1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <linux/filter.h>
5 
6 #include "ice_txrx_lib.h"
7 #include "ice_eswitch.h"
8 #include "ice_lib.h"
9 
10 /**
11  * ice_release_rx_desc - Store the new tail and head values
12  * @rx_ring: ring to bump
13  * @val: new head index
14  */
15 void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
16 {
17 	u16 prev_ntu = rx_ring->next_to_use & ~0x7;
18 
19 	rx_ring->next_to_use = val;
20 
21 	/* update next to alloc since we have filled the ring */
22 	rx_ring->next_to_alloc = val;
23 
24 	/* QRX_TAIL will be updated with any tail value, but hardware ignores
25 	 * the lower 3 bits. This makes it so we only bump tail on meaningful
26 	 * boundaries. Also, this allows us to bump tail on intervals of 8 up to
27 	 * the budget depending on the current traffic load.
28 	 */
29 	val &= ~0x7;
30 	if (prev_ntu != val) {
31 		/* Force memory writes to complete before letting h/w
32 		 * know there are new descriptors to fetch. (Only
33 		 * applicable for weak-ordered memory model archs,
34 		 * such as IA-64).
35 		 */
36 		wmb();
37 		writel(val, rx_ring->tail);
38 	}
39 }
40 
41 /**
42  * ice_ptype_to_htype - get a hash type
43  * @ptype: the ptype value from the descriptor
44  *
45  * Returns appropriate hash type (such as PKT_HASH_TYPE_L2/L3/L4) to be used by
46  * skb_set_hash based on PTYPE as parsed by HW Rx pipeline and is part of
47  * Rx desc.
48  */
49 static enum pkt_hash_types ice_ptype_to_htype(u16 ptype)
50 {
51 	struct ice_rx_ptype_decoded decoded = ice_decode_rx_desc_ptype(ptype);
52 
53 	if (!decoded.known)
54 		return PKT_HASH_TYPE_NONE;
55 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY4)
56 		return PKT_HASH_TYPE_L4;
57 	if (decoded.payload_layer == ICE_RX_PTYPE_PAYLOAD_LAYER_PAY3)
58 		return PKT_HASH_TYPE_L3;
59 	if (decoded.outer_ip == ICE_RX_PTYPE_OUTER_L2)
60 		return PKT_HASH_TYPE_L2;
61 
62 	return PKT_HASH_TYPE_NONE;
63 }
64 
65 /**
66  * ice_rx_hash - set the hash value in the skb
67  * @rx_ring: descriptor ring
68  * @rx_desc: specific descriptor
69  * @skb: pointer to current skb
70  * @rx_ptype: the ptype value from the descriptor
71  */
72 static void
73 ice_rx_hash(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
74 	    struct sk_buff *skb, u16 rx_ptype)
75 {
76 	struct ice_32b_rx_flex_desc_nic *nic_mdid;
77 	u32 hash;
78 
79 	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
80 		return;
81 
82 	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
83 		return;
84 
85 	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
86 	hash = le32_to_cpu(nic_mdid->rss_hash);
87 	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
88 }
89 
90 /**
91  * ice_rx_csum - Indicate in skb if checksum is good
92  * @ring: the ring we care about
93  * @skb: skb currently being received and modified
94  * @rx_desc: the receive descriptor
95  * @ptype: the packet type decoded by hardware
96  *
97  * skb->protocol must be set before this function is called
98  */
99 static void
100 ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
101 	    union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
102 {
103 	struct ice_rx_ptype_decoded decoded;
104 	u16 rx_status0, rx_status1;
105 	bool ipv4, ipv6;
106 
107 	rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
108 	rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
109 
110 	decoded = ice_decode_rx_desc_ptype(ptype);
111 
112 	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
113 	skb->ip_summed = CHECKSUM_NONE;
114 	skb_checksum_none_assert(skb);
115 
116 	/* check if Rx checksum is enabled */
117 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
118 		return;
119 
120 	/* check if HW has decoded the packet and checksum */
121 	if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
122 		return;
123 
124 	if (!(decoded.known && decoded.outer_ip))
125 		return;
126 
127 	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
128 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
129 	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
130 	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
131 
132 	if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
133 				   BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
134 		goto checksum_fail;
135 
136 	if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
137 		goto checksum_fail;
138 
139 	/* check for L4 errors and handle packets that were not able to be
140 	 * checksummed due to arrival speed
141 	 */
142 	if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
143 		goto checksum_fail;
144 
145 	/* check for outer UDP checksum error in tunneled packets */
146 	if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
147 	    (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
148 		goto checksum_fail;
149 
150 	/* If there is an outer header present that might contain a checksum
151 	 * we need to bump the checksum level by 1 to reflect the fact that
152 	 * we are indicating we validated the inner checksum.
