1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2019, Intel Corporation. */ 3 4 #include "ice_txrx_lib.h" 5 #include "ice_eswitch.h" 6 #include "ice_lib.h" 7 8 /** 9 * ice_release_rx_desc - Store the new tail and head values 10 * @rx_ring: ring to bump 11 * @val: new head index 12 */ 13 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val) 14 { 15 u16 prev_ntu = rx_ring->next_to_use & ~0x7; 16 17 rx_ring->next_to_use = val; 18 19 /* update next to alloc since we have filled the ring */ 20 rx_ring->next_to_alloc = val; 21 22 /* QRX_TAIL will be updated with any tail value, but hardware ignores 23 * the lower 3 bits. This makes it so we only bump tail on meaningful 24 * boundaries. Also, this allows us to bump tail on intervals of 8 up to 25 * the budget depending on the current traffic load. 26 */ 27 val &= ~0x7; 28 if (prev_ntu != val) { 29 /* Force memory writes to complete before letting h/w 30 * know there are new descriptors to fetch. (Only 31 * applicable for weak-ordered memory model archs, 32 * such as IA-64). 33 */ 34 wmb(); 35 writel(val, rx_ring->tail); 36 } 37 } 38 39 /** 40 * ice_ptype_to_htype - get a hash type 41 * @ptype: the ptype value from the descriptor 42 * 43 * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by 44 * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of 45 * Rx desc. 46 */ 47 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype) 48 { 49 struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype); 50 51 if (!decoded.known) 52 return PKT_HASH_TYPE_NONE; 53 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4) 54 return PKT_HASH_TYPE_L4; 55 if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3) 56 return PKT_HASH_TYPE_L3; 57 if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2) 58 return PKT_HASH_TYPE_L2; 59 60 return PKT_HASH_TYPE_NONE; 61 } 62 63 /** 64 * ice_rx_hash - set the hash value in the skb 65 * @rx_ring: descriptor ring 66 * @rx_desc: specific descriptor 67 * @skb: pointer to current skb 68 * @rx_ptype: the ptype value from the descriptor 69 */ 70 static void 71 ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, 72 struct sk_buff *skb, u16 rx_ptype) 73 { 74 struct ice_32b_rx_flex_desc_nic *nic_mdid; 75 u32 hash; 76 77 if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) 78 return; 79 80 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) 81 return; 82 83 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; 84 hash = le32_to_cpu(nic_mdid->rss_hash); 85 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); 86 } 87 88 /** 89 * ice_rx_csum - Indicate in skb if checksum is good 90 * @ring: the ring we care about 91 * @skb: skb currently being received and modified 92 * @rx_desc: the receive descriptor 93 * @ptype: the packet type decoded by hardware 94 * 95 * skb->protocol must be set before this function is called 96 */ 97 static void 98 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb, 99 union ice_32b_rx_flex_desc *rx_desc, u16 ptype) 100 { 101 struct ice_rx_ptype_decoded decoded; 102 u16 rx_status0, rx_status1; 103 bool ipv4, ipv6; 104 105 rx_status0 = le16_to_cpu(rx_desc->wb.status_error0); 106 rx_status1 = le16_to_cpu(rx_desc->wb.status_error1); 107 108 decoded = ice_decode_rx_desc_ptype(ptype); 109 110 /* Start with CHECKSUM_NONE and by default csum_level = 0 */ 111 skb->ip_summed = CHECKSUM_NONE; 112 skb_checksum_none_assert(skb); 113 114 /* check if Rx checksum is enabled */ 115 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 116 return; 117 118 /* check if HW has decoded the packet and checksum */ 119 if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) 120 return; 121 122 if (!