1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (C) 2022, Intel Corporation. */ 3 4 #include "ice_virtchnl.h" 5 #include "ice_vf_lib_private.h" 6 #include "ice.h" 7 #include "ice_base.h" 8 #include "ice_lib.h" 9 #include "ice_fltr.h" 10 #include "ice_virtchnl_allowlist.h" 11 #include "ice_vf_vsi_vlan_ops.h" 12 #include "ice_vlan.h" 13 #include "ice_flex_pipe.h" 14 #include "ice_dcb_lib.h" 15 16 #define FIELD_SELECTOR(proto_hdr_field) \ 17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK) 18 19 struct ice_vc_hdr_match_type { 20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */ 21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */ 22 }; 23 24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = { 25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE}, 26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH}, 27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN}, 29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 | 30 ICE_FLOW_SEG_HDR_IPV_OTHER}, 31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 | 32 ICE_FLOW_SEG_HDR_IPV_OTHER}, 33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP}, 34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP}, 35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP}, 36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE}, 37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP}, 38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH}, 39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 40 ICE_FLOW_SEG_HDR_GTPU_DWN}, 41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 42 ICE_FLOW_SEG_HDR_GTPU_UP}, 43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3}, 44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP}, 45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH}, 46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION}, 47 }; 48 49 struct ice_vc_hash_field_match_type { 50 u32 vc_hdr; /* virtchnl headers 51 * (VIRTCHNL_PROTO_HDR_XXX) 52 */ 53 u32 vc_hash_field; /* virtchnl hash fields selector 54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX)) 55 */ 56 u64 ice_hash_field; /* ice hash fields 57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX)) 58 */ 59 }; 60 61 static const struct 62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = { 63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC), 64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)}, 65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)}, 67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) | 68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST), 69 ICE_FLOW_HASH_ETH}, 70 {VIRTCHNL_PROTO_HDR_ETH, 71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE), 72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)}, 73 {VIRTCHNL_PROTO_HDR_S_VLAN, 74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID), 75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)}, 76 {VIRTCHNL_PROTO_HDR_C_VLAN, 77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID), 78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)}, 79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC), 80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)}, 81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)}, 83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST), 85 ICE_FLOW_HASH_IPV4}, 86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) | 89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) | 93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) | 95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) | 96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT), 99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)}, 100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC), 101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)}, 102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)}, 104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST), 106 ICE_FLOW_HASH_IPV6}, 107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) | 110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) | 114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) | 116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) | 117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT), 120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)}, 121 {VIRTCHNL_PROTO_HDR_TCP, 122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT), 123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)}, 124 {VIRTCHNL_PROTO_HDR_TCP, 125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)}, 127 {VIRTCHNL_PROTO_HDR_TCP, 128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) | 129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT), 130 ICE_FLOW_HASH_TCP_PORT}, 131 {VIRTCHNL_PROTO_HDR_UDP, 132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT), 133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)}, 134 {VIRTCHNL_PROTO_HDR_UDP, 135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)}, 137 {VIRTCHNL_PROTO_HDR_UDP, 138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) | 139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT), 140 ICE_FLOW_HASH_UDP_PORT}, 141 {VIRTCHNL_PROTO_HDR_SCTP, 142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT), 143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)}, 144 {VIRTCHNL_PROTO_HDR_SCTP, 145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)}, 147 {VIRTCHNL_PROTO_HDR_SCTP, 148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) | 149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT), 150 ICE_FLOW_HASH_SCTP_PORT}, 151 {VIRTCHNL_PROTO_HDR_PPPOE, 152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID), 153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)}, 154 {VIRTCHNL_PROTO_HDR_GTPU_IP, 155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID), 156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)}, 157 {VIRTCHNL_PROTO_HDR_L2TPV3, 158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID), 159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)}, 160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI), 161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)}, 162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI), 163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)}, 164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID), 165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)}, 166 }; 167 168 /** 169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF 170 * @pf: pointer to the PF structure 171 * @v_opcode: operation code 172 * @v_retval: return value 173 * @msg: pointer to the msg buffer 174 * @msglen: msg length 175 */ 176 static void 177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, 178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 179 { 180 struct ice_hw *hw = &pf->hw; 181 struct ice_vf *vf; 182 unsigned int bkt; 183 184 mutex_lock(&pf->vfs.table_lock); 185 ice_for_each_vf(pf, bkt, vf) { 186 /* Not all vfs are enabled so skip the ones that are not */ 187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && 188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 189 continue; 190 191 /* Ignore return value on purpose - a given VF may fail, but 192 * we need to keep going and send to all of them 193 */ 194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, 195 msglen, NULL); 196 } 197 mutex_unlock(&pf->vfs.table_lock); 198 } 199 200 /** 201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event 202 * @vf: pointer to the VF structure 203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for 204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* 205 * @link_up: whether or not to set the link up/down 206 */ 207 static void 208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, 209 int ice_link_speed, bool link_up) 210 { 211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { 212 pfe->event_data.link_event_adv.link_status = link_up; 213 /* Speed in Mbps */ 214 pfe->event_data.link_event_adv.link_speed = 215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed); 216 } else { 217 pfe->event_data.link_event.link_status = link_up; 218 /* Legacy method for virtchnl link speeds */ 219 pfe->event_data.link_event.link_speed = 220 (enum virtchnl_link_speed) 221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed); 222 } 223 } 224 225 /** 226 * ice_vc_notify_vf_link_state - Inform a VF of link status 227 * @vf: pointer to the VF structure 228 * 229 * send a link status message to a single VF 230 */ 231 void ice_vc_notify_vf_link_state(struct ice_vf *vf) 232 { 233 struct virtchnl_pf_event pfe = { 0 }; 234 struct ice_hw *hw = &vf->pf->hw; 235 236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; 237 pfe.severity = PF_EVENT_SEVERITY_INFO; 238 239 if (ice_is_vf_link_up(vf)) 240 ice_set_pfe_link(vf, &pfe, 241 hw->port_info->phy.link_info.link_speed, true); 242 else 243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); 244 245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, 246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, 247 sizeof(pfe), NULL); 248 } 249 250 /** 251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status 252 * @pf: pointer to the PF structure 253 */ 254 void ice_vc_notify_link_state(struct ice_pf *pf) 255 { 256 struct ice_vf *vf; 257 unsigned int bkt; 258 259 mutex_lock(&pf->vfs.table_lock); 260 ice_for_each_vf(pf, bkt, vf) 261 ice_vc_notify_vf_link_state(vf); 262 mutex_unlock(&pf->vfs.table_lock); 263 } 264 265 /** 266 * ice_vc_notify_reset - Send pending reset message to all VFs 267 * @pf: pointer to the PF structure 268 * 269 * indicate a pending reset to all VFs on a given PF 270 */ 271 void ice_vc_notify_reset(struct ice_pf *pf) 272 { 273 struct virtchnl_pf_event pfe; 274 275 if (!ice_has_vfs(pf)) 276 return; 277 278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; 279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; 280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, 281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); 282 } 283 284 /** 285 * ice_vc_send_msg_to_vf - Send message to VF 286 * @vf: pointer to the VF info 287 * @v_opcode: virtual channel opcode 288 * @v_retval: virtual channel return value 289 * @msg: pointer to the msg buffer 290 * @msglen: msg length 291 * 292 * send msg to VF 293 */ 294 int 295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, 296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) 297 { 298 struct device *dev; 299 struct ice_pf *pf; 300 int aq_ret; 301 302 pf = vf->pf; 303 dev = ice_pf_to_dev(pf); 304 305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, 306 msg, msglen, NULL); 307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { 308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n", 309 vf->vf_id, aq_ret, 310 ice_aq_str(pf->hw.mailboxq.sq_last_status)); 311 return -EIO; 312 } 313 314 return 0; 315 } 316 317 /** 318 * ice_vc_get_ver_msg 319 * @vf: pointer to the VF info 320 * @msg: pointer to the msg buffer 321 * 322 * called from the VF to request the API version used by the PF 323 */ 324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) 325 { 326 struct virtchnl_version_info info = { 327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR 328 }; 329 330 vf->vf_ver = *(struct virtchnl_version_info *)msg; 331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ 332 if (VF_IS_V10(&vf->vf_ver)) 333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; 334 335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, 336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, 337 sizeof(struct virtchnl_version_info)); 338 } 339 340 /** 341 * ice_vc_get_max_frame_size - get max frame size allowed for VF 342 * @vf: VF used to determine max frame size 343 * 344 * Max frame size is determined based on the current port's max frame size and 345 * whether a port VLAN is configured on this VF. The VF is not aware whether 346 * it's in a port VLAN so the PF needs to account for this in max frame size 347 * checks and sending the max frame size to the VF. 348 */ 349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf) 350 { 351 struct ice_port_info *pi = ice_vf_get_port_info(vf); 352 u16 max_frame_size; 353 354 max_frame_size = pi->phy.link_info.max_frame_size; 355 356 if (ice_vf_is_port_vlan_ena(vf)) 357 max_frame_size -= VLAN_HLEN; 358 359 return max_frame_size; 360 } 361 362 /** 363 * ice_vc_get_vf_res_msg 364 * @vf: pointer to the VF info 365 * @msg: pointer to the msg buffer 366 * 367 * called from the VF to request its resources 368 */ 369 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) 370 { 371 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 372 struct virtchnl_vf_resource *vfres = NULL; 373 struct ice_hw *hw = &vf->pf->hw; 374 struct ice_vsi *vsi; 375 int len = 0; 376 int ret; 377 378 if (ice_check_vf_init(vf)) { 379 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 380 goto err; 381 } 382 383 len = sizeof(struct virtchnl_vf_resource); 384 385 vfres = kzalloc(len, GFP_KERNEL); 386 if (!vfres) { 387 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 388 len = 0; 389 goto err; 390 } 391 if (VF_IS_V11(&vf->vf_ver)) 392 vf->driver_caps = *(u32 *)msg; 393 else 394 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | 395 VIRTCHNL_VF_OFFLOAD_RSS_REG | 396 VIRTCHNL_VF_OFFLOAD_VLAN; 397 398 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; 399 vsi = ice_get_vf_vsi(vf); 400 if (!vsi) { 401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 402 goto err; 403 } 404 405 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) { 406 /* VLAN offloads based on current device configuration */ 407 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN_V2; 408 } else if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) { 409 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for 410 * these two conditions, which amounts to guest VLAN filtering 411 * and offloads being based on the inner VLAN or the 412 * inner/single VLAN respectively and don't allow VF to 413 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases 414 */ 415 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) { 416 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 417 } else if (!ice_is_dvm_ena(hw) && 418 !ice_vf_is_port_vlan_ena(vf)) { 419 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; 420 /* configure backward compatible support for VFs that 421 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is 422 * configured in SVM, and no port VLAN is configured 423 */ 424 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi); 425 } else if (ice_is_dvm_ena(hw)) { 426 /* configure software offloaded VLAN support when DVM 427 * is enabled, but no port VLAN is enabled 428 */ 429 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi); 430 } 431 } 432 433 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { 434 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; 435 } else { 436 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) 437 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; 