xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_vf_mbx.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_vf_mbx.h"
6 
7 /**
8  * ice_aq_send_msg_to_vf
9  * @hw: pointer to the hardware structure
10  * @vfid: VF ID to send msg
11  * @v_opcode: opcodes for VF-PF communication
12  * @v_retval: return error code
13  * @msg: pointer to the msg buffer
14  * @msglen: msg length
15  * @cd: pointer to command details
16  *
17  * Send message to VF driver (0x0802) using mailbox
18  * queue and asynchronously sending message via
19  * ice_sq_send_cmd() function
20  */
21 int
22 ice_aq_send_msg_to_vf(struct ice_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval,
23 		      u8 *msg, u16 msglen, struct ice_sq_cd *cd)
24 {
25 	struct ice_aqc_pf_vf_msg *cmd;
26 	struct ice_aq_desc desc;
27 
28 	ice_fill_dflt_direct_cmd_desc(&desc, ice_mbx_opc_send_msg_to_vf);
29 
30 	cmd = &desc.params.virt;
31 	cmd->id = cpu_to_le32(vfid);
32 
33 	desc.cookie_high = cpu_to_le32(v_opcode);
34 	desc.cookie_low = cpu_to_le32(v_retval);
35 
36 	if (msglen)
37 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
38 
39 	return ice_sq_send_cmd(hw, &hw->mailboxq, &desc, msg, msglen, cd);
40 }
41 
42 static const u32 ice_legacy_aq_to_vc_speed[15] = {
43 	VIRTCHNL_LINK_SPEED_100MB,	/* BIT(0) */
44 	VIRTCHNL_LINK_SPEED_100MB,
45 	VIRTCHNL_LINK_SPEED_1GB,
46 	VIRTCHNL_LINK_SPEED_1GB,
47 	VIRTCHNL_LINK_SPEED_1GB,
48 	VIRTCHNL_LINK_SPEED_10GB,
49 	VIRTCHNL_LINK_SPEED_20GB,
50 	VIRTCHNL_LINK_SPEED_25GB,
51 	VIRTCHNL_LINK_SPEED_40GB,
52 	VIRTCHNL_LINK_SPEED_40GB,
53 	VIRTCHNL_LINK_SPEED_40GB,
54 	VIRTCHNL_LINK_SPEED_UNKNOWN,
55 	VIRTCHNL_LINK_SPEED_UNKNOWN,
56 	VIRTCHNL_LINK_SPEED_UNKNOWN,
57 	VIRTCHNL_LINK_SPEED_UNKNOWN	/* BIT(14) */
58 };
59 
60 /**
61  * ice_conv_link_speed_to_virtchnl
62  * @adv_link_support: determines the format of the returned link speed
63  * @link_speed: variable containing the link_speed to be converted
64  *
65  * Convert link speed supported by HW to link speed supported by virtchnl.
66  * If adv_link_support is true, then return link speed in Mbps. Else return
67  * link speed as a VIRTCHNL_LINK_SPEED_* casted to a u32. Note that the caller
68  * needs to cast back to an enum virtchnl_link_speed in the case where
69  * adv_link_support is false, but when adv_link_support is true the caller can
70  * expect the speed in Mbps.
71  */
72 u32 ice_conv_link_speed_to_virtchnl(bool adv_link_support, u16 link_speed)
73 {
74 	u32 speed;
75 
76 	if (adv_link_support) {
77 		/* convert a BIT() value into an array index */
78 		speed = ice_get_link_speed(fls(link_speed) - 1);
79 	} else {
80 		/* Virtchnl speeds are not defined for every speed supported in
81 		 * the hardware. To maintain compatibility with older AVF
82 		 * drivers, while reporting the speed the new speed values are
83 		 * resolved to the closest known virtchnl speeds
84 		 */
85 		speed = ice_legacy_aq_to_vc_speed[fls(link_speed) - 1];
86 	}
87 
88 	return speed;
89 }
90 
91 /* The mailbox overflow detection algorithm helps to check if there
92  * is a possibility of a malicious VF transmitting too many MBX messages to the
93  * PF.
94  * 1. The mailbox snapshot structure, ice_mbx_snapshot, is initialized during
95  * driver initialization in ice_init_hw() using ice_mbx_init_snapshot().