(decoded.known && decoded.outer_ip)) 123 return; 124 125 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 126 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); 127 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && 128 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); 129 130 if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | 131 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) 132 goto checksum_fail; 133 134 if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) 135 goto checksum_fail; 136 137 /* check for L4 errors and handle packets that were not able to be 138 * checksummed due to arrival speed 139 */ 140 if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) 141 goto checksum_fail; 142 143 /* check for outer UDP checksum error in tunneled packets */ 144 if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) && 145 (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S))) 146 goto checksum_fail; 147 148 /* If there is an outer header present that might contain a checksum 149 * we need to bump the checksum level by 1 to reflect the fact that 150 * we are indicating we validated the inner checksum. 151 */ 152 if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT) 153 skb->csum_level = 1; 154 155 /* Only report checksum unnecessary for TCP, UDP, or SCTP */ 156 switch (decoded.inner_prot) { 157 case ICE_RX_PTYPE_INNER_PROT_TCP: 158 case ICE_RX_PTYPE_INNER_PROT_UDP: 159 case ICE_RX_PTYPE_INNER_PROT_SCTP: 160 skb->ip_summed = CHECKSUM_UNNECESSARY; 161 break; 162 default: 163 break; 164 } 165 return; 166 167 checksum_fail: 168 ring->vsi->back->hw_csum_rx_error++; 169 } 170 171 /** 172 * ice_process_skb_fields - Populate skb header fields from Rx descriptor 173 * @rx_ring: Rx descriptor ring packet is being transacted on 174 * @rx_desc: pointer to the EOP Rx descriptor 175 * @skb: pointer to current skb being populated 176 * @ptype: the packet type decoded by hardware 177 * 178 * This function checks the ring, descriptor, and packet information in 179 * order to populate the hash, checksum, VLAN, protocol, and 180 * other fields within the skb. 181 */ 182 void 183 ice_process_skb_fields(struct ice_rx_ring *rx_ring, 184 union ice_32b_rx_flex_desc *rx_desc, 185 struct sk_buff *skb, u16 ptype) 186 { 187 ice_rx_hash(rx_ring, rx_desc, skb, ptype); 188 189 /* modifies the skb - consumes the enet header */ 190 skb->protocol = eth_type_trans(skb, ice_eswitch_get_target_netdev 191 (rx_ring, rx_desc)); 192 193 ice_rx_csum(rx_ring, skb, rx_desc, ptype); 194 195 if (rx_ring->ptp_rx) 196 ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb); 197 } 198 199 /** 200 * ice_receive_skb - Send a completed packet up the stack 201 * @rx_ring: Rx ring in play 202 * @skb: packet to send up 203 * @vlan_tag: VLAN tag for packet 204 * 205 * This function sends the completed packet (via. skb) up the stack using 206 * gro receive functions (with/without VLAN tag) 207 */ 208 void 209 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) 210 { 211 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && 212 (vlan_tag & VLAN_VID_MASK)) 213 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); 214 napi_gro_receive(&rx_ring->q_vector->napi, skb); 215 } 216 217 /** 218 * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring 219 * @xdp_ring: XDP ring to clean 220 */ 221 static void ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring) 222 { 223 unsigned int total_bytes = 0, total_pkts = 0; 224 u16 ntc = xdp_ring->next_to_clean; 225 struct ice_tx_desc *next_dd_desc; 226 u16 next_dd = xdp_ring->next_dd; 227 struct ice_tx_buf *tx_buf; 228 int i; 229 230 next_dd_desc = ICE_TX_DESC(xdp_ring, next_dd); 231 if (!