len = sizeof(struct virtchnl_vf_resource);
384 
385 	vfres = kzalloc(len, GFP_KERNEL);
386 	if (!vfres) {
387 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
388 		len = 0;
389 		goto err;
390 	}
391 	if (VF_IS_V11(&vf->vf_ver))
392 		vf->driver_caps = *(u32 *)msg;
393 	else
394 		vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
395 				  VIRTCHNL_VF_OFFLOAD_RSS_REG |
396 				  VIRTCHNL_VF_OFFLOAD_VLAN;
397 
398 	vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
399 	vsi = ice_get_vf_vsi(vf);
400 	if (!vsi) {
401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
402 		goto err;
403 	}
404 
405 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
406 		/* VLAN offloads based on current device configuration */
407 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2;
408 	} else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
409 		/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
410 		 * these two conditions, which amounts to guest VLAN filtering
411 		 * and offloads being based on the inner VLAN or the
412 		 * inner/single VLAN respectively and don't allow VF to
413 		 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
414 		 */
415 		if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
416 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
417 		} else if (!ice_is_dvm_ena(hw) &&
418 			   !ice_vf_is_port_vlan_ena(vf)) {
419 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
420 			/* configure backward compatible support for VFs that
421 			 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
422 			 * configured in SVM, and no port VLAN is configured
423 			 */
424 			ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
425 		} else if (ice_is_dvm_ena(hw)) {
426 			/* configure software offloaded VLAN support when DVM
427 			 * is enabled, but no port VLAN is enabled
428 			 */
429 			ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
430 		}
431 	}
432 
433 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
435 	} else {
436 		if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
437 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
438 		else
439 			vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
440 	}
441 
442 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
443 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
444 
445 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
446 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
447 
448 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
449 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
450 
451 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
452 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
453 
454 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
455 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
456 
457 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
458 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
459 
460 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
461 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
462 
463 	if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
464 		vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
465 
466 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
467 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
468 
469 	if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
470 		vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
471 
472 	vfres->num_vsis = 1;
473 	/* Tx and Rx queue are equal for VF */
474 	vfres->num_queue_pairs = vsi->num_txq;
475 	vfres->max_vectors = vf->pf->vfs.num_msix_per;
476 	vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
477 	vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
478 	vfres->max_mtu = ice_vc_get_max_frame_size(vf);
479 
480 	vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
481 	vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
482 	vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
483 	ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
484 			vf->hw_lan_addr.addr);
485 
486 	/* match guest capabilities */
487 	vf->driver_caps = vfres->vf_cap_flags;
488 
489 	ice_vc_set_caps_allowlist(vf);
490 	ice_vc_set_working_allowlist(vf);
491 
492 	set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
493 
494 err:
495 	/* send the response back to the VF */
496 	ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
497 				    (u8 *)vfres, len);
498 
499 	kfree(vfres);
500 	return ret;
501 }
502 
503 /**
504  * ice_vc_reset_vf_msg
505  * @vf: pointer to the VF info
506  *
507  * called from the VF to reset itself,
508  * unlike other virtchnl messages, PF driver
509  * doesn't send the response back to the VF
510  */
511 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
512 {
513 	if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
514 		ice_reset_vf(vf, 0);
515 }
516 
517 /**
518  * ice_vc_isvalid_vsi_id
519  * @vf: pointer to the VF info
520  * @vsi_id: VF relative VSI ID
521  *
522  * check for the valid VSI ID
523  */
524 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
525 {
526 	struct ice_pf *pf = vf->pf;
527 	struct ice_vsi *vsi;
528 
529 	vsi = ice_find_vsi(pf, vsi_id);
530 
531 	return (vsi && (vsi->vf == vf));
532 }
533 
534 /**
535  * ice_vc_isvalid_q_id
536  * @vf: pointer to the VF info
537  * @vsi_id: VSI ID
538  * @qid: VSI relative queue ID
539  *
540  * check for the valid queue ID
541  */
542 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
543 {
544 	struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
545 	/* allocated Tx and Rx queues should be always equal for VF VSI */
546 	return (vsi && (qid < vsi->alloc_txq));
547 }
548 
549 /**
550  * ice_vc_isvalid_ring_len
551  * @ring_len: length of ring
552  *
553  * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
554  * or zero
555  */
556 static bool ice_vc_isvalid_ring_len(u16 ring_len)
557 {
558 	return ring_len == 0 ||
559 	       (ring_len >= ICE_MIN_NUM_DESC &&
560 		ring_len <= ICE_MAX_NUM_DESC &&
561 		!(ring_len % ICE_REQ_DESC_MULTIPLE));
562 }
563 
564 /**
565  * ice_vc_validate_pattern
566  * @vf: pointer to the VF info
567  * @proto: virtchnl protocol headers
568  *
569  * validate the pattern is supported or not.
570  *
571  * Return: true on success, false on error.
572  */
573 bool
574 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
575 {
576 	bool is_ipv4 = false;
577 	bool is_ipv6 = false;
578 	bool is_udp = false;
579 	u16 ptype = -1;
580 	int i = 0;
581 
582 	while (i < proto->count &&
583 	       proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
584 		switch (proto->proto_hdr[i].type) {
585 		case VIRTCHNL_PROTO_HDR_ETH:
586 			ptype = ICE_PTYPE_MAC_PAY;
587 			break;
588 		case VIRTCHNL_PROTO_HDR_IPV4:
589 			ptype = ICE_PTYPE_IPV4_PAY;
590 			is_ipv4 = true;
591 			break;
592 		case VIRTCHNL_PROTO_HDR_IPV6:
593 			ptype = ICE_PTYPE_IPV6_PAY;
594 			is_ipv6 = true;
595 			break;
596 		case VIRTCHNL_PROTO_HDR_UDP:
597 			if (is_ipv4)
598 				ptype = ICE_PTYPE_IPV4_UDP_PAY;
599 			else if (is_ipv6)
600 				ptype = ICE_PTYPE_IPV6_UDP_PAY;
601 			is_udp = true;
602 			break;
603 		case VIRTCHNL_PROTO_HDR_TCP:
604 			if (is_ipv4)
605 				ptype = ICE_PTYPE_IPV4_TCP_PAY;
606 			else if (is_ipv6)
607 				ptype = ICE_PTYPE_IPV6_TCP_PAY;
608 			break;
609 		case VIRTCHNL_PROTO_HDR_SCTP:
610 			if (is_ipv4)
611 				ptype = ICE_PTYPE_IPV4_SCTP_PAY;
612 			else if (is_ipv6)
613 				ptype = ICE_PTYPE_IPV6_SCTP_PAY;
614 			break;
615 		case VIRTCHNL_PROTO_HDR_GTPU_IP:
616 		case VIRTCHNL_PROTO_HDR_GTPU_EH:
617 			if (is_ipv4)
618 				ptype = ICE_MAC_IPV4_GTPU;
619 			else if (is_ipv6)
620 				ptype = ICE_MAC_IPV6_GTPU;
621 			goto out;
622 		case VIRTCHNL_PROTO_HDR_L2TPV3:
623 			if (is_ipv4)
624 				ptype = ICE_MAC_IPV4_L2TPV3;
625 			else if (is_ipv6)
626 				ptype = ICE_MAC_IPV6_L2TPV3;
627 			goto out;
628 		case VIRTCHNL_PROTO_HDR_ESP:
629 			if (is_ipv4)
630 				ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
631 						ICE_MAC_IPV4_ESP;
632 			else if (is_ipv6)
633 				ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
634 						ICE_MAC_IPV6_ESP;
635 			goto out;
636 		case VIRTCHNL_PROTO_HDR_AH:
637 			if (is_ipv4)
638 				ptype = ICE_MAC_IPV4_AH;
639 			else if (is_ipv6)
640 				ptype = ICE_MAC_IPV6_AH;
641 			goto out;
642 		case VIRTCHNL_PROTO_HDR_PFCP:
643 			if (is_ipv4)
644 				ptype = ICE_MAC_IPV4_PFCP_SESSION;
645 			else if (is_ipv6)
646 				ptype = ICE_MAC_IPV6_PFCP_SESSION;
647 			goto out;
648 		default:
649 			break;
650 		}
651 		i++;
652 	}
653 
654 out:
655 	return ice_hw_ptype_ena(&vf->pf->hw, ptype);
656 }
657 
658 /**
659  * ice_vc_parse_rss_cfg - parses hash fields and headers from
660  * a specific virtchnl RSS cfg
661  * @hw: pointer to the hardware
662  * @rss_cfg: pointer to the virtchnl RSS cfg
663  * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
664  * to configure
665  * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
666  *
667  * Return true if all the protocol header and hash fields in the RSS cfg could
668  * be parsed, else return false
669  *
670  * This function parses the virtchnl RSS cfg to be the intended
671  * hash fields and the intended header for RSS configuration
672  */
673 static bool
674 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
675 		     u32 *addl_hdrs, u64 *hash_flds)
676 {
677 	const struct ice_vc_hash_field_match_type *hf_list;
678 	const struct ice_vc_hdr_match_type *hdr_list;
679 	int i, hf_list_len, hdr_list_len;
680 
681 	hf_list = ice_vc_hash_field_list;
682 	hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
683 	hdr_list = ice_vc_hdr_list;
684 	hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
685 
686 	for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
687 		struct virtchnl_proto_hdr *proto_hdr =
688 					&rss_cfg->proto_hdrs.proto_hdr[i];
689 		bool hdr_found = false;
690 		int j;
691 
692 		/* Find matched ice headers according to virtchnl headers. */
693 		for (j = 0; j < hdr_list_len; j++) {
694 			struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
695 
696 			if (proto_hdr->type == hdr_map.vc_hdr) {
697 				*addl_hdrs |= hdr_map.ice_hdr;
698 				hdr_found = true;
699 			}
700 		}
701 
702 		if (!hdr_found)
703 			return false;
704 
705 		/* Find matched ice hash fields according to
706 		 * virtchnl hash fields.
707 		 */
708 		for (j = 0; j < hf_list_len; j++) {
709 			struct ice_vc_hash_field_match_type hf_map = hf_list[j];
710 
711 			if (proto_hdr->type == hf_map.vc_hdr &&
712 			    proto_hdr->field_selector == hf_map.vc_hash_field) {
713 				*hash_flds |= hf_map.ice_hash_field;
714 				break;
715 			}
716 		}
717 	}
718 
719 	return true;
720 }
721 
722 /**
723  * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
724  * RSS offloads
725  * @caps: VF driver negotiated capabilities
726  *
727  * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
728  * else return false
729  */
730 static bool ice_vf_adv_rss_offload_ena(u32 caps)
731 {
732 	return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
733 }
734 
735 /**
736  * ice_vc_handle_rss_cfg
737  * @vf: pointer to the VF info
738  * @msg: pointer to the message buffer
739  * @add: add a RSS config if true, otherwise delete a RSS config
740  *
741  * This function adds/deletes a RSS config
742  */
743 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
744 {
745 	u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
746 	struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
747 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
748 	struct device *dev = ice_pf_to_dev(vf->pf);
749 	struct ice_hw *hw = &vf->pf->hw;
750 	struct ice_vsi *vsi;
751 
752 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
753 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
754 			vf->vf_id);
755 		v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
756 		goto error_param;
757 	}
758 
759 	if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
760 		dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
761 			vf->vf_id);
762 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
763 		goto error_param;
764 	}
765 
766 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
767 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
768 		goto error_param;
769 	}
770 
771 	if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
772 	    rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
773 	    rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
774 		dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
775 			vf->vf_id);
776 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
777 		goto error_param;
778 	}
779 
780 	vsi = ice_get_vf_vsi(vf);
781 	if (!vsi) {
782 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
783 		goto error_param;
784 	}
785 
786 	if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
787 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
788 		goto error_param;
789 	}
790 
791 	if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
792 		struct ice_vsi_ctx *ctx;
793 		u8 lut_type, hash_type;
794 		int status;
795 
796 		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
797 		hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
798 				ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
799 
800 		ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
801 		if (!ctx) {
802 			v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
803 			goto error_param;
804 		}
805 
806 		ctx->info.q_opt_rss = ((lut_type <<
807 					ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
808 				       ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
809 				       (hash_type &
810 					ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
811 
812 		/* Preserve existing queueing option setting */
813 		ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
814 					  ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
815 		ctx->info.q_opt_tc = vsi->info.q_opt_tc;
816 		ctx->info.q_opt_flags = vsi->info.q_opt_rss;
817 
818 		ctx->info.valid_sections =
819 				cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
820 
821 		status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
822 		if (status) {
823 			dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
824 				status, ice_aq_str(hw->adminq.sq_last_status));
825 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
826 		} else {
827 			vsi->info.q_opt_rss = ctx->info.q_opt_rss;
828 		}
829 
830 		kfree(ctx);
831 	} else {
832 		u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
833 		u64 hash_flds = ICE_HASH_INVALID;
834 
835 		if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
836 					  &hash_flds)) {
837 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
838 			goto error_param;
839 		}
840 
841 		if (add) {
842 			if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
843 					    addl_hdrs)) {
844 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
845 				dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
846 					vsi->vsi_num, v_ret);
847 			}
848 		} else {
849 			int status;
850 
851 			status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
852 						 addl_hdrs);
853 			/* We just ignore -ENOENT, because if two configurations
854 			 * share the same profile remove one of them actually
855 			 * removes both, since the profile is deleted.