153 	 */
154 	if (decoded.tunnel_type >= ICE_RX_PTYPE_TUNNEL_IP_GRENAT)
155 		skb->csum_level = 1;
156 
157 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
158 	switch (decoded.inner_prot) {
159 	case ICE_RX_PTYPE_INNER_PROT_TCP:
160 	case ICE_RX_PTYPE_INNER_PROT_UDP:
161 	case ICE_RX_PTYPE_INNER_PROT_SCTP:
162 		skb->ip_summed = CHECKSUM_UNNECESSARY;
163 		break;
164 	default:
165 		break;
166 	}
167 	return;
168 
169 checksum_fail:
170 	ring->vsi->back->hw_csum_rx_error++;
171 }
172 
173 /**
174  * ice_process_skb_fields - Populate skb header fields from Rx descriptor
175  * @rx_ring: Rx descriptor ring packet is being transacted on
176  * @rx_desc: pointer to the EOP Rx descriptor
177  * @skb: pointer to current skb being populated
178  * @ptype: the packet type decoded by hardware
179  *
180  * This function checks the ring, descriptor, and packet information in
181  * order to populate the hash, checksum, VLAN, protocol, and
182  * other fields within the skb.
183  */
184 void
185 ice_process_skb_fields(struct ice_rx_ring *rx_ring,
186 		       union ice_32b_rx_flex_desc *rx_desc,
187 		       struct sk_buff *skb, u16 ptype)
188 {
189 	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
190 
191 	/* modifies the skb - consumes the enet header */
192 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
193 
194 	ice_rx_csum(rx_ring, skb, rx_desc, ptype);
195 
196 	if (rx_ring->ptp_rx)
197 		ice_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
198 }
199 
200 /**
201  * ice_receive_skb - Send a completed packet up the stack
202  * @rx_ring: Rx ring in play
203  * @skb: packet to send up
204  * @vlan_tag: VLAN tag for packet
205  *
206  * This function sends the completed packet (via. skb) up the stack using
207  * gro receive functions (with/without VLAN tag)
208  */
209 void
210 ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag)
211 {
212 	netdev_features_t features = rx_ring->netdev->features;
213 	bool non_zero_vlan = !!(vlan_tag & VLAN_VID_MASK);
214 
215 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) && non_zero_vlan)
216 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
217 	else if ((features & NETIF_F_HW_VLAN_STAG_RX) && non_zero_vlan)
218 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
219 
220 	napi_gro_receive(&rx_ring->q_vector->napi, skb);
221 }
222 
223 /**
224  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
225  * @xdp_ring: XDP Tx ring
226  * @tx_buf: Tx buffer to clean
227  */
228 static void
229 ice_clean_xdp_tx_buf(struct ice_tx_ring *xdp_ring, struct ice_tx_buf *tx_buf)
230 {
231 	dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
232 			 dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
233 	dma_unmap_len_set(tx_buf, len, 0);
234 	xdp_ring->xdp_tx_active--;
235 	page_frag_free(tx_buf->raw_buf);
236 	tx_buf->raw_buf = NULL;
237 }
238 
239 /**
240  * ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
241  * @xdp_ring: XDP ring to clean
242  */
243 static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
244 {
245 	int total_bytes = 0, total_pkts = 0;
246 	u32 ntc = xdp_ring->next_to_clean;
247 	struct ice_tx_desc *tx_desc;
248 	u32 cnt = xdp_ring->count;
249 	u32 ready_frames = 0;
250 	u32 frags;
251 	u32 idx;
252 	u32 ret;
253 
254 	idx = xdp_ring->tx_buf[ntc].rs_idx;
255 	tx_desc = ICE_TX_DESC(xdp_ring, idx);
256 	if (tx_desc->cmd_type_offset_bsz &
257 	    cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
258 		if (idx >= ntc)
259 			ready_frames = idx - ntc + 1;
260 		else
261 			ready_frames = idx + cnt - ntc + 1;
262 	}
263 
264 	if (!ready_frames)
265 		return 0;
266 	ret = ready_frames;
267 
268 	while (ready_frames) {
269 		struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
270 
271 		/* bytecount holds size of head + frags */
272 		total_bytes += tx_buf->bytecount;
273 		frags = tx_buf->nr_frags;
274 		total_pkts++;
275 		/* count head + frags */
276 		ready_frames -= frags + 1;
277 
278 		if (xdp_ring->xsk_pool)
279 			xsk_buff_free(tx_buf->xdp);
280 		else
281 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
282 		ntc++;
283 		if (ntc == cnt)
284 			ntc = 0;
285 
286 		for (int i = 0; i < frags; i++) {
287 			tx_buf = &xdp_ring->tx_buf[ntc];
288 
289 			ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
290 			ntc++;
291 			if (ntc == cnt)
292 				ntc = 0;