438 else 439 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; 440 } 441 442 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF) 443 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF; 444 445 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) 446 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; 447 448 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) 449 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; 450 451 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) 452 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; 453 454 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) 455 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; 456 457 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) 458 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; 459 460 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) 461 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; 462 463 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) 464 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; 465 466 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF) 467 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF; 468 469 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO) 470 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO; 471 472 vfres->num_vsis = 1; 473 /* Tx and Rx queue are equal for VF */ 474 vfres->num_queue_pairs = vsi->num_txq; 475 vfres->max_vectors = vf->pf->vfs.num_msix_per; 476 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; 477 vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 478 vfres->max_mtu = ice_vc_get_max_frame_size(vf); 479 480 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; 481 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; 482 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; 483 ether_addr_copy(vfres->vsi_res[0].default_mac_addr, 484 vf->hw_lan_addr.addr); 485 486 /* match guest capabilities */ 487 vf->driver_caps = vfres->vf_cap_flags; 488 489 ice_vc_set_caps_allowlist(vf); 490 ice_vc_set_working_allowlist(vf); 491 492 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); 493 494 err: 495 /* send the response back to the VF */ 496 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, 497 (u8 *)vfres, len); 498 499 kfree(vfres); 500 return ret; 501 } 502 503 /** 504 * ice_vc_reset_vf_msg 505 * @vf: pointer to the VF info 506 * 507 * called from the VF to reset itself, 508 * unlike other virtchnl messages, PF driver 509 * doesn't send the response back to the VF 510 */ 511 static void ice_vc_reset_vf_msg(struct ice_vf *vf) 512 { 513 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) 514 ice_reset_vf(vf, 0); 515 } 516 517 /** 518 * ice_vc_isvalid_vsi_id 519 * @vf: pointer to the VF info 520 * @vsi_id: VF relative VSI ID 521 * 522 * check for the valid VSI ID 523 */ 524 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) 525 { 526 struct ice_pf *pf = vf->pf; 527 struct ice_vsi *vsi; 528 529 vsi = ice_find_vsi(pf, vsi_id); 530 531 return (vsi && (vsi->vf == vf)); 532 } 533 534 /** 535 * ice_vc_isvalid_q_id 536 * @vf: pointer to the VF info 537 * @vsi_id: VSI ID 538 * @qid: VSI relative queue ID 539 * 540 * check for the valid queue ID 541 */ 542 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) 543 { 544 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id); 545 /* allocated Tx and Rx queues should be always equal for VF VSI */ 546 return (vsi && (qid < vsi->alloc_txq)); 547 } 548 549 /** 550 * ice_vc_isvalid_ring_len 551 * @ring_len: length of ring 552 * 553 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE 554 * or zero 555 */ 556 static bool ice_vc_isvalid_ring_len(u16 ring_len) 557 { 558 return ring_len == 0 || 559 (ring_len >= ICE_MIN_NUM_DESC && 560 ring_len <= ICE_MAX_NUM_DESC && 561 !(ring_len % ICE_REQ_DESC_MULTIPLE)); 562 } 563 564 /** 565 * ice_vc_validate_pattern 566 * @vf: pointer to the VF info 567 * @proto: virtchnl protocol headers 568 * 569 * validate the pattern is supported or not. 570 * 571 * Return: true on success, false on error. 572 */ 573 bool 574 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto) 575 { 576 bool is_ipv4 = false; 577 bool is_ipv6 = false; 578 bool is_udp = false; 579 u16 ptype = -1; 580 int i = 0; 581 582 while (i < proto->count && 583 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) { 584 switch (proto->proto_hdr[i].type) { 585 case VIRTCHNL_PROTO_HDR_ETH: 586 ptype = ICE_PTYPE_MAC_PAY; 587 break; 588 case VIRTCHNL_PROTO_HDR_IPV4: 589 ptype = ICE_PTYPE_IPV4_PAY; 590 is_ipv4 = true; 591 break; 592 case VIRTCHNL_PROTO_HDR_IPV6: 593 ptype = ICE_PTYPE_IPV6_PAY; 594 is_ipv6 = true; 595 break; 596 case VIRTCHNL_PROTO_HDR_UDP: 597 if (is_ipv4) 598 ptype = ICE_PTYPE_IPV4_UDP_PAY; 599 else if (is_ipv6) 600 ptype = ICE_PTYPE_IPV6_UDP_PAY; 601 is_udp = true; 602 break; 603 case VIRTCHNL_PROTO_HDR_TCP: 604 if (is_ipv4) 605 ptype = ICE_PTYPE_IPV4_TCP_PAY; 606 else if (is_ipv6) 607 ptype = ICE_PTYPE_IPV6_TCP_PAY; 608 break; 609 case VIRTCHNL_PROTO_HDR_SCTP: 610 if (is_ipv4) 611 ptype = ICE_PTYPE_IPV4_SCTP_PAY; 612 else if (is_ipv6) 613 ptype = ICE_PTYPE_IPV6_SCTP_PAY; 614 break; 615 case VIRTCHNL_PROTO_HDR_GTPU_IP: 616 case VIRTCHNL_PROTO_HDR_GTPU_EH: 617 if (is_ipv4) 618 ptype = ICE_MAC_IPV4_GTPU; 619 else if (is_ipv6) 620 ptype = ICE_MAC_IPV6_GTPU; 621 goto out; 622 case VIRTCHNL_PROTO_HDR_L2TPV3: 623 if (is_ipv4) 624 ptype = ICE_MAC_IPV4_L2TPV3; 625 else if (is_ipv6) 626 ptype = ICE_MAC_IPV6_L2TPV3; 627 goto out; 628 case VIRTCHNL_PROTO_HDR_ESP: 629 if (is_ipv4) 630 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP : 631 ICE_MAC_IPV4_ESP; 632 else if (is_ipv6) 633 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP : 634 ICE_MAC_IPV6_ESP; 635 goto out; 636 case VIRTCHNL_PROTO_HDR_AH: 637 if (is_ipv4) 638 ptype = ICE_MAC_IPV4_AH; 639 else if (is_ipv6) 640 ptype = ICE_MAC_IPV6_AH; 641 goto out; 642 case VIRTCHNL_PROTO_HDR_PFCP: 643 if (is_ipv4) 644 ptype = ICE_MAC_IPV4_PFCP_SESSION; 645 else if (is_ipv6) 646 ptype = ICE_MAC_IPV6_PFCP_SESSION; 647 goto out; 648 default: 649 break; 650 } 651 i++; 652 } 653 654 out: 655 return ice_hw_ptype_ena(&vf->pf->hw, ptype); 656 } 657 658 /** 659 * ice_vc_parse_rss_cfg - parses hash fields and headers from 660 * a specific virtchnl RSS cfg 661 * @hw: pointer to the hardware 662 * @rss_cfg: pointer to the virtchnl RSS cfg 663 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*) 664 * to configure 665 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure 666 * 667 * Return true if all the protocol header and hash fields in the RSS cfg could 668 * be parsed, else return false 669 * 670 * This function parses the virtchnl RSS cfg to be the intended 671 * hash fields and the intended header for RSS configuration 672 */ 673 static bool 674 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg, 675 u32 *addl_hdrs, u64 *hash_flds) 676 { 677 const struct ice_vc_hash_field_match_type *hf_list; 678 const struct ice_vc_hdr_match_type *hdr_list; 679 int i, hf_list_len, hdr_list_len; 680 681 hf_list = ice_vc_hash_field_list; 682 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list); 683 hdr_list = ice_vc_hdr_list; 684 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list); 685 686 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) { 687 struct virtchnl_proto_hdr *proto_hdr = 688 &rss_cfg->proto_hdrs.proto_hdr[i]; 689 bool hdr_found = false; 690 int j; 691 692 /* Find matched ice headers according to virtchnl headers. */ 693 for (j = 0; j < hdr_list_len; j++) { 694 struct ice_vc_hdr_match_type hdr_map = hdr_list[j]; 695 696 if (proto_hdr->type == hdr_map.vc_hdr) { 697 *addl_hdrs |= hdr_map.ice_hdr; 698 hdr_found = true; 699 } 700 } 701 702 if (!hdr_found) 703 return false; 704 705 /* Find matched ice hash fields according to 706 * virtchnl hash fields. 707 */ 708 for (j = 0; j < hf_list_len; j++) { 709 struct ice_vc_hash_field_match_type hf_map = hf_list[j]; 710 711 if (proto_hdr->type == hf_map.vc_hdr && 712 proto_hdr->field_selector == hf_map.vc_hash_field) { 713 *hash_flds |= hf_map.ice_hash_field; 714 break; 715 } 716 } 717 } 718 719 return true; 720 } 721 722 /** 723 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced 724 * RSS offloads 725 * @caps: VF driver negotiated capabilities 726 * 727 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set, 728 * else return false 729 */ 730 static bool ice_vf_adv_rss_offload_ena(u32 caps) 731 { 732 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF); 733 } 734 735 /** 736 * ice_vc_handle_rss_cfg 737 * @vf: pointer to the VF info 738 * @msg: pointer to the message buffer 739 * @add: add a RSS config if true, otherwise delete a RSS config 740 * 741 * This function adds/deletes a RSS config 742 */ 743 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add) 744 { 745 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG; 746 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg; 747 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 748 struct device *dev = ice_pf_to_dev(vf->pf); 749 struct ice_hw *hw = &vf->pf->hw; 750 struct ice_vsi *vsi; 751 752 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 753 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n", 754 vf->vf_id); 755 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 756 goto error_param; 757 } 758 759 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) { 760 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n", 761 vf->vf_id); 762 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 763 goto error_param; 764 } 765 766 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 767 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 768 goto error_param; 769 } 770 771 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS || 772 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC || 773 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) { 774 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n", 775 vf->vf_id); 776 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 777 goto error_param; 778 } 779 780 vsi = ice_get_vf_vsi(vf); 781 if (!vsi) { 782 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 783 goto error_param; 784 } 785 786 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) { 787 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 788 goto error_param; 789 } 790 791 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) { 792 struct ice_vsi_ctx *ctx; 793 u8 lut_type, hash_type; 794 int status; 795 796 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 797 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR : 798 ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 799 800 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 801 if (!ctx) { 802 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 803 goto error_param; 804 } 805 806 ctx->info.q_opt_rss = ((lut_type << 807 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 808 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 809 (hash_type & 810 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 811 812 /* Preserve existing queueing option setting */ 813 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss & 814 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M); 815 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 816 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 817 818 ctx->info.valid_sections = 819 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 820 821 status = ice_update_vsi(hw, vsi->idx, ctx, NULL); 822 if (status) { 823 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n", 824 status, ice_aq_str(hw->adminq.sq_last_status)); 825 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 826 } else { 827 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 828 } 829 830 kfree(ctx); 831 } else { 832 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE; 833 u64 hash_flds = ICE_HASH_INVALID; 834 835 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs, 836 &hash_flds)) { 837 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 838 goto error_param; 839 } 840 841 if (add) { 842 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds, 843 addl_hdrs)) { 844 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 845 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n", 846 vsi->vsi_num, v_ret); 847 } 848 } else { 849 int status; 850 851 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds, 852 addl_hdrs); 853 /* We just ignore -ENOENT, because if two configurations 854 * share the same profile remove one of them actually 855 * removes both, since the profile is deleted. 856 */ 857 if (status && status != -ENOENT) { 858 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 859 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n", 860 vf->vf_id, status); 861 } 862 } 863 } 864 865 error_param: 866 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0); 867 } 868 869 /** 870 * ice_vc_config_rss_key 871 * @vf: pointer to the VF info 872 * @msg: pointer to the msg buffer 873 * 874 * Configure the VF's RSS key 875 */ 876 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) 877 { 878 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 879 struct virtchnl_rss_key *vrk = 880 (struct virtchnl_rss_key *)msg; 881 struct ice_vsi *vsi; 882 883 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 884 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 885 goto error_param; 886 } 887 888 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { 889 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 890 goto error_param; 891 } 892 893 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { 894 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 895 goto error_param; 896 } 897 898 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 899 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 900 goto error_param; 901 } 902 903 vsi = ice_get_vf_vsi(vf); 904 if (!vsi) { 905 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 906 goto error_param; 907 } 908 909 if (ice_set_rss_key(vsi, vrk->key)) 910 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 911 error_param: 912 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, 913 NULL, 0); 914 } 915 916 /** 917 * ice_vc_config_rss_lut 918 * @vf: pointer to the VF info 919 * @msg: pointer to the msg buffer 920 * 921 * Configure the VF's RSS LUT 922 */ 923 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) 924 { 925 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; 926 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 927 struct ice_vsi *vsi; 928 929 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 930 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 931 goto error_param; 932 } 933 934 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { 935 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 936 goto error_param; 937 } 938 939 if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { 940 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 