856 			 */
857 			if (status && status != -ENOENT) {
858 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
859 				dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
860 					vf->vf_id, status);
861 			}
862 		}
863 	}
864 
865 error_param:
866 	return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
867 }
868 
869 /**
870  * ice_vc_config_rss_key
871  * @vf: pointer to the VF info
872  * @msg: pointer to the msg buffer
873  *
874  * Configure the VF's RSS key
875  */
876 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
877 {
878 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
879 	struct virtchnl_rss_key *vrk =
880 		(struct virtchnl_rss_key *)msg;
881 	struct ice_vsi *vsi;
882 
883 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
884 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 		goto error_param;
886 	}
887 
888 	if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
889 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
890 		goto error_param;
891 	}
892 
893 	if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
894 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
895 		goto error_param;
896 	}
897 
898 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
899 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
900 		goto error_param;
901 	}
902 
903 	vsi = ice_get_vf_vsi(vf);
904 	if (!vsi) {
905 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
906 		goto error_param;
907 	}
908 
909 	if (ice_set_rss_key(vsi, vrk->key))
910 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
911 error_param:
912 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
913 				     NULL, 0);
914 }
915 
916 /**
917  * ice_vc_config_rss_lut
918  * @vf: pointer to the VF info
919  * @msg: pointer to the msg buffer
920  *
921  * Configure the VF's RSS LUT
922  */
923 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
924 {
925 	struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
926 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
927 	struct ice_vsi *vsi;
928 
929 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
930 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
931 		goto error_param;
932 	}
933 
934 	if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
935 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
936 		goto error_param;
937 	}
938 
939 	if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
940 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
941 		goto error_param;
942 	}
943 
944 	if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
945 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
946 		goto error_param;
947 	}
948 
949 	vsi = ice_get_vf_vsi(vf);
950 	if (!vsi) {
951 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
952 		goto error_param;
953 	}
954 
955 	if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
956 		v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
957 error_param:
958 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
959 				     NULL, 0);
960 }
961 
962 /**
963  * ice_vc_cfg_promiscuous_mode_msg
964  * @vf: pointer to the VF info
965  * @msg: pointer to the msg buffer
966  *
967  * called from the VF to configure VF VSIs promiscuous mode
968  */
969 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
970 {
971 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
972 	bool rm_promisc, alluni = false, allmulti = false;
973 	struct virtchnl_promisc_info *info =
974 	    (struct virtchnl_promisc_info *)msg;
975 	struct ice_vsi_vlan_ops *vlan_ops;
976 	int mcast_err = 0, ucast_err = 0;
977 	struct ice_pf *pf = vf->pf;
978 	struct ice_vsi *vsi;
979 	struct device *dev;
980 	int ret = 0;
981 
982 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
983 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
984 		goto error_param;
985 	}
986 
987 	if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
988 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
989 		goto error_param;
990 	}
991 
992 	vsi = ice_get_vf_vsi(vf);
993 	if (!vsi) {
994 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
995 		goto error_param;
996 	}
997 
998 	dev = ice_pf_to_dev(pf);
999 	if (!ice_is_vf_trusted(vf)) {
1000 		dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1001 			vf->vf_id);
1002 		/* Leave v_ret alone, lie to the VF on purpose. */
1003 		goto error_param;
1004 	}
1005 
1006 	if (info->flags & FLAG_VF_UNICAST_PROMISC)
1007 		alluni = true;
1008 
1009 	if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1010 		allmulti = true;
1011 
1012 	rm_promisc = !allmulti && !alluni;
1013 
1014 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1015 	if (rm_promisc)
1016 		ret = vlan_ops->ena_rx_filtering(vsi);
1017 	else
1018 		ret = vlan_ops->dis_rx_filtering(vsi);
1019 	if (ret) {
1020 		dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1021 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022 		goto error_param;
1023 	}
1024 
1025 	if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1026 		bool set_dflt_vsi = alluni || allmulti;
1027 
1028 		if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
1029 			/* only attempt to set the default forwarding VSI if
1030 			 * it's not currently set
1031 			 */
1032 			ret = ice_set_dflt_vsi(pf->first_sw, vsi);
1033 		else if (!set_dflt_vsi &&
1034 			 ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
1035 			/* only attempt to free the default forwarding VSI if we
1036 			 * are the owner
1037 			 */
1038 			ret = ice_clear_dflt_vsi(pf->first_sw);
1039 
1040 		if (ret) {
1041 			dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
1042 				set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
1043 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1044 			goto error_param;
1045 		}
1046 	} else {
1047 		u8 mcast_m, ucast_m;
1048 
1049 		if (ice_vf_is_port_vlan_ena(vf) ||
1050 		    ice_vsi_has_non_zero_vlans(vsi)) {
1051 			mcast_m = ICE_MCAST_VLAN_PROMISC_BITS;
1052 			ucast_m = ICE_UCAST_VLAN_PROMISC_BITS;
1053 		} else {
1054 			mcast_m = ICE_MCAST_PROMISC_BITS;
1055 			ucast_m = ICE_UCAST_PROMISC_BITS;
1056 		}
1057 
1058 		if (alluni)
1059 			ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1060 		else
1061 			ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1062 
1063 		if (allmulti)
1064 			mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1065 		else
1066 			mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1067 
1068 		if (ucast_err || mcast_err)
1069 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1070 	}
1071 
1072 	if (!mcast_err) {
1073 		if (allmulti &&
1074 		    !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1075 			dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1076 				 vf->vf_id);
1077 		else if (!allmulti &&
1078 			 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1079 					    vf->vf_states))
1080 			dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1081 				 vf->vf_id);
1082 	}
1083 
1084 	if (!ucast_err) {
1085 		if (alluni &&
1086 		    !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1087 			dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1088 				 vf->vf_id);
1089 		else if (!alluni &&
1090 			 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1091 					    vf->vf_states))
1092 			dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1093 				 vf->vf_id);
1094 	}
1095 
1096 error_param:
1097 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1098 				     v_ret, NULL, 0);
1099 }
1100 
1101 /**
1102  * ice_vc_get_stats_msg
1103  * @vf: pointer to the VF info
1104  * @msg: pointer to the msg buffer
1105  *
1106  * called from the VF to get VSI stats
1107  */
1108 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1109 {
1110 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1111 	struct virtchnl_queue_select *vqs =
1112 		(struct virtchnl_queue_select *)msg;
1113 	struct ice_eth_stats stats = { 0 };
1114 	struct ice_vsi *vsi;
1115 
1116 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1117 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1118 		goto error_param;
1119 	}
1120 
1121 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1122 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1123 		goto error_param;
1124 	}
1125 
1126 	vsi = ice_get_vf_vsi(vf);
1127 	if (!vsi) {
1128 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1129 		goto error_param;
1130 	}
1131 
1132 	ice_update_eth_stats(vsi);
1133 
1134 	stats = vsi->eth_stats;
1135 
1136 error_param:
1137 	/* send the response to the VF */
1138 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1139 				     (u8 *)&stats, sizeof(stats));
1140 }
1141 
1142 /**
1143  * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1144  * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1145  *
1146  * Return true on successful validation, else false
1147  */
1148 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1149 {
1150 	if ((!vqs->rx_queues && !vqs->tx_queues) ||
1151 	    vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1152 	    vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1153 		return false;
1154 
1155 	return true;
1156 }
1157 
1158 /**
1159  * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1160  * @vsi: VSI of the VF to configure
1161  * @q_idx: VF queue index used to determine the queue in the PF's space
1162  */
1163 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1164 {
1165 	struct ice_hw *hw = &vsi->back->hw;
1166 	u32 pfq = vsi->txq_map[q_idx];
1167 	u32 reg;
1168 
1169 	reg = rd32(hw, QINT_TQCTL(pfq));
1170 
1171 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1172 	 * this is most likely a poll mode VF driver, so don't enable an
1173 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1174 	 */
1175 	if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1176 		return;
1177 
1178 	wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1179 }
1180 
1181 /**
1182  * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1183  * @vsi: VSI of the VF to configure
1184  * @q_idx: VF queue index used to determine the queue in the PF's space
1185  */
1186 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1187 {
1188 	struct ice_hw *hw = &vsi->back->hw;
1189 	u32 pfq = vsi->rxq_map[q_idx];
1190 	u32 reg;
1191 
1192 	reg = rd32(hw, QINT_RQCTL(pfq));
1193 
1194 	/* MSI-X index 0 in the VF's space is always for the OICR, which means
1195 	 * this is most likely a poll mode VF driver, so don't enable an
1196 	 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1197 	 */
1198 	if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1199 		return;
1200 
1201 	wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1202 }
1203 
1204 /**
1205  * ice_vc_ena_qs_msg
1206  * @vf: pointer to the VF info
1207  * @msg: pointer to the msg buffer
1208  *
1209  * called from the VF to enable all or specific queue(s)
1210  */
1211 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1212 {
1213 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1214 	struct virtchnl_queue_select *vqs =
1215 	    (struct virtchnl_queue_select *)msg;
1216 	struct ice_vsi *vsi;
1217 	unsigned long q_map;
1218 	u16 vf_q_id;
1219 
1220 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1221 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1222 		goto error_param;
1223 	}
1224 
1225 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1226 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1227 		goto error_param;
1228 	}
1229 
1230 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1231 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1232 		goto error_param;
1233 	}
1234 
1235 	vsi = ice_get_vf_vsi(vf);
1236 	if (!vsi) {
1237 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1238 		goto error_param;
1239 	}
1240 
1241 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
1242 	 * Tx queue group list was configured and the context bits were
1243 	 * programmed using ice_vsi_cfg_txqs
1244 	 */
1245 	q_map = vqs->rx_queues;
1246 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1247 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1248 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249 			goto error_param;
1250 		}
1251 
1252 		/* Skip queue if enabled */
1253 		if (test_bit(vf_q_id, vf->rxq_ena))
1254 			continue;
1255 
1256 		if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1257 			dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1258 				vf_q_id, vsi->vsi_num);
1259 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1260 			goto error_param;
1261 		}
1262 
1263 		ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1264 		set_bit(vf_q_id, vf->rxq_ena);
1265 	}
1266 
1267 	q_map = vqs->tx_queues;
1268 	for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1269 		if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1270 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1271 			goto error_param;
1272 		}
1273 
1274 		/* Skip queue if enabled */
1275 		if (test_bit(vf_q_id, vf->txq_ena))
1276 			continue;
1277 
1278 		ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1279 		set_bit(vf_q_id, vf->txq_ena);
1280 	}
1281 
1282 	/* Set flag to indicate that queues are enabled */
1283 	if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1284 		set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1285 
1286 error_param:
1287 	/* send the response to the VF */
1288 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1289 				     NULL, 0);
1290 }
1291 
1292 /**
1293  * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1294  * @vf: VF to disable queue for
1295  * @vsi: VSI for the VF
1296  * @q_id: VF relative (0-based) queue ID
1297  *
1298  * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1299  * disabled then clear q_id bit in the enabled queues bitmap and return
1300  * success. Otherwise return error.