293 		}
294 	}
295 
296 	tx_desc->cmd_type_offset_bsz = 0;
297 	xdp_ring->next_to_clean = ntc;
298 	ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
299 
300 	return ret;
301 }
302 
303 /**
304  * __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
305  * @xdp: XDP buffer to be placed onto Tx descriptors
306  * @xdp_ring: XDP ring for transmission
307  */
308 int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring)
309 {
310 	struct skb_shared_info *sinfo = NULL;
311 	u32 size = xdp->data_end - xdp->data;
312 	struct device *dev = xdp_ring->dev;
313 	u32 ntu = xdp_ring->next_to_use;
314 	struct ice_tx_desc *tx_desc;
315 	struct ice_tx_buf *tx_head;
316 	struct ice_tx_buf *tx_buf;
317 	u32 cnt = xdp_ring->count;
318 	void *data = xdp->data;
319 	u32 nr_frags = 0;
320 	u32 free_space;
321 	u32 frag = 0;
322 
323 	free_space = ICE_DESC_UNUSED(xdp_ring);
324 
325 	if (ICE_DESC_UNUSED(xdp_ring) < ICE_RING_QUARTER(xdp_ring))
326 		free_space += ice_clean_xdp_irq(xdp_ring);
327 
328 	if (unlikely(xdp_buff_has_frags(xdp))) {
329 		sinfo = xdp_get_shared_info_from_buff(xdp);
330 		nr_frags = sinfo->nr_frags;
331 		if (free_space < nr_frags + 1) {
332 			xdp_ring->ring_stats->tx_stats.tx_busy++;
333 			return ICE_XDP_CONSUMED;
334 		}
335 	}
336 
337 	tx_desc = ICE_TX_DESC(xdp_ring, ntu);
338 	tx_head = &xdp_ring->tx_buf[ntu];
339 	tx_buf = tx_head;
340 
341 	for (;;) {
342 		dma_addr_t dma;
343 
344 		dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
345 		if (dma_mapping_error(dev, dma))
346 			goto dma_unmap;
347 
348 		/* record length, and DMA address */
349 		dma_unmap_len_set(tx_buf, len, size);
350 		dma_unmap_addr_set(tx_buf, dma, dma);
351 
352 		tx_desc->buf_addr = cpu_to_le64(dma);
353 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
354 		tx_buf->raw_buf = data;
355 
356 		ntu++;
357 		if (ntu == cnt)
358 			ntu = 0;
359 
360 		if (frag == nr_frags)
361 			break;
362 
363 		tx_desc = ICE_TX_DESC(xdp_ring, ntu);
364 		tx_buf = &xdp_ring->tx_buf[ntu];
365 
366 		data = skb_frag_address(&sinfo->frags[frag]);
367 		size = skb_frag_size(&sinfo->frags[frag]);
368 		frag++;
369 	}
370 
371 	/* store info about bytecount and frag count in first desc */
372 	tx_head->bytecount = xdp_get_buff_len(xdp);
373 	tx_head->nr_frags = nr_frags;
374 
375 	/* update last descriptor from a frame with EOP */
376 	tx_desc->cmd_type_offset_bsz |=
377 		cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
378 
379 	xdp_ring->xdp_tx_active++;
380 	xdp_ring->next_to_use = ntu;
381 
382 	return ICE_XDP_TX;
383 
384 dma_unmap:
385 	for (;;) {
386 		tx_buf = &xdp_ring->tx_buf[ntu];
387 		dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
388 			       dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
389 		dma_unmap_len_set(tx_buf, len, 0);
390 		if (tx_buf == tx_head)
391 			break;
392 
393 		if (!ntu)
394 			ntu += cnt;
395 		ntu--;
396 	}
397 	return ICE_XDP_CONSUMED;
398 }
399 
400 /**
401  * ice_xmit_xdp_ring - submit frame to XDP ring for transmission
402  * @xdpf: XDP frame that will be converted to XDP buff
403  * @xdp_ring: XDP ring for transmission
404  */
405 int ice_xmit_xdp_ring(struct xdp_frame *xdpf, struct ice_tx_ring *xdp_ring)
406 {
407 	struct xdp_buff xdp;
408 
409 	xdp_convert_frame_to_buff(xdpf, &xdp);
410 	return __ice_xmit_xdp_ring(&xdp, xdp_ring);
411 }
412 
413 /**
414  * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
415  * @xdp_ring: XDP ring
416  * @xdp_res: Result of the receive batch
417  *
418  * This function bumps XDP Tx tail and/or flush redirect map, and
419  * should be called when a batch of packets has been processed in the
420  * napi loop.
421  */
422 void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
423 			 u32 first_idx)
424 {
425 	struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
426 
427 	if (xdp_res & ICE_XDP_REDIR)
428 		xdp_do_flush_map();
429 
430 	if (xdp_res & ICE_XDP_TX) {
431 		if (static_branch_unlikely(&ice_xdp_locking_key))
432 			spin_lock(&xdp_ring->tx_lock);
433 		/* store index of descriptor with RS bit set in the first
434 		 * ice_tx_buf of given NAPI batch
435 		 */
436 		tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
437 		ice_xdp_ring_update_tail(xdp_ring);
438 		if (static_branch_unlikely(&ice_xdp_locking_key))
439 			spin_unlock(&xdp_ring->tx_lock);
440 	}
441 }
442