941 goto error_param; 942 } 943 944 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { 945 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 946 goto error_param; 947 } 948 949 vsi = ice_get_vf_vsi(vf); 950 if (!vsi) { 951 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 952 goto error_param; 953 } 954 955 if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) 956 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 957 error_param: 958 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, 959 NULL, 0); 960 } 961 962 /** 963 * ice_vc_cfg_promiscuous_mode_msg 964 * @vf: pointer to the VF info 965 * @msg: pointer to the msg buffer 966 * 967 * called from the VF to configure VF VSIs promiscuous mode 968 */ 969 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg) 970 { 971 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 972 bool rm_promisc, alluni = false, allmulti = false; 973 struct virtchnl_promisc_info *info = 974 (struct virtchnl_promisc_info *)msg; 975 struct ice_vsi_vlan_ops *vlan_ops; 976 int mcast_err = 0, ucast_err = 0; 977 struct ice_pf *pf = vf->pf; 978 struct ice_vsi *vsi; 979 struct device *dev; 980 int ret = 0; 981 982 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 983 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 984 goto error_param; 985 } 986 987 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) { 988 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 989 goto error_param; 990 } 991 992 vsi = ice_get_vf_vsi(vf); 993 if (!vsi) { 994 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 995 goto error_param; 996 } 997 998 dev = ice_pf_to_dev(pf); 999 if (!ice_is_vf_trusted(vf)) { 1000 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n", 1001 vf->vf_id); 1002 /* Leave v_ret alone, lie to the VF on purpose. */ 1003 goto error_param; 1004 } 1005 1006 if (info->flags & FLAG_VF_UNICAST_PROMISC) 1007 alluni = true; 1008 1009 if (info->flags & FLAG_VF_MULTICAST_PROMISC) 1010 allmulti = true; 1011 1012 rm_promisc = !allmulti && !alluni; 1013 1014 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 1015 if (rm_promisc) 1016 ret = vlan_ops->ena_rx_filtering(vsi); 1017 else 1018 ret = vlan_ops->dis_rx_filtering(vsi); 1019 if (ret) { 1020 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n"); 1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1022 goto error_param; 1023 } 1024 1025 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) { 1026 bool set_dflt_vsi = alluni || allmulti; 1027 1028 if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw)) 1029 /* only attempt to set the default forwarding VSI if 1030 * it's not currently set 1031 */ 1032 ret = ice_set_dflt_vsi(pf->first_sw, vsi); 1033 else if (!set_dflt_vsi && 1034 ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) 1035 /* only attempt to free the default forwarding VSI if we 1036 * are the owner 1037 */ 1038 ret = ice_clear_dflt_vsi(pf->first_sw); 1039 1040 if (ret) { 1041 dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n", 1042 set_dflt_vsi ? "en" : "dis", vf->vf_id, ret); 1043 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1044 goto error_param; 1045 } 1046 } else { 1047 u8 mcast_m, ucast_m; 1048 1049 if (ice_vf_is_port_vlan_ena(vf) || 1050 ice_vsi_has_non_zero_vlans(vsi)) { 1051 mcast_m = ICE_MCAST_VLAN_PROMISC_BITS; 1052 ucast_m = ICE_UCAST_VLAN_PROMISC_BITS; 1053 } else { 1054 mcast_m = ICE_MCAST_PROMISC_BITS; 1055 ucast_m = ICE_UCAST_PROMISC_BITS; 1056 } 1057 1058 if (alluni) 1059 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m); 1060 else 1061 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m); 1062 1063 if (allmulti) 1064 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m); 1065 else 1066 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m); 1067 1068 if (ucast_err || mcast_err) 1069 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1070 } 1071 1072 if (!mcast_err) { 1073 if (allmulti && 1074 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) 1075 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n", 1076 vf->vf_id); 1077 else if (!allmulti && 1078 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC, 1079 vf->vf_states)) 1080 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n", 1081 vf->vf_id); 1082 } 1083 1084 if (!ucast_err) { 1085 if (alluni && 1086 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states)) 1087 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n", 1088 vf->vf_id); 1089 else if (!alluni && 1090 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC, 1091 vf->vf_states)) 1092 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n", 1093 vf->vf_id); 1094 } 1095 1096 error_param: 1097 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 1098 v_ret, NULL, 0); 1099 } 1100 1101 /** 1102 * ice_vc_get_stats_msg 1103 * @vf: pointer to the VF info 1104 * @msg: pointer to the msg buffer 1105 * 1106 * called from the VF to get VSI stats 1107 */ 1108 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) 1109 { 1110 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1111 struct virtchnl_queue_select *vqs = 1112 (struct virtchnl_queue_select *)msg; 1113 struct ice_eth_stats stats = { 0 }; 1114 struct ice_vsi *vsi; 1115 1116 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1117 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1118 goto error_param; 1119 } 1120 1121 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1122 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1123 goto error_param; 1124 } 1125 1126 vsi = ice_get_vf_vsi(vf); 1127 if (!vsi) { 1128 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1129 goto error_param; 1130 } 1131 1132 ice_update_eth_stats(vsi); 1133 1134 stats = vsi->eth_stats; 1135 1136 error_param: 1137 /* send the response to the VF */ 1138 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, 1139 (u8 *)&stats, sizeof(stats)); 1140 } 1141 1142 /** 1143 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL 1144 * @vqs: virtchnl_queue_select structure containing bitmaps to validate 1145 * 1146 * Return true on successful validation, else false 1147 */ 1148 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs) 1149 { 1150 if ((!vqs->rx_queues && !vqs->tx_queues) || 1151 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) || 1152 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF)) 1153 return false; 1154 1155 return true; 1156 } 1157 1158 /** 1159 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL 1160 * @vsi: VSI of the VF to configure 1161 * @q_idx: VF queue index used to determine the queue in the PF's space 1162 */ 1163 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1164 { 1165 struct ice_hw *hw = &vsi->back->hw; 1166 u32 pfq = vsi->txq_map[q_idx]; 1167 u32 reg; 1168 1169 reg = rd32(hw, QINT_TQCTL(pfq)); 1170 1171 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1172 * this is most likely a poll mode VF driver, so don't enable an 1173 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1174 */ 1175 if (!(reg & QINT_TQCTL_MSIX_INDX_M)) 1176 return; 1177 1178 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M); 1179 } 1180 1181 /** 1182 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL 1183 * @vsi: VSI of the VF to configure 1184 * @q_idx: VF queue index used to determine the queue in the PF's space 1185 */ 1186 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx) 1187 { 1188 struct ice_hw *hw = &vsi->back->hw; 1189 u32 pfq = vsi->rxq_map[q_idx]; 1190 u32 reg; 1191 1192 reg = rd32(hw, QINT_RQCTL(pfq)); 1193 1194 /* MSI-X index 0 in the VF's space is always for the OICR, which means 1195 * this is most likely a poll mode VF driver, so don't enable an 1196 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP 1197 */ 1198 if (!(reg & QINT_RQCTL_MSIX_INDX_M)) 1199 return; 1200 1201 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M); 1202 } 1203 1204 /** 1205 * ice_vc_ena_qs_msg 1206 * @vf: pointer to the VF info 1207 * @msg: pointer to the msg buffer 1208 * 1209 * called from the VF to enable all or specific queue(s) 1210 */ 1211 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) 1212 { 1213 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1214 struct virtchnl_queue_select *vqs = 1215 (struct virtchnl_queue_select *)msg; 1216 struct ice_vsi *vsi; 1217 unsigned long q_map; 1218 u16 vf_q_id; 1219 1220 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 1221 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1222 goto error_param; 1223 } 1224 1225 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1226 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1227 goto error_param; 1228 } 1229 1230 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1231 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1232 goto error_param; 1233 } 1234 1235 vsi = ice_get_vf_vsi(vf); 1236 if (!vsi) { 1237 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1238 goto error_param; 1239 } 1240 1241 /* Enable only Rx rings, Tx rings were enabled by the FW when the 1242 * Tx queue group list was configured and the context bits were 1243 * programmed using ice_vsi_cfg_txqs 1244 */ 1245 q_map = vqs->rx_queues; 1246 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1247 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1249 goto error_param; 1250 } 1251 1252 /* Skip queue if enabled */ 1253 if (test_bit(vf_q_id, vf->rxq_ena)) 1254 continue; 1255 1256 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) { 1257 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", 1258 vf_q_id, vsi->vsi_num); 1259 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1260 goto error_param; 1261 } 1262 1263 ice_vf_ena_rxq_interrupt(vsi, vf_q_id); 1264 set_bit(vf_q_id, vf->rxq_ena); 1265 } 1266 1267 q_map = vqs->tx_queues; 1268 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1269 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1270 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1271 goto error_param; 1272 } 1273 1274 /* Skip queue if enabled */ 1275 if (test_bit(vf_q_id, vf->txq_ena)) 1276 continue; 1277 1278 ice_vf_ena_txq_interrupt(vsi, vf_q_id); 1279 set_bit(vf_q_id, vf->txq_ena); 1280 } 1281 1282 /* Set flag to indicate that queues are enabled */ 1283 if (v_ret == VIRTCHNL_STATUS_SUCCESS) 1284 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1285 1286 error_param: 1287 /* send the response to the VF */ 1288 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, 1289 NULL, 0); 1290 } 1291 1292 /** 1293 * ice_vf_vsi_dis_single_txq - disable a single Tx queue 1294 * @vf: VF to disable queue for 1295 * @vsi: VSI for the VF 1296 * @q_id: VF relative (0-based) queue ID 1297 * 1298 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully 1299 * disabled then clear q_id bit in the enabled queues bitmap and return 1300 * success. Otherwise return error. 1301 */ 1302 static int 1303 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id) 1304 { 1305 struct ice_txq_meta txq_meta = { 0 }; 1306 struct ice_tx_ring *ring; 1307 int err; 1308 1309 if (!test_bit(q_id, vf->txq_ena)) 1310 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n", 1311 q_id, vsi->vsi_num); 1312 1313 ring = vsi->tx_rings[q_id]; 1314 if (!ring) 1315 return -EINVAL; 1316 1317 ice_fill_txq_meta(vsi, ring, &txq_meta); 1318 1319 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta); 1320 if (err) { 1321 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", 1322 q_id, vsi->vsi_num); 1323 return err; 1324 } 1325 1326 /* Clear enabled queues flag */ 1327 clear_bit(q_id, vf->txq_ena); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * ice_vc_dis_qs_msg 1334 * @vf: pointer to the VF info 1335 * @msg: pointer to the msg buffer 1336 * 1337 * called from the VF to disable all or specific queue(s) 1338 */ 1339 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) 1340 { 1341 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1342 struct virtchnl_queue_select *vqs = 1343 (struct virtchnl_queue_select *)msg; 1344 struct ice_vsi *vsi; 1345 unsigned long q_map; 1346 u16 vf_q_id; 1347 1348 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && 1349 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { 1350 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1351 goto error_param; 1352 } 1353 1354 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { 1355 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1356 goto error_param; 1357 } 1358 1359 if (!ice_vc_validate_vqs_bitmaps(vqs)) { 1360 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1361 goto error_param; 1362 } 1363 1364 vsi = ice_get_vf_vsi(vf); 1365 if (!vsi) { 1366 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1367 goto error_param; 1368 } 1369 1370 if (vqs->tx_queues) { 1371 q_map = vqs->tx_queues; 1372 1373 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1374 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1376 goto error_param; 1377 } 1378 1379 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) { 1380 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1381 goto error_param; 1382 } 1383 } 1384 } 1385 1386 q_map = vqs->rx_queues; 1387 /* speed up Rx queue disable by batching them if possible */ 1388 if (q_map && 1389 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) { 1390 if (ice_vsi_stop_all_rx_rings(vsi)) { 1391 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n", 1392 vsi->vsi_num); 1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1394 goto error_param; 1395 } 1396 1397 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF); 1398 } else if (q_map) { 1399 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) { 1400 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { 1401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1402 goto error_param; 1403 } 1404 1405 /* Skip queue if not enabled */ 1406 if (!test_bit(vf_q_id, vf->rxq_ena)) 1407 continue; 1408 1409 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id, 1410 true)) { 1411 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", 1412 vf_q_id, vsi->vsi_num); 1413 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1414 goto error_param; 1415 } 1416 1417 /* Clear enabled queues flag */ 1418 clear_bit(vf_q_id, vf->rxq_ena); 1419 } 1420 } 1421 1422 /* Clear enabled queues flag */ 1423 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf)) 1424 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); 1425 1426 error_param: 1427 /* send the response to the VF */ 1428 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, 1429 NULL, 0); 1430 } 1431 1432 /** 1433 * ice_cfg_interrupt 1434 * @vf: pointer to the VF info 1435 * @vsi: the VSI being configured 1436 * @vector_id: vector ID 1437 * @map: vector map for mapping vectors to queues 1438 * @q_vector: structure for interrupt vector 1439 * configure the IRQ to queue map 1440 */ 1441 static int 1442 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id, 1443 struct virtchnl_vector_map *map, 1444 struct ice_q_vector *q_vector) 1445 { 1446 u16 