1301  */
1302 static int
1303 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1304 {
1305 	struct ice_txq_meta txq_meta = { 0 };
1306 	struct ice_tx_ring *ring;
1307 	int err;
1308 
1309 	if (!test_bit(q_id, vf->txq_ena))
1310 		dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1311 			q_id, vsi->vsi_num);
1312 
1313 	ring = vsi->tx_rings[q_id];
1314 	if (!ring)
1315 		return -EINVAL;
1316 
1317 	ice_fill_txq_meta(vsi, ring, &txq_meta);
1318 
1319 	err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1320 	if (err) {
1321 		dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1322 			q_id, vsi->vsi_num);
1323 		return err;
1324 	}
1325 
1326 	/* Clear enabled queues flag */
1327 	clear_bit(q_id, vf->txq_ena);
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * ice_vc_dis_qs_msg
1334  * @vf: pointer to the VF info
1335  * @msg: pointer to the msg buffer
1336  *
1337  * called from the VF to disable all or specific queue(s)
1338  */
1339 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1340 {
1341 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1342 	struct virtchnl_queue_select *vqs =
1343 	    (struct virtchnl_queue_select *)msg;
1344 	struct ice_vsi *vsi;
1345 	unsigned long q_map;
1346 	u16 vf_q_id;
1347 
1348 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1349 	    !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1350 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1351 		goto error_param;
1352 	}
1353 
1354 	if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1355 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1356 		goto error_param;
1357 	}
1358 
1359 	if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1360 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1361 		goto error_param;
1362 	}
1363 
1364 	vsi = ice_get_vf_vsi(vf);
1365 	if (!vsi) {
1366 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1367 		goto error_param;
1368 	}
1369 
1370 	if (vqs->tx_queues) {
1371 		q_map = vqs->tx_queues;
1372 
1373 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1374 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1375 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1376 				goto error_param;
1377 			}
1378 
1379 			if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1380 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1381 				goto error_param;
1382 			}
1383 		}
1384 	}
1385 
1386 	q_map = vqs->rx_queues;
1387 	/* speed up Rx queue disable by batching them if possible */
1388 	if (q_map &&
1389 	    bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1390 		if (ice_vsi_stop_all_rx_rings(vsi)) {
1391 			dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1392 				vsi->vsi_num);
1393 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 			goto error_param;
1395 		}
1396 
1397 		bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1398 	} else if (q_map) {
1399 		for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1400 			if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1401 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1402 				goto error_param;
1403 			}
1404 
1405 			/* Skip queue if not enabled */
1406 			if (!test_bit(vf_q_id, vf->rxq_ena))
1407 				continue;
1408 
1409 			if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1410 						     true)) {
1411 				dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1412 					vf_q_id, vsi->vsi_num);
1413 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1414 				goto error_param;
1415 			}
1416 
1417 			/* Clear enabled queues flag */
1418 			clear_bit(vf_q_id, vf->rxq_ena);
1419 		}
1420 	}
1421 
1422 	/* Clear enabled queues flag */
1423 	if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1424 		clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1425 
1426 error_param:
1427 	/* send the response to the VF */
1428 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1429 				     NULL, 0);
1430 }
1431 
1432 /**
1433  * ice_cfg_interrupt
1434  * @vf: pointer to the VF info
1435  * @vsi: the VSI being configured
1436  * @vector_id: vector ID
1437  * @map: vector map for mapping vectors to queues
1438  * @q_vector: structure for interrupt vector
1439  * configure the IRQ to queue map
1440  */
1441 static int
1442 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1443 		  struct virtchnl_vector_map *map,
1444 		  struct ice_q_vector *q_vector)
1445 {
1446 	u16 vsi_q_id, vsi_q_id_idx;
1447 	unsigned long qmap;
1448 
1449 	q_vector->num_ring_rx = 0;
1450 	q_vector->num_ring_tx = 0;
1451 
1452 	qmap = map->rxq_map;
1453 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1454 		vsi_q_id = vsi_q_id_idx;
1455 
1456 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1457 			return VIRTCHNL_STATUS_ERR_PARAM;
1458 
1459 		q_vector->num_ring_rx++;
1460 		q_vector->rx.itr_idx = map->rxitr_idx;
1461 		vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1462 		ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1463 				      q_vector->rx.itr_idx);
1464 	}
1465 
1466 	qmap = map->txq_map;
1467 	for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1468 		vsi_q_id = vsi_q_id_idx;
1469 
1470 		if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1471 			return VIRTCHNL_STATUS_ERR_PARAM;
1472 
1473 		q_vector->num_ring_tx++;
1474 		q_vector->tx.itr_idx = map->txitr_idx;
1475 		vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1476 		ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1477 				      q_vector->tx.itr_idx);
1478 	}
1479 
1480 	return VIRTCHNL_STATUS_SUCCESS;
1481 }
1482 
1483 /**
1484  * ice_vc_cfg_irq_map_msg
1485  * @vf: pointer to the VF info
1486  * @msg: pointer to the msg buffer
1487  *
1488  * called from the VF to configure the IRQ to queue map
1489  */
1490 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1491 {
1492 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1493 	u16 num_q_vectors_mapped, vsi_id, vector_id;
1494 	struct virtchnl_irq_map_info *irqmap_info;
1495 	struct virtchnl_vector_map *map;
1496 	struct ice_pf *pf = vf->pf;
1497 	struct ice_vsi *vsi;
1498 	int i;
1499 
1500 	irqmap_info = (struct virtchnl_irq_map_info *)msg;
1501 	num_q_vectors_mapped = irqmap_info->num_vectors;
1502 
1503 	/* Check to make sure number of VF vectors mapped is not greater than
1504 	 * number of VF vectors originally allocated, and check that
1505 	 * there is actually at least a single VF queue vector mapped
1506 	 */
1507 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1508 	    pf->vfs.num_msix_per < num_q_vectors_mapped ||
1509 	    !num_q_vectors_mapped) {
1510 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1511 		goto error_param;
1512 	}
1513 
1514 	vsi = ice_get_vf_vsi(vf);
1515 	if (!vsi) {
1516 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1517 		goto error_param;
1518 	}
1519 
1520 	for (i = 0; i < num_q_vectors_mapped; i++) {
1521 		struct ice_q_vector *q_vector;
1522 
1523 		map = &irqmap_info->vecmap[i];
1524 
1525 		vector_id = map->vector_id;
1526 		vsi_id = map->vsi_id;
1527 		/* vector_id is always 0-based for each VF, and can never be
1528 		 * larger than or equal to the max allowed interrupts per VF
1529 		 */
1530 		if (!(vector_id < pf->vfs.num_msix_per) ||
1531 		    !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1532 		    (!vector_id && (map->rxq_map || map->txq_map))) {
1533 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1534 			goto error_param;
1535 		}
1536 
1537 		/* No need to map VF miscellaneous or rogue vector */
1538 		if (!vector_id)
1539 			continue;
1540 
1541 		/* Subtract non queue vector from vector_id passed by VF
1542 		 * to get actual number of VSI queue vector array index
1543 		 */
1544 		q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1545 		if (!q_vector) {
1546 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1547 			goto error_param;
1548 		}
1549 
1550 		/* lookout for the invalid queue index */
1551 		v_ret = (enum virtchnl_status_code)
1552 			ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1553 		if (v_ret)
1554 			goto error_param;
1555 	}
1556 
1557 error_param:
1558 	/* send the response to the VF */
1559 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1560 				     NULL, 0);
1561 }
1562 
1563 /**
1564  * ice_vc_cfg_qs_msg
1565  * @vf: pointer to the VF info
1566  * @msg: pointer to the msg buffer
1567  *
1568  * called from the VF to configure the Rx/Tx queues
1569  */
1570 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1571 {
1572 	struct virtchnl_vsi_queue_config_info *qci =
1573 	    (struct virtchnl_vsi_queue_config_info *)msg;
1574 	struct virtchnl_queue_pair_info *qpi;
1575 	struct ice_pf *pf = vf->pf;
1576 	struct ice_vsi *vsi;
1577 	int i = -1, q_idx;
1578 
1579 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1580 		goto error_param;
1581 
1582 	if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1583 		goto error_param;
1584 
1585 	vsi = ice_get_vf_vsi(vf);
1586 	if (!vsi)
1587 		goto error_param;
1588 
1589 	if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1590 	    qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1591 		dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1592 			vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1593 		goto error_param;
1594 	}
1595 
1596 	for (i = 0; i < qci->num_queue_pairs; i++) {
1597 		qpi = &qci->qpair[i];
1598 		if (qpi->txq.vsi_id != qci->vsi_id ||
1599 		    qpi->rxq.vsi_id != qci->vsi_id ||
1600 		    qpi->rxq.queue_id != qpi->txq.queue_id ||
1601 		    qpi->txq.headwb_enabled ||
1602 		    !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1603 		    !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1604 		    !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1605 			goto error_param;
1606 		}
1607 
1608 		q_idx = qpi->rxq.queue_id;
1609 
1610 		/* make sure selected "q_idx" is in valid range of queues
1611 		 * for selected "vsi"
1612 		 */
1613 		if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1614 			goto error_param;
1615 		}
1616 
1617 		/* copy Tx queue info from VF into VSI */
1618 		if (qpi->txq.ring_len > 0) {
1619 			vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1620 			vsi->tx_rings[i]->count = qpi->txq.ring_len;
1621 
1622 			/* Disable any existing queue first */
1623 			if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1624 				goto error_param;
1625 
1626 			/* Configure a queue with the requested settings */
1627 			if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1628 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1629 					 vf->vf_id, i);
1630 				goto error_param;
1631 			}
1632 		}
1633 
1634 		/* copy Rx queue info from VF into VSI */
1635 		if (qpi->rxq.ring_len > 0) {
1636 			u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1637 
1638 			vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1639 			vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1640 
1641 			if (qpi->rxq.databuffer_size != 0 &&
1642 			    (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1643 			     qpi->rxq.databuffer_size < 1024))
1644 				goto error_param;
1645 			vsi->rx_buf_len = qpi->rxq.databuffer_size;
1646 			vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1647 			if (qpi->rxq.max_pkt_size > max_frame_size ||
1648 			    qpi->rxq.max_pkt_size < 64)
1649 				goto error_param;
1650 
1651 			vsi->max_frame = qpi->rxq.max_pkt_size;
1652 			/* add space for the port VLAN since the VF driver is
1653 			 * not expected to account for it in the MTU
1654 			 * calculation
1655 			 */
1656 			if (ice_vf_is_port_vlan_ena(vf))
1657 				vsi->max_frame += VLAN_HLEN;
1658 
1659 			if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1660 				dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1661 					 vf->vf_id, i);
1662 				goto error_param;
1663 			}
1664 		}
1665 	}
1666 
1667 	/* send the response to the VF */
1668 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1669 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1670 error_param:
1671 	/* disable whatever we can */
1672 	for (; i >= 0; i--) {
1673 		if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1674 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1675 				vf->vf_id, i);
1676 		if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1677 			dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1678 				vf->vf_id, i);
1679 	}
1680 
1681 	/* send the response to the VF */
1682 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1683 				     VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1684 }
1685 
1686 /**
1687  * ice_can_vf_change_mac
1688  * @vf: pointer to the VF info
1689  *
1690  * Return true if the VF is allowed to change its MAC filters, false otherwise
1691  */
1692 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1693 {
1694 	/* If the VF MAC address has been set administratively (via the
1695 	 * ndo_set_vf_mac command), then deny permission to the VF to
1696 	 * add/delete unicast MAC addresses, unless the VF is trusted
1697 	 */
1698 	if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1699 		return false;
1700 
1701 	return true;
1702 }
1703 
1704 /**
1705  * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1706  * @vc_ether_addr: used to extract the type
1707  */
1708 static u8
1709 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1710 {