96  * The struct ice_mbx_snapshot helps to track and traverse a static window of
97  * messages within the mailbox queue while looking for a malicious VF.
98  *
99  * 2. When the caller starts processing its mailbox queue in response to an
100  * interrupt, the structure ice_mbx_snapshot is expected to be cleared before
101  * the algorithm can be run for the first time for that interrupt. This can be
102  * done via ice_mbx_reset_snapshot().
103  *
104  * 3. For every message read by the caller from the MBX Queue, the caller must
105  * call the detection algorithm's entry function ice_mbx_vf_state_handler().
106  * Before every call to ice_mbx_vf_state_handler() the struct ice_mbx_data is
107  * filled as it is required to be passed to the algorithm.
108  *
109  * 4. Every time a message is read from the MBX queue, a VFId is received which
110  * is passed to the state handler. The boolean output is_malvf of the state
111  * handler ice_mbx_vf_state_handler() serves as an indicator to the caller
112  * whether this VF is malicious or not.
113  *
114  * 5. When a VF is identified to be malicious, the caller can send a message
115  * to the system administrator. The caller can invoke ice_mbx_report_malvf()
116  * to help determine if a malicious VF is to be reported or not. This function
117  * requires the caller to maintain a global bitmap to track all malicious VFs
118  * and pass that to ice_mbx_report_malvf() along with the VFID which was identified
119  * to be malicious by ice_mbx_vf_state_handler().
120  *
121  * 6. The global bitmap maintained by PF can be cleared completely if PF is in
122  * reset or the bit corresponding to a VF can be cleared if that VF is in reset.
123  * When a VF is shut down and brought back up, we assume that the new VF
124  * brought up is not malicious and hence report it if found malicious.
125  *
126  * 7. The function ice_mbx_reset_snapshot() is called to reset the information
127  * in ice_mbx_snapshot for every new mailbox interrupt handled.
128  *
129  * 8. The memory allocated for variables in ice_mbx_snapshot is de-allocated
130  * when driver is unloaded.
131  */
132 #define ICE_RQ_DATA_MASK(rq_data) ((rq_data) & PF_MBX_ARQH_ARQH_M)
133 /* Using the highest value for an unsigned 16-bit value 0xFFFF to indicate that
134  * the max messages check must be ignored in the algorithm
135  */
136 #define ICE_IGNORE_MAX_MSG_CNT	0xFFFF
137 
138 /**
139  * ice_mbx_traverse - Pass through mailbox snapshot
140  * @hw: pointer to the HW struct
141  * @new_state: new algorithm state
142  *
143  * Traversing the mailbox static snapshot without checking
144  * for malicious VFs.
145  */
146 static void
147 ice_mbx_traverse(struct ice_hw *hw,
148 		 enum ice_mbx_snapshot_state *new_state)
149 {
150 	struct ice_mbx_snap_buffer_data *snap_buf;
151 	u32 num_iterations;
152 
153 	snap_buf = &hw->mbx_snapshot.mbx_buf;
154 
155 	/* As mailbox buffer is circular, applying a mask
156 	 * on the incremented iteration count.
157 	 */
158 	num_iterations = ICE_RQ_DATA_MASK(++snap_buf->num_iterations);
159 
160 	/* Checking either of the below conditions to exit snapshot traversal:
161 	 * Condition-1: If the number of iterations in the mailbox is equal to
162 	 * the mailbox head which would indicate that we have reached the end
163 	 * of the static snapshot.
164 	 * Condition-2: If the maximum messages serviced in the mailbox for a
165 	 * given interrupt is the highest possible value then there is no need
166 	 * to check if the number of messages processed is equal to it. If not
167 	 * check if the number of messages processed is greater than or equal
168 	 * to the maximum number of mailbox entries serviced in current work item.
169 	 */
170 	if (num_iterations == snap_buf->head ||
171 	    (snap_buf->max_num_msgs_mbx < ICE_IGNORE_MAX_MSG_CNT &&
172 	     ++snap_buf->num_msg_proc >= snap_buf->max_num_msgs_mbx))
173 		*new_state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
174 }
175 
176 /**
177  * ice_mbx_detect_malvf - Detect malicious VF in snapshot
178  * @hw: pointer to the HW struct
179  * @vf_id: relative virtual function ID
180  * @new_state: new algorithm state
181  * @is_malvf: boolean output to indicate if VF is malicious
182  *
183  * This function tracks the number of asynchronous messages
184  * sent per VF and marks the VF as malicious if it exceeds
185  * the permissible number of messages to send.