vsi_q_id, vsi_q_id_idx; 1447 unsigned long qmap; 1448 1449 q_vector->num_ring_rx = 0; 1450 q_vector->num_ring_tx = 0; 1451 1452 qmap = map->rxq_map; 1453 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1454 vsi_q_id = vsi_q_id_idx; 1455 1456 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1457 return VIRTCHNL_STATUS_ERR_PARAM; 1458 1459 q_vector->num_ring_rx++; 1460 q_vector->rx.itr_idx = map->rxitr_idx; 1461 vsi->rx_rings[vsi_q_id]->q_vector = q_vector; 1462 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, 1463 q_vector->rx.itr_idx); 1464 } 1465 1466 qmap = map->txq_map; 1467 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) { 1468 vsi_q_id = vsi_q_id_idx; 1469 1470 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id)) 1471 return VIRTCHNL_STATUS_ERR_PARAM; 1472 1473 q_vector->num_ring_tx++; 1474 q_vector->tx.itr_idx = map->txitr_idx; 1475 vsi->tx_rings[vsi_q_id]->q_vector = q_vector; 1476 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, 1477 q_vector->tx.itr_idx); 1478 } 1479 1480 return VIRTCHNL_STATUS_SUCCESS; 1481 } 1482 1483 /** 1484 * ice_vc_cfg_irq_map_msg 1485 * @vf: pointer to the VF info 1486 * @msg: pointer to the msg buffer 1487 * 1488 * called from the VF to configure the IRQ to queue map 1489 */ 1490 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) 1491 { 1492 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1493 u16 num_q_vectors_mapped, vsi_id, vector_id; 1494 struct virtchnl_irq_map_info *irqmap_info; 1495 struct virtchnl_vector_map *map; 1496 struct ice_pf *pf = vf->pf; 1497 struct ice_vsi *vsi; 1498 int i; 1499 1500 irqmap_info = (struct virtchnl_irq_map_info *)msg; 1501 num_q_vectors_mapped = irqmap_info->num_vectors; 1502 1503 /* Check to make sure number of VF vectors mapped is not greater than 1504 * number of VF vectors originally allocated, and check that 1505 * there is actually at least a single VF queue vector mapped 1506 */ 1507 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1508 pf->vfs.num_msix_per < num_q_vectors_mapped || 1509 !num_q_vectors_mapped) { 1510 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1511 goto error_param; 1512 } 1513 1514 vsi = ice_get_vf_vsi(vf); 1515 if (!vsi) { 1516 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1517 goto error_param; 1518 } 1519 1520 for (i = 0; i < num_q_vectors_mapped; i++) { 1521 struct ice_q_vector *q_vector; 1522 1523 map = &irqmap_info->vecmap[i]; 1524 1525 vector_id = map->vector_id; 1526 vsi_id = map->vsi_id; 1527 /* vector_id is always 0-based for each VF, and can never be 1528 * larger than or equal to the max allowed interrupts per VF 1529 */ 1530 if (!(vector_id < pf->vfs.num_msix_per) || 1531 !ice_vc_isvalid_vsi_id(vf, vsi_id) || 1532 (!vector_id && (map->rxq_map || map->txq_map))) { 1533 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1534 goto error_param; 1535 } 1536 1537 /* No need to map VF miscellaneous or rogue vector */ 1538 if (!vector_id) 1539 continue; 1540 1541 /* Subtract non queue vector from vector_id passed by VF 1542 * to get actual number of VSI queue vector array index 1543 */ 1544 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; 1545 if (!q_vector) { 1546 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1547 goto error_param; 1548 } 1549 1550 /* lookout for the invalid queue index */ 1551 v_ret = (enum virtchnl_status_code) 1552 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector); 1553 if (v_ret) 1554 goto error_param; 1555 } 1556 1557 error_param: 1558 /* send the response to the VF */ 1559 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, 1560 NULL, 0); 1561 } 1562 1563 /** 1564 * ice_vc_cfg_qs_msg 1565 * @vf: pointer to the VF info 1566 * @msg: pointer to the msg buffer 1567 * 1568 * called from the VF to configure the Rx/Tx queues 1569 */ 1570 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) 1571 { 1572 struct virtchnl_vsi_queue_config_info *qci = 1573 (struct virtchnl_vsi_queue_config_info *)msg; 1574 struct virtchnl_queue_pair_info *qpi; 1575 struct ice_pf *pf = vf->pf; 1576 struct ice_vsi *vsi; 1577 int i = -1, q_idx; 1578 1579 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) 1580 goto error_param; 1581 1582 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) 1583 goto error_param; 1584 1585 vsi = ice_get_vf_vsi(vf); 1586 if (!vsi) 1587 goto error_param; 1588 1589 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF || 1590 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { 1591 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", 1592 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); 1593 goto error_param; 1594 } 1595 1596 for (i = 0; i < qci->num_queue_pairs; i++) { 1597 qpi = &qci->qpair[i]; 1598 if (qpi->txq.vsi_id != qci->vsi_id || 1599 qpi->rxq.vsi_id != qci->vsi_id || 1600 qpi->rxq.queue_id != qpi->txq.queue_id || 1601 qpi->txq.headwb_enabled || 1602 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || 1603 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || 1604 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { 1605 goto error_param; 1606 } 1607 1608 q_idx = qpi->rxq.queue_id; 1609 1610 /* make sure selected "q_idx" is in valid range of queues 1611 * for selected "vsi" 1612 */ 1613 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) { 1614 goto error_param; 1615 } 1616 1617 /* copy Tx queue info from VF into VSI */ 1618 if (qpi->txq.ring_len > 0) { 1619 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; 1620 vsi->tx_rings[i]->count = qpi->txq.ring_len; 1621 1622 /* Disable any existing queue first */ 1623 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx)) 1624 goto error_param; 1625 1626 /* Configure a queue with the requested settings */ 1627 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) { 1628 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n", 1629 vf->vf_id, i); 1630 goto error_param; 1631 } 1632 } 1633 1634 /* copy Rx queue info from VF into VSI */ 1635 if (qpi->rxq.ring_len > 0) { 1636 u16 max_frame_size = ice_vc_get_max_frame_size(vf); 1637 1638 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; 1639 vsi->rx_rings[i]->count = qpi->rxq.ring_len; 1640 1641 if (qpi->rxq.databuffer_size != 0 && 1642 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || 1643 qpi->rxq.databuffer_size < 1024)) 1644 goto error_param; 1645 vsi->rx_buf_len = qpi->rxq.databuffer_size; 1646 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; 1647 if (qpi->rxq.max_pkt_size > max_frame_size || 1648 qpi->rxq.max_pkt_size < 64) 1649 goto error_param; 1650 1651 vsi->max_frame = qpi->rxq.max_pkt_size; 1652 /* add space for the port VLAN since the VF driver is 1653 * not expected to account for it in the MTU 1654 * calculation 1655 */ 1656 if (ice_vf_is_port_vlan_ena(vf)) 1657 vsi->max_frame += VLAN_HLEN; 1658 1659 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) { 1660 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n", 1661 vf->vf_id, i); 1662 goto error_param; 1663 } 1664 } 1665 } 1666 1667 /* send the response to the VF */ 1668 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1669 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 1670 error_param: 1671 /* disable whatever we can */ 1672 for (; i >= 0; i--) { 1673 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true)) 1674 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n", 1675 vf->vf_id, i); 1676 if (ice_vf_vsi_dis_single_txq(vf, vsi, i)) 1677 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n", 1678 vf->vf_id, i); 1679 } 1680 1681 /* send the response to the VF */ 1682 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, 1683 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); 1684 } 1685 1686 /** 1687 * ice_can_vf_change_mac 1688 * @vf: pointer to the VF info 1689 * 1690 * Return true if the VF is allowed to change its MAC filters, false otherwise 1691 */ 1692 static bool ice_can_vf_change_mac(struct ice_vf *vf) 1693 { 1694 /* If the VF MAC address has been set administratively (via the 1695 * ndo_set_vf_mac command), then deny permission to the VF to 1696 * add/delete unicast MAC addresses, unless the VF is trusted 1697 */ 1698 if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) 1699 return false; 1700 1701 return true; 1702 } 1703 1704 /** 1705 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr 1706 * @vc_ether_addr: used to extract the type 1707 */ 1708 static u8 1709 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr) 1710 { 1711 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK); 1712 } 1713 1714 /** 1715 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF 1716 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1717 */ 1718 static bool 1719 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr) 1720 { 1721 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1722 1723 return (type == VIRTCHNL_ETHER_ADDR_LEGACY); 1724 } 1725 1726 /** 1727 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC 1728 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type 1729 * 1730 * This function should only be called when the MAC address in 1731 * virtchnl_ether_addr is a valid unicast MAC 1732 */ 1733 static bool 1734 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr) 1735 { 1736 u8 type = ice_vc_ether_addr_type(vc_ether_addr); 1737 1738 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY); 1739 } 1740 1741 /** 1742 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed 1743 * @vf: VF to update 1744 * @vc_ether_addr: structure from VIRTCHNL with MAC to add 1745 */ 1746 static void 1747 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1748 { 1749 u8 *mac_addr = vc_ether_addr->addr; 1750 1751 if (!is_valid_ether_addr(mac_addr)) 1752 return; 1753 1754 /* only allow legacy VF drivers to set the device and hardware MAC if it 1755 * is zero and allow new VF drivers to set the hardware MAC if the type 1756 * was correctly specified over VIRTCHNL 1757 */ 1758 if ((ice_is_vc_addr_legacy(vc_ether_addr) && 1759 is_zero_ether_addr(vf->hw_lan_addr.addr)) || 1760 ice_is_vc_addr_primary(vc_ether_addr)) { 1761 ether_addr_copy(vf->dev_lan_addr.addr, mac_addr); 1762 ether_addr_copy(vf->hw_lan_addr.addr, mac_addr); 1763 } 1764 1765 /* hardware and device MACs are already set, but its possible that the 1766 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the 1767 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it 1768 * away for the legacy VF driver case as it will be updated in the 1769 * delete flow for this case 1770 */ 1771 if (ice_is_vc_addr_legacy(vc_ether_addr)) { 1772 ether_addr_copy(vf->legacy_last_added_umac.addr, 1773 mac_addr); 1774 vf->legacy_last_added_umac.time_modified = jiffies; 1775 } 1776 } 1777 1778 /** 1779 * ice_vc_add_mac_addr - attempt to add the MAC address passed in 1780 * @vf: pointer to the VF info 1781 * @vsi: pointer to the VF's VSI 1782 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC 1783 */ 1784 static int 1785 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1786 struct virtchnl_ether_addr *vc_ether_addr) 1787 { 1788 struct device *dev = ice_pf_to_dev(vf->pf); 1789 u8 *mac_addr = vc_ether_addr->addr; 1790 int ret; 1791 1792 /* device MAC already added */ 1793 if (ether_addr_equal(mac_addr, vf->dev_lan_addr.addr)) 1794 return 0; 1795 1796 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { 1797 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); 1798 return -EPERM; 1799 } 1800 1801 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1802 if (ret == -EEXIST) { 1803 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr, 1804 vf->vf_id); 1805 /* don't return since we might need to update 1806 * the primary MAC in ice_vfhw_mac_add() below 1807 */ 1808 } else if (ret) { 1809 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", 1810 mac_addr, vf->vf_id, ret); 1811 return ret; 1812 } else { 1813 vf->num_mac++; 1814 } 1815 1816 ice_vfhw_mac_add(vf, vc_ether_addr); 1817 1818 return ret; 1819 } 1820 1821 /** 1822 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired 1823 * @last_added_umac: structure used to check expiration 1824 */ 1825 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac) 1826 { 1827 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000) 1828 return time_is_before_jiffies(last_added_umac->time_modified + 1829 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME); 1830 } 1831 1832 /** 1833 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF 1834 * @vf: VF to update 1835 * @vc_ether_addr: structure from VIRTCHNL with MAC to check 1836 * 1837 * only update cached hardware MAC for legacy VF drivers on delete 1838 * because we cannot guarantee order/type of MAC from the VF driver 1839 */ 1840 static void 1841 ice_update_legacy_cached_mac(struct ice_vf *vf, 1842 struct virtchnl_ether_addr *vc_ether_addr) 1843 { 1844 if (!ice_is_vc_addr_legacy(vc_ether_addr) || 1845 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac)) 1846 return; 1847 1848 ether_addr_copy(vf->dev_lan_addr.addr, vf->legacy_last_added_umac.addr); 1849 ether_addr_copy(vf->hw_lan_addr.addr, vf->legacy_last_added_umac.addr); 1850 } 1851 1852 /** 1853 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed 1854 * @vf: VF to update 1855 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete 1856 */ 1857 static void 1858 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr) 1859 { 1860 u8 *mac_addr = vc_ether_addr->addr; 1861 1862 if (!is_valid_ether_addr(mac_addr) || 1863 !ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1864 return; 1865 1866 /* allow the device MAC to be repopulated in the add flow and don't 1867 * clear the hardware MAC (i.e. hw_lan_addr.addr) here as that is meant 1868 * to be persistent on VM reboot and across driver unload/load, which 1869 * won't work if we clear the hardware MAC here 1870 */ 1871 eth_zero_addr(vf->dev_lan_addr.addr); 1872 1873 ice_update_legacy_cached_mac(vf, vc_ether_addr); 1874 } 1875 1876 /** 1877 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in 1878 * @vf: pointer to the VF info 1879 * @vsi: pointer to the VF's VSI 1880 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC 1881 */ 1882 static int 1883 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, 1884 struct virtchnl_ether_addr *vc_ether_addr) 1885 { 1886 struct device *dev = ice_pf_to_dev(vf->pf); 1887 u8 *mac_addr = vc_ether_addr->addr; 1888 int status; 1889 1890 if (!ice_can_vf_change_mac(vf) && 1891 ether_addr_equal(vf->dev_lan_addr.addr, mac_addr)) 1892 return 0; 1893 1894 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI); 1895 if (status == -ENOENT) { 1896 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, 1897 vf->vf_id); 1898 return -ENOENT; 1899 } else if (status) { 1900 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", 1901 mac_addr, vf->vf_id, status); 1902 return -EIO; 1903 } 1904 1905 ice_vfhw_mac_del(vf, vc_ether_addr); 1906 1907 vf->num_mac--; 1908 1909 return 0; 1910 } 1911 1912 /** 1913 * ice_vc_handle_mac_addr_msg 1914 * @vf: pointer to the VF info 1915 * @msg: pointer to the msg buffer 1916 * @set: true if MAC filters are being set, false otherwise 1917 * 1918 * add guest MAC address filter 1919 */ 1920 static int 1921 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) 1922 { 1923 int (*ice_vc_cfg_mac) 1924 (struct ice_vf *vf, struct ice_vsi *vsi, 1925 struct virtchnl_ether_addr *virtchnl_ether_addr); 1926 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 1927 struct virtchnl_ether_addr_list *al = 1928 (struct virtchnl_ether_addr_list *)msg; 1929 struct ice_pf *pf = vf->pf; 1930 enum virtchnl_ops vc_op; 1931 struct ice_vsi *vsi; 1932 int i; 1933 1934 if (set) { 1935 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; 1936 ice_vc_cfg_mac = ice_vc_add_mac_addr; 1937 } else { 1938 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; 1939 ice_vc_cfg_mac = ice_vc_del_mac_addr; 1940 } 1941 1942 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 1943 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 1944 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1945 goto handle_mac_exit; 1946 } 1947 1948 /* If this VF is not privileged, then we can't add more than a 1949 * limited number of addresses. Check to make sure that the 1950 * additions do not push us over the limit. 