1711 	return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1712 }
1713 
1714 /**
1715  * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1716  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1717  */
1718 static bool
1719 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1720 {
1721 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1722 
1723 	return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1724 }
1725 
1726 /**
1727  * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1728  * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1729  *
1730  * This function should only be called when the MAC address in
1731  * virtchnl_ether_addr is a valid unicast MAC
1732  */
1733 static bool
1734 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1735 {
1736 	u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1737 
1738 	return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1739 }
1740 
1741 /**
1742  * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1743  * @vf: VF to update
1744  * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1745  */
1746 static void
1747 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1748 {
1749 	u8 *mac_addr = vc_ether_addr->addr;
1750 
1751 	if (!is_valid_ether_addr(mac_addr))
1752 		return;
1753 
1754 	/* only allow legacy VF drivers to set the device and hardware MAC if it
1755 	 * is zero and allow new VF drivers to set the hardware MAC if the type
1756 	 * was correctly specified over VIRTCHNL
1757 	 */
1758 	if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1759 	     is_zero_ether_addr(vf->hw_lan_addr.addr)) ||
1760 	    ice_is_vc_addr_primary(vc_ether_addr)) {
1761 		ether_addr_copy(vf->dev_lan_addr.addr, mac_addr);
1762 		ether_addr_copy(vf->hw_lan_addr.addr, mac_addr);
1763 	}
1764 
1765 	/* hardware and device MACs are already set, but its possible that the
1766 	 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1767 	 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1768 	 * away for the legacy VF driver case as it will be updated in the
1769 	 * delete flow for this case
1770 	 */
1771 	if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1772 		ether_addr_copy(vf->legacy_last_added_umac.addr,
1773 				mac_addr);
1774 		vf->legacy_last_added_umac.time_modified = jiffies;
1775 	}
1776 }
1777 
1778 /**
1779  * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1780  * @vf: pointer to the VF info
1781  * @vsi: pointer to the VF's VSI
1782  * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1783  */
1784 static int
1785 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1786 		    struct virtchnl_ether_addr *vc_ether_addr)
1787 {
1788 	struct device *dev = ice_pf_to_dev(vf->pf);
1789 	u8 *mac_addr = vc_ether_addr->addr;
1790 	int ret;
1791 
1792 	/* device MAC already added */
1793 	if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr))
1794 		return 0;
1795 
1796 	if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1797 		dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1798 		return -EPERM;
1799 	}
1800 
1801 	ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1802 	if (ret == -EEXIST) {
1803 		dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1804 			vf->vf_id);
1805 		/* don't return since we might need to update
1806 		 * the primary MAC in ice_vfhw_mac_add() below
1807 		 */
1808 	} else if (ret) {
1809 		dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1810 			mac_addr, vf->vf_id, ret);
1811 		return ret;
1812 	} else {
1813 		vf->num_mac++;
1814 	}
1815 
1816 	ice_vfhw_mac_add(vf, vc_ether_addr);
1817 
1818 	return ret;
1819 }
1820 
1821 /**
1822  * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1823  * @last_added_umac: structure used to check expiration
1824  */
1825 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1826 {
1827 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME	msecs_to_jiffies(3000)
1828 	return time_is_before_jiffies(last_added_umac->time_modified +
1829 				      ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1830 }
1831 
1832 /**
1833  * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1834  * @vf: VF to update
1835  * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1836  *
1837  * only update cached hardware MAC for legacy VF drivers on delete
1838  * because we cannot guarantee order/type of MAC from the VF driver
1839  */
1840 static void
1841 ice_update_legacy_cached_mac(struct ice_vf *vf,
1842 			     struct virtchnl_ether_addr *vc_ether_addr)
1843 {
1844 	if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1845 	    ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1846 		return;
1847 
1848 	ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr);
1849 	ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr);
1850 }
1851 
1852 /**
1853  * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1854  * @vf: VF to update
1855  * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1856  */
1857 static void
1858 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1859 {
1860 	u8 *mac_addr = vc_ether_addr->addr;
1861 
1862 	if (!is_valid_ether_addr(mac_addr) ||
1863 	    !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1864 		return;
1865 
1866 	/* allow the device MAC to be repopulated in the add flow and don't
1867 	 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant
1868 	 * to be persistent on VM reboot and across driver unload/load, which
1869 	 * won't work if we clear the hardware MAC here
1870 	 */
1871 	eth_zero_addr(vf->dev_lan_addr.addr);
1872 
1873 	ice_update_legacy_cached_mac(vf, vc_ether_addr);
1874 }
1875 
1876 /**
1877  * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1878  * @vf: pointer to the VF info
1879  * @vsi: pointer to the VF's VSI
1880  * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1881  */
1882 static int
1883 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1884 		    struct virtchnl_ether_addr *vc_ether_addr)
1885 {
1886 	struct device *dev = ice_pf_to_dev(vf->pf);
1887 	u8 *mac_addr = vc_ether_addr->addr;
1888 	int status;
1889 
1890 	if (!ice_can_vf_change_mac(vf) &&
1891 	    ether_addr_equal(vf->dev_lan_addr.addr, mac_addr))
1892 		return 0;
1893 
1894 	status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1895 	if (status == -ENOENT) {
1896 		dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1897 			vf->vf_id);
1898 		return -ENOENT;
1899 	} else if (status) {
1900 		dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1901 			mac_addr, vf->vf_id, status);
1902 		return -EIO;
1903 	}
1904 
1905 	ice_vfhw_mac_del(vf, vc_ether_addr);
1906 
1907 	vf->num_mac--;
1908 
1909 	return 0;
1910 }
1911 
1912 /**
1913  * ice_vc_handle_mac_addr_msg
1914  * @vf: pointer to the VF info
1915  * @msg: pointer to the msg buffer
1916  * @set: true if MAC filters are being set, false otherwise
1917  *
1918  * add guest MAC address filter
1919  */
1920 static int
1921 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1922 {
1923 	int (*ice_vc_cfg_mac)
1924 		(struct ice_vf *vf, struct ice_vsi *vsi,
1925 		 struct virtchnl_ether_addr *virtchnl_ether_addr);
1926 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1927 	struct virtchnl_ether_addr_list *al =
1928 	    (struct virtchnl_ether_addr_list *)msg;
1929 	struct ice_pf *pf = vf->pf;
1930 	enum virtchnl_ops vc_op;
1931 	struct ice_vsi *vsi;
1932 	int i;
1933 
1934 	if (set) {
1935 		vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1936 		ice_vc_cfg_mac = ice_vc_add_mac_addr;
1937 	} else {
1938 		vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1939 		ice_vc_cfg_mac = ice_vc_del_mac_addr;
1940 	}
1941 
1942 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1943 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1944 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1945 		goto handle_mac_exit;
1946 	}
1947 
1948 	/* If this VF is not privileged, then we can't add more than a
1949 	 * limited number of addresses. Check to make sure that the
1950 	 * additions do not push us over the limit.
1951 	 */
1952 	if (set && !ice_is_vf_trusted(vf) &&
1953 	    (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
1954 		dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
1955 			vf->vf_id);
1956 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1957 		goto handle_mac_exit;
1958 	}
1959 
1960 	vsi = ice_get_vf_vsi(vf);
1961 	if (!vsi) {
1962 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1963 		goto handle_mac_exit;
1964 	}
1965 
1966 	for (i = 0; i < al->num_elements; i++) {
1967 		u8 *mac_addr = al->list[i].addr;
1968 		int result;
1969 
1970 		if (is_broadcast_ether_addr(mac_addr) ||
1971 		    is_zero_ether_addr(mac_addr))
1972 			continue;
1973 
1974 		result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
1975 		if (result == -EEXIST || result == -ENOENT) {
1976 			continue;
1977 		} else if (result) {
1978 			v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1979 			goto handle_mac_exit;
1980 		}
1981 	}
1982 
1983 handle_mac_exit:
1984 	/* send the response to the VF */
1985 	return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
1986 }
1987 
1988 /**
1989  * ice_vc_add_mac_addr_msg
1990  * @vf: pointer to the VF info
1991  * @msg: pointer to the msg buffer
1992  *
1993  * add guest MAC address filter
1994  */
1995 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
1996 {
1997 	return ice_vc_handle_mac_addr_msg(vf, msg, true);
1998 }
1999 
2000 /**
2001  * ice_vc_del_mac_addr_msg
2002  * @vf: pointer to the VF info
2003  * @msg: pointer to the msg buffer
2004  *
2005  * remove guest MAC address filter
2006  */
2007 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2008 {
2009 	return ice_vc_handle_mac_addr_msg(vf, msg, false);
2010 }
2011 
2012 /**
2013  * ice_vc_request_qs_msg
2014  * @vf: pointer to the VF info
2015  * @msg: pointer to the msg buffer
2016  *
2017  * VFs get a default number of queues but can use this message to request a
2018  * different number. If the request is successful, PF will reset the VF and
2019  * return 0. If unsuccessful, PF will send message informing VF of number of
2020  * available queue pairs via virtchnl message response to VF.
2021  */
2022 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2023 {
2024 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2025 	struct virtchnl_vf_res_request *vfres =
2026 		(struct virtchnl_vf_res_request *)msg;
2027 	u16 req_queues = vfres->num_queue_pairs;
2028 	struct ice_pf *pf = vf->pf;
2029 	u16 max_allowed_vf_queues;
2030 	u16 tx_rx_queue_left;
2031 	struct device *dev;
2032 	u16 cur_queues;
2033 
2034 	dev = ice_pf_to_dev(pf);
2035 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2036 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2037 		goto error_param;
2038 	}
2039 
2040 	cur_queues = vf->num_vf_qs;
2041 	tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2042 				 ice_get_avail_rxq_count(pf));
2043 	max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2044 	if (!req_queues) {
2045 		dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2046 			vf->vf_id);
2047 	} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2048 		dev_err(dev, "VF %d tried to request more than %d queues.\n",
2049 			vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2050 		vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2051 	} else if (req_queues > cur_queues &&
2052 		   req_queues - cur_queues > tx_rx_queue_left) {
2053 		dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2054 			 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2055 		vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2056 					       ICE_MAX_RSS_QS_PER_VF);
2057 	} else {
2058 		/* request is successful, then reset VF */
2059 		vf->num_req_qs = req_queues;
2060 		ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2061 		dev_info(dev, "VF %d granted request of %u queues.\n",
2062 			 vf->vf_id, req_queues);
2063 		return 0;
2064 	}
2065 
2066 error_param:
2067 	/* send the response to the VF */
2068 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2069 				     v_ret, (u8 *)vfres, sizeof(*vfres));
2070 }
2071 
2072 /**
2073  * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2074  * @caps: VF driver negotiated capabilities
2075  *
2076  * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2077  */
2078 static bool ice_vf_vlan_offload_ena(u32 caps)
2079 {
2080 	return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2081 }
2082 
2083 /**
2084  * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2085  * @vf: VF used to determine if VLAN promiscuous config is allowed
2086  */
2087 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2088 {
2089 	if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2090 	     test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2091 	    test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2092 		return true;
2093 
2094 	return false;
2095 }
2096 
2097 /**
2098  * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2099  * @vsi: VF's VSI used to enable VLAN promiscuous mode
2100  * @vlan: VLAN used to enable VLAN promiscuous
2101  *
2102  * This function should only be called if VLAN promiscuous mode is allowed,
2103  * which can be determined via ice_is_vlan_promisc_allowed().