(next_dd_desc->cmd_type_offset_bsz & 232 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) 233 return; 234 235 for (i = 0; i < ICE_TX_THRESH; i++) { 236 tx_buf = &xdp_ring->tx_buf[ntc]; 237 238 total_bytes += tx_buf->bytecount; 239 /* normally tx_buf->gso_segs was taken but at this point 240 * it's always 1 for us 241 */ 242 total_pkts++; 243 244 page_frag_free(tx_buf->raw_buf); 245 dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma), 246 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); 247 dma_unmap_len_set(tx_buf, len, 0); 248 tx_buf->raw_buf = NULL; 249 250 ntc++; 251 if (ntc >= xdp_ring->count) 252 ntc = 0; 253 } 254 255 next_dd_desc->cmd_type_offset_bsz = 0; 256 xdp_ring->next_dd = xdp_ring->next_dd + ICE_TX_THRESH; 257 if (xdp_ring->next_dd > xdp_ring->count) 258 xdp_ring->next_dd = ICE_TX_THRESH - 1; 259 xdp_ring->next_to_clean = ntc; 260 ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes); 261 } 262 263 /** 264 * ice_xmit_xdp_ring - submit single packet to XDP ring for transmission 265 * @data: packet data pointer 266 * @size: packet data size 267 * @xdp_ring: XDP ring for transmission 268 */ 269 int ice_xmit_xdp_ring(void *data, u16 size, struct ice_tx_ring *xdp_ring) 270 { 271 u16 i = xdp_ring->next_to_use; 272 struct ice_tx_desc *tx_desc; 273 struct ice_tx_buf *tx_buf; 274 dma_addr_t dma; 275 276 if (ICE_DESC_UNUSED(xdp_ring) < ICE_TX_THRESH) 277 ice_clean_xdp_irq(xdp_ring); 278 279 if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) { 280 xdp_ring->tx_stats.tx_busy++; 281 return ICE_XDP_CONSUMED; 282 } 283 284 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); 285 if (dma_mapping_error(xdp_ring->dev, dma)) 286 return ICE_XDP_CONSUMED; 287 288 tx_buf = &xdp_ring->tx_buf[i]; 289 tx_buf->bytecount = size; 290 tx_buf->gso_segs = 1; 291 tx_buf->raw_buf = data; 292 293 /* record length, and DMA address */ 294 dma_unmap_len_set(tx_buf, len, size); 295 dma_unmap_addr_set(tx_buf, dma, dma); 296 297 tx_desc = ICE_TX_DESC(xdp_ring, i); 298 tx_desc->buf_addr = cpu_to_le64(dma); 299 tx_desc->cmd_type_offset_bsz = ice_build_ctob(ICE_TX_DESC_CMD_EOP, 0, 300 size, 0); 301 302 i++; 303 if (i == xdp_ring->count) { 304 i = 0; 305 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 306 tx_desc->cmd_type_offset_bsz |= 307 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 308 xdp_ring->next_rs = ICE_TX_THRESH - 1; 309 } 310 xdp_ring->next_to_use = i; 311 312 if (i > xdp_ring->next_rs) { 313 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_rs); 314 tx_desc->cmd_type_offset_bsz |= 315 cpu_to_le64(ICE_TX_DESC_CMD_RS << ICE_TXD_QW1_CMD_S); 316 xdp_ring->next_rs += ICE_TX_THRESH; 317 } 318 319 return ICE_XDP_TX; 320 } 321 322 /** 323 * ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it 324 * @xdp: XDP buffer 325 * @xdp_ring: XDP Tx ring 326 * 327 * Returns negative on failure, 0 on success. 328 */ 329 int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring) 330 { 331 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 332 333 if (unlikely(!xdpf)) 334 return ICE_XDP_CONSUMED; 335 336 return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); 337 } 338 339 /** 340 * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map 341 * @xdp_ring: XDP ring 342 * @xdp_res: Result of the receive batch 343 * 344 * This function bumps XDP Tx tail and/or flush redirect map, and 345 * should be called when a batch of packets has been processed in the 346 * napi loop. 347 */ 348 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res) 349 { 350 if (xdp_res & ICE_XDP_REDIR) 351 xdp_do_flush_map(); 352 353 if (xdp_res & ICE_XDP_TX) { 354 if (static_branch_unlikely(&ice_xdp_locking_key)) 355 spin_lock(&xdp_ring->tx_lock); 356 ice_xdp_ring_update_tail(xdp_ring); 357 if (static_branch_unlikely(&ice_xdp_locking_key)) 358 spin_unlock(&xdp_ring->tx_lock); 359 } 360 } 361