1951 */ 1952 if (set && !ice_is_vf_trusted(vf) && 1953 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { 1954 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", 1955 vf->vf_id); 1956 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1957 goto handle_mac_exit; 1958 } 1959 1960 vsi = ice_get_vf_vsi(vf); 1961 if (!vsi) { 1962 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 1963 goto handle_mac_exit; 1964 } 1965 1966 for (i = 0; i < al->num_elements; i++) { 1967 u8 *mac_addr = al->list[i].addr; 1968 int result; 1969 1970 if (is_broadcast_ether_addr(mac_addr) || 1971 is_zero_ether_addr(mac_addr)) 1972 continue; 1973 1974 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]); 1975 if (result == -EEXIST || result == -ENOENT) { 1976 continue; 1977 } else if (result) { 1978 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; 1979 goto handle_mac_exit; 1980 } 1981 } 1982 1983 handle_mac_exit: 1984 /* send the response to the VF */ 1985 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); 1986 } 1987 1988 /** 1989 * ice_vc_add_mac_addr_msg 1990 * @vf: pointer to the VF info 1991 * @msg: pointer to the msg buffer 1992 * 1993 * add guest MAC address filter 1994 */ 1995 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) 1996 { 1997 return ice_vc_handle_mac_addr_msg(vf, msg, true); 1998 } 1999 2000 /** 2001 * ice_vc_del_mac_addr_msg 2002 * @vf: pointer to the VF info 2003 * @msg: pointer to the msg buffer 2004 * 2005 * remove guest MAC address filter 2006 */ 2007 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) 2008 { 2009 return ice_vc_handle_mac_addr_msg(vf, msg, false); 2010 } 2011 2012 /** 2013 * ice_vc_request_qs_msg 2014 * @vf: pointer to the VF info 2015 * @msg: pointer to the msg buffer 2016 * 2017 * VFs get a default number of queues but can use this message to request a 2018 * different number. If the request is successful, PF will reset the VF and 2019 * return 0. If unsuccessful, PF will send message informing VF of number of 2020 * available queue pairs via virtchnl message response to VF. 2021 */ 2022 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) 2023 { 2024 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2025 struct virtchnl_vf_res_request *vfres = 2026 (struct virtchnl_vf_res_request *)msg; 2027 u16 req_queues = vfres->num_queue_pairs; 2028 struct ice_pf *pf = vf->pf; 2029 u16 max_allowed_vf_queues; 2030 u16 tx_rx_queue_left; 2031 struct device *dev; 2032 u16 cur_queues; 2033 2034 dev = ice_pf_to_dev(pf); 2035 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2036 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2037 goto error_param; 2038 } 2039 2040 cur_queues = vf->num_vf_qs; 2041 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), 2042 ice_get_avail_rxq_count(pf)); 2043 max_allowed_vf_queues = tx_rx_queue_left + cur_queues; 2044 if (!req_queues) { 2045 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", 2046 vf->vf_id); 2047 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) { 2048 dev_err(dev, "VF %d tried to request more than %d queues.\n", 2049 vf->vf_id, ICE_MAX_RSS_QS_PER_VF); 2050 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF; 2051 } else if (req_queues > cur_queues && 2052 req_queues - cur_queues > tx_rx_queue_left) { 2053 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", 2054 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); 2055 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, 2056 ICE_MAX_RSS_QS_PER_VF); 2057 } else { 2058 /* request is successful, then reset VF */ 2059 vf->num_req_qs = req_queues; 2060 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); 2061 dev_info(dev, "VF %d granted request of %u queues.\n", 2062 vf->vf_id, req_queues); 2063 return 0; 2064 } 2065 2066 error_param: 2067 /* send the response to the VF */ 2068 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, 2069 v_ret, (u8 *)vfres, sizeof(*vfres)); 2070 } 2071 2072 /** 2073 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads 2074 * @caps: VF driver negotiated capabilities 2075 * 2076 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false 2077 */ 2078 static bool ice_vf_vlan_offload_ena(u32 caps) 2079 { 2080 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); 2081 } 2082 2083 /** 2084 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed 2085 * @vf: VF used to determine if VLAN promiscuous config is allowed 2086 */ 2087 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf) 2088 { 2089 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || 2090 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) && 2091 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags)) 2092 return true; 2093 2094 return false; 2095 } 2096 2097 /** 2098 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN 2099 * @vsi: VF's VSI used to enable VLAN promiscuous mode 2100 * @vlan: VLAN used to enable VLAN promiscuous 2101 * 2102 * This function should only be called if VLAN promiscuous mode is allowed, 2103 * which can be determined via ice_is_vlan_promisc_allowed(). 2104 */ 2105 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2106 { 2107 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2108 int status; 2109 2110 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2111 vlan->vid); 2112 if (status && status != -EEXIST) 2113 return status; 2114 2115 return 0; 2116 } 2117 2118 /** 2119 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN 2120 * @vsi: VF's VSI used to disable VLAN promiscuous mode for 2121 * @vlan: VLAN used to disable VLAN promiscuous 2122 * 2123 * This function should only be called if VLAN promiscuous mode is allowed, 2124 * which can be determined via ice_is_vlan_promisc_allowed(). 2125 */ 2126 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan) 2127 { 2128 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; 2129 int status; 2130 2131 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 2132 vlan->vid); 2133 if (status && status != -ENOENT) 2134 return status; 2135 2136 return 0; 2137 } 2138 2139 /** 2140 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters 2141 * @vf: VF to check against 2142 * @vsi: VF's VSI 2143 * 2144 * If the VF is trusted then the VF is allowed to add as many VLANs as it 2145 * wants to, so return false. 2146 * 2147 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max 2148 * allowed VLANs for an untrusted VF. Return the result of this comparison. 2149 */ 2150 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi) 2151 { 2152 if (ice_is_vf_trusted(vf)) 2153 return false; 2154 2155 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1 2156 return ((ice_vsi_num_non_zero_vlans(vsi) + 2157 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF); 2158 } 2159 2160 /** 2161 * ice_vc_process_vlan_msg 2162 * @vf: pointer to the VF info 2163 * @msg: pointer to the msg buffer 2164 * @add_v: Add VLAN if true, otherwise delete VLAN 2165 * 2166 * Process virtchnl op to add or remove programmed guest VLAN ID 2167 */ 2168 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) 2169 { 2170 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2171 struct virtchnl_vlan_filter_list *vfl = 2172 (struct virtchnl_vlan_filter_list *)msg; 2173 struct ice_pf *pf = vf->pf; 2174 bool vlan_promisc = false; 2175 struct ice_vsi *vsi; 2176 struct device *dev; 2177 int status = 0; 2178 int i; 2179 2180 dev = ice_pf_to_dev(pf); 2181 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2182 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2183 goto error_param; 2184 } 2185 2186 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2187 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2188 goto error_param; 2189 } 2190 2191 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { 2192 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2193 goto error_param; 2194 } 2195 2196 for (i = 0; i < vfl->num_elements; i++) { 2197 if (vfl->vlan_id[i] >= VLAN_N_VID) { 2198 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2199 dev_err(dev, "invalid VF VLAN id %d\n", 2200 vfl->vlan_id[i]); 2201 goto error_param; 2202 } 2203 } 2204 2205 vsi = ice_get_vf_vsi(vf); 2206 if (!vsi) { 2207 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2208 goto error_param; 2209 } 2210 2211 if (add_v && ice_vf_has_max_vlans(vf, vsi)) { 2212 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2213 vf->vf_id); 2214 /* There is no need to let VF know about being not trusted, 2215 * so we can just return success message here 2216 */ 2217 goto error_param; 2218 } 2219 2220 /* in DVM a VF can add/delete inner VLAN filters when 2221 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM 2222 */ 2223 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) { 2224 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2225 goto error_param; 2226 } 2227 2228 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be 2229 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only 2230 * allow vlan_promisc = true in SVM and if no port VLAN is configured 2231 */ 2232 vlan_promisc = ice_is_vlan_promisc_allowed(vf) && 2233 !ice_is_dvm_ena(&pf->hw) && 2234 !ice_vf_is_port_vlan_ena(vf); 2235 2236 if (add_v) { 2237 for (i = 0; i < vfl->num_elements; i++) { 2238 u16 vid = vfl->vlan_id[i]; 2239 struct ice_vlan vlan; 2240 2241 if (ice_vf_has_max_vlans(vf, vsi)) { 2242 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", 2243 vf->vf_id); 2244 /* There is no need to let VF know about being 2245 * not trusted, so we can just return success 2246 * message here as well. 2247 */ 2248 goto error_param; 2249 } 2250 2251 /* we add VLAN 0 by default for each VF so we can enable 2252 * Tx VLAN anti-spoof without triggering MDD events so 2253 * we don't need to add it again here 2254 */ 2255 if (!vid) 2256 continue; 2257 2258 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2259 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan); 2260 if (status) { 2261 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2262 goto error_param; 2263 } 2264 2265 /* Enable VLAN filtering on first non-zero VLAN */ 2266 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) { 2267 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) { 2268 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2269 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", 2270 vid, status); 2271 goto error_param; 2272 } 2273 } else if (vlan_promisc) { 2274 status = ice_vf_ena_vlan_promisc(vsi, &vlan); 2275 if (status) { 2276 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2277 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", 2278 vid, status); 2279 } 2280 } 2281 } 2282 } else { 2283 /* In case of non_trusted VF, number of VLAN elements passed 2284 * to PF for removal might be greater than number of VLANs 2285 * filter programmed for that VF - So, use actual number of 2286 * VLANS added earlier with add VLAN opcode. In order to avoid 2287 * removing VLAN that doesn't exist, which result to sending 2288 * erroneous failed message back to the VF 2289 */ 2290 int num_vf_vlan; 2291 2292 num_vf_vlan = vsi->num_vlan; 2293 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { 2294 u16 vid = vfl->vlan_id[i]; 2295 struct ice_vlan vlan; 2296 2297 /* we add VLAN 0 by default for each VF so we can enable 2298 * Tx VLAN anti-spoof without triggering MDD events so 2299 * we don't want a VIRTCHNL request to remove it 2300 */ 2301 if (!vid) 2302 continue; 2303 2304 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0); 2305 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan); 2306 if (status) { 2307 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2308 goto error_param; 2309 } 2310 2311 /* Disable VLAN filtering when only VLAN 0 is left */ 2312 if (!ice_vsi_has_non_zero_vlans(vsi)) 2313 vsi->inner_vlan_ops.dis_rx_filtering(vsi); 2314 2315 if (vlan_promisc) 2316 ice_vf_dis_vlan_promisc(vsi, &vlan); 2317 } 2318 } 2319 2320 error_param: 2321 /* send the response to the VF */ 2322 if (add_v) 2323 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, 2324 NULL, 0); 2325 else 2326 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, 2327 NULL, 0); 2328 } 2329 2330 /** 2331 * ice_vc_add_vlan_msg 2332 * @vf: pointer to the VF info 2333 * @msg: pointer to the msg buffer 2334 * 2335 * Add and program guest VLAN ID 2336 */ 2337 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) 2338 { 2339 return ice_vc_process_vlan_msg(vf, msg, true); 2340 } 2341 2342 /** 2343 * ice_vc_remove_vlan_msg 2344 * @vf: pointer to the VF info 2345 * @msg: pointer to the msg buffer 2346 * 2347 * remove programmed guest VLAN ID 2348 */ 2349 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) 2350 { 2351 return ice_vc_process_vlan_msg(vf, msg, false); 2352 } 2353 2354 /** 2355 * ice_vc_ena_vlan_stripping 2356 * @vf: pointer to the VF info 2357 * 2358 * Enable VLAN header stripping for a given VF 2359 */ 2360 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) 2361 { 2362 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2363 struct ice_vsi *vsi; 2364 2365 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2366 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2367 goto error_param; 2368 } 2369 2370 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2371 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2372 goto error_param; 2373 } 2374 2375 vsi = ice_get_vf_vsi(vf); 2376 if (!vsi) { 2377 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2378 goto error_param; 2379 } 2380 2381 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q)) 2382 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2383 2384 error_param: 2385 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 2386 v_ret, NULL, 0); 2387 } 2388 2389 /** 2390 * ice_vc_dis_vlan_stripping 2391 * @vf: pointer to the VF info 2392 * 2393 * Disable VLAN header stripping for a given VF 2394 */ 2395 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) 2396 { 2397 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2398 struct ice_vsi *vsi; 2399 2400 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2401 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2402 goto error_param; 2403 } 2404 2405 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { 2406 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2407 goto error_param; 2408 } 2409 2410 vsi = ice_get_vf_vsi(vf); 2411 if (!vsi) { 2412 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2413 goto error_param; 2414 } 2415 2416 if (vsi->inner_vlan_ops.dis_stripping(vsi)) 2417 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2418 2419 error_param: 2420 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 2421 v_ret, NULL, 0); 2422 } 2423 2424 /** 2425 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization 2426 * @vf: VF to enable/disable VLAN stripping for on initialization 2427 * 2428 * Set the default for VLAN stripping based on whether a port VLAN is configured 2429 * and the current VLAN mode of the device. 