2104  */
2105 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2106 {
2107 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2108 	int status;
2109 
2110 	status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2111 					  vlan->vid);
2112 	if (status && status != -EEXIST)
2113 		return status;
2114 
2115 	return 0;
2116 }
2117 
2118 /**
2119  * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2120  * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2121  * @vlan: VLAN used to disable VLAN promiscuous
2122  *
2123  * This function should only be called if VLAN promiscuous mode is allowed,
2124  * which can be determined via ice_is_vlan_promisc_allowed().
2125  */
2126 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2127 {
2128 	u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2129 	int status;
2130 
2131 	status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2132 					    vlan->vid);
2133 	if (status && status != -ENOENT)
2134 		return status;
2135 
2136 	return 0;
2137 }
2138 
2139 /**
2140  * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2141  * @vf: VF to check against
2142  * @vsi: VF's VSI
2143  *
2144  * If the VF is trusted then the VF is allowed to add as many VLANs as it
2145  * wants to, so return false.
2146  *
2147  * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2148  * allowed VLANs for an untrusted VF. Return the result of this comparison.
2149  */
2150 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2151 {
2152 	if (ice_is_vf_trusted(vf))
2153 		return false;
2154 
2155 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS	1
2156 	return ((ice_vsi_num_non_zero_vlans(vsi) +
2157 		ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2158 }
2159 
2160 /**
2161  * ice_vc_process_vlan_msg
2162  * @vf: pointer to the VF info
2163  * @msg: pointer to the msg buffer
2164  * @add_v: Add VLAN if true, otherwise delete VLAN
2165  *
2166  * Process virtchnl op to add or remove programmed guest VLAN ID
2167  */
2168 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2169 {
2170 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2171 	struct virtchnl_vlan_filter_list *vfl =
2172 	    (struct virtchnl_vlan_filter_list *)msg;
2173 	struct ice_pf *pf = vf->pf;
2174 	bool vlan_promisc = false;
2175 	struct ice_vsi *vsi;
2176 	struct device *dev;
2177 	int status = 0;
2178 	int i;
2179 
2180 	dev = ice_pf_to_dev(pf);
2181 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2182 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2183 		goto error_param;
2184 	}
2185 
2186 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2187 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2188 		goto error_param;
2189 	}
2190 
2191 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2192 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2193 		goto error_param;
2194 	}
2195 
2196 	for (i = 0; i < vfl->num_elements; i++) {
2197 		if (vfl->vlan_id[i] >= VLAN_N_VID) {
2198 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2199 			dev_err(dev, "invalid VF VLAN id %d\n",
2200 				vfl->vlan_id[i]);
2201 			goto error_param;
2202 		}
2203 	}
2204 
2205 	vsi = ice_get_vf_vsi(vf);
2206 	if (!vsi) {
2207 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2208 		goto error_param;
2209 	}
2210 
2211 	if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2212 		dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2213 			 vf->vf_id);
2214 		/* There is no need to let VF know about being not trusted,
2215 		 * so we can just return success message here
2216 		 */
2217 		goto error_param;
2218 	}
2219 
2220 	/* in DVM a VF can add/delete inner VLAN filters when
2221 	 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2222 	 */
2223 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2224 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2225 		goto error_param;
2226 	}
2227 
2228 	/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2229 	 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2230 	 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2231 	 */
2232 	vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2233 		!ice_is_dvm_ena(&pf->hw) &&
2234 		!ice_vf_is_port_vlan_ena(vf);
2235 
2236 	if (add_v) {
2237 		for (i = 0; i < vfl->num_elements; i++) {
2238 			u16 vid = vfl->vlan_id[i];
2239 			struct ice_vlan vlan;
2240 
2241 			if (ice_vf_has_max_vlans(vf, vsi)) {
2242 				dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2243 					 vf->vf_id);
2244 				/* There is no need to let VF know about being
2245 				 * not trusted, so we can just return success
2246 				 * message here as well.
2247 				 */
2248 				goto error_param;
2249 			}
2250 
2251 			/* we add VLAN 0 by default for each VF so we can enable
2252 			 * Tx VLAN anti-spoof without triggering MDD events so
2253 			 * we don't need to add it again here
2254 			 */
2255 			if (!vid)
2256 				continue;
2257 
2258 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2259 			status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2260 			if (status) {
2261 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2262 				goto error_param;
2263 			}
2264 
2265 			/* Enable VLAN filtering on first non-zero VLAN */
2266 			if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2267 				if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2268 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2269 					dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2270 						vid, status);
2271 					goto error_param;
2272 				}
2273 			} else if (vlan_promisc) {
2274 				status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2275 				if (status) {
2276 					v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2277 					dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2278 						vid, status);
2279 				}
2280 			}
2281 		}
2282 	} else {
2283 		/* In case of non_trusted VF, number of VLAN elements passed
2284 		 * to PF for removal might be greater than number of VLANs
2285 		 * filter programmed for that VF - So, use actual number of
2286 		 * VLANS added earlier with add VLAN opcode. In order to avoid
2287 		 * removing VLAN that doesn't exist, which result to sending
2288 		 * erroneous failed message back to the VF
2289 		 */
2290 		int num_vf_vlan;
2291 
2292 		num_vf_vlan = vsi->num_vlan;
2293 		for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2294 			u16 vid = vfl->vlan_id[i];
2295 			struct ice_vlan vlan;
2296 
2297 			/* we add VLAN 0 by default for each VF so we can enable
2298 			 * Tx VLAN anti-spoof without triggering MDD events so
2299 			 * we don't want a VIRTCHNL request to remove it
2300 			 */
2301 			if (!vid)
2302 				continue;
2303 
2304 			vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2305 			status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2306 			if (status) {
2307 				v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2308 				goto error_param;
2309 			}
2310 
2311 			/* Disable VLAN filtering when only VLAN 0 is left */
2312 			if (!ice_vsi_has_non_zero_vlans(vsi))
2313 				vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2314 
2315 			if (vlan_promisc)
2316 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2317 		}
2318 	}
2319 
2320 error_param:
2321 	/* send the response to the VF */
2322 	if (add_v)
2323 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2324 					     NULL, 0);
2325 	else
2326 		return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2327 					     NULL, 0);
2328 }
2329 
2330 /**
2331  * ice_vc_add_vlan_msg
2332  * @vf: pointer to the VF info
2333  * @msg: pointer to the msg buffer
2334  *
2335  * Add and program guest VLAN ID
2336  */
2337 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2338 {
2339 	return ice_vc_process_vlan_msg(vf, msg, true);
2340 }
2341 
2342 /**
2343  * ice_vc_remove_vlan_msg
2344  * @vf: pointer to the VF info
2345  * @msg: pointer to the msg buffer
2346  *
2347  * remove programmed guest VLAN ID
2348  */
2349 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2350 {
2351 	return ice_vc_process_vlan_msg(vf, msg, false);
2352 }
2353 
2354 /**
2355  * ice_vc_ena_vlan_stripping
2356  * @vf: pointer to the VF info
2357  *
2358  * Enable VLAN header stripping for a given VF
2359  */
2360 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2361 {
2362 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2363 	struct ice_vsi *vsi;
2364 
2365 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2366 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2367 		goto error_param;
2368 	}
2369 
2370 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2371 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2372 		goto error_param;
2373 	}
2374 
2375 	vsi = ice_get_vf_vsi(vf);
2376 	if (!vsi) {
2377 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2378 		goto error_param;
2379 	}
2380 
2381 	if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2382 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2383 
2384 error_param:
2385 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2386 				     v_ret, NULL, 0);
2387 }
2388 
2389 /**
2390  * ice_vc_dis_vlan_stripping
2391  * @vf: pointer to the VF info
2392  *
2393  * Disable VLAN header stripping for a given VF
2394  */
2395 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2396 {
2397 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2398 	struct ice_vsi *vsi;
2399 
2400 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2401 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2402 		goto error_param;
2403 	}
2404 
2405 	if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2406 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2407 		goto error_param;
2408 	}
2409 
2410 	vsi = ice_get_vf_vsi(vf);
2411 	if (!vsi) {
2412 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2413 		goto error_param;
2414 	}
2415 
2416 	if (vsi->inner_vlan_ops.dis_stripping(vsi))
2417 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2418 
2419 error_param:
2420 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2421 				     v_ret, NULL, 0);
2422 }
2423 
2424 /**
2425  * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2426  * @vf: VF to enable/disable VLAN stripping for on initialization
2427  *
2428  * Set the default for VLAN stripping based on whether a port VLAN is configured
2429  * and the current VLAN mode of the device.
2430  */
2431 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2432 {
2433 	struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2434 
2435 	if (!vsi)
2436 		return -EINVAL;
2437 
2438 	/* don't modify stripping if port VLAN is configured in SVM since the
2439 	 * port VLAN is based on the inner/single VLAN in SVM
2440 	 */
2441 	if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2442 		return 0;
2443 
2444 	if (ice_vf_vlan_offload_ena(vf->driver_caps))
2445 		return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2446 	else
2447 		return vsi->inner_vlan_ops.dis_stripping(vsi);
2448 }
2449 
2450 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2451 {
2452 	if (vf->trusted)
2453 		return VLAN_N_VID;
2454 	else
2455 		return ICE_MAX_VLAN_PER_VF;
2456 }
2457 
2458 /**
2459  * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2460  * @vf: VF that being checked for
2461  *
2462  * When the device is in double VLAN mode, check whether or not the outer VLAN
2463  * is allowed.
2464  */
2465 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2466 {
2467 	if (ice_vf_is_port_vlan_ena(vf))
2468 		return true;
2469 
2470 	return false;
2471 }
2472 
2473 /**
2474  * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2475  * @vf: VF that capabilities are being set for
2476  * @caps: VLAN capabilities to populate
2477  *
2478  * Determine VLAN capabilities support based on whether a port VLAN is
2479  * configured. If a port VLAN is configured then the VF should use the inner
2480  * filtering/offload capabilities since the port VLAN is using the outer VLAN
2481  * capabilies.
2482  */
2483 static void
2484 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2485 {
2486 	struct virtchnl_vlan_supported_caps *supported_caps;
2487 
2488 	if (ice_vf_outer_vlan_not_allowed(vf)) {
2489 		/* until support for inner VLAN filtering is added when a port
2490 		 * VLAN is configured, only support software offloaded inner
2491 		 * VLANs when a port VLAN is confgured in DVM
2492 		 */
2493 		supported_caps = &caps->filtering.filtering_support;
2494 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2495 
2496 		supported_caps = &caps->offloads.stripping_support;
2497 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2498 					VIRTCHNL_VLAN_TOGGLE |
2499 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2500 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2501 
2502 		supported_caps = &caps->offloads.insertion_support;
2503 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2504 					VIRTCHNL_VLAN_TOGGLE |
2505 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2506 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2507 
2508 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2509 		caps->offloads.ethertype_match =
2510 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2511 	} else {
2512 		supported_caps = &caps->filtering.filtering_support;
2513 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2514 		supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2515 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2516 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2517 					VIRTCHNL_VLAN_ETHERTYPE_AND;
2518 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2519 						 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2520 						 VIRTCHNL_VLAN_ETHERTYPE_9100;
2521 
2522 		supported_caps = &caps->offloads.stripping_support;
2523 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2524 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2525 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2526 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2527 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2528 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2529 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2530 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2531 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2532 
2533 		supported_caps = &caps->offloads.insertion_support;
2534 		supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2535 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2536 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2537 		supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2538 					VIRTCHNL_VLAN_ETHERTYPE_8100 |
2539 					VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2540 					VIRTCHNL_VLAN_ETHERTYPE_9100 |
2541 					VIRTCHNL_VLAN_ETHERTYPE_XOR |
2542 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2543 
2544 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2545 
2546 		caps->offloads.ethertype_match =
2547 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2548 	}
2549 
2550 	caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2551 }
2552 
2553 /**
2554  * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2555  * @vf: VF that capabilities are being set for
2556  * @caps: VLAN capabilities to populate
2557  *
2558  * Determine VLAN capabilities support based on whether a port VLAN is
2559  * configured. If a port VLAN is configured then the VF does not have any VLAN
2560  * filtering or offload capabilities since the port VLAN is using the inner VLAN
2561  * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2562  * VLAN fitlering and offload capabilities.