186  */
187 static int
188 ice_mbx_detect_malvf(struct ice_hw *hw, u16 vf_id,
189 		     enum ice_mbx_snapshot_state *new_state,
190 		     bool *is_malvf)
191 {
192 	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
193 
194 	if (vf_id >= snap->mbx_vf.vfcntr_len)
195 		return -EIO;
196 
197 	/* increment the message count in the VF array */
198 	snap->mbx_vf.vf_cntr[vf_id]++;
199 
200 	if (snap->mbx_vf.vf_cntr[vf_id] >= ICE_ASYNC_VF_MSG_THRESHOLD)
201 		*is_malvf = true;
202 
203 	/* continue to iterate through the mailbox snapshot */
204 	ice_mbx_traverse(hw, new_state);
205 
206 	return 0;
207 }
208 
209 /**
210  * ice_mbx_reset_snapshot - Reset mailbox snapshot structure
211  * @snap: pointer to mailbox snapshot structure in the ice_hw struct
212  *
213  * Reset the mailbox snapshot structure and clear VF counter array.
214  */
215 static void ice_mbx_reset_snapshot(struct ice_mbx_snapshot *snap)
216 {
217 	u32 vfcntr_len;
218 
219 	if (!snap || !snap->mbx_vf.vf_cntr)
220 		return;
221 
222 	/* Clear VF counters. */
223 	vfcntr_len = snap->mbx_vf.vfcntr_len;
224 	if (vfcntr_len)
225 		memset(snap->mbx_vf.vf_cntr, 0,
226 		       (vfcntr_len * sizeof(*snap->mbx_vf.vf_cntr)));
227 
228 	/* Reset mailbox snapshot for a new capture. */
229 	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
230 	snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
231 }
232 
233 /**
234  * ice_mbx_vf_state_handler - Handle states of the overflow algorithm
235  * @hw: pointer to the HW struct
236  * @mbx_data: pointer to structure containing mailbox data
237  * @vf_id: relative virtual function (VF) ID
238  * @is_malvf: boolean output to indicate if VF is malicious
239  *
240  * The function serves as an entry point for the malicious VF
241  * detection algorithm by handling the different states and state
242  * transitions of the algorithm:
243  * New snapshot: This state is entered when creating a new static
244  * snapshot. The data from any previous mailbox snapshot is
245  * cleared and a new capture of the mailbox head and tail is
246  * logged. This will be the new static snapshot to detect
247  * asynchronous messages sent by VFs. On capturing the snapshot
248  * and depending on whether the number of pending messages in that
249  * snapshot exceed the watermark value, the state machine enters
250  * traverse or detect states.
251  * Traverse: If pending message count is below watermark then iterate
252  * through the snapshot without any action on VF.
253  * Detect: If pending message count exceeds watermark traverse
254  * the static snapshot and look for a malicious VF.
255  */
256 int
257 ice_mbx_vf_state_handler(struct ice_hw *hw,
258 			 struct ice_mbx_data *mbx_data, u16 vf_id,
259 			 bool *is_malvf)
260 {
261 	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
262 	struct ice_mbx_snap_buffer_data *snap_buf;
263 	struct ice_ctl_q_info *cq = &hw->mailboxq;
264 	enum ice_mbx_snapshot_state new_state;
265 	int status = 0;
266 
267 	if (!is_malvf || !mbx_data)
268 		return -EINVAL;
269 
270 	/* When entering the mailbox state machine assume that the VF
271 	 * is not malicious until detected.
272 	 */
273 	*is_malvf = false;
274 
275 	 /* Checking if max messages allowed to be processed while servicing current
276 	  * interrupt is not less than the defined AVF message threshold.
277 	  */
278 	if (mbx_data->max_num_msgs_mbx <= ICE_ASYNC_VF_MSG_THRESHOLD)
279 		return -EINVAL;
280 
281 	/* The watermark value should not be lesser than the threshold limit
282 	 * set for the number of asynchronous messages a VF can send to mailbox
283 	 * nor should it be greater than the maximum number of messages in the
284 	 * mailbox serviced in current interrupt.