2430 */ 2431 static int ice_vf_init_vlan_stripping(struct ice_vf *vf) 2432 { 2433 struct ice_vsi *vsi = ice_get_vf_vsi(vf); 2434 2435 if (!vsi) 2436 return -EINVAL; 2437 2438 /* don't modify stripping if port VLAN is configured in SVM since the 2439 * port VLAN is based on the inner/single VLAN in SVM 2440 */ 2441 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw)) 2442 return 0; 2443 2444 if (ice_vf_vlan_offload_ena(vf->driver_caps)) 2445 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q); 2446 else 2447 return vsi->inner_vlan_ops.dis_stripping(vsi); 2448 } 2449 2450 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf) 2451 { 2452 if (vf->trusted) 2453 return VLAN_N_VID; 2454 else 2455 return ICE_MAX_VLAN_PER_VF; 2456 } 2457 2458 /** 2459 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used 2460 * @vf: VF that being checked for 2461 * 2462 * When the device is in double VLAN mode, check whether or not the outer VLAN 2463 * is allowed. 2464 */ 2465 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf) 2466 { 2467 if (ice_vf_is_port_vlan_ena(vf)) 2468 return true; 2469 2470 return false; 2471 } 2472 2473 /** 2474 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM 2475 * @vf: VF that capabilities are being set for 2476 * @caps: VLAN capabilities to populate 2477 * 2478 * Determine VLAN capabilities support based on whether a port VLAN is 2479 * configured. If a port VLAN is configured then the VF should use the inner 2480 * filtering/offload capabilities since the port VLAN is using the outer VLAN 2481 * capabilies. 2482 */ 2483 static void 2484 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2485 { 2486 struct virtchnl_vlan_supported_caps *supported_caps; 2487 2488 if (ice_vf_outer_vlan_not_allowed(vf)) { 2489 /* until support for inner VLAN filtering is added when a port 2490 * VLAN is configured, only support software offloaded inner 2491 * VLANs when a port VLAN is confgured in DVM 2492 */ 2493 supported_caps = &caps->filtering.filtering_support; 2494 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2495 2496 supported_caps = &caps->offloads.stripping_support; 2497 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2498 VIRTCHNL_VLAN_TOGGLE | 2499 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2500 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2501 2502 supported_caps = &caps->offloads.insertion_support; 2503 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2504 VIRTCHNL_VLAN_TOGGLE | 2505 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2506 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2507 2508 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2509 caps->offloads.ethertype_match = 2510 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2511 } else { 2512 supported_caps = &caps->filtering.filtering_support; 2513 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2514 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2515 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2516 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2517 VIRTCHNL_VLAN_ETHERTYPE_AND; 2518 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2519 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2520 VIRTCHNL_VLAN_ETHERTYPE_9100; 2521 2522 supported_caps = &caps->offloads.stripping_support; 2523 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2524 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2525 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2526 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2527 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2528 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2529 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2530 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2; 2532 2533 supported_caps = &caps->offloads.insertion_support; 2534 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE | 2535 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2537 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE | 2538 VIRTCHNL_VLAN_ETHERTYPE_8100 | 2539 VIRTCHNL_VLAN_ETHERTYPE_88A8 | 2540 VIRTCHNL_VLAN_ETHERTYPE_9100 | 2541 VIRTCHNL_VLAN_ETHERTYPE_XOR | 2542 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2; 2543 2544 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2545 2546 caps->offloads.ethertype_match = 2547 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2548 } 2549 2550 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2551 } 2552 2553 /** 2554 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM 2555 * @vf: VF that capabilities are being set for 2556 * @caps: VLAN capabilities to populate 2557 * 2558 * Determine VLAN capabilities support based on whether a port VLAN is 2559 * configured. If a port VLAN is configured then the VF does not have any VLAN 2560 * filtering or offload capabilities since the port VLAN is using the inner VLAN 2561 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner 2562 * VLAN fitlering and offload capabilities. 2563 */ 2564 static void 2565 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps) 2566 { 2567 struct virtchnl_vlan_supported_caps *supported_caps; 2568 2569 if (ice_vf_is_port_vlan_ena(vf)) { 2570 supported_caps = &caps->filtering.filtering_support; 2571 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2572 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2573 2574 supported_caps = &caps->offloads.stripping_support; 2575 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2576 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2577 2578 supported_caps = &caps->offloads.insertion_support; 2579 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED; 2580 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2581 2582 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED; 2583 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED; 2584 caps->filtering.max_filters = 0; 2585 } else { 2586 supported_caps = &caps->filtering.filtering_support; 2587 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100; 2588 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2589 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2590 2591 supported_caps = &caps->offloads.stripping_support; 2592 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2593 VIRTCHNL_VLAN_TOGGLE | 2594 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2595 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2596 2597 supported_caps = &caps->offloads.insertion_support; 2598 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 | 2599 VIRTCHNL_VLAN_TOGGLE | 2600 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1; 2601 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED; 2602 2603 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100; 2604 caps->offloads.ethertype_match = 2605 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 2606 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf); 2607 } 2608 } 2609 2610 /** 2611 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities 2612 * @vf: VF to determine VLAN capabilities for 2613 * 2614 * This will only be called if the VF and PF successfully negotiated 2615 * VIRTCHNL_VF_OFFLOAD_VLAN_V2. 2616 * 2617 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN 2618 * is configured or not. 2619 */ 2620 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf) 2621 { 2622 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2623 struct virtchnl_vlan_caps *caps = NULL; 2624 int err, len = 0; 2625 2626 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2627 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2628 goto out; 2629 } 2630 2631 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 2632 if (!caps) { 2633 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; 2634 goto out; 2635 } 2636 len = sizeof(*caps); 2637 2638 if (ice_is_dvm_ena(&vf->pf->hw)) 2639 ice_vc_set_dvm_caps(vf, caps); 2640 else 2641 ice_vc_set_svm_caps(vf, caps); 2642 2643 /* store negotiated caps to prevent invalid VF messages */ 2644 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps)); 2645 2646 out: 2647 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS, 2648 v_ret, (u8 *)caps, len); 2649 kfree(caps); 2650 return err; 2651 } 2652 2653 /** 2654 * ice_vc_validate_vlan_tpid - validate VLAN TPID 2655 * @filtering_caps: negotiated/supported VLAN filtering capabilities 2656 * @tpid: VLAN TPID used for validation 2657 * 2658 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against 2659 * the negotiated/supported filtering caps to see if the VLAN TPID is valid. 2660 */ 2661 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid) 2662 { 2663 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED; 2664 2665 switch (tpid) { 2666 case ETH_P_8021Q: 2667 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100; 2668 break; 2669 case ETH_P_8021AD: 2670 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8; 2671 break; 2672 case ETH_P_QINQ1: 2673 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100; 2674 break; 2675 } 2676 2677 if (!(filtering_caps & vlan_ethertype)) 2678 return false; 2679 2680 return true; 2681 } 2682 2683 /** 2684 * ice_vc_is_valid_vlan - validate the virtchnl_vlan 2685 * @vc_vlan: virtchnl_vlan to validate 2686 * 2687 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return 2688 * false. Otherwise return true. 2689 */ 2690 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan) 2691 { 2692 if (!vc_vlan->tci || !vc_vlan->tpid) 2693 return false; 2694 2695 return true; 2696 } 2697 2698 /** 2699 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF 2700 * @vfc: negotiated/supported VLAN filtering capabilities 2701 * @vfl: VLAN filter list from VF to validate 2702 * 2703 * Validate all of the filters in the VLAN filter list from the VF. If any of 2704 * the checks fail then return false. Otherwise return true. 2705 */ 2706 static bool 2707 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc, 2708 struct virtchnl_vlan_filter_list_v2 *vfl) 2709 { 2710 u16 i; 2711 2712 if (!vfl->num_elements) 2713 return false; 2714 2715 for (i = 0; i < vfl->num_elements; i++) { 2716 struct virtchnl_vlan_supported_caps *filtering_support = 2717 &vfc->filtering_support; 2718 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2719 struct virtchnl_vlan *outer = &vlan_fltr->outer; 2720 struct virtchnl_vlan *inner = &vlan_fltr->inner; 2721 2722 if ((ice_vc_is_valid_vlan(outer) && 2723 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) || 2724 (ice_vc_is_valid_vlan(inner) && 2725 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED)) 2726 return false; 2727 2728 if ((outer->tci_mask && 2729 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) || 2730 (inner->tci_mask && 2731 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK))) 2732 return false; 2733 2734 if (((outer->tci & VLAN_PRIO_MASK) && 2735 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) || 2736 ((inner->tci & VLAN_PRIO_MASK) && 2737 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO))) 2738 return false; 2739 2740 if ((ice_vc_is_valid_vlan(outer) && 2741 !ice_vc_validate_vlan_tpid(filtering_support->outer, 2742 outer->tpid)) || 2743 (ice_vc_is_valid_vlan(inner) && 2744 !ice_vc_validate_vlan_tpid(filtering_support->inner, 2745 inner->tpid))) 2746 return false; 2747 } 2748 2749 return true; 2750 } 2751 2752 /** 2753 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan 2754 * @vc_vlan: struct virtchnl_vlan to transform 2755 */ 2756 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan) 2757 { 2758 struct ice_vlan vlan = { 0 }; 2759 2760 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2761 vlan.vid = vc_vlan->tci & VLAN_VID_MASK; 2762 vlan.tpid = vc_vlan->tpid; 2763 2764 return vlan; 2765 } 2766 2767 /** 2768 * ice_vc_vlan_action - action to perform on the virthcnl_vlan 2769 * @vsi: VF's VSI used to perform the action 2770 * @vlan_action: function to perform the action with (i.e. add/del) 2771 * @vlan: VLAN filter to perform the action with 2772 */ 2773 static int 2774 ice_vc_vlan_action(struct ice_vsi *vsi, 2775 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *), 2776 struct ice_vlan *vlan) 2777 { 2778 int err; 2779 2780 err = vlan_action(vsi, vlan); 2781 if (err) 2782 return err; 2783 2784 return 0; 2785 } 2786 2787 /** 2788 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list 2789 * @vf: VF used to delete the VLAN(s) 2790 * @vsi: VF's VSI used to delete the VLAN(s) 2791 * @vfl: virthchnl filter list used to delete the filters 2792 */ 2793 static int 2794 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2795 struct virtchnl_vlan_filter_list_v2 *vfl) 2796 { 2797 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2798 int err; 2799 u16 i; 2800 2801 for (i = 0; i < vfl->num_elements; i++) { 2802 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2803 struct virtchnl_vlan *vc_vlan; 2804 2805 vc_vlan = &vlan_fltr->outer; 2806 if (ice_vc_is_valid_vlan(vc_vlan)) { 2807 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2808 2809 err = ice_vc_vlan_action(vsi, 2810 vsi->outer_vlan_ops.del_vlan, 2811 &vlan); 2812 if (err) 2813 return err; 2814 2815 if (vlan_promisc) 2816 ice_vf_dis_vlan_promisc(vsi, &vlan); 2817 } 2818 2819 vc_vlan = &vlan_fltr->inner; 2820 if (ice_vc_is_valid_vlan(vc_vlan)) { 2821 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2822 2823 err = ice_vc_vlan_action(vsi, 2824 vsi->inner_vlan_ops.del_vlan, 2825 &vlan); 2826 if (err) 2827 return err; 2828 2829 /* no support for VLAN promiscuous on inner VLAN unless 2830 * we are in Single VLAN Mode (SVM) 2831 */ 2832 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) 2833 ice_vf_dis_vlan_promisc(vsi, &vlan); 2834 } 2835 } 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2 2842 * @vf: VF the message was received from 2843 * @msg: message received from the VF 2844 */ 2845 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2846 { 2847 struct virtchnl_vlan_filter_list_v2 *vfl = 2848 (struct virtchnl_vlan_filter_list_v2 *)msg; 2849 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2850 struct ice_vsi *vsi; 2851 2852 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering, 2853 vfl)) { 2854 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2855 goto out; 2856 } 2857 2858 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2859 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2860 goto out; 2861 } 2862 2863 vsi = ice_get_vf_vsi(vf); 2864 if (!vsi) { 2865 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2866 goto out; 2867 } 2868 2869 if (ice_vc_del_vlans(vf, vsi, vfl)) 2870 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2871 2872 out: 2873 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL, 2874 0); 2875 } 2876 2877 /** 2878 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list 2879 * @vf: VF used to add the VLAN(s) 2880 * @vsi: VF's VSI used to add the VLAN(s) 2881 * @vfl: virthchnl filter list used to add the filters 2882 */ 2883 static int 2884 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi, 2885 struct virtchnl_vlan_filter_list_v2 *vfl) 2886 { 2887 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf); 2888 int err; 2889 u16 i; 2890 2891 for (i = 0; i < vfl->num_elements; i++) { 2892 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i]; 2893 struct virtchnl_vlan *vc_vlan; 2894 2895 vc_vlan = &vlan_fltr->outer; 2896 if (ice_vc_is_valid_vlan(vc_vlan)) { 2897 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2898 2899 err = ice_vc_vlan_action(vsi, 2900 vsi->outer_vlan_ops.add_vlan, 2901 &vlan); 2902 if (err) 2903 return err; 2904 2905 if (vlan_promisc) { 2906 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2907 if (err) 2908 return err; 2909 } 2910 } 2911 2912 vc_vlan = &vlan_fltr->inner; 2913 if (ice_vc_is_valid_vlan(vc_vlan)) { 2914 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan); 2915 2916 err = ice_vc_vlan_action(vsi, 2917 vsi->inner_vlan_ops.add_vlan, 2918 &vlan); 2919 if (err) 2920 return err; 2921 2922 /* no support for VLAN promiscuous on inner VLAN unless 2923 * we are in Single VLAN Mode (SVM) 2924 */ 2925 if (!ice_is_dvm_ena(&vsi->back->hw) && vlan_promisc) { 2926 err = ice_vf_ena_vlan_promisc(vsi, &vlan); 2927 if (err) 2928 return err; 2929 } 2930 } 2931 } 2932 2933 return 0; 2934 } 2935 2936 /** 2937 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF 2938 * @vsi: VF VSI used to get number of existing VLAN filters 2939 * @vfc: negotiated/supported VLAN filtering capabilities 2940 * @vfl: VLAN filter list from VF to validate 2941 * 2942 * Validate all of the filters in the VLAN filter list from the VF during the 2943 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false. 2944 * Otherwise return true. 2945 */ 2946 static bool 2947 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi, 2948 struct virtchnl_vlan_filtering_caps *vfc, 2949 struct virtchnl_vlan_filter_list_v2 *vfl) 2950 { 2951 u16 num_requested_filters = vsi->num_vlan + vfl->num_elements; 2952 2953 if (num_requested_filters > vfc->max_filters) 2954 return false; 2955 2956 return ice_vc_validate_vlan_filter_list(vfc, vfl); 2957 } 2958 2959 /** 2960 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2 2961 * @vf: VF the message was received from 2962 * @msg: message received from the VF 2963 */ 2964 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg) 2965 { 2966 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 2967 struct virtchnl_vlan_filter_list_v2 *vfl = 2968 (struct virtchnl_vlan_filter_list_v2 *)msg; 2969 struct ice_vsi *vsi; 2970 2971 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 2972 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2973 goto out; 2974 } 2975 2976 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) { 2977 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2978 goto out; 2979 } 2980 2981 vsi = ice_get_vf_vsi(vf); 2982 if (!vsi) { 2983 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2984 goto out; 2985 } 2986 2987 if (!ice_vc_validate_add_vlan_filter_list(vsi, 2988 &vf->vlan_v2_caps.filtering, 2989 vfl)) { 2990 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2991 goto out; 2992 } 2993 2994 if (ice_vc_add_vlans(vf, vsi, vfl)) 2995 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 2996 2997 out: 2998 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL, 2999 0); 3000 } 3001 3002 /** 3003 * ice_vc_valid_vlan_setting - validate VLAN setting 3004 * @negotiated_settings: negotiated VLAN settings during VF init 3005 * @ethertype_setting: ethertype(s) requested for the VLAN setting 3006 */ 3007 static bool 3008 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting) 3009 { 3010 if (ethertype_setting && !(negotiated_settings & ethertype_setting)) 3011 return false; 3012 3013 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if 3014 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported 3015 */ 3016 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) && 3017 hweight32(ethertype_setting) > 1) 3018 return false; 3019 3020 /* ability to modify the VLAN setting was not negotiated */ 3021 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE)) 3022 return false; 3023 3024 return true; 3025 } 3026 3027 /** 3028 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message 3029 * @caps: negotiated VLAN settings during VF init 3030 * @msg: message to validate 3031 * 3032 * Used to validate any VLAN virtchnl message sent as a 3033 * virtchnl_vlan_setting structure. Validates the message against the 3034 * negotiated/supported caps during VF driver init. 3035 */ 3036 static bool 3037 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps, 3038 struct virtchnl_vlan_setting *msg) 3039 { 3040 if ((!msg->outer_ethertype_setting && 3041 !msg->inner_ethertype_setting) || 3042 (!caps->outer && !caps->inner)) 3043 return false; 3044 3045 if (msg->outer_ethertype_setting && 3046 !ice_vc_valid_vlan_setting(caps->outer, 3047 msg->outer_ethertype_setting)) 3048 return false; 3049 3050 if (msg->inner_ethertype_setting && 3051 !ice_vc_valid_vlan_setting(caps->inner, 3052 msg->inner_ethertype_setting)) 3053 return false; 3054 3055 return true; 3056 } 3057 3058 /** 3059 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID 3060 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID 3061 * @tpid: VLAN TPID to populate 3062 */ 3063 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid) 3064 { 3065 switch (ethertype_setting) { 3066 case VIRTCHNL_VLAN_ETHERTYPE_8100: 3067 *tpid = ETH_P_8021Q; 3068 break; 3069 case VIRTCHNL_VLAN_ETHERTYPE_88A8: 3070 *tpid = ETH_P_8021AD; 3071 break; 3072 case VIRTCHNL_VLAN_ETHERTYPE_9100: 3073 *tpid = ETH_P_QINQ1; 3074 break; 3075 default: 3076 *tpid = 0; 3077 return -EINVAL; 3078 } 3079 3080 return 0; 3081 } 3082 3083 /** 3084 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting 3085 * @vsi: VF's VSI used to enable the VLAN offload 3086 * @ena_offload: function used to enable the VLAN offload 3087 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for 3088 */ 3089 static int 3090 ice_vc_ena_vlan_offload(struct ice_vsi *vsi, 3091 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid), 3092 u32 ethertype_setting) 3093 { 3094 u16 tpid; 3095 int err; 3096 3097 err = ice_vc_get_tpid(ethertype_setting, &tpid); 3098 if (err) 3099 return err; 3100 3101 err = ena_offload(vsi, tpid); 3102 if (err) 3103 return err; 3104 3105 return 0; 3106 } 3107 3108 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3 3109 #define ICE_L2TSEL_BIT_OFFSET 23 3110 enum ice_l2tsel { 3111 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND, 3112 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1, 3113 }; 3114 3115 /** 3116 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI 3117 * @vsi: VSI used to update l2tsel on 3118 * @l2tsel: l2tsel setting requested 3119 * 3120 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel. 3121 * This will modify which descriptor field the first offloaded VLAN will be 3122 * stripped into. 3123 */ 3124 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel) 3125 { 3126 struct ice_hw *hw = &vsi->back->hw; 3127 u32 l2tsel_bit; 3128 int i; 3129 3130 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND) 3131 l2tsel_bit = 0; 3132 else 3133 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET); 3134 3135 for (i = 0; i < vsi->alloc_rxq; i++) { 3136 u16 pfq = vsi->rxq_map[i]; 3137 u32 qrx_context_offset; 3138 u32 regval; 3139 3140 qrx_context_offset = 3141 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq); 3142 3143 regval = rd32(hw, qrx_context_offset); 3144 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET); 3145 regval |= l2tsel_bit; 3146 wr32(hw, qrx_context_offset, regval); 3147 } 3148 } 3149 3150 /** 3151 * ice_vc_ena_vlan_stripping_v2_msg 3152 * @vf: VF the message was received from 3153 * @msg: message received from the VF 3154 * 3155 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 3156 */ 3157 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3158 { 3159 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3160 struct virtchnl_vlan_supported_caps *stripping_support; 3161 struct virtchnl_vlan_setting *strip_msg = 3162 (struct virtchnl_vlan_setting *)msg; 3163 u32 ethertype_setting; 3164 struct ice_vsi *vsi; 3165 3166 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3167 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3168 goto out; 3169 } 3170 3171 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3172 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3173 goto out; 3174 } 3175 3176 vsi = ice_get_vf_vsi(vf); 3177 if (!vsi) { 3178 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3179 goto out; 3180 } 3181 3182 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3183 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3184 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3185 goto out; 3186 } 3187 3188 ethertype_setting = strip_msg->outer_ethertype_setting; 3189 if (ethertype_setting) { 3190 if (ice_vc_ena_vlan_offload(vsi, 3191 vsi->outer_vlan_ops.ena_stripping, 3192 ethertype_setting)) { 3193 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3194 goto out; 3195 } else { 3196 enum ice_l2tsel l2tsel = 3197 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND; 3198 3199 /* PF tells the VF that the outer VLAN tag is always 3200 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3201 * inner is always extracted to 3202 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3203 * support outer stripping so the first tag always ends 3204 * up in L2TAG2_2ND and the second/inner tag, if 3205 * enabled, is extracted in L2TAG1. 3206 */ 3207 ice_vsi_update_l2tsel(vsi, l2tsel); 3208 } 3209 } 3210 3211 ethertype_setting = strip_msg->inner_ethertype_setting; 3212 if (ethertype_setting && 3213 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping, 3214 ethertype_setting)) { 3215 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3216 goto out; 3217 } 3218 3219 out: 3220 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2, 3221 v_ret, NULL, 0); 3222 } 3223 3224 /** 3225 * ice_vc_dis_vlan_stripping_v2_msg 3226 * @vf: VF the message was received from 3227 * @msg: message received from the VF 3228 * 3229 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 3230 */ 3231 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg) 3232 { 3233 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3234 struct virtchnl_vlan_supported_caps *stripping_support; 3235 struct virtchnl_vlan_setting *strip_msg = 3236 (struct virtchnl_vlan_setting *)msg; 3237 u32 ethertype_setting; 3238 struct ice_vsi *vsi; 3239 3240 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3241 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3242 goto out; 3243 } 3244 3245 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) { 3246 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3247 goto out; 3248 } 3249 3250 vsi = ice_get_vf_vsi(vf); 3251 if (!vsi) { 3252 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3253 goto out; 3254 } 3255 3256 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support; 3257 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) { 3258 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3259 goto out; 3260 } 3261 3262 ethertype_setting = strip_msg->outer_ethertype_setting; 3263 if (ethertype_setting) { 3264 if (vsi->outer_vlan_ops.dis_stripping(vsi)) { 3265 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3266 goto out; 3267 } else { 3268 enum ice_l2tsel l2tsel = 3269 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1; 3270 3271 /* PF tells the VF that the outer VLAN tag is always 3272 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and 3273 * inner is always extracted to 3274 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to 3275 * support inner stripping while outer stripping is 3276 * disabled so that the first and only tag is extracted 3277 * in L2TAG1. 