2563  */
2564 static void
2565 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2566 {
2567 	struct virtchnl_vlan_supported_caps *supported_caps;
2568 
2569 	if (ice_vf_is_port_vlan_ena(vf)) {
2570 		supported_caps = &caps->filtering.filtering_support;
2571 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2572 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2573 
2574 		supported_caps = &caps->offloads.stripping_support;
2575 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2576 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2577 
2578 		supported_caps = &caps->offloads.insertion_support;
2579 		supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2580 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2581 
2582 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2583 		caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2584 		caps->filtering.max_filters = 0;
2585 	} else {
2586 		supported_caps = &caps->filtering.filtering_support;
2587 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2588 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2589 		caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2590 
2591 		supported_caps = &caps->offloads.stripping_support;
2592 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2593 					VIRTCHNL_VLAN_TOGGLE |
2594 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2595 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2596 
2597 		supported_caps = &caps->offloads.insertion_support;
2598 		supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2599 					VIRTCHNL_VLAN_TOGGLE |
2600 					VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2601 		supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2602 
2603 		caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2604 		caps->offloads.ethertype_match =
2605 			VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2606 		caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2607 	}
2608 }
2609 
2610 /**
2611  * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2612  * @vf: VF to determine VLAN capabilities for
2613  *
2614  * This will only be called if the VF and PF successfully negotiated
2615  * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2616  *
2617  * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2618  * is configured or not.
2619  */
2620 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2621 {
2622 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2623 	struct virtchnl_vlan_caps *caps = NULL;
2624 	int err, len = 0;
2625 
2626 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2627 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2628 		goto out;
2629 	}
2630 
2631 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2632 	if (!caps) {
2633 		v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2634 		goto out;
2635 	}
2636 	len = sizeof(*caps);
2637 
2638 	if (ice_is_dvm_ena(&vf->pf->hw))
2639 		ice_vc_set_dvm_caps(vf, caps);
2640 	else
2641 		ice_vc_set_svm_caps(vf, caps);
2642 
2643 	/* store negotiated caps to prevent invalid VF messages */
2644 	memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2645 
2646 out:
2647 	err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2648 				    v_ret, (u8 *)caps, len);
2649 	kfree(caps);
2650 	return err;
2651 }
2652 
2653 /**
2654  * ice_vc_validate_vlan_tpid - validate VLAN TPID
2655  * @filtering_caps: negotiated/supported VLAN filtering capabilities
2656  * @tpid: VLAN TPID used for validation
2657  *
2658  * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2659  * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2660  */
2661 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2662 {
2663 	enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2664 
2665 	switch (tpid) {
2666 	case ETH_P_8021Q:
2667 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2668 		break;
2669 	case ETH_P_8021AD:
2670 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2671 		break;
2672 	case ETH_P_QINQ1:
2673 		vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2674 		break;
2675 	}
2676 
2677 	if (!(filtering_caps & vlan_ethertype))
2678 		return false;
2679 
2680 	return true;
2681 }
2682 
2683 /**
2684  * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2685  * @vc_vlan: virtchnl_vlan to validate
2686  *
2687  * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2688  * false. Otherwise return true.
2689  */
2690 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2691 {
2692 	if (!vc_vlan->tci || !vc_vlan->tpid)
2693 		return false;
2694 
2695 	return true;
2696 }
2697 
2698 /**
2699  * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2700  * @vfc: negotiated/supported VLAN filtering capabilities
2701  * @vfl: VLAN filter list from VF to validate
2702  *
2703  * Validate all of the filters in the VLAN filter list from the VF. If any of
2704  * the checks fail then return false. Otherwise return true.
2705  */
2706 static bool
2707 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2708 				 struct virtchnl_vlan_filter_list_v2 *vfl)
2709 {
2710 	u16 i;
2711 
2712 	if (!vfl->num_elements)
2713 		return false;
2714 
2715 	for (i = 0; i < vfl->num_elements; i++) {
2716 		struct virtchnl_vlan_supported_caps *filtering_support =
2717 			&vfc->filtering_support;
2718 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2719 		struct virtchnl_vlan *outer = &vlan_fltr->outer;
2720 		struct virtchnl_vlan *inner = &vlan_fltr->inner;
2721 
2722 		if ((ice_vc_is_valid_vlan(outer) &&
2723 		     filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2724 		    (ice_vc_is_valid_vlan(inner) &&
2725 		     filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2726 			return false;
2727 
2728 		if ((outer->tci_mask &&
2729 		     !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2730 		    (inner->tci_mask &&
2731 		     !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2732 			return false;
2733 
2734 		if (((outer->tci & VLAN_PRIO_MASK) &&
2735 		     !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2736 		    ((inner->tci & VLAN_PRIO_MASK) &&
2737 		     !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2738 			return false;
2739 
2740 		if ((ice_vc_is_valid_vlan(outer) &&
2741 		     !ice_vc_validate_vlan_tpid(filtering_support->outer,
2742 						outer->tpid)) ||
2743 		    (ice_vc_is_valid_vlan(inner) &&
2744 		     !ice_vc_validate_vlan_tpid(filtering_support->inner,
2745 						inner->tpid)))
2746 			return false;
2747 	}
2748 
2749 	return true;
2750 }
2751 
2752 /**
2753  * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2754  * @vc_vlan: struct virtchnl_vlan to transform
2755  */
2756 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2757 {
2758 	struct ice_vlan vlan = { 0 };
2759 
2760 	vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2761 	vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2762 	vlan.tpid = vc_vlan->tpid;
2763 
2764 	return vlan;
2765 }
2766 
2767 /**
2768  * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2769  * @vsi: VF's VSI used to perform the action
2770  * @vlan_action: function to perform the action with (i.e. add/del)
2771  * @vlan: VLAN filter to perform the action with
2772  */
2773 static int
2774 ice_vc_vlan_action(struct ice_vsi *vsi,
2775 		   int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2776 		   struct ice_vlan *vlan)
2777 {
2778 	int err;
2779 
2780 	err = vlan_action(vsi, vlan);
2781 	if (err)
2782 		return err;
2783 
2784 	return 0;
2785 }
2786 
2787 /**
2788  * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
2789  * @vf: VF used to delete the VLAN(s)
2790  * @vsi: VF's VSI used to delete the VLAN(s)
2791  * @vfl: virthchnl filter list used to delete the filters
2792  */
2793 static int
2794 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2795 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2796 {
2797 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2798 	int err;
2799 	u16 i;
2800 
2801 	for (i = 0; i < vfl->num_elements; i++) {
2802 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2803 		struct virtchnl_vlan *vc_vlan;
2804 
2805 		vc_vlan = &vlan_fltr->outer;
2806 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2807 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2808 
2809 			err = ice_vc_vlan_action(vsi,
2810 						 vsi->outer_vlan_ops.del_vlan,
2811 						 &vlan);
2812 			if (err)
2813 				return err;
2814 
2815 			if (vlan_promisc)
2816 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2817 		}
2818 
2819 		vc_vlan = &vlan_fltr->inner;
2820 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2821 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2822 
2823 			err = ice_vc_vlan_action(vsi,
2824 						 vsi->inner_vlan_ops.del_vlan,
2825 						 &vlan);
2826 			if (err)
2827 				return err;
2828 
2829 			/* no support for VLAN promiscuous on inner VLAN unless
2830 			 * we are in Single VLAN Mode (SVM)
2831 			 */
2832 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc)
2833 				ice_vf_dis_vlan_promisc(vsi, &vlan);
2834 		}
2835 	}
2836 
2837 	return 0;
2838 }
2839 
2840 /**
2841  * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
2842  * @vf: VF the message was received from
2843  * @msg: message received from the VF
2844  */
2845 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2846 {
2847 	struct virtchnl_vlan_filter_list_v2 *vfl =
2848 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2849 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2850 	struct ice_vsi *vsi;
2851 
2852 	if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
2853 					      vfl)) {
2854 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2855 		goto out;
2856 	}
2857 
2858 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2859 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2860 		goto out;
2861 	}
2862 
2863 	vsi = ice_get_vf_vsi(vf);
2864 	if (!vsi) {
2865 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2866 		goto out;
2867 	}
2868 
2869 	if (ice_vc_del_vlans(vf, vsi, vfl))
2870 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2871 
2872 out:
2873 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
2874 				     0);
2875 }
2876 
2877 /**
2878  * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
2879  * @vf: VF used to add the VLAN(s)
2880  * @vsi: VF's VSI used to add the VLAN(s)
2881  * @vfl: virthchnl filter list used to add the filters
2882  */
2883 static int
2884 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
2885 		 struct virtchnl_vlan_filter_list_v2 *vfl)
2886 {
2887 	bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
2888 	int err;
2889 	u16 i;
2890 
2891 	for (i = 0; i < vfl->num_elements; i++) {
2892 		struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2893 		struct virtchnl_vlan *vc_vlan;
2894 
2895 		vc_vlan = &vlan_fltr->outer;
2896 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2897 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2898 
2899 			err = ice_vc_vlan_action(vsi,
2900 						 vsi->outer_vlan_ops.add_vlan,
2901 						 &vlan);
2902 			if (err)
2903 				return err;
2904 
2905 			if (vlan_promisc) {
2906 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2907 				if (err)
2908 					return err;
2909 			}
2910 		}
2911 
2912 		vc_vlan = &vlan_fltr->inner;
2913 		if (ice_vc_is_valid_vlan(vc_vlan)) {
2914 			struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
2915 
2916 			err = ice_vc_vlan_action(vsi,
2917 						 vsi->inner_vlan_ops.add_vlan,
2918 						 &vlan);
2919 			if (err)
2920 				return err;
2921 
2922 			/* no support for VLAN promiscuous on inner VLAN unless
2923 			 * we are in Single VLAN Mode (SVM)
2924 			 */
2925 			if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) {
2926 				err = ice_vf_ena_vlan_promisc(vsi, &vlan);
2927 				if (err)
2928 					return err;
2929 			}
2930 		}
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 /**
2937  * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
2938  * @vsi: VF VSI used to get number of existing VLAN filters
2939  * @vfc: negotiated/supported VLAN filtering capabilities
2940  * @vfl: VLAN filter list from VF to validate
2941  *
2942  * Validate all of the filters in the VLAN filter list from the VF during the
2943  * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
2944  * Otherwise return true.