285 	 */
286 	if (mbx_data->async_watermark_val < ICE_ASYNC_VF_MSG_THRESHOLD ||
287 	    mbx_data->async_watermark_val > mbx_data->max_num_msgs_mbx)
288 		return -EINVAL;
289 
290 	new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
291 	snap_buf = &snap->mbx_buf;
292 
293 	switch (snap_buf->state) {
294 	case ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT:
295 		/* Clear any previously held data in mailbox snapshot structure. */
296 		ice_mbx_reset_snapshot(snap);
297 
298 		/* Collect the pending ARQ count, number of messages processed and
299 		 * the maximum number of messages allowed to be processed from the
300 		 * Mailbox for current interrupt.
301 		 */
302 		snap_buf->num_pending_arq = mbx_data->num_pending_arq;
303 		snap_buf->num_msg_proc = mbx_data->num_msg_proc;
304 		snap_buf->max_num_msgs_mbx = mbx_data->max_num_msgs_mbx;
305 
306 		/* Capture a new static snapshot of the mailbox by logging the
307 		 * head and tail of snapshot and set num_iterations to the tail
308 		 * value to mark the start of the iteration through the snapshot.
309 		 */
310 		snap_buf->head = ICE_RQ_DATA_MASK(cq->rq.next_to_clean +
311 						  mbx_data->num_pending_arq);
312 		snap_buf->tail = ICE_RQ_DATA_MASK(cq->rq.next_to_clean - 1);
313 		snap_buf->num_iterations = snap_buf->tail;
314 
315 		/* Pending ARQ messages returned by ice_clean_rq_elem
316 		 * is the difference between the head and tail of the
317 		 * mailbox queue. Comparing this value against the watermark
318 		 * helps to check if we potentially have malicious VFs.
319 		 */
320 		if (snap_buf->num_pending_arq >=
321 		    mbx_data->async_watermark_val) {
322 			new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
323 			status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
324 		} else {
325 			new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
326 			ice_mbx_traverse(hw, &new_state);
327 		}
328 		break;
329 
330 	case ICE_MAL_VF_DETECT_STATE_TRAVERSE:
331 		new_state = ICE_MAL_VF_DETECT_STATE_TRAVERSE;
332 		ice_mbx_traverse(hw, &new_state);
333 		break;
334 
335 	case ICE_MAL_VF_DETECT_STATE_DETECT:
336 		new_state = ICE_MAL_VF_DETECT_STATE_DETECT;
337 		status = ice_mbx_detect_malvf(hw, vf_id, &new_state, is_malvf);
338 		break;
339 
340 	default:
341 		new_state = ICE_MAL_VF_DETECT_STATE_INVALID;
342 		status = -EIO;
343 	}
344 
345 	snap_buf->state = new_state;
346 
347 	return status;
348 }
349 
350 /**
351  * ice_mbx_report_malvf - Track and note malicious VF
352  * @hw: pointer to the HW struct
353  * @all_malvfs: all malicious VFs tracked by PF
354  * @bitmap_len: length of bitmap in bits
355  * @vf_id: relative virtual function ID of the malicious VF
356  * @report_malvf: boolean to indicate if malicious VF must be reported
357  *
358  * This function will update a bitmap that keeps track of the malicious
359  * VFs attached to the PF. A malicious VF must be reported only once if
360  * discovered between VF resets or loading so the function checks
361  * the input vf_id against the bitmap to verify if the VF has been
362  * detected in any previous mailbox iterations.
363  */
364 int
365 ice_mbx_report_malvf(struct ice_hw *hw, unsigned long *all_malvfs,
366 		     u16 bitmap_len, u16 vf_id, bool *report_malvf)
367 {
368 	if (!all_malvfs || !report_malvf)
369 		return -EINVAL;
370 
371 	*report_malvf = false;
372 
373 	if (bitmap_len < hw->mbx_snapshot.mbx_vf.vfcntr_len)
374 		return -EINVAL;
375 
376 	if (vf_id >= bitmap_len)
377 		return -EIO;
378 
379 	/* If the vf_id is found in the bitmap set bit and boolean to true */
380 	if (!test_and_set_bit(vf_id, all_malvfs))
381 		*report_malvf = true;
382 
383 	return 0;
384 }
385 
386 /**
387  * ice_mbx_clear_malvf - Clear VF bitmap and counter for VF ID
388  * @snap: pointer to the mailbox snapshot structure
389  * @all_malvfs: all malicious VFs tracked by PF
390  * @bitmap_len: length of bitmap in bits
391  * @vf_id: relative virtual function ID of the malicious VF
392  *
393  * In case of a VF reset, this function can be called to clear
394  * the bit corresponding to the VF ID in the bitmap tracking all
395  * malicious VFs attached to the PF. The function also clears the
396  * VF counter array at the index of the VF ID. This is to ensure
397  * that the new VF loaded is not considered malicious before going
398  * through the overflow detection algorithm.