3278 */ 3279 ice_vsi_update_l2tsel(vsi, l2tsel); 3280 } 3281 } 3282 3283 ethertype_setting = strip_msg->inner_ethertype_setting; 3284 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) { 3285 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3286 goto out; 3287 } 3288 3289 out: 3290 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2, 3291 v_ret, NULL, 0); 3292 } 3293 3294 /** 3295 * ice_vc_ena_vlan_insertion_v2_msg 3296 * @vf: VF the message was received from 3297 * @msg: message received from the VF 3298 * 3299 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 3300 */ 3301 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3302 { 3303 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3304 struct virtchnl_vlan_supported_caps *insertion_support; 3305 struct virtchnl_vlan_setting *insertion_msg = 3306 (struct virtchnl_vlan_setting *)msg; 3307 u32 ethertype_setting; 3308 struct ice_vsi *vsi; 3309 3310 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3311 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3312 goto out; 3313 } 3314 3315 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3316 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3317 goto out; 3318 } 3319 3320 vsi = ice_get_vf_vsi(vf); 3321 if (!vsi) { 3322 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3323 goto out; 3324 } 3325 3326 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3327 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3328 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3329 goto out; 3330 } 3331 3332 ethertype_setting = insertion_msg->outer_ethertype_setting; 3333 if (ethertype_setting && 3334 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion, 3335 ethertype_setting)) { 3336 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3337 goto out; 3338 } 3339 3340 ethertype_setting = insertion_msg->inner_ethertype_setting; 3341 if (ethertype_setting && 3342 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion, 3343 ethertype_setting)) { 3344 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3345 goto out; 3346 } 3347 3348 out: 3349 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2, 3350 v_ret, NULL, 0); 3351 } 3352 3353 /** 3354 * ice_vc_dis_vlan_insertion_v2_msg 3355 * @vf: VF the message was received from 3356 * @msg: message received from the VF 3357 * 3358 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 3359 */ 3360 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg) 3361 { 3362 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3363 struct virtchnl_vlan_supported_caps *insertion_support; 3364 struct virtchnl_vlan_setting *insertion_msg = 3365 (struct virtchnl_vlan_setting *)msg; 3366 u32 ethertype_setting; 3367 struct ice_vsi *vsi; 3368 3369 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { 3370 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3371 goto out; 3372 } 3373 3374 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) { 3375 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3376 goto out; 3377 } 3378 3379 vsi = ice_get_vf_vsi(vf); 3380 if (!vsi) { 3381 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3382 goto out; 3383 } 3384 3385 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support; 3386 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) { 3387 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3388 goto out; 3389 } 3390 3391 ethertype_setting = insertion_msg->outer_ethertype_setting; 3392 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) { 3393 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3394 goto out; 3395 } 3396 3397 ethertype_setting = insertion_msg->inner_ethertype_setting; 3398 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) { 3399 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3400 goto out; 3401 } 3402 3403 out: 3404 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2, 3405 v_ret, NULL, 0); 3406 } 3407 3408 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = { 3409 .get_ver_msg = ice_vc_get_ver_msg, 3410 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3411 .reset_vf = ice_vc_reset_vf_msg, 3412 .add_mac_addr_msg = ice_vc_add_mac_addr_msg, 3413 .del_mac_addr_msg = ice_vc_del_mac_addr_msg, 3414 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3415 .ena_qs_msg = ice_vc_ena_qs_msg, 3416 .dis_qs_msg = ice_vc_dis_qs_msg, 3417 .request_qs_msg = ice_vc_request_qs_msg, 3418 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3419 .config_rss_key = ice_vc_config_rss_key, 3420 .config_rss_lut = ice_vc_config_rss_lut, 3421 .get_stats_msg = ice_vc_get_stats_msg, 3422 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg, 3423 .add_vlan_msg = ice_vc_add_vlan_msg, 3424 .remove_vlan_msg = ice_vc_remove_vlan_msg, 3425 .ena_vlan_stripping = ice_vc_ena_vlan_stripping, 3426 .dis_vlan_stripping = ice_vc_dis_vlan_stripping, 3427 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3428 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3429 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3430 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3431 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3432 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3433 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3434 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3435 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3436 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3437 }; 3438 3439 /** 3440 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops 3441 * @vf: the VF to switch ops 3442 */ 3443 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf) 3444 { 3445 vf->virtchnl_ops = &ice_virtchnl_dflt_ops; 3446 } 3447 3448 /** 3449 * ice_vc_repr_add_mac 3450 * @vf: pointer to VF 3451 * @msg: virtchannel message 3452 * 3453 * When port representors are created, we do not add MAC rule 3454 * to firmware, we store it so that PF could report same 3455 * MAC as VF. 3456 */ 3457 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg) 3458 { 3459 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; 3460 struct virtchnl_ether_addr_list *al = 3461 (struct virtchnl_ether_addr_list *)msg; 3462 struct ice_vsi *vsi; 3463 struct ice_pf *pf; 3464 int i; 3465 3466 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || 3467 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { 3468 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3469 goto handle_mac_exit; 3470 } 3471 3472 pf = vf->pf; 3473 3474 vsi = ice_get_vf_vsi(vf); 3475 if (!vsi) { 3476 v_ret = VIRTCHNL_STATUS_ERR_PARAM; 3477 goto handle_mac_exit; 3478 } 3479 3480 for (i = 0; i < al->num_elements; i++) { 3481 u8 *mac_addr = al->list[i].addr; 3482 int result; 3483 3484 if (!is_unicast_ether_addr(mac_addr) || 3485 ether_addr_equal(mac_addr, vf->hw_lan_addr.addr)) 3486 continue; 3487 3488 if (vf->pf_set_mac) { 3489 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n"); 3490 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; 3491 goto handle_mac_exit; 3492 } 3493 3494 result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr); 3495 if (result) { 3496 dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n", 3497 mac_addr, vf->vf_id, result); 3498 goto handle_mac_exit; 3499 } 3500 3501 ice_vfhw_mac_add(vf, &al->list[i]); 3502 vf->num_mac++; 3503 break; 3504 } 3505 3506 handle_mac_exit: 3507 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR, 3508 v_ret, NULL, 0); 3509 } 3510 3511 /** 3512 * ice_vc_repr_del_mac - response with success for deleting MAC 3513 * @vf: pointer to VF 3514 * @msg: virtchannel message 3515 * 3516 * Respond with success to not break normal VF flow. 3517 * For legacy VF driver try to update cached MAC address. 3518 */ 3519 static int 3520 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg) 3521 { 3522 struct virtchnl_ether_addr_list *al = 3523 (struct virtchnl_ether_addr_list *)msg; 3524 3525 ice_update_legacy_cached_mac(vf, &al->list[0]); 3526 3527 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR, 3528 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3529 } 3530 3531 static int ice_vc_repr_add_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3532 { 3533 dev_dbg(ice_pf_to_dev(vf->pf), 3534 "Can't add VLAN in switchdev mode for VF %d\n", vf->vf_id); 3535 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, 3536 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3537 } 3538 3539 static int ice_vc_repr_del_vlan(struct ice_vf *vf, u8 __always_unused *msg) 3540 { 3541 dev_dbg(ice_pf_to_dev(vf->pf), 3542 "Can't delete VLAN in switchdev mode for VF %d\n", vf->vf_id); 3543 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, 3544 VIRTCHNL_STATUS_SUCCESS, NULL, 0); 3545 } 3546 3547 static int ice_vc_repr_ena_vlan_stripping(struct ice_vf *vf) 3548 { 3549 dev_dbg(ice_pf_to_dev(vf->pf), 3550 "Can't enable VLAN stripping in switchdev mode for VF %d\n", 3551 vf->vf_id); 3552 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, 3553 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3554 NULL, 0); 3555 } 3556 3557 static int ice_vc_repr_dis_vlan_stripping(struct ice_vf *vf) 3558 { 3559 dev_dbg(ice_pf_to_dev(vf->pf), 3560 "Can't disable VLAN stripping in switchdev mode for VF %d\n", 3561 vf->vf_id); 3562 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, 3563 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3564 NULL, 0); 3565 } 3566 3567 static int 3568 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg) 3569 { 3570 dev_dbg(ice_pf_to_dev(vf->pf), 3571 "Can't config promiscuous mode in switchdev mode for VF %d\n", 3572 vf->vf_id); 3573 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE, 3574 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3575 NULL, 0); 3576 } 3577 3578 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = { 3579 .get_ver_msg = ice_vc_get_ver_msg, 3580 .get_vf_res_msg = ice_vc_get_vf_res_msg, 3581 .reset_vf = ice_vc_reset_vf_msg, 3582 .add_mac_addr_msg = ice_vc_repr_add_mac, 3583 .del_mac_addr_msg = ice_vc_repr_del_mac, 3584 .cfg_qs_msg = ice_vc_cfg_qs_msg, 3585 .ena_qs_msg = ice_vc_ena_qs_msg, 3586 .dis_qs_msg = ice_vc_dis_qs_msg, 3587 .request_qs_msg = ice_vc_request_qs_msg, 3588 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg, 3589 .config_rss_key = ice_vc_config_rss_key, 3590 .config_rss_lut = ice_vc_config_rss_lut, 3591 .get_stats_msg = ice_vc_get_stats_msg, 3592 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode, 3593 .add_vlan_msg = ice_vc_repr_add_vlan, 3594 .remove_vlan_msg = ice_vc_repr_del_vlan, 3595 .ena_vlan_stripping = ice_vc_repr_ena_vlan_stripping, 3596 .dis_vlan_stripping = ice_vc_repr_dis_vlan_stripping, 3597 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg, 3598 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr, 3599 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr, 3600 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps, 3601 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg, 3602 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg, 3603 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg, 3604 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg, 3605 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg, 3606 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg, 3607 }; 3608 3609 /** 3610 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops 3611 * @vf: the VF to switch ops 3612 */ 3613 void ice_virtchnl_set_repr_ops(struct ice_vf *vf) 3614 { 3615 vf->virtchnl_ops = &ice_virtchnl_repr_ops; 3616 } 3617 3618 /** 3619 * ice_vc_process_vf_msg - Process request from VF 3620 * @pf: pointer to the PF structure 3621 * @event: pointer to the AQ event 3622 * 3623 * called from the common asq/arq handler to 3624 * process request from VF 3625 */ 3626 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) 3627 { 3628 u32 v_opcode = le32_to_cpu(event->desc.cookie_high); 3629 s16 vf_id = le16_to_cpu(event->desc.retval); 3630 const struct ice_virtchnl_ops *ops; 3631 u16 msglen = event->msg_len; 3632 u8 *msg = event->msg_buf; 3633 struct ice_vf *vf = NULL; 3634 struct device *dev; 3635 int err = 0; 3636 3637 dev = ice_pf_to_dev(pf); 3638 3639 vf = ice_get_vf_by_id(pf, vf_id); 3640 if (!vf) { 3641 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n", 3642 vf_id, v_opcode, msglen); 3643 return; 3644 } 3645 3646 mutex_lock(&vf->cfg_lock); 3647 3648 /* Check if VF is disabled. */ 3649 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { 3650 err = -EPERM; 3651 goto error_handler; 3652 } 3653 3654 ops = vf->virtchnl_ops; 3655 3656 /* Perform basic checks on the msg */ 3657 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); 3658 if (err) { 3659 if (err == VIRTCHNL_STATUS_ERR_PARAM) 3660 err = -EPERM; 3661 else 3662 err = -EINVAL; 3663 } 3664 3665 error_handler: 3666 if (err) { 3667 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, 3668 NULL, 0); 3669 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", 3670 vf_id, v_opcode, msglen, err); 3671 goto finish; 3672 } 3673 3674 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) { 3675 ice_vc_send_msg_to_vf(vf, v_opcode, 3676 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 3677 0); 3678 goto finish; 3679 } 3680 3681 switch (v_opcode) { 3682 case VIRTCHNL_OP_VERSION: 3683 err = ops->get_ver_msg(vf, msg); 3684 break; 3685 case VIRTCHNL_OP_GET_VF_RESOURCES: 3686 err = ops->get_vf_res_msg(vf, msg); 3687 if (ice_vf_init_vlan_stripping(vf)) 3688 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n", 3689 vf->vf_id); 3690 ice_vc_notify_vf_link_state(vf); 3691 break; 3692 case VIRTCHNL_OP_RESET_VF: 3693 ops->reset_vf(vf); 3694 break; 3695 case VIRTCHNL_OP_ADD_ETH_ADDR: 3696 err = ops->add_mac_addr_msg(vf, msg); 3697 break; 3698 case VIRTCHNL_OP_DEL_ETH_ADDR: 3699 err = ops->del_mac_addr_msg(vf, msg); 3700 break; 3701 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 3702 err = ops->cfg_qs_msg(vf, msg); 3703 break; 3704 case VIRTCHNL_OP_ENABLE_QUEUES: 3705 err = ops->ena_qs_msg(vf, msg); 3706 ice_vc_notify_vf_link_state(vf); 3707 break; 3708 case VIRTCHNL_OP_DISABLE_QUEUES: 3709 err = ops->dis_qs_msg(vf, msg); 3710 break; 3711 case VIRTCHNL_OP_REQUEST_QUEUES: 3712 err = ops->request_qs_msg(vf, msg); 3713 break; 3714 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 3715 err = ops->cfg_irq_map_msg(vf, msg); 3716 break; 3717 case VIRTCHNL_OP_CONFIG_RSS_KEY: 3718 err = ops->config_rss_key(vf, msg); 3719 break; 3720 case VIRTCHNL_OP_CONFIG_RSS_LUT: 3721 err = ops->config_rss_lut(vf, msg); 3722 break; 3723 case VIRTCHNL_OP_GET_STATS: 3724 err = ops->get_stats_msg(vf, msg); 3725 break; 3726 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 3727 err = ops->cfg_promiscuous_mode_msg(vf, msg); 3728 break; 3729 case VIRTCHNL_OP_ADD_VLAN: 3730 err = ops->add_vlan_msg(vf, msg); 3731 break; 3732 case VIRTCHNL_OP_DEL_VLAN: 3733 err = ops->remove_vlan_msg(vf, msg); 3734 break; 3735 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 3736 err = ops->ena_vlan_stripping(vf); 3737 break; 3738 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 3739 err = ops->dis_vlan_stripping(vf); 3740 break; 3741 case VIRTCHNL_OP_ADD_FDIR_FILTER: 3742 err = ops->add_fdir_fltr_msg(vf, msg); 3743 break; 3744 case VIRTCHNL_OP_DEL_FDIR_FILTER: 3745 err = ops->del_fdir_fltr_msg(vf, msg); 3746 break; 3747 case VIRTCHNL_OP_ADD_RSS_CFG: 3748 err = ops->handle_rss_cfg_msg(vf, msg, true); 3749 break; 3750 case VIRTCHNL_OP_DEL_RSS_CFG: 3751 err = ops->handle_rss_cfg_msg(vf, msg, false); 3752 break; 3753 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 3754 err = ops->get_offload_vlan_v2_caps(vf); 3755 break; 3756 case VIRTCHNL_OP_ADD_VLAN_V2: 3757 err = ops->add_vlan_v2_msg(vf, msg); 3758 break; 3759 case VIRTCHNL_OP_DEL_VLAN_V2: 3760 err = ops->remove_vlan_v2_msg(vf, msg); 3761 break; 3762 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 3763 err = ops->ena_vlan_stripping_v2_msg(vf, msg); 3764 break; 3765 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 3766 err = ops->dis_vlan_stripping_v2_msg(vf, msg); 3767 break; 3768 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 3769 err = ops->ena_vlan_insertion_v2_msg(vf, msg); 3770 break; 3771 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 3772 err = ops->dis_vlan_insertion_v2_msg(vf, msg); 3773 break; 3774 case VIRTCHNL_OP_UNKNOWN: 3775 default: 3776 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, 3777 vf_id); 3778 err = ice_vc_send_msg_to_vf(vf, v_opcode, 3779 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, 3780 NULL, 0); 3781 break; 3782 } 3783 if (err) { 3784 /* Helper function cares less about error return values here 3785 * as it is busy with pending work. 3786 */ 3787 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", 3788 vf_id, v_opcode, err); 3789 } 3790 3791 finish: 3792 mutex_unlock(&vf->cfg_lock); 3793 ice_put_vf(vf); 3794 } 3795