2945  */
2946 static bool
2947 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
2948 				     struct virtchnl_vlan_filtering_caps *vfc,
2949 				     struct virtchnl_vlan_filter_list_v2 *vfl)
2950 {
2951 	u16 num_requested_filters = vsi->num_vlan + vfl->num_elements;
2952 
2953 	if (num_requested_filters > vfc->max_filters)
2954 		return false;
2955 
2956 	return ice_vc_validate_vlan_filter_list(vfc, vfl);
2957 }
2958 
2959 /**
2960  * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
2961  * @vf: VF the message was received from
2962  * @msg: message received from the VF
2963  */
2964 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
2965 {
2966 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2967 	struct virtchnl_vlan_filter_list_v2 *vfl =
2968 		(struct virtchnl_vlan_filter_list_v2 *)msg;
2969 	struct ice_vsi *vsi;
2970 
2971 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2972 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2973 		goto out;
2974 	}
2975 
2976 	if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
2977 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2978 		goto out;
2979 	}
2980 
2981 	vsi = ice_get_vf_vsi(vf);
2982 	if (!vsi) {
2983 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2984 		goto out;
2985 	}
2986 
2987 	if (!ice_vc_validate_add_vlan_filter_list(vsi,
2988 						  &vf->vlan_v2_caps.filtering,
2989 						  vfl)) {
2990 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2991 		goto out;
2992 	}
2993 
2994 	if (ice_vc_add_vlans(vf, vsi, vfl))
2995 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2996 
2997 out:
2998 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
2999 				     0);
3000 }
3001 
3002 /**
3003  * ice_vc_valid_vlan_setting - validate VLAN setting
3004  * @negotiated_settings: negotiated VLAN settings during VF init
3005  * @ethertype_setting: ethertype(s) requested for the VLAN setting
3006  */
3007 static bool
3008 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3009 {
3010 	if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3011 		return false;
3012 
3013 	/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3014 	 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3015 	 */
3016 	if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3017 	    hweight32(ethertype_setting) > 1)
3018 		return false;
3019 
3020 	/* ability to modify the VLAN setting was not negotiated */
3021 	if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3022 		return false;
3023 
3024 	return true;
3025 }
3026 
3027 /**
3028  * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3029  * @caps: negotiated VLAN settings during VF init
3030  * @msg: message to validate
3031  *
3032  * Used to validate any VLAN virtchnl message sent as a
3033  * virtchnl_vlan_setting structure. Validates the message against the
3034  * negotiated/supported caps during VF driver init.
3035  */
3036 static bool
3037 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3038 			      struct virtchnl_vlan_setting *msg)
3039 {
3040 	if ((!msg->outer_ethertype_setting &&
3041 	     !msg->inner_ethertype_setting) ||
3042 	    (!caps->outer && !caps->inner))
3043 		return false;
3044 
3045 	if (msg->outer_ethertype_setting &&
3046 	    !ice_vc_valid_vlan_setting(caps->outer,
3047 				       msg->outer_ethertype_setting))
3048 		return false;
3049 
3050 	if (msg->inner_ethertype_setting &&
3051 	    !ice_vc_valid_vlan_setting(caps->inner,
3052 				       msg->inner_ethertype_setting))
3053 		return false;
3054 
3055 	return true;
3056 }
3057 
3058 /**
3059  * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3060  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3061  * @tpid: VLAN TPID to populate
3062  */
3063 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3064 {
3065 	switch (ethertype_setting) {
3066 	case VIRTCHNL_VLAN_ETHERTYPE_8100:
3067 		*tpid = ETH_P_8021Q;
3068 		break;
3069 	case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3070 		*tpid = ETH_P_8021AD;
3071 		break;
3072 	case VIRTCHNL_VLAN_ETHERTYPE_9100:
3073 		*tpid = ETH_P_QINQ1;
3074 		break;
3075 	default:
3076 		*tpid = 0;
3077 		return -EINVAL;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 /**
3084  * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3085  * @vsi: VF's VSI used to enable the VLAN offload
3086  * @ena_offload: function used to enable the VLAN offload
3087  * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3088  */
3089 static int
3090 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3091 			int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3092 			u32 ethertype_setting)
3093 {
3094 	u16 tpid;
3095 	int err;
3096 
3097 	err = ice_vc_get_tpid(ethertype_setting, &tpid);
3098 	if (err)
3099 		return err;
3100 
3101 	err = ena_offload(vsi, tpid);
3102 	if (err)
3103 		return err;
3104 
3105 	return 0;
3106 }
3107 
3108 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX	3
3109 #define ICE_L2TSEL_BIT_OFFSET		23
3110 enum ice_l2tsel {
3111 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3112 	ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3113 };
3114 
3115 /**
3116  * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3117  * @vsi: VSI used to update l2tsel on
3118  * @l2tsel: l2tsel setting requested
3119  *
3120  * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3121  * This will modify which descriptor field the first offloaded VLAN will be
3122  * stripped into.
3123  */
3124 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3125 {
3126 	struct ice_hw *hw = &vsi->back->hw;
3127 	u32 l2tsel_bit;
3128 	int i;
3129 
3130 	if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3131 		l2tsel_bit = 0;
3132 	else
3133 		l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3134 
3135 	for (i = 0; i < vsi->alloc_rxq; i++) {
3136 		u16 pfq = vsi->rxq_map[i];
3137 		u32 qrx_context_offset;
3138 		u32 regval;
3139 
3140 		qrx_context_offset =
3141 			QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3142 
3143 		regval = rd32(hw, qrx_context_offset);
3144 		regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3145 		regval |= l2tsel_bit;
3146 		wr32(hw, qrx_context_offset, regval);
3147 	}
3148 }
3149 
3150 /**
3151  * ice_vc_ena_vlan_stripping_v2_msg
3152  * @vf: VF the message was received from
3153  * @msg: message received from the VF
3154  *
3155  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3156  */
3157 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3158 {
3159 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3160 	struct virtchnl_vlan_supported_caps *stripping_support;
3161 	struct virtchnl_vlan_setting *strip_msg =
3162 		(struct virtchnl_vlan_setting *)msg;
3163 	u32 ethertype_setting;
3164 	struct ice_vsi *vsi;
3165 
3166 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3167 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3168 		goto out;
3169 	}
3170 
3171 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3172 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3173 		goto out;
3174 	}
3175 
3176 	vsi = ice_get_vf_vsi(vf);
3177 	if (!vsi) {
3178 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3179 		goto out;
3180 	}
3181 
3182 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3183 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3184 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3185 		goto out;
3186 	}
3187 
3188 	ethertype_setting = strip_msg->outer_ethertype_setting;
3189 	if (ethertype_setting) {
3190 		if (ice_vc_ena_vlan_offload(vsi,
3191 					    vsi->outer_vlan_ops.ena_stripping,
3192 					    ethertype_setting)) {
3193 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3194 			goto out;
3195 		} else {
3196 			enum ice_l2tsel l2tsel =
3197 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3198 
3199 			/* PF tells the VF that the outer VLAN tag is always
3200 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3201 			 * inner is always extracted to
3202 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3203 			 * support outer stripping so the first tag always ends
3204 			 * up in L2TAG2_2ND and the second/inner tag, if
3205 			 * enabled, is extracted in L2TAG1.
3206 			 */
3207 			ice_vsi_update_l2tsel(vsi, l2tsel);
3208 		}
3209 	}
3210 
3211 	ethertype_setting = strip_msg->inner_ethertype_setting;
3212 	if (ethertype_setting &&
3213 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3214 				    ethertype_setting)) {
3215 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3216 		goto out;
3217 	}
3218 
3219 out:
3220 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3221 				     v_ret, NULL, 0);
3222 }
3223 
3224 /**
3225  * ice_vc_dis_vlan_stripping_v2_msg
3226  * @vf: VF the message was received from
3227  * @msg: message received from the VF
3228  *
3229  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3230  */
3231 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3232 {
3233 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3234 	struct virtchnl_vlan_supported_caps *stripping_support;
3235 	struct virtchnl_vlan_setting *strip_msg =
3236 		(struct virtchnl_vlan_setting *)msg;
3237 	u32 ethertype_setting;
3238 	struct ice_vsi *vsi;
3239 
3240 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3241 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3242 		goto out;
3243 	}
3244 
3245 	if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3246 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3247 		goto out;
3248 	}
3249 
3250 	vsi = ice_get_vf_vsi(vf);
3251 	if (!vsi) {
3252 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3253 		goto out;
3254 	}
3255 
3256 	stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3257 	if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3258 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3259 		goto out;
3260 	}
3261 
3262 	ethertype_setting = strip_msg->outer_ethertype_setting;
3263 	if (ethertype_setting) {
3264 		if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3265 			v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3266 			goto out;
3267 		} else {
3268 			enum ice_l2tsel l2tsel =
3269 				ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3270 
3271 			/* PF tells the VF that the outer VLAN tag is always
3272 			 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3273 			 * inner is always extracted to
3274 			 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3275 			 * support inner stripping while outer stripping is
3276 			 * disabled so that the first and only tag is extracted
3277 			 * in L2TAG1.
3278 			 */
3279 			ice_vsi_update_l2tsel(vsi, l2tsel);
3280 		}
3281 	}
3282 
3283 	ethertype_setting = strip_msg->inner_ethertype_setting;
3284 	if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3285 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3286 		goto out;
3287 	}
3288 
3289 out:
3290 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3291 				     v_ret, NULL, 0);
3292 }
3293 
3294 /**
3295  * ice_vc_ena_vlan_insertion_v2_msg
3296  * @vf: VF the message was received from
3297  * @msg: message received from the VF
3298  *
3299  * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3300  */
3301 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3302 {
3303 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3304 	struct virtchnl_vlan_supported_caps *insertion_support;
3305 	struct virtchnl_vlan_setting *insertion_msg =
3306 		(struct virtchnl_vlan_setting *)msg;
3307 	u32 ethertype_setting;
3308 	struct ice_vsi *vsi;
3309 
3310 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3311 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3312 		goto out;
3313 	}
3314 
3315 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3316 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3317 		goto out;
3318 	}
3319 
3320 	vsi = ice_get_vf_vsi(vf);
3321 	if (!vsi) {
3322 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3323 		goto out;
3324 	}
3325 
3326 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3327 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3328 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3329 		goto out;
3330 	}
3331 
3332 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3333 	if (ethertype_setting &&
3334 	    ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3335 				    ethertype_setting)) {
3336 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3337 		goto out;
3338 	}
3339 
3340 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3341 	if (ethertype_setting &&
3342 	    ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3343 				    ethertype_setting)) {
3344 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3345 		goto out;
3346 	}
3347 
3348 out:
3349 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3350 				     v_ret, NULL, 0);
3351 }
3352 
3353 /**
3354  * ice_vc_dis_vlan_insertion_v2_msg
3355  * @vf: VF the message was received from
3356  * @msg: message received from the VF
3357  *
3358  * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3359  */
3360 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3361 {
3362 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3363 	struct virtchnl_vlan_supported_caps *insertion_support;
3364 	struct virtchnl_vlan_setting *insertion_msg =
3365 		(struct virtchnl_vlan_setting *)msg;
3366 	u32 ethertype_setting;
3367 	struct ice_vsi *vsi;
3368 
3369 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3370 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3371 		goto out;
3372 	}
3373 
3374 	if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3375 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3376 		goto out;
3377 	}
3378 
3379 	vsi = ice_get_vf_vsi(vf);
3380 	if (!vsi) {
3381 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3382 		goto out;
3383 	}
3384 
3385 	insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3386 	if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3387 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3388 		goto out;
3389 	}
3390 
3391 	ethertype_setting = insertion_msg->outer_ethertype_setting;
3392 	if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3393 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3394 		goto out;
3395 	}
3396 
3397 	ethertype_setting = insertion_msg->inner_ethertype_setting;
3398 	if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3399 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3400 		goto out;
3401 	}
3402 
3403 out:
3404 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3405 				     v_ret, NULL, 0);
3406 }
3407 
3408 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3409 	.get_ver_msg = ice_vc_get_ver_msg,
3410 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3411 	.reset_vf = ice_vc_reset_vf_msg,
3412 	.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3413 	.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3414 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3415 	.ena_qs_msg = ice_vc_ena_qs_msg,
3416 	.dis_qs_msg = ice_vc_dis_qs_msg,
3417 	.request_qs_msg = ice_vc_request_qs_msg,
3418 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3419 	.config_rss_key = ice_vc_config_rss_key,
3420 	.config_rss_lut = ice_vc_config_rss_lut,
3421 	.get_stats_msg = ice_vc_get_stats_msg,
3422 	.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3423 	.add_vlan_msg = ice_vc_add_vlan_msg,
3424 	.remove_vlan_msg = ice_vc_remove_vlan_msg,
3425 	.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3426 	.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3427 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3428 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3429 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3430 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3431 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3432 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3433 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3434 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3435 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3436 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3437 };
3438 
3439 /**
3440  * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3441  * @vf: the VF to switch ops
3442  */
3443 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3444 {
3445 	vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3446 }
3447 
3448 /**
3449  * ice_vc_repr_add_mac
3450  * @vf: pointer to VF
3451  * @msg: virtchannel message
3452  *
3453  * When port representors are created, we do not add MAC rule
3454  * to firmware, we store it so that PF could report same
3455  * MAC as VF.
3456  */
3457 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3458 {
3459 	enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3460 	struct virtchnl_ether_addr_list *al =
3461 	    (struct virtchnl_ether_addr_list *)msg;
3462 	struct ice_vsi *vsi;
3463 	struct ice_pf *pf;
3464 	int i;
3465 
3466 	if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3467 	    !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3468 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3469 		goto handle_mac_exit;
3470 	}
3471 
3472 	pf = vf->pf;
3473 
3474 	vsi = ice_get_vf_vsi(vf);
3475 	if (!vsi) {
3476 		v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3477 		goto handle_mac_exit;
3478 	}
3479 
3480 	for (i = 0; i < al->num_elements; i++) {
3481 		u8 *mac_addr = al->list[i].addr;
3482 		int result;
3483 
3484 		if (!is_unicast_ether_addr(mac_addr) ||
3485 		    ether_addr_equal(mac_addr, vf->hw_lan_addr.addr))
3486 			continue;
3487 
3488 		if (vf->pf_set_mac) {
3489 			dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3490 			v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3491 			goto handle_mac_exit;
3492 		}
3493 
3494 		result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
3495 		if (result) {
3496 			dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
3497 				mac_addr, vf->vf_id, result);
3498 			goto handle_mac_exit;
3499 		}
3500 
3501 		ice_vfhw_mac_add(vf, &al->list[i]);
3502 		vf->num_mac++;
3503 		break;
3504 	}
3505 
3506 handle_mac_exit:
3507 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3508 				     v_ret, NULL, 0);
3509 }
3510 
3511 /**
3512  * ice_vc_repr_del_mac - response with success for deleting MAC
3513  * @vf: pointer to VF
3514  * @msg: virtchannel message
3515  *
3516  * Respond with success to not break normal VF flow.
3517  * For legacy VF driver try to update cached MAC address.
3518  */
3519 static int
3520 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3521 {
3522 	struct virtchnl_ether_addr_list *al =
3523 		(struct virtchnl_ether_addr_list *)msg;
3524 
3525 	ice_update_legacy_cached_mac(vf, &al->list[0]);
3526 
3527 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3528 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3529 }
3530 
3531 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3532 {
3533 	dev_dbg(ice_pf_to_dev(vf->pf),
3534 		"Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id);
3535 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN,
3536 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3537 }
3538 
3539 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg)
3540 {
3541 	dev_dbg(ice_pf_to_dev(vf->pf),
3542 		"Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id);
3543 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN,
3544 				     VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3545 }
3546 
3547 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf)
3548 {
3549 	dev_dbg(ice_pf_to_dev(vf->pf),
3550 		"Can't enable VLAN stripping in switchdev mode for VF %d\n",
3551 		vf->vf_id);
3552 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
3553 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3554 				     NULL, 0);
3555 }
3556 
3557 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf)
3558 {
3559 	dev_dbg(ice_pf_to_dev(vf->pf),
3560 		"Can't disable VLAN stripping in switchdev mode for VF %d\n",
3561 		vf->vf_id);
3562 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
3563 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3564 				     NULL, 0);
3565 }
3566 
3567 static int
3568 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3569 {
3570 	dev_dbg(ice_pf_to_dev(vf->pf),
3571 		"Can't config promiscuous mode in switchdev mode for VF %d\n",
3572 		vf->vf_id);
3573 	return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3574 				     VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3575 				     NULL, 0);
3576 }
3577 
3578 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3579 	.get_ver_msg = ice_vc_get_ver_msg,
3580 	.get_vf_res_msg = ice_vc_get_vf_res_msg,
3581 	.reset_vf = ice_vc_reset_vf_msg,
3582 	.add_mac_addr_msg = ice_vc_repr_add_mac,
3583 	.del_mac_addr_msg = ice_vc_repr_del_mac,
3584 	.cfg_qs_msg = ice_vc_cfg_qs_msg,
3585 	.ena_qs_msg = ice_vc_ena_qs_msg,
3586 	.dis_qs_msg = ice_vc_dis_qs_msg,
3587 	.request_qs_msg = ice_vc_request_qs_msg,
3588 	.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3589 	.config_rss_key = ice_vc_config_rss_key,
3590 	.config_rss_lut = ice_vc_config_rss_lut,
3591 	.get_stats_msg = ice_vc_get_stats_msg,
3592 	.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3593 	.add_vlan_msg = ice_vc_repr_add_vlan,
3594 	.remove_vlan_msg = ice_vc_repr_del_vlan,
3595 	.ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping,
3596 	.dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping,
3597 	.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3598 	.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3599 	.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3600 	.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3601 	.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3602 	.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3603 	.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3604 	.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3605 	.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3606 	.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3607 };
3608 
3609 /**
3610  * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3611  * @vf: the VF to switch ops
3612  */
3613 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3614 {
3615 	vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3616 }
3617 
3618 /**
3619  * ice_vc_process_vf_msg - Process request from VF
3620  * @pf: pointer to the PF structure
3621  * @event: pointer to the AQ event
3622  *
3623  * called from the common asq/arq handler to
3624  * process request from VF
3625  */
3626 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
3627 {
3628 	u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3629 	s16 vf_id = le16_to_cpu(event->desc.retval);
3630 	const struct ice_virtchnl_ops *ops;
3631 	u16 msglen = event->msg_len;
3632 	u8 *msg = event->msg_buf;
3633 	struct ice_vf *vf = NULL;
3634 	struct device *dev;
3635 	int err = 0;
3636 
3637 	dev = ice_pf_to_dev(pf);
3638 
3639 	vf = ice_get_vf_by_id(pf, vf_id);
3640 	if (!vf) {
3641 		dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3642 			vf_id, v_opcode, msglen);
3643 		return;
3644 	}
3645 
3646 	mutex_lock(&vf->cfg_lock);
3647 
3648 	/* Check if VF is disabled. */
3649 	if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3650 		err = -EPERM;
3651 		goto error_handler;
3652 	}
3653 
3654 	ops = vf->virtchnl_ops;
3655 
3656 	/* Perform basic checks on the msg */
3657 	err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3658 	if (err) {
3659 		if (err == VIRTCHNL_STATUS_ERR_PARAM)
3660 			err = -EPERM;
3661 		else
3662 			err = -EINVAL;
3663 	}
3664 
3665 error_handler:
3666 	if (err) {
3667 		ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3668 				      NULL, 0);
3669 		dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3670 			vf_id, v_opcode, msglen, err);
3671 		goto finish;
3672 	}
3673 
3674 	if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3675 		ice_vc_send_msg_to_vf(vf, v_opcode,
3676 				      VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3677 				      0);
3678 		goto finish;
3679 	}
3680 
3681 	switch (v_opcode) {
3682 	case VIRTCHNL_OP_VERSION:
3683 		err = ops->get_ver_msg(vf, msg);
3684 		break;
3685 	case VIRTCHNL_OP_GET_VF_RESOURCES:
3686 		err = ops->get_vf_res_msg(vf, msg);
3687 		if (ice_vf_init_vlan_stripping(vf))
3688 			dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3689 				vf->vf_id);
3690 		ice_vc_notify_vf_link_state(vf);
3691 		break;
3692 	case VIRTCHNL_OP_RESET_VF:
3693 		ops->reset_vf(vf);
3694 		break;
3695 	case VIRTCHNL_OP_ADD_ETH_ADDR:
3696 		err = ops->add_mac_addr_msg(vf, msg);
3697 		break;
3698 	case VIRTCHNL_OP_DEL_ETH_ADDR:
3699 		err = ops->del_mac_addr_msg(vf, msg);
3700 		break;
3701 	case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3702 		err = ops->cfg_qs_msg(vf, msg);
3703 		break;
3704 	case VIRTCHNL_OP_ENABLE_QUEUES:
3705 		err = ops->ena_qs_msg(vf, msg);
3706 		ice_vc_notify_vf_link_state(vf);
3707 		break;
3708 	case VIRTCHNL_OP_DISABLE_QUEUES:
3709 		err = ops->dis_qs_msg(vf, msg);
3710 		break;
3711 	case VIRTCHNL_OP_REQUEST_QUEUES:
3712 		err = ops->request_qs_msg(vf, msg);
3713 		break;
3714 	case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3715 		err = ops->cfg_irq_map_msg(vf, msg);
3716 		break;
3717 	case VIRTCHNL_OP_CONFIG_RSS_KEY:
3718 		err = ops->config_rss_key(vf, msg);
3719 		break;
3720 	case VIRTCHNL_OP_CONFIG_RSS_LUT:
3721 		err = ops->config_rss_lut(vf, msg);
3722 		break;
3723 	case VIRTCHNL_OP_GET_STATS:
3724 		err = ops->get_stats_msg(vf, msg);
3725 		break;
3726 	case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3727 		err = ops->cfg_promiscuous_mode_msg(vf, msg);
3728 		break;
3729 	case VIRTCHNL_OP_ADD_VLAN:
3730 		err = ops->add_vlan_msg(vf, msg);
3731 		break;
3732 	case VIRTCHNL_OP_DEL_VLAN:
3733 		err = ops->remove_vlan_msg(vf, msg);
3734 		break;
3735 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
3736 		err = ops->ena_vlan_stripping(vf);
3737 		break;
3738 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
3739 		err = ops->dis_vlan_stripping(vf);
3740 		break;
3741 	case VIRTCHNL_OP_ADD_FDIR_FILTER:
3742 		err = ops->add_fdir_fltr_msg(vf, msg);
3743 		break;
3744 	case VIRTCHNL_OP_DEL_FDIR_FILTER:
3745 		err = ops->del_fdir_fltr_msg(vf, msg);
3746 		break;
3747 	case VIRTCHNL_OP_ADD_RSS_CFG:
3748 		err = ops->handle_rss_cfg_msg(vf, msg, true);
3749 		break;
3750 	case VIRTCHNL_OP_DEL_RSS_CFG:
3751 		err = ops->handle_rss_cfg_msg(vf, msg, false);
3752 		break;
3753 	case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
3754 		err = ops->get_offload_vlan_v2_caps(vf);
3755 		break;
3756 	case VIRTCHNL_OP_ADD_VLAN_V2:
3757 		err = ops->add_vlan_v2_msg(vf, msg);
3758 		break;
3759 	case VIRTCHNL_OP_DEL_VLAN_V2:
3760 		err = ops->remove_vlan_v2_msg(vf, msg);
3761 		break;
3762 	case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
3763 		err = ops->ena_vlan_stripping_v2_msg(vf, msg);
3764 		break;
3765 	case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
3766 		err = ops->dis_vlan_stripping_v2_msg(vf, msg);
3767 		break;
3768 	case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
3769 		err = ops->ena_vlan_insertion_v2_msg(vf, msg);
3770 		break;
3771 	case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
3772 		err = ops->dis_vlan_insertion_v2_msg(vf, msg);
3773 		break;
3774 	case VIRTCHNL_OP_UNKNOWN:
3775 	default:
3776 		dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
3777 			vf_id);
3778 		err = ice_vc_send_msg_to_vf(vf, v_opcode,
3779 					    VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3780 					    NULL, 0);
3781 		break;
3782 	}
3783 	if (err) {
3784 		/* Helper function cares less about error return values here
3785 		 * as it is busy with pending work.
3786 		 */
3787 		dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
3788 			 vf_id, v_opcode, err);
3789 	}
3790 
3791 finish:
3792 	mutex_unlock(&vf->cfg_lock);
3793 	ice_put_vf(vf);
3794 }
3795