399  */
400 int
401 ice_mbx_clear_malvf(struct ice_mbx_snapshot *snap, unsigned long *all_malvfs,
402 		    u16 bitmap_len, u16 vf_id)
403 {
404 	if (!snap || !all_malvfs)
405 		return -EINVAL;
406 
407 	if (bitmap_len < snap->mbx_vf.vfcntr_len)
408 		return -EINVAL;
409 
410 	/* Ensure VF ID value is not larger than bitmap or VF counter length */
411 	if (vf_id >= bitmap_len || vf_id >= snap->mbx_vf.vfcntr_len)
412 		return -EIO;
413 
414 	/* Clear VF ID bit in the bitmap tracking malicious VFs attached to PF */
415 	clear_bit(vf_id, all_malvfs);
416 
417 	/* Clear the VF counter in the mailbox snapshot structure for that VF ID.
418 	 * This is to ensure that if a VF is unloaded and a new one brought back
419 	 * up with the same VF ID for a snapshot currently in traversal or detect
420 	 * state the counter for that VF ID does not increment on top of existing
421 	 * values in the mailbox overflow detection algorithm.
422 	 */
423 	snap->mbx_vf.vf_cntr[vf_id] = 0;
424 
425 	return 0;
426 }
427 
428 /**
429  * ice_mbx_init_snapshot - Initialize mailbox snapshot structure
430  * @hw: pointer to the hardware structure
431  * @vf_count: number of VFs allocated on a PF
432  *
433  * Clear the mailbox snapshot structure and allocate memory
434  * for the VF counter array based on the number of VFs allocated
435  * on that PF.
436  *
437  * Assumption: This function will assume ice_get_caps() has already been
438  * called to ensure that the vf_count can be compared against the number
439  * of VFs supported as defined in the functional capabilities of the device.
440  */
441 int ice_mbx_init_snapshot(struct ice_hw *hw, u16 vf_count)
442 {
443 	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
444 
445 	/* Ensure that the number of VFs allocated is non-zero and
446 	 * is not greater than the number of supported VFs defined in
447 	 * the functional capabilities of the PF.
448 	 */
449 	if (!vf_count || vf_count > hw->func_caps.num_allocd_vfs)
450 		return -EINVAL;
451 
452 	snap->mbx_vf.vf_cntr = devm_kcalloc(ice_hw_to_dev(hw), vf_count,
453 					    sizeof(*snap->mbx_vf.vf_cntr),
454 					    GFP_KERNEL);
455 	if (!snap->mbx_vf.vf_cntr)
456 		return -ENOMEM;
457 
458 	/* Setting the VF counter length to the number of allocated
459 	 * VFs for given PF's functional capabilities.
460 	 */
461 	snap->mbx_vf.vfcntr_len = vf_count;
462 
463 	/* Clear mbx_buf in the mailbox snaphot structure and setting the
464 	 * mailbox snapshot state to a new capture.
465 	 */
466 	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
467 	snap->mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
468 
469 	return 0;
470 }
471 
472 /**
473  * ice_mbx_deinit_snapshot - Free mailbox snapshot structure
474  * @hw: pointer to the hardware structure
475  *
476  * Clear the mailbox snapshot structure and free the VF counter array.
477  */
478 void ice_mbx_deinit_snapshot(struct ice_hw *hw)
479 {
480 	struct ice_mbx_snapshot *snap = &hw->mbx_snapshot;
481 
482 	/* Free VF counter array and reset VF counter length */
483 	devm_kfree(ice_hw_to_dev(hw), snap->mbx_vf.vf_cntr);
484 	snap->mbx_vf.vfcntr_len = 0;
485 
486 	/* Clear mbx_buf in the mailbox snaphot structure */
487 	memset(&snap->mbx_buf, 0, sizeof(snap->mbx_